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Abstract 

Many environmental sounds, such as music or speech, are patterned in time. Dynamic attending 

theory (DAT), and supporting empirical evidence, suggests that a stimulus’ temporal structure 

serves to orient attention to specific moments in time. One instantiation of this theory posits that 

attention synchronizes to the temporal structure of a stimulus in an oscillatory fashion, with 

optimal perception at salient time points or oscillation peaks. We examined whether a model 

consisting of damped linear oscillators succeeds at predicting temporal attention behavior in 

rhythmic multi-instrumental music. We conducted three experiments in which we mapped 

listeners’ perceptual sensitivity by estimating detection thresholds for intensity deviants 

embedded at multiple time points within a stimulus pattern. We compared participants’ 

thresholds for detecting intensity changes at various time points with the modeled salience 

prediction at each of those time points. Across all experiments, results showed that the resonator 

model predicted listener thresholds, such that listeners were more sensitive to probes at time 

points corresponding to greater model-predicted salience. This effect held for both intensity 

increment and decrement probes and for metrically simple and complex stimuli. Moreover, the 

resonator model explained the data better than predictions based on canonical metric hierarchy or 

auditory scene density. Our results offer new insight into the temporal orienting of attention in 

complex auditory scenes using a parsimonious computational model for predicting attentional 

dynamics. 

 Keywords: dynamic attending, oscillator, resonator, rhythm, adaptive threshold, 

psychophysics, model 
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Public Significance Statement 

Sounds in the environment, such as music or speech, typically have a rhythmic temporal 

structure. Previous research suggests that listeners do not distribute their attention to all moments 

in time equally, but rather focus their attention on certain points in time. In this study, we used a 

computational model to predict when listeners were most likely to be attending within rhythmic 

music patterns. We tested our predictions by asking listeners to detect subtle changes at various 

time points throughout several patterns. In comparing the listeners’ data to our model 

predictions, we showed that it is possible to compute a fine-grained prediction of how humans 

orient their attention in time.  
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Mapping the dynamic allocation of temporal attention in musical patterns 

Periodic structure exists in many parts of the acoustic environment, including music, 

speech, and non-human animal calls. To efficiently process such stimuli, a listener must parse 

the timing of acoustic events and selectively allocate attention to the times at which salient 

events are expected to occur. The prevailing account of how this is accomplished posits an 

underlying oscillatory process, whereby a sinusoidal fluctuation of attention synchronizes to the 

period and phase of external rhythms, with peaks in the attentional oscillation corresponding to 

maximal attentional focus (Jones & Boltz, 1989; Large & Jones, 1999). In this paper, we ask 

whether damped linear oscillators can reliably predict temporal attention in rhythmic musical 

sequences. 

Evidence suggests that the temporal structure of rhythmic stimuli implicitly orients 

attention to moments in time. Dynamic attending theory (DAT) postulates that the processing of 

rhythmic sequences entails synchronization between “attunement rhythms” (Jones & Boltz, 

1989) or “attending rhythms,” modeled as oscillators that represent endogenous, periodic 

fluctuations in neural resources (Large & Jones, 1999), and external stimulus rhythms. 

According to DAT, attending rhythms become entrained to a regularly timed stimulus rhythm 

(e.g., the beat in music or the syllable pattern in speech) such that a stimulus event is most salient 

when its onset timing is in synchrony with the established entraining rhythm.  

Computational models of DAT by Large and colleagues formalize rhythmically driven 

oscillatory attention using nonlinear dynamical systems, in which oscillators entrain to external 

stimulus periodicities and affect inter-oscillator activity by entraining to one another (Large & 

Jones, 1999; Large & Kolen, 1994; Large & Palmer, 2002; Large & Snyder, 2009; Large, 
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Herrera, & Velasco, 2015). Alternatively, DAT can be modeled using systems of linear 

oscillators. Linear oscillators are driven by periodic stimulation at their tuned periodicities, scale 

linearly in their responses to stimulus amplitude, and, when arranged in banks of oscillators 

tuned to multiple periodicities, are sensitive to hierarchically nested periodicity structures (Tomic 

& Janata, 2008). Both linear and nonlinear oscillators share filtering properties in that they excite 

maximally to stimulus periodicities that match their tuning. However, nonlinear oscillators are 

considerably more complex in their behavior, as they respond nonlinearly to stimulus amplitude, 

oscillate spontaneously, and exhibit higher-order resonance, none of which linear oscillators do 

(Large, 2010). The computational components – such as parameters for bifurcation, nonlinear 

dampening, and higher-order terms – that enable these nonlinear behaviors also contribute to the 

increased complexity. As such, if a linear oscillator model succeeded at predicting temporal 

attention behavior, it would offer a more computationally parsimonious instantiation of DAT 

compared to those of nonlinear models.  

In the current study, we assess the precision with which a model built upon banks of 

reson filters – a type of linear oscillator – predicts dynamic attending behavior with musical 

rhythms. Our model differs from similar linear models of rhythm and meter perception in (1) its 

use of reson filters, which are well suited for extracting multiple periodicities of an acoustic 

signal, rather than comb filters (Klapuri, Eronen, & Astola, 2006; Scheirer, 1998) or Gaussian 

filters (Todd, 1994), and (2) its objective to estimate the continuous, multi-level periodicity 

structure of acoustic signals, rather than just the beat or the tempo (e.g., Parncutt, 1994; Scheirer, 

1998). We direct readers to Tomic and Janata (2008) for a comprehensive review of related 

linear rhythm and meter models. 
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 Several studies support DAT, showing that the detection and judgment of stimulus 

events embedded within a rhythmic context are enhanced when the stimulus rhythm comprises 

isochronous inter-onset intervals (IOIs) rather than irregular IOIs, and when targets are presented 

in phase rather than out of phase with the entraining rhythm. This effect is observed for 

judgments on multiple stimulus dimensions, including discriminations of interval duration, event 

duration, and pitch (Barnes & Jones, 2000; Jones, Moynihan, MacKenzie, & Puente, 2002; Large 

& Jones, 1999; McAuley & Fromboluti, 2014), although recent work questions the robustness of 

DAT effects in pitch comparison paradigms (Bauer et al., 2015). Evidence shows that rhythm 

also drives attentional dynamics in speech processing. For instance, phoneme detection is faster 

when the syllable containing the target phoneme is aligned with a preceding rhythmic pattern 

(Cason & Schön, 2012; Pitt & Samuel, 1990). Furthermore, entrainment to rhythms also 

influences perception across modalities, such that visual target detection is enhanced when the 

target is presented in synchrony with a concurrently playing auditory entraining rhythm (Bolger, 

Trost, & Schön, 2013; Miller, Carlson, & McAuley, 2013). 

