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Abstract

Background: Super-enhancers are clusters of enhancer elements that play critical

roles in the maintenance of cell identity. Current investigations on super-enhancers

are centered on the established ones in static cell types. How super-enhancers are

established during cell differentiation remains obscure.

Results: Here, by developing an unbiased approach to systematically analyze the

evolving landscape of super-enhancers during cell differentiation in multiple

lineages, we discover a general trend where super-enhancers emerge through three

distinct temporal patterns: conserved, temporally hierarchical, and de novo. The

three types of super-enhancers differ further in association patterns in target gene

expression, functional enrichment, and 3D chromatin organization, suggesting they

may represent distinct structural and functional subtypes. Furthermore, we dissect

the enhancer repertoire within temporally hierarchical super-enhancers, and find

enhancers that emerge at early and late stages are enriched with distinct

transcription factors, suggesting that the temporal order of establishment of

elements within super-enhancers may be directed by underlying DNA sequence.

CRISPR-mediated deletion of individual enhancers in differentiated cells shows that

both the early- and late-emerged enhancers are indispensable for target gene

expression, while in undifferentiated cells early enhancers are involved in the

regulation of target genes.

Conclusions: In summary, our analysis highlights the heterogeneity of the super-

enhancer population and provides new insights to enhancer functions within super-

enhancers.

Keywords: Super-enhancers, Enhancer, Differentiation, Dynamics, 3D genome,

Hierarchy
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Background

Enhancers are distal regulatory elements critical to establishing and maintaining cell

type-specific gene expression programs. Dense clusters of enhancers, known as stretch

enhancers or super-enhancers (SEs), are occupied by high density of master regulators,

cohesins, mediators, and coactivators and are decorated with unusually high H3K27ac

signals [1–4]. SEs are thought to play an important role in the maintenance of cell

identity, and disruption of their activities, such as by genetic mutation, has been linked

to higher susceptibility to diseases [2, 4, 5]. Recent studies suggest that a subset of SEs

contain hierarchical structure [6–10]. Within a hierarchical SE, the hub enhancer plays

a critical role in orchestrating its structural and functional organization [7].

It remains poorly understood how SEs are established temporally during cell differen-

tiation or in response to an environmental cue. Previous studies are sporadic and lim-

ited in scope [11–14]. These analyses suggest that entire SEs may be established rapidly

to initiate inflammatory response [11]. A few case studies have dissected the evolving

SE landscape during differentiation in a limited number of loci. For example, two stud-

ies [10, 15] examined the progressing landscape of one SE near the Wap locus during

mammary gland’s differentiation and found that there is temporal and functional hier-

archy between the elements. Despite these advances, a systematic understanding of the

dynamic establishment of the SE landscape during cell differentiation is still lacking.

To investigate the general patterns of SE establishment during cell differentiation,

here we developed a systematic approach to map the evolving landscape of SEs during

cell differentiation based on the dynamic pattern of chromatin states. We applied this

method to several publicly available time-course chromatin immunoprecipitation

followed by sequencing (ChIP-seq) data (Fig. 1a). Our analysis identified three distinct

SE subtypes, each associated with a distinct temporal pattern. We integrated RNA-seq

and Gene Ontology (GO) information to gain functional insights and interrogated Hi-C

data to dissect the features associated with higher-order genome organization. We fur-

ther applied CRISPR/Cas9 genome-editing assays to dissect the functionality of differ-

ent constituent elements within temporally hierarchical SEs. We found that both the

early- and late-emerged enhancers during differentiation are indispensable for target

gene expression in differentiated cells. In summary, our analyses highlight the hetero-

geneity of the SE population and provide new insights into the dynamic establishment

of SEs during cell differentiation.

Results

Mapping the evolving landscape of super-enhancers during differentiation reveals three

distinct patterns

To map the evolving landscape of SEs in differentiated cells, we developed an unbiased

clustering approach to classify SEs according to temporal histone modification patterns

during cell differentiation. We focused on the H3K27ac mark, which is the most well-

characterized histone mark associated with enhancer activities and often used as the

basis to identify SEs [1]. To this end, we first identified constituent elements by calling

H3K27ac peaks using MACS1.4 [16] and then identified SEs by using the ROSE pro-

gram [1]. The temporal pattern of H3K27ac signals associated with each SE can be

quantified by a numerical vector, where each element corresponds to the H3K27ac
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intensity of a constituent element at a time point. The dimensionality of these vectors

varies from one SE to another because the number of constituent elements is not a

constant (Additional file 1: Figure S1a), which leads to differential dimensions for clus-

tering. To overcome this challenge, we standardized the vector dimension by using a

linear interpolation approach (see Methods for details, Additional file 1: Figure S1b).

We then applied k-means clustering (K=3) to divide SEs into distinct groups based on

the Euclidean distance between the standardized vectors. We validated this classifica-

tion approach by using various parameters and obtained similar results, suggesting that

this method is robust to the choice of different parameter values (Additional file 1: Fig-

ure S1c-d, see Methods for details).