Behavioral evidence of rhythmically guided attention also converges with 

neurophysiological evidence. Numerous studies report modulation of attention-related 

components of the event-related potential (ERP) as a function of rhythmic timing. For example, 

the P300 is enhanced when participants detect deviant stimuli embedded in isochronous rather 

than randomly timed sequences (Otterbein, Abel, Heinemann, Kaiser, & Schmidt-Kassow, 2012; 

Schmidt-Kassow, Schubotz, & Kotz, 2009; Schwartze, Rothermich, Schmidt-Kassow, & Kotz, 

2011) and N100 modulations are observed when an auditory target appears in phase with a 

preceding isochronous sequence (e.g., Lange, 2009, 2010; Sanabria & Correa, 2013). Studies of 
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EEG and MEG spectra provide additional insights into rhythmically driven perceptual 

enhancements. For instance, the frequency spectra of auditory steady-state evoked potentials 

from individuals listening to rhythmic patterns reveal increased neural activity at beat- and 

meter-related periodicity frequencies (Nozaradan, Peretz, Missal, & Mouraux, 2011; Nozaradan, 

Peretz, & Mouraux, 2012). Furthermore, fluctuations of induced gamma-band (20-60 Hz) 

oscillatory activity coincide with and even precede expected tone onsets in rhythmic patterns 

(Fujioka, Trainor, Large, & Ross, 2009; Snyder & Large, 2005; Zanto, Large, Fuchs, & Kelso, 

2005; Zanto, Snyder, & Large, 2006). Recent work in monkey physiology suggests that, in the 

presence of rhythmic stimuli, attention selectively entrains low-frequency (e.g., 1-4 Hz) neuronal 

oscillations to the stimulus such that sensory response gain is amplified at rhythmically expected 

time points (Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008; Schroeder, Wilson, Radman, 

Scharfman, & Lakatos, 2010). Moreover, cross-frequency coupling of attention-related neuronal 

oscillations allows for response excitation across multiple timescales (Schroeder & Lakatos, 

2009). These observations support the presence of an oscillatory pattern in temporal attention to 

rhythms and provide a systems-level brain mechanism for DAT. 

Given its rhythmic make-up, most Western music contains multiple, harmonically related 

periodicities that combine to create an accent structure and elicit an endogenously generated 

temporal hierarchy, termed meter (London, 2012). The most salient temporal level, or 

periodicity, within this hierarchy is called the beat. Patterns of strong (accented) and weak 

(unaccented) beats, as well as patterns of rhythmic event onsets between beats, give rise to 

additional periodicities at integer multiples and subdivisions of the beat period. By probing for 

goodness-of-fit ratings for probe tones which occurred on various metrical levels for a range of 
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metrical structures, Palmer and Krumhansl (1990) showed that listeners regarded tones as more 

expected when they occurred at higher points in the theoretical metric hierarchy (e.g., the first 

beat in a four-beat sequence).  

DAT posits that frequency-tuned attending rhythms entrain to the various periodicities 

present in a rhythmic stimulus, and that the alignment of peaks across simultaneously entrained, 

harmonically related attending rhythms dynamically bias attention to moments of high metrical 

salience (Jones & Boltz, 1989; Large & Jones, 1999; Large & Palmer, 2002). Studies of 

rhythmic attending using metrical rhythmic stimuli appear to support this prediction. For 

instance, Repp (2010) had participants detect changes in intensity and duration of notes within 

metrically structured melodies. Participants detected these deviants most accurately at metrically 

strong positions relative to metrically weak positions. Similarly, when participants perform 

visual and auditory target detection tasks while exposed to an auditory metrical entraining 

stimulus, response times are generally faster when targets occur at metrically strong positions 

than at metrically weak positions (Bolger, Coull, & Schön, 2014; Bolger et al., 2013). 

Additionally, metric timing elicits attention-related modulations in the ERP, such that the 

detection of targets at metrically strong positions in auditory rhythms evokes greater amplitude 

and decreased latency in the P300 response (Abecasis, 2005; Brochard, Abecasis, Potter, Ragot, 

& Drake, 2003; Potter, Fenwick, Abecasis, & Brochard, 2009).  

Most of the research on temporal attending has utilized isochronous rhythms with 

accenting used to impart hierarchical structure across multiple timespans. However, musical 

rhythm contains much richer temporal structure than simply isochrony. Moreover, music often 

contains rhythmically salient acoustic events that do not appear on strong beats, such as 



9 

MAPPING DYNAMIC TEMPORAL ATTENTION 

   

 

syncopations, in which salient events occur on weak beats or subdivisions of the beat. Although 

previous work has investigated the mental representation of more complexly structured rhythms 

(e.g. Large & Palmer, 2002; Essens & Povel, 1985), few have addressed the dynamic orienting 

of attention in such rhythms. In the current study, we examine temporal attention within stimuli 

that reflect ethologically relevant temporal patterning. 

We investigate rhythmic processing by combining a computational model of temporal 

attention with psychophysical mapping of attention allocation in musical auditory scenes. We 

examine the extent to which, in comparison to music-theoretic models of metric organization 

from which estimates of temporal salience might be derived, the parametric outputs of our 

resonator model of attention are able to predict perceptual thresholds at different locations within 

a metric structure. We approached these questions using a deviance detection paradigm in which 

transient intensity changes were embedded in percussion patterns possessing rhythmic 

complexity found in natural music. We estimated the temporal orienting of attention to specific 

moments in time by measuring deviance-detection thresholds at multiple time points in each 

stimulus pattern. We then assessed the resonator model’s salience predictions by comparing the 

measured thresholds to model output at the corresponding time points. We hypothesized that 

participants would be more sensitive to deviants presented at moments of higher model-predicted 

salience, which we interpreted as evidence for greater stimulus-driven attentional focus. 



10 

MAPPING DYNAMIC TEMPORAL ATTENTION 

   

 

Experiment 1 

Method 

Participants.   Twenty-eight undergraduate students (13 females) aged 18 to 43 (M = 

21.7) at the University of California, Davis, participated in exchange for course credit. Twelve 

participants reported having at least three years of musical instrument or vocal training. That 

group of participants had 7.8 years of musical training on average. The experiments reported in 

this paper were not designed to test differences between musicians and non-musicians. Because 

such comparisons would therefore be under-powered, we report descriptive musicianship 

statistics for all experiments but do not include musicianship as a variable in our analyses. For all 

experiments reported in this paper, participants provided informed consent in accordance with a 

protocol approved by the Institutional Review Board of the University of California, Davis. 

Stimuli and apparatus.    We used five stimuli from a previous, unpublished experiment 

in our lab; those stimuli were created using a custom audio sample sequencer written in 

Max/MSP (Cycling ’74). Each stimulus was a three-timbre percussion pattern comprising conga, 

shaker, and snap instrument timbres from a Proteus 2000 sound module (E-mu Systems, Scotts 

Valley, CA). In all stimuli but one, the conga was a mid-conga (i.e. with an intermediate pitch 

height). In one stimulus (complex2) the conga timbre was a high-pitched conga. As these stimuli 

were selected from a previous, unrelated experiment, this timbre difference was not by design for 

the current study. Moreover, as we are primarily concerned in this paper with the aggregate 

temporal structure of the stimulus patterns rather than with the individual timbres, we were not 

concerned about the timbral difference between complex2 and the other stimuli. Nevertheless, 

for reference, we calculated each instrument timbre’s fundamental frequency (f0), spectral 
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centroid (a measure of brightness), attack time, and intensity using the Music Information 

Retrieval Toolbox (Lartillot, Toiviainen, & Eerola, 2008) in MATLAB (Mathworks, Natick, 

MA). The mid-conga sample had an f0 of 250 Hz, a spectral centroid of 599 Hz, an attack time 

of 27 ms, and an average rms intensity of 5,789. The high conga had an f0 of 800 Hz, a spectral 

centroid of 3,751 Hz, an attack time of 16 ms, and an average rms intensity of 2,743. The shaker 

had an f0 of 255 Hz, a spectral centroid of 10,466 Hz, an attack time of 45 ms, and an rms 

intensity of 1,864. The snap had an f0 of 734 Hz, a spectral centroid of 4,493 Hz, an attack time 

of 37 ms, and an rms intensity of 2,506.  

Stimulus patterns were arranged as single measures in 4/4 meter at 107 beats per minute 

(BPM) and were presented as continuously repeating loops. As each loop played, intensity 

increases could occur at any of four time points, each associated with varying levels of predicted 

perceptual salience (Figure 1; see supplemental materials for audio examples of stimuli), as 

assessed using Tomic & Janata’s (2008) resonator model (see the Resonator model section). 

These intensity increases occurred globally across all voices of the rhythmic pattern and lasted 

200 ms, with an on and offset ramp of 1ms. A given stimulus loop iteration could contain only 

one randomly selected intensity increment probe. After a probe was presented, the probability of 

a probe in the following loop iteration was 0. After a standard (i.e. non-deviant) loop iteration, 

the probability of a probe on the subsequent loop iteration was .80. The first author developed 

Max/MSP software to play stimuli, dynamically apply increment probes, implement a dynamic 

threshold algorithm (see Adaptive threshold section), and collect responses. Stimuli were played 

at a comfortable listening level through two Tannoy Reveal 601p studio monitor speakers 
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(Tannoy Ltd, Coatbridge, UK), with each speaker situated approximately one meter away from 

participants. The experiment took place in a sound-attenuating chamber. 

Resonator model.    We assessed stimulus periodicity structure by processing four 

continuous repetitions of each of the stimulus loops through a resonator model (Tomic & Janata, 

2008) (Figure 2). A key feature of this model is its use of reson filters – damped linear oscillators 

that are sensitive to periodically recurring onsets – to model the periodicity structure of an input 

signal. The model simulates the filtering, resonance, and transduction mechanisms of the 

peripheral auditory system, as implemented in the IPEM toolbox (Leman, Lesaffre, & Tanghe, 

2001), which decomposes the input signal into 40 critical bands of auditory nerve firing rate 

codes. It then estimates onset patterns within each critical band and sums every eight adjacent 

channels, resulting in five bands. Onset patterns in each of the five bands are passed through a 

bank of 99 reson filters tuned from 0.25 to 10 Hz, resulting in five bands of reson filter output. A 

windowed root-mean-square (rms) calculation is applied to each reson filter’s output and is 

treated as a metric of energy within each of the 99 resonator frequencies. The five bands of rms 

are averaged to create an average periodicity surface (APS), a spectrogram of energy within 

periodicity frequencies over time. The APS is then averaged across time to produce a mean 

periodicity profile (MPP). In a representation similar to a frequency amplitude spectrum, the 

MPP reveals the prominent periodicity frequencies found in the input signal (Figure 2B). We 

encourage readers to examine Tomic and Janata’s (2008) paper for a detailed description of the 

model. 

Model metrics for selecting probe timing.    We combined information from stimulus 

MPPs with resonator output to generate a single time series of estimated salience dynamics, 

which we used to select probe times of greater and lesser modeled salience. First, we found each 
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stimulus’ most prominent periodicities by identifying the peaks of the MPP that were greater 

than 5% of the MPP’s amplitude range. Next, for each of the five bands of reson filter output, we 

assessed resonator activity solely at the peak periodicities from the MPP (Figure 2). Finally, for 

each time point within the rhythmic pattern, we calculated the mean peak-periodicity resonator 

amplitude across all five bands, which yielded a single time series for each stimulus (Figure 2A; 

also depicted in Figure 1). We used this time course as our estimate of perceptual salience. 

Adaptive Threshold.    At the beginning of a stimulus block, increment probes (intensity 

increments) at each of the four time points started with a 10 dB SPL amplitude increase, 

representing a “best guess” of participants’ difference limens. Throughout the remainder of each 

stimulus block, the magnitudes of increments were adjusted by an adaptive threshold procedure, 

Zippy Estimation by Sequential Testing (ZEST), which has been demonstrated to converge on 

threshold estimates with speed, accuracy, and reliability (King-Smith, Grigsby, Vingrys, Benes, 

& Supowit, 1994; Marvit, Florentine, & Buus, 2003) in multiple probe conditions simultaneously 

(Navarro Cebrian & Janata, 2010a, 2010b). We implemented the ZEST algorithm with a set of 

custom MAX/MSP patches. Under ZEST, an a priori probability density function (p.d.f.) is 

specified to reflect an assumed probability distribution of a listener’s threshold. The mean of the 

initial p.d.f. determines the difference level of the first increment probe (here 10 dB SPL). The 

p.d.f for each probe was calculated based on whether the participant detected the probe or not, 

within a1000ms window following probe onset. After each observation, Bayes’ Theorem is used 

to generate a new p.d.f. given the listener’s preceding responses, and the mean of each newly 

calculated p.d.f. determines the difference level of the next increment. The mean of the p.d.f. 

calculated after the final observation constitutes the final threshold estimate. We employed a 
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stopping criterion of 20 observations for each probed temporal position. Separate thresholds 

were tracked concurrently for each of the four stimulus probe positions. A stimulus block 

terminated once thresholds converged for all four probe positions. 

Procedure.    Participants were instructed to listen to the looping rhythmic patterns and 

to press the space bar on a computer keyboard when they heard brief increases in volume. 

Participants had until 1000 ms after each intensity deviant to respond. However, participants 

were unaware of the 1000 ms response window and were instead instructed to respond as quickly 

and as accurately as possible following each perceived increment. They first performed a training 

session in which they detected intensity increments with a one-minute, three-timbre percussion 

loop that was similar to the experiment stimuli (see online supplemental materials for an audio 

sample of the training stimulus). Next, participants performed the experiment phase of the 

increment detection task across five blocks, each block containing a continuous loop that was 

randomly selected from the five stimulus patterns (Figure 1). Stimulus blocks lasted an average 

of 6.49 minutes, and participants took breaks of self-selected durations between blocks. The total 

time of the experiment was approximately 32 minutes, plus the participants’ individually 

determined break lengths. The session ended with questionnaires in which participants reported 

their levels of musical training and the specific nature of their musical experience. Questionnaire 

forms were administered using Ensemble (Tomic & Janata, 2007), a web interface for behavioral 

experiments. 

Results and Discussion 

We tested our hypothesis that resonator level predicts increment detection thresholds 

using a linear mixed-effects model (LMM). We used an LMM for our within-subjects design due 
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to its abilities to accommodate interdependence among repeated observations and its ability to 

model participants as sources of random variation (Pinheiro & Bates, 2009). We fit the following 

LMM to the data using the nlme package (Pinheiro, Bates, DebRoy, Sarkar, & the R 

Development Core Team, 2013) in R (R Core Team, 2013): 

Thresholdij = β
0
+ β

1
Resonatori + β

2
log

10
(Block

i
) + bi + εij 

Thresholdij is the dependent variable measured at resonator level j within participant i. β
0
 is the 

fixed-effect intercept, and β1 and β2 are fixed effects of resonator level and log10(block number), 

respectively. bi is the random effect of threshold intercept for participant i, and εij represents 

residual error. Model parameters were estimated using the Restricted Maximum Likelihood 

(REML) method. Effect sizes of fixed effects were evaluated using Cohen’s f2, a standardized 

measure of an independent variable’s effect size in the context of a multivariate model (Cohen, 

1988). We calculated f2 effect sizes following the guidelines of Selya, Rose, Dierker, Hedeker, & 

Mermelstein (2012) for mixed-effects multiple regression models. We did not perform an a 

priori power analysis, as this was our first full data set from this paradigm beyond small pilot 

samples. 