We first applied this approach to dissect the evolving landscape of SEs during human

cardiomyocyte differentiation, by using a public ChIP-seq dataset [17]. In this study,

the authors carried out ChIP-seq experiments to profile the dynamic changes of

genome-wide H3K27ac signals during the differentiation from human embryonic stem

Fig. 1 Mapping the evolving landscape of SEs reveals three distinct temporal patterns. a An overview of

the interrogated systems in this study. b K-means clustering of the SE signal vectors across the five

differentiation stages. Each row represents the signals of a SE during differentiation. Each SE is represented

by 4 representative elements (sub-columns) generated by a linear interpolation approach (see the

“Methods” section for details). c Average dynamic profiles of the three types of SEs during differentiation.

Each SE is normalized to its maximum H3K27ac intensity during differentiation and the average profile

is shown. d Genome browser snapshots showing typical examples for Con, TH, and DN SEs. The tracks

shown are H3K27ac ChIP-seq signals. e Expression profile of the genes shown in d
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cells (hESCs) to primitive cardiomyocytes (PCM). Our analysis identified three types of

SEs with distinct temporal patterns (Fig. 1b–d): (a) conserved (Con, Fig. 1b), in which

H3K27ac peaks are persistent throughout differentiation (e.g., HIST2 gene cluster, Fig.

1d); (b) temporally hierarchical (TH, Fig. 1b), in which a SE contains at least one

H3K27ac peak that is established at the early stage and other H3K27ac peaks that are

gained gradually during the differentiation course (e.g., ATP11A, Fig. 1d); and (c) de

novo (DN, Fig. 1b), in which constituent peaks gain high H3K27ac signals simultan-

eously at late stages (e.g., LDB3, Fig. 1d). On average, the H3K27ac intensities of the

three types of SEs exhibit distinct temporal dynamics during differentiation (Fig. 1c),

where Con and TH SEs show a relatively stable or moderate increasing profile and DN

SEs show steep increases. As exemplified in Fig. 1e, the expression levels of the genes

associated with the three types of SEs show a dynamic pattern that is concordant with

enhancer activities. In summary, using the cardiomyocyte differentiation of hESCs as

an example, we found that SEs in the differentiated cells show distinct temporal dy-

namics and applied a simple clustering approach to identify their temporal subtypes.

SEs with different temporal patterns are associated with distinct properties and

biological functions

To investigate whether our temporal-based SE classification is functionally relevant, we

performed functional enrichment analysis by using gene ontology (GO) analysis [18].

Briefly, all expressed genes within 100kb of a SE were deemed as the potential target

genes. To identify the SEs’ target genes of high confidence, we further used the correl-

ation between H3K27ac signal intensity and gene expression to filter the gene set, an

approach that is also used by previous studies ([19], see the “Methods” section for de-

tails). We found that the three types of SEs exhibit distinct properties and biological

functions. DN SEs are enriched in biological functions highly specific to cardiomyo-

cytes, such as “striated muscle cell differentiation” and “cardiac muscle cell develop-

ment” (P < 1e−15, hypergeometric test), while Con and TH SEs are enriched in more

general functions (e.g. “regulation of cellular biosynthetic process” and “regulation of

RNA metabolic process” for conserved SEs and “post-transcriptional regulation of gene

expression” and “regulation of cellular amid metabolic process” for TH SEs) (P < 1e−5,

hypergeometric test, Fig. 2a). Importantly, although Con and TH SEs are enriched in

fewer specific functions than DN SEs, only 7~29% of the Con and TH SEs are charac-

terized with conserved activity when comparing with SEs identified from other cell

types (Fig. 2b). Furthermore, most of their associated genes (70%, 66%, and 78% for

Con, TH and DN SEs, respectively, Additional file 1: Figure S2a) are not house-keeping

genes [20].

We hypothesized that the temporal differences between the three types of SEs may

reflect distinct regulatory roles at different developmental stages. Therefore, we com-

pared the temporal expression patterns of their target genes and observed striking dif-

ferences. On average, DN SE-associated genes undergo the most significant changes in

transcriptional activities during differentiation, whereas Con and TH SE-associated

genes are upregulated at a more moderate level (Fig. 2c, d). Moreover, DN SE-

associated genes are more specifically expressed to the final stage (Fig. 2e). Consistent

with this general trend, cardiomyocyte marker genes, such as MYH7 and ACTN2, are
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associated with DN SEs (Additional file 1: Figure S2c-e) and their expression levels dis-

play a significant increase during differentiation (Additional file 1: Figure S2b). Of note,

DN SEs tend to locate in regions with lower gene densities (Fig. 2f), suggesting that

Fig. 2 Characterizations of the three types of SEs. a GO enrichment pattern of the three types of SEs. Top 5

GO terms for each type of SEs are shown after removing redundant terms. b Heatmap showing the overlap

between the three types of SEs identified in human cardiomyocytes with SEs in the other 24 tissue types.