Resonator level significantly predicted increment detection thresholds [ß = -2.67, SE = 

0.32, t(530) = -8.48, p < 0.001, f2 = 0.13], such that higher resonator amplitude corresponded to 

lower thresholds (Figure 3A). Furthermore, thresholds increased across blocks in a logarithmic 

pattern, such that they increased more over the first half of the experiment and plateaued in the 

last half of the experiment. Thus, the log10 of block number significantly predicted increment 

detection thresholds [ß = 4.79, SE = 0.65, t(530) = 7.41, p < 0.001, f2 = 0.10].  
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The results suggest that output from Tomic and Janata’s (2008) resonator model is a 

suitable predictor of salience dynamics in complex, multi-timbral rhythmic patterns. Although 

the aggregate data show considerable variation in detection thresholds (Figure 3A), the negative 

relationship between resonator level and increment detection threshold was visible within most 

participants’ data (Figure 4). Participant fatigue likely contributed to variability in task 

performance, as indicated by the positive relationship between block number and threshold. 

Moreover, many subjects stated after the experiment that they had difficulty sustaining attention 

throughout the session. 

Beyond these observations, one question is whether the enhanced processing that results 

from rhythmically driven temporal attention occurs similarly across deviance types. Results of 

previous studies have suggested that perception of increments vs. decrements in texture (Huron 

1990, 1992) and IOI duration (Repp 1998, 1999) are asymmetric. With regard to the present 

study it is possible, on the one hand, that deviance detection is facilitated at salient time points, 

regardless of the type of deviant that is probed. Alternatively, to the extent that intensity 

increments are perceptually analogous to intensity accents, it is possible that increments may 

alter a listener’s perception of metric structure. Intensity increments at metrically salient time 

points may also coincide with a listener’s expectation of accentuation, and may thus be 

registered as metrically appropriate, and thus non-deviant accents. If amplitude increments do 

interfere with perceived metric structure, one control for this would be to test deviance detection 

for intensity decrements. Thus, in Experiment 2 we tested decrement detection using the same 

paradigm as in Experiment 1. 
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Experiment 2 

As noted above, it is possible that transient intensity increments, like those used in 

Experiment 1, perturb a listener’s mental representation of metric structure by altering the 

perceived accent pattern. In Experiment 2, we addressed these concerns by modifying the 

paradigm from Experiment 1, such that participants detected intensity decrements rather than 

increments. We hypothesized that, similarly to Experiment 1, participants would be more 

sensitive to intensity decrements – thus showing lower absolute-value thresholds – at time points 

of greater modeled salience. 

Method 

Thirty-eight UC Davis undergraduate students, age 18 to 24 (M = 20.7), participated in 

exchange for course credit. Thirteen participants had at least three years of musical training, with 

a mean of 7.2 years of training among that group. For all experiments reported in this paper, no 

individual participated in more than one experiment.  

Stimulus rhythm patterns and the temporal position of probes were identical to those in 

Experiment 1 (Figure 1). However, participants detected intensity decrements rather than 

increments for both the training stimuli and the main multi-timbre detection task. Decrement 

magnitudes were controlled adaptively using the threshold procedures described in the Adaptive 

Threshold section of Experiment 1, in this case with a starting amplitude decrease of -10 dB 

SPL. As participants detected reductions in intensity, thresholds were estimated as negative 

values. However, in our analyses we present thresholds as absolute values to facilitate 

comparison across experiments. All other apparatus items and procedures were identical to 

Experiment 1. 
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Results and Discussion 

We fit a mixed-effects model to the data with absolute-value threshold as the dependent 

measure; resonator level and log10(block number) as fixed-effect predictors; and participant 

threshold intercept as a random effect. As in Experiment 1, higher resonator levels significantly 

predicted lower absolute-value thresholds [ß = -5.83, SE = 0.35, t (720) = -16.86, p < 0.001, f2
 = 

0.39] (Figure 3B). Similarly to Experiment 1, log10(block number) predicted thresholds, such that 

absolute-value thresholds increased logarithmically as blocks progressed [ß = 3.49, SE = 0.67, 

t(720) = 5.19, p < 0.001, f2
 = 0.04]. 

Experiment 2 results replicated those from Experiment 1, indicating that resonator model 

output predicts attentional dynamics in rhythmic patterns across probe types. These observations 

counter the possibility that Experiment 1 effects were increment-specific, or that increment 

probes fundamentally perturb meter perception. Detecting decrements appeared to be more 

difficult than detecting increments, as suggested by higher average absolute-value thresholds for 

many stimulus probe positions (Figure 3). This is unsurprising given evidence that increasing 

intensity in auditory objects is more salient than decreasing intensity (Neuhoff, 1998; Patterson, 

1994; Phillips, Hall, & Boehnke, 2002). Moreover, stimulus intensity decrements that followed 

large decrement thresholds (e.g., -18 dB SPL) were likely perceived as momentary silence or 

removed acoustic events. Evidence from Cervantes Constantino, Pinggera, Paranamana, 

Kashino, & Chait (2012) and Huron (1990; 1992) indicates that removed events within an 

auditory scene are more difficult to detect than inserted events. Lastly, the present results further 

suggest that the duration and number of blocks contribute to participant fatigue, as manifested by 

progressively poorer performance over time. In the following experiments, we addressed this 
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issue in an effort to stabilize participants’ performance over the course of a given experimental 

session. 

Experiment 3 

In Experiment 3, we repeated the increment and decrement detection tasks from 

Experiments 1 and 2 with several critical methodological changes. First, we sought to understand 

the inter-individual variability in deviance detection thresholds observed for the multi-timbral 

loops. We expected that participants would differ in their ability to perform intensity deviance 

detection under optimal conditions. Thus, we obtained participants’ baseline deviance detection 

thresholds in isochronous single-instrument contexts, as such contexts isolated deviance 

detection from temporal and auditory scene complexities present in the multi-timbral stimuli. 

Second, given the evidence in Experiments 1 and 2 that task duration negatively impacted 

participants’ performance, we sought to reduce within-participant variability and task fatigue by 

adjusting the threshold estimation procedures to shorten stimulus blocks.  

We also tested whether individuals’ aptitudes in an aspect of musical temporal processing 

– namely beat detection – helped explain inter-participant variability in the multi-timbral 

detection task. Although our task did not involve judgments about the music’s beat, we suspected 

that differences in participants’ abilities to identify the beat (a repeating isochronous interval) in 

excerpts of standard recorded music might correlate with differences in their abilities to track the 

timing of overall rhythmic structure, which in turn could affect performance in our detection 

task. As such, we measured beat-processing thresholds in a custom, adaptive threshold 

modification of the Beat Alignment Test (BAT; Iversen & Patel, 2008), an assessment designed 
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to detect individual differences and impairments in musical beat perception. We also compared 

task performance and the resonator model’s predictive ability between metrically complex 

stimuli used in Experiments 1 and 2 and new stimuli that had a simpler metric structure.  

Method 

Participants.    We collected data on two samples of undergraduate students at UC Davis 

in exchange for course credit. Twenty-five participants aged 18 to 27 (M = 20.8) performed the 

increment detection task. Fifteen of these participants had at least three years of musical training 

(mean years of training within these participants = 8.9) A separate group of 29 participants aged 

18 to 23 (M = 20.5) performed the decrement detection task. Thirteen of these participants were 

musically trained for at least three years (mean years of training within these participants = 8.2). 

All participants reported having normal hearing. 

Adaptive threshold.    Threshold estimation in Experiments 1 and 2 employed a twenty-

observation stopping criterion. Alternatively, ZEST can be set to terminate dynamically once a 

critical p.d.f. variance is reached. This approach better exploits ZEST’s threshold convergence 

speed, rather than stopping after a fixed number of observations. Thus, in Experiment 3 we 

utilized a dynamic stopping criterion to reduce the duration of stimulus blocks. Following pilot 

testing, we considered a p.d.f. standard deviation (SD) of 1.10 dB SPL to indicate threshold 

convergence. Once this stopping criterion was met for a given probe position, the mean of the 

convergent p.d.f. served as the participant’s final threshold estimate for that probe and 

increments were no longer presented at that position. The block terminated once thresholds 

converged for all four probe positions. The threshold for a probe position terminated after 20 

observations if it had not converged by then. Pilot testing of the decrement detection task 
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revealed that, when subjects began the task with no responses to targets, thresholds converged 

within three observations due to a lack of response variability and thus a hastened narrowing of 

the p.d.f. We circumvented this premature convergence in the decrement task by requiring a 

minimum of seven observations before each threshold could converge. All other aspects of 

threshold estimation were identical to the previous experiments.  

Stimuli and Procedures.    Stimuli consisted of two metrically complex and two 

metrically simple stimuli that looped at a tempo of 107 BPM. The stimuli from Experiments 1 

and 2 named “complex 4” and “complex 5” were the complex stimuli. We created two additional 

relatively simple stimuli using the same composition methods described in Experiment 1 (Figure 

1). Firstly, the simple stimuli differed from the complex stimuli in that IOIs between stimulus 

pattern events were never shorter than an eighth note (1/2 beat), whereas the complex stimuli 

contained IOIs equal to a sixteenth note (1/4 beat). Secondly, the underlying beat was 

emphasized in the simple stimuli by ensuring that acoustic events occupied every beat and ½ 

beat position, whereas some complex stimuli lacked acoustic events on beat positions or salient 

beat subdivisions. Thirdly, in both simple and complex stimuli the lowest voice (conga) 

contained the same number of onsets (four), while the two higher voices contained eight events 

in the complex stimuli and only four in the simple. We acknowledge the potential interaction 

between instrument timbre and metric salience level. Hence, whereas in the complex stimuli 

there is an unequal distribution of event onsets across voices, in the simple stimuli, all 

instruments have four event onsets. We chose four events because we thought it important to 

keep the number of conga events the same across conditions due to the importance of low 

frequency information in driving groove perception (Stupacher, Hove, & Janata, 2016), 

movement induction (Burger, Thompson, Luck, Saarikallio, & Toiviainen, 2012), and vestibular 
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activity (Todd, 2001). Ultimately, we view our simple stimuli as simple because of their reduced 

and aligned rhythmic activity, which should result in more easily perceived metric structure.  

Experiment procedures were identical to those in Experiments 1 and 2, with the exception 

that the target intensity changes lasted approximately 140 ms, whereas intensity changes in the 

previous experiments lasted approximately 200 ms. The revised intensity deviant duration 

matched the duration of a sixteenth note interval, the smallest IOI present in the stimuli. 

Prior to the deviance detection task with the multi-timbral stimuli, we assessed 

participants’ baseline deviance detection thresholds using single-timbre, isochronous sequences. 

The initial baseline task also doubled as a training session for participants. Participants heard the 

three single-timbre isochronous sequences (snap, shaker, or conga) in random order. During the 

task, the single instrument sample repeated at a constant IOI of 561 ms (107 bpm).  Transient 

increments or decrements (depending on the participant’s group) were presented following the 

same rules as in the main experiment. Each isochronous sequence continued playing until the 

participant’s threshold for that timbre adaptively converged. A single threshold was estimated for 

each timbre, and the mean of those thresholds served as participants’ baseline deviance detection 

threshold. 

Following the multi-timbral deviance detection task, participants performed a custom, 

adaptive threshold modification of the perceptual portion of the BAT (Part 3: Perceptual 

judgment of the beat; Iversen & Patel, 2008). This portion of the BAT presents participants with 

a beeping metronome superimposed on excerpts of commercially recorded music and tests 

participants’ ability to detect perturbations in the phase and period of the metronome with respect 

to the phase and period of the music’s beat. The metronome was an isochronous 1000-Hz pure 

tone with a rise and fall time of 5 ms and a duration of 100 ms. See Table 1 in Iversen and Patel 
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(2008) for a complete list of stimuli used in the BAT. In our modified version, we estimated 

participants’ thresholds for detecting phase and period metronome perturbations following the 

procedures described in Adaptive threshold. For each participant, a single threshold was 

calculated for each perturbation type (phase and period) by presenting the BAT stimuli in 

random order and adaptively adjusting the metronome perturbations on each trial using the ZEST 

algorithm until the threshold converged. Given evidence that detecting phase perturbations in the 

BAT is more difficult than detecting period perturbations (Iversen & Patel, 2008), as well our 

pilot observations that confirmed this, the period block began the threshold algorithm with a 10% 

perturbation and the phase block began with a 30% perturbation. Both tests had a catch-trial (no 

perturbation) probability of .20, and thresholds were set to converge when the SD of the ZEST 

p.d.f. reached 1.15%. In other words, as with the main task in the present experiment, which also 

used a similar dynamic threshold-stopping criterion, the number of trials varied among 

participants depending on the trial-to-trial consistency of their task performance. We 

implemented our adaptive-threshold version of the BAT using the Psychophysics Toolbox 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in MATLAB1. 

Results 

We fit mixed-effects models to the increment and decrement data sets with threshold as 

the dependent measure (absolute-value threshold for the decrement data). We included resonator 

level, isochronous baseline threshold, BAT (tempo and phase test) thresholds, and stimulus 

complexity as fixed effects. Participants’ threshold intercepts were modeled as random effects.  

A separate mixed-effects model on the single-timbre isochronous thresholds [fixed effect: 

instrument (mid-conga, shaker, or snap); random intercept: participant] indicated no difference in 
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baseline increment thresholds among the isochronous instruments, F(2, 46) = 1.20, p = 0.310, f2 

= 0.03. Isochronous decrement thresholds did differ significantly among the instrument timbres, 

F(2, 56) = 7.18, p = 0.002, f2 = 0.23. A post hoc comparison (p-values corrected for false 

discovery rate; Benjamini & Hochberg, 1995) indicated that decrement thresholds were higher 

for the snap than those for the shaker [t(56) = 3.78, SE = 0.44, p = 0.001], but no other timbre 

comparisons differed significantly. However, we intended these single-timbre isochronous 

thresholds to be baseline metrics of each participant’s increment or decrement thresholds. As 

such, to restrict the number of parameters in the mixed-effects models for the experiment data, 

the isochronous baseline model parameter referred to in the previous paragraph and reported in 

the results below is the mean of each participant’s single-timbre isochronous thresholds. 

Lastly, we used Welch’s t-tests to compare thresholds and threshold variability between 

experiments. 

Increment detection.    Compared to the average duration of blocks in Experiments 1 

and 2 (M = 6.49 minutes), the length of task blocks was substantially reduced (M = 3.61 

minutes) under our dynamic threshold convergence procedures. Whereas Experiments 1 and 2 

required 20 observations for thresholds to converge, the average number of observations required 

for thresholds to converge in the current increment detection experiment was approximately 11.  

As observed in Experiments 1 and 2, higher resonator levels significantly predicted lower 

increment detection thresholds [ß = -5.68, SE = 0.61, t(356) = -9.27, p < 0.001, f2 = 0.30] (Figure 

5A). Performance on both the tempo and phase portions of the BAT failed to predict thresholds 

[tempo: ß = 0.09, SE = 0.08, t(16) = 1.14, p = 0.272, f2 =0.00; phase: ß = -0.06, SE = 0.05, t(16) 

= -1.22, p = 0.242, f2 = 0.01]. Baseline isochronous thresholds also did not predict thresholds in 
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the multi-timbre task [ß = 0.08, SE = 0.29, t(22) = 0.28, p = 0.780, f2 = 0.02], nor did block 

number [ß = 0.15, SE = 0.13, t(356) = 1.15, p = 0.252, f2 = 0.00]. The log10 of block number was 

also not significant [ß = 0.94, SE = 0.62, t(356) = 1.50, p = 0.134, f2 = 0.01]. Thresholds for 

complex stimuli were significantly lower than those for simple stimuli, but only slightly so [ß = -

0.94, SE = 0.45, t(356) = -2.11, p = 0.036, f2 = 0.01]. Moreover, the relationship between 

resonator level and thresholds differed between complex and simple stimuli such that larger 

reson values were more closely related to smaller thresholds (i.e. the negative resonator ~ 

threshold slope was steeper) for complex than for simple stimuli [ß = 3.23, SE = 0.71, t(356) = 

4.58, p < 0.001, f2 = 0.06] (Figure 6A). On average, the thresholds for Experiment 3 (M = 8.82) 

were lower than those of Experiment 1 (M = 10.43), but a two-tailed Welch’s t-test indicated that 

this difference only approached significance [t(39.22) = -1.94, p = 0.059]. Increment thresholds 

were significantly less variable in Experiment 3 (mean subject SD = 3.01) than in Experiment 1 

(mean subject SD = 4.01) [t(50.62) = -3.25, p = 0.002]. 

Decrement detection.    Mean block duration (3.07 minutes) was again considerably 

reduced compared to Experiments 1 and 2 (M = 6.49 minutes). On average, thresholds required 

approximately 9 observations to converge. 

Higher resonator level predicted lower absolute-value decrement detection thresholds [ß 

= -8.83, SE = 1.53, t(434) = -5.79, p < 0.001, f2 = 0.08] (Figure 5B). Similarly to the increment 

data, BAT performance did not predict thresholds [tempo: ß = 0.08, SE = 0.05, t(22) = 1.75, p = 

0.095, f2 = 0.00; phase: ß = 0.02, SE = 0.02, t(22) = 0.80, p = 0.432, f2 = 0.00]. Participants’ 

isochronous baseline thresholds, however, were positively correlated with participants’ 

experiment thresholds [ß = 0.55, SE = 0.23, t(27) = 2.34, p = 0.027, f2 = 0.01] (Figure 6C). 
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Additionally, baseline thresholds interacted with resonator activity, such that the degree to which 

reson amplitude explained participants’ thresholds correlated positively with their baseline 

isochronous thresholds [ß = 0.61, SE = 0.28, t(434) = 2.20, p = 0.028, f2 = 0.01] (Figure 6B). 

Unlike the increment group, the number of elapsed blocks was also associated with increased 

thresholds [ß = 0.70, SE = 0.17, t(434) = 4.03, p = 0.001, f2 = 0.04]. Stimulus complexity 

significantly predicted task performance such that simpler stimuli led to lower thresholds [ß = -

1.81, SE = 0.61, t(434) = -2.98, p = 0.003, f2 = 0.02] (Figure 6A). However, complexity did not 

interact with resonator level [ß = 1.04, SE = 0.96, t(434) = 1.09, p = 0.276, f2 = 0.00]. Average 

decrement thresholds did not differ significantly between Experiments 2 and 3 [t(63.95) = 1.10, p 

= 0.275], and neither did decrement threshold variability [t(60.29) = -1.48, p = 0.144]. 

Discussion.    As Experiment 3 replicates the results of Experiments 1 and 2, even while 

controlling for stimulus- and participant-level covariates, we demonstrate that our resonator 

model reliably predicts temporal attention in rhythmic musical patterns. Participants’ increment 

detection thresholds were less variable and somewhat lower in this experiment than in 

Experiment 1, and unlike Experiment 1, participants’ increment thresholds did not fluctuate 

throughout the experiment. This is likely due to our changes in the threshold convergence 

criterion, which shortened block duration to less than half that of Experiments 1 and 2. As such, 

our procedural adjustments appear to have improved the precision with which we could estimate 

participants’ thresholds. However, average decrement detection thresholds and their variability 

did not change between Experiments 2 and 3. That block number predicted a growth in 

decrement but not increment thresholds over time suggests that decrement detection in our task 

imposed an increased cognitive load that accumulated over time and was not ameliorated by 
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shortening the task. Such asymmetry between increment and decrement detection is not 

surprising given previous research suggesting that detecting decrements is more difficult than 

detecting increments (Cervantes Constantino et al., 2012; Neuhoff, 1998; Patterson, 1994; 

Phillips et al., 2002).  

Manipulating stimulus complexity and testing for baseline deviance detection thresholds 

helped to explain stimulus- and participant-level variations in the data. Our results show that 

stimuli with simpler metric complexity elicited lower thresholds on average, and that, in the case 

of increment detection, resonator activity was more tightly associated with task performance for 

metrically complex stimuli. The latter observation may reflect that individuals rely more heavily 

on dynamic attentional cues of rhythmic structure when temporal structure is more complex and 

when parsing event timing is more difficult. We discuss individual differences more extensively 

in the General Discussion. 

Model Comparisons 

The resonator model that we used to predict temporal attention is agnostic to principles of 

music theory. Given the almost ubiquitous use of a music-theoretic construct of a metric 

hierarchy, in which there are binary and ternary subdivisions of spans of time, for defining 

events and moments of interest in studies of rhythm perception and rhythmic dynamic attending 

(e.g., Abecasis et al., 2009; Bolger et al., 2014; Bouwer, Van Zuijen, & Honig, 2014; Ladinig, 

Honing, Háden, & Winkler, 2009; Palmer & Krumhansl, 1990; Snyder & Large, 2005), one may 

ask whether a simple metric hierarchy model explains our data as well as or better than our 

resonator model. To answer this question, we modeled a metric hierarchy’s predictions of the 
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threshold data from each experiment. We implemented the metrical hierarchy model by coding 

temporal locations within each stimulus using saliency values of 1 (least salient) to 4 (most 

salient) according to music-theoretic predictions in a 4/4 meter [see “theoretic predictions” in the 

4/4 stimulus in Figure 1 of Palmer and Krumhansl (1990) for an example schematic]. This 

coding scheme, in both Palmer and Krumhansl (1990) and therefore our paper, is based on the 

work of Lerdahl and Jackendoff (1983). 

Another possible explanation of our experimental results is that stimulus events were 

perhaps more salient when multiple instruments sounded simultaneously, leading to lower 

thresholds at those corresponding times. This would imply that increased stimulus energy, rather 

than periodicity structure, predicted temporal saliency. We tested this “auditory scene density” 

alternative by coding each deviant time point with the number of instrument events playing 

concurrently.  

Results and Discussion 

We tested each of the three alternatives (resonator, metric hierarchy, and auditory scene 

density) with mixed-effects models, using threshold as the dependent variable, the given model’s 

predicted saliency of probe times as the fixed effect, and random-effect intercepts for each 

participant. We fit a separate set of these three models to the increment detection data 

(Experiment 1 and the increment sample from Experiment 3) and the decrement detection data 

(Experiment 2 and the decrement sample from Experiment 3). In order to assess whether the 

minor adjustments in threshold procedures between experiments led to significant differences in 

threshold outcomes or affected marginal music-model predictor effects, we also included a fixed-

effect parameter for experiment number (Experiment 1 versus 3 for increment thresholds and 
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Experiment 2 versus 3 for decrement thresholds) in each mixed-effects model. We assessed the 

relative goodness of model fit using the Akaike Information Criterion (AIC) (Akaike, 1974) and 

Bayes’ Information Criterion (BIC) (Schwarz, 1978). We calculated effect sizes of fixed-effects 

using Cohen’s f2. 

As Table 1 indicates, our resonator model yielded the lowest AIC and BIC values for 

both increment and decrement threshold data, indicating that the resonator model is preferred 

above the metric hierarchy and scene density models, given these common metrics of model fit. 

Furthermore, although resonator, metric hierarchy, and auditory scene density models were all 

significant predictors of participant thresholds, the effect size was markedly larger for the reson 

model than for the alternatives. However, we note that no broadly accepted significance test 

exists for comparing non-nested mixed-effects models (i.e. each model contains a different fixed-

effect term). As such, we caution that a strong claim of model-fit superiority would require 

further testing of alternative models. Nevertheless, these results suggest that the resonator model 

better explains variance in participants’ thresholds than a common music-theoretic model of 

metric saliency or by the momentary density of the acoustic scene. Moreover, these observations 

indicate the utility of predicting rhythmic attention with a model driven directly by the temporal 

structure of individual stimuli rather than one that employs a canonical saliency map, i.e. metric 

hierarchy, that is somewhat removed from the specific temporal dynamics of individual stimuli. 

General Discussion 

This study assessed the ability of resonator output from Tomic and Janata’s (2008) model 

to predict temporal attention in rhythmic musical patterns. We tested this using a psychophysical 

procedure for mapping temporal attention, in which intensity deviants were presented at times 
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corresponding to various levels of modeled saliency and separate detection thresholds were 

measured for each probed position. As we hypothesized, our resonator model significantly 

predicted task performance, whereby participants were more sensitive to probes at moments of 

higher resonator-predicted salience. This result was highly reliable, as the effect of resonator 

prediction replicated across four samples of participants, both increment and decrement probes, 

and stimuli with varying degrees of rhythmic complexity.  

Performance on our task varied markedly across participants, as Figure 6A indicates. 

However, assessments of rhythmic aptitude and psychophysical metrics were not reliable 

predictors of this inter-individual variability. Viewed from the perspective of DAT, if an 

attending rhythm oscillates with the phase and period of the isochronous sequence, participants 

always received deviant probes at times of maximal attentional focus, with observed thresholds 

in a relatively narrow range of approximately 2-8 dB SPL. The question therefore becomes 

whether intensity deviance detection under optimal temporal attention conditions is predictive of 

intensity deviance detection in a more complex musical scene in which multi-timbral stimuli 

encompass multiple periodicities, and deviant probes are presented at multiple levels of 

oscillator-modeled temporal saliency. Overall, we found that in the case of the multi-timbral 

patterns, the range of thresholds was much broader (approximately 2-20 dB SPL) and the 

average thresholds were larger, indicating a cost of musical scene complexity. Surprisingly, 

however, individuals’ thresholds in the isochronous condition were only related to thresholds in 

the musical, multi-timbral scenes for the more challenging intensity decrement case and 

unrelated in the less-challenging intensity increment conditions.2 However, it was the case that 

those individuals who performed best in the isochronous condition also showed the greatest 

sensitivity to probe position location (magnitude of aggregated oscillator output) when intensity 
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decrements had to be detected. In other words, these participants exhibited the strongest effects 

of graded temporal attention, meaning that the difference in their thresholds between moments of 

greater predicted salience and moments of lesser predicted salience were larger than for those 

participants who exhibited larger thresholds in the isochronous task. Such temporal position 

effects are difficult to explain in terms of differences in sensitivity to loudness changes alone. 

It is notable that individuals’ BAT performance did not correlate with performance on 

our task. We surmised that perhaps the correlation between BAT performance and performance 

on our intensity detection task differed for earlier and later portions of an experimental session, 

given the differences we observed in intensity deviance detection as blocks progressed. 

However, separate analyses on data from the first block and the final block of the intensity 

deviant task still did not indicate any associations between performance on our task and 

performance on the BAT (data not shown). The more likely explanation for the lack of 

correlation may be that, despite the superficial similarity of both tasks pertaining to temporal 

perception, our intensity deviant task and the BAT rely on distinct sets of psychological 

processes. To perform the BAT, participants must solve the auditory scene analysis problem of 

comparing timing judgments about an isochronous stream (the metronome) that is clearly 

segregated from the musical piece (Bregman, 1990), with timing judgments about the percept of 

the beat that is extracted from a multi-instrumental aggregate. This type of comparison likely 

requires participants to engage in what Keller and colleagues term prioritized integrative 

attending, a dual task in which the listener divides attention between tracking the metronome 

stream and grouping together the elements of the aggregate musical scene (Keller & Burnham, 

2005; Uhlig, Fairhurst, & Keller, 2013). Conversely, aside from the obvious difference between 

detecting intensity changes and detecting timing perturbations, the demands of our task are quite 
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different from those of BAT. Although both tasks present complex musical auditory scenes, 

stream segregation and reintegration of timing percepts of two distinct components of the 

auditory scene are not required for our task because we modulate the entire scene at critical time 

points. Still, in our study participants might selectively bias attention to some instruments over 

others or may switch attention back and forth among the various instruments. Future 

modifications of our task should probe individual instrument streams within various attentional 

contexts to examine interactions between selective attention to auditory scene objects and DAT. 

Overall, our results corroborate previous research in support of DAT’s central tenet, that 

the attentional process underlying rhythm processing follows an oscillatory pattern (e.g., Bolger 

et al., 2013; Jones & Boltz, 1989; Jones et al., 2002; e.g., Large & Jones, 1999; McAuley & 

Fromboluti, 2014; Miller et al., 2013). Unlike the oscillatory models developed by Large and 

colleagues (Large & Jones, 1999; Large & Kolen, 1994; Large & Palmer, 2002; Large & Snyder, 

2009), which take a nonlinear dynamical systems approach, the resonator model is relatively 

computationally simple in that it consists of a system of linear oscillators [see Tomic and Janata 

(2008) for computational details]. The model does not rely on inhibition or preset integer-related 

tunings between layers of oscillators to model metric relationships; it is a purely stimulus-driven, 

feed-forward approach to predicting salient periodicities and attentional fluctuations over time. 

The model is also unique in its estimation of a continuous temporal salience map, which allows 

for probing moment-to-moment attentional dynamics. We note, however, that the resonator 

model in its current form should not be regarded as a complete model of either musical rhythm 

perception or temporal attention mechanisms. Nevertheless, the current study sheds light on the 

ability of a feedforward oscillator model with minimal assumptions to predict temporal attending 
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behavior. The model thus serves as a benchmark against which other computational models of 

DAT can be compared when using a similar behavioral paradigm.  

Our approach for testing the loci of dynamic attention differs from the majority of 

previous research using music, most of which assumes that metrically strong locations are more 

salient than metrically weak locations. Instead, the model we used derives temporal salience 

predictions directly from a stimulus’ periodicity structure without regard to music theoretic 

notions, such as strong and weak beats. Strong beats may often be highly salient; parallels clearly 

exist between predictions of the metric hierarchy model and those of the oscillator model (Tomic 

& Janata, 2008). Similarly, there is a tendency for multiple instruments to play at metrically 

salient moments, i.e. for the distribution of note densities to be temporally clustered. 

Nevertheless, we argue that the model should perform better when faced with rhythmic stimuli in 

which salience dynamics do not closely follow auditory scene density, a strong- and weak-beat 

accent structure (e.g., syncopated rhythms), or common Western metric structure. Although our 

results support that prediction, a conclusive statement would require directly comparing model 

performance on stimuli manipulated to contain or be free of syncopation, polyrhythmic structure, 

or some other deviation from strong- and weak-beat metrical structure. Additionally, future 

studies might consider using more complex music-theoretic models of meter, such as those of 

Hasty (1997), Temperley (2001, 2007) or London (2012), for comparison with oscillator models.  

In the current study we developed a novel, musically oriented psychophysical task for 

assessing temporally graded perceptual sensitivity. Ethologically relevant acoustic stimuli, such 

as music and speech, often present as continuous streams. As our paradigm maps attention across 

multiple temporal locations within continuously playing stimuli, it more closely resembles a 

realistic auditory environment than paradigms that present short stimulus patterns across many 
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discrete trials. Moreover, unlike typical threshold procedures that require many observations for 

each threshold, our integration of a Bayesian threshold framework allows for estimating 

thresholds with many fewer observations. This is desirable for research with musical stimuli, in 

which too many repetitions, when probing multiple loci, can become unpleasant and even 

exhausting, as suggested by participant feedback and worsening performance for the longer 

sessions of Experiments 1 and 2. Thus we expect that our paradigm will be a useful research tool 

for experimenters who wish to investigate auditory processing and related phenomena with 

increased validity. 

In conclusion, the present study offers a unique combination of attention mapping and 

computational modeling to investigate the temporal orienting of attention in rhythmic musical 

patterns. We present evidence that the loci of dynamic, rhythmic attention can be predicted from 

the output of reson filters. Our results are consistent with DAT and offer a new, alternative 

method for modeling the temporal orienting of attention. 
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Footnotes

                                                
1 The MAX patches for the dynamic attention mapping experiments and the MATLAB scripts 

for the adaptive version of the Beat Alignment Test are available on GitHub at 

https://github.com/janatalab/attmap.git and https://github.com/janatalab/adaptbat.git, 

respectively. 

2 It is possible that threshold variability for the isochronous stimuli is best explained by 

variability in basic sensory thresholds across participants, though we did not perform 

audiometric assessments to test this possibility. 
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Table 1 

Alternative Predictors of Detection Thresholds, As Assessed by Linear Mixed-Effects Models 

Threshold 

Type 

 

Predictor 

  

ß 

 

SE 

 

df 

 

f
2 

 

AIC 

 

BIC 

Increment Resonator  -2.81**  0.23 910 0.16 5315.94 5335.425 

  Exp -0.80    0.87 51 0.02   

 MH  -0.65** 0.11 910 0.04 5420.779 5440.264 

  Exp -1.40 0.87 51 0.01   

 Density  -1.39** 0.20 910 0.05 5409.263 5428.747 

  Exp -1.86* 0.87 51 0.01   

Decrement Resonator  -5.70**  0.27 1160 0.38 7328.729 7349.182 

  Exp 2.54** 0.64 65 0.05   

 MH  -1.49** 0.13 1160 0.11 7569.699 7590.152 

  Exp 1.19 0.63 65 0.00   

 Density  -1.85** 0.25 1160 0.05 7633.993 7654.446 

  Exp 0.35 0.63 65 0.00   
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Note.   Data were pooled across experiments by threshold type. Model estimates were obtained 

using linear mixed-effects models to regress fixed effects of temporal/stimulus model type and 

experiment number on threshold; participant intercept was included as a random effect. 

Threshold type “increment” = increment detection thresholds from Experiments 1 and 3. 

Threshold type “decrement” = decrement detection thresholds from Experiments 2 and 3. MH = 

metric hierarchy. Exp = experiment number (effect of Experiment 3 vs 1 on increment thresholds 

and Experiment 3 vs 2 on decrement thresholds when the reson, MH, or density were included as 

predictors; indention indicates the main predictor type exp was included with). SE = standard 

error. f2 = Cohen’s f
2 for effect size. AIC = Akaike’s Information Criterion. BIC = Bayesian 

Information Criterion. For both AIC and BIC, a lower value indicates a more preferred model. * 

= p < .05. ** p < .001.  
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Figure 1.    Stimulus patterns and corresponding reson-predicted salience time courses. Stimuli 

were played as loops at 107 beats per minute. Tick marks underlying the stimulus patterns 

correspond to time in sixteenth note steps (~140-ms intervals). Vertical tick length on the top 
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row of each pattern is scaled to relative theoretical salience levels under a canonical metric 

hierarchy. Dots below patterns denote putative beat locations. The time series below each 

stimulus pattern depicts the mean output from reson filters that are driven most strongly by the 

stimulus’ periodicities, as implemented with Tomic and Janata’s (2008) resonator model. 

Vertical dashed bars and downward pointing arrows denote the locations probed with changes in 

intensity. 

  



51 

MAPPING DYNAMIC TEMPORAL ATTENTION 

   

 

 

Figure 2.    Model metrics for predicting temporal salience. (A) Output from reson filter banks 

(one filter bank for each of five spectral frequency bands) for the simple2 stimulus.  Values range 

from negative (blue) to positive (red). ri = reson band index. CBU = critical band unit. Each band 
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depicts output from reson filters that correspond to the stimulus’ prominent periodicities. The 

time series below each band is the point-wise mean amplitude across all peak-periodicity reson 

filters. The average of these rn time series creates the peak-periodicity reson time series (bottom), 

which we use to predict salience dynamics. For reference, dots below the abscissa of the bottom 

time series denote the putative locations of beats. (B) Mean Periodicity Profiles (MPPs) for each 

stimulus used in this paper. MPPs depict prominent periodicity frequencies by averaging the 

energy (RMS) of reson filter output across time for 99 reson filters between 0.25 and 10 Hz. Red 

bars denote peaks in the MPP, which are used to index peak-periodicity reson filters, as 

illustrated in panel A for stimulus simple2.  
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Figure 3.    Thresholds for detecting (A) intensity increments in Experiment 1 and (B) intensity 

decrements in Experiment 2 as a function of probe position in the stimulus and resonator-

modeled salience. Thresholds are aligned on the horizontal axis with the corresponding probe 

times. Circles = individual participant thresholds, triangles = mean threshold for a probe 

position, error bars = ± standard error of the mean, and grey time series = mean output from 

resonators driven most strongly by peak periodicities. For reference, black dots below the x-axes 
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denote putative beat locations. 

 
Figure 4.    Increment detection thresholds from Experiment 1 as a function of reson-filter output 

amplitude. Each panel is an individual participant’s data. Lines reflect each subject’s slope and 

intercept from a random-effects model.  
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Figure 5.    (A) Increment and (B) decrement detection thresholds from Experiment 3 as a 

function of probe position in the stimulus, resonator prediction, and stimulus complexity. Error 

bars = ± standard error of the mean. Black dots below the x-axes denote putative beat locations. 
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Figure 6.    Stimulus complexity as a moderator of the resonator model’s prediction of temporal 

attending behavior. (A) Increment and decrement discrimination thresholds as a function 

resonator level for simple and complex stimuli. (B) Degree of threshold ~ resonator association 

(expressed as slope) in experiment stimuli as a function of intensity deviance discrimination in 

isochronous stimuli for each participant. (C) Threshold ~ resonator intercept as a function of 

isochronous intensity deviance discrimination. Participants’ slopes and intercepts in B and C 

were estimated using the same procedures as described in Figure 4. Decrement thresholds are 
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expressed as absolute values. 

 

Figure 7.    Distribution of resonator prediction effects for each experiment. The horizontal axis 

of each histogram denotes the slope of the relationship between resonator amplitude and 

intensity threshold, as assessed by a mixed effects model with subject’s threshold intercepts and 

resonator slopes modeled as random effects. Inc = increment detection. Dec = decrement 

detection. 

 