Numbers in the heatmap stand for the percentage of SEs overlapped with the 24 tissue types. c Line plot

showing the relative expression profiles for genes associated with each type of SEs. Each gene

is normalized to its maximum value during differentiation and the average is shown. d, e Comparison of

the gene expression fold changes (d) and specificity (e) for the three types of SEs. Fold change is defined

as the gene expression in the last stage (day 15) divided by the expression level at the first stage (day 00).

Specificity measures how the genes are specifically expressed on day 15 comparing to other time points

(see the “Methods” section for details). *P < 0.05, **P < 0.01, ***P < 0.001. P-values are determined by using

the Mann-Whitney U test. f Comparison of gene density near the three types of SEs. *P < 0.05, **P < 0.01,

***P < 0.001. P-values are determined by using the Mann-Whitney U test
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cell-type-specific functions are more likely to be regulated by long-range chromatin in-

teractions comparing to less-specific functions.

Characterizing the three types of SEs and their dynamics by chromatin architecture

features

The changes in transcriptional regulation landscape during cell differentiation are usu-

ally coupled with dynamic 3D chromatin organization, whereas how 3D genome

organization correlates with the establishment of SEs remains poorly understood [21,

22]. Therefore, we were motivated to investigate whether the evolving landscape of SEs

is associated with the 3D chromatin organization dynamics. To this end, we analyzed

the accompanying Hi-C data for cardiomyocyte differentiation [17] and quantified the

dynamic changes of several well-characterized higher-order chromatin features in the

following.

First, on the broadest scale, the chromatin is divided into two distinct types of com-

partments: A and B [23]. The A compartments are typically open and enriched with

protein-coding genes, whereas the B compartments are closed and gene-poor [23]. Dur-

ing differentiation, switching from B to A compartments provides a mechanism for me-

diating the transcriptional levels of important developmental or lineage-specific genes

[21, 24, 25]. To investigate to what extent compartment switching contributes to the ac-

tivities of different types of SEs, we divided the genome into four types: stable A or B, dy-

namic compartments “A to B,” and “B to A” by comparing the Hi-C compartment signals

between the first and last stage of differentiation. While most SEs are located in stable A

compartments (Additional file 1: Figure S3a), we also observed subtle differences among

the three subtypes. DN SEs show a slightly higher percentage located in dynamic com-

partments (“B to A” or “A to B”) than Con and TH SEs, although the differences are not

statistically significant (P=0.11 for DN vs. TH SEs; P=0.17 for DN vs. Con SEs, chi-square

test, Additional file 1: Figure S3a). For example, two DN SEs controlling lineage-specific

genes, ACTN2 (encoding an alpha-actinin isoform that is expressed in cardiac muscles

[26]) and RYR2 (encoding the RYR2 protein that functions as the major component of

calcium channel that supplies ions to the cardiac muscle [27]), undergo dynamic compart-

ment switching during cell differentiation (Fig. 3d).

Topologically-associating domains (TADs), defined as the genomic regions with high

intra-domain interactions and few inter-domain interactions, act as structural units in

genome organization and transcriptional regulation [28]. We then inspected the gen-

omic position of the three types of SEs with respect to TAD boundaries. Using ran-

domly sampled regular enhancers as the control, we found that Con and TH SEs are

enriched at the boundaries of TADs (Fig. 3a, see the “Methods” section for details).

Consistent with previous studies [29, 30], this analysis suggests that TAD boundaries

are enriched in SEs with constitutive activity.

Previous studies from our and other groups have reported that enhancers with high

local chromatin interactions, such as hub enhancers [7] and frequently interacting re-

gions (FIREs) [31, 32], play a profound role in gene regulation. FIREs are chromatin re-

gions that show significantly high enrichment on local chromatin contacts. Genes

associated with SEs associated with higher FIRE scores usually have higher expressions

(Additional file 1: Figure S3b). As such, we next asked whether the three types of SEs
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are differentially enriched in local chromatin interactions. To this end, we first identi-

fied FIREs at day15 cells by using FIREcaller [31] and tested the overlap between SEs

and FIREs. DN SEs are more enriched with FIREs than Con and TH SEs, while all three

types of SEs show significant enrichment in FIREs compared to random genomic re-

gions (Fig. 3b). To check the dynamics of chromatin interaction at the three types of SEs,

we then compared the FIRE scores at the three types of SEs during differentiation. As

shown in Fig. 3c, DN SEs exhibit a more variable pattern in FIRE score during differenti-

ation than Con and TH SEs. Despite the mild changes of FIRE scores between two neigh-

boring stages, Con and TH SEs have increased spatial interactions between day 15 and

day 0, suggesting that the local interactions contribute to the stage-specific gene regula-

tion during differentiation. As exemplified in Fig. 3d, two DN SEs located in dynamic

compartments are associated with a concomitant increase of the local enrichment of Hi-C

interactions. Altogether, these results demonstrate that the dynamic chromatin conform-

ation and local chromatin states work in concert to turn on lineage-specific genes.

SE temporal classification is reproduced in other systems

We then asked whether the patterns described above were a unique phenomenon for

human cardiomyocyte differentiation or generally applicable to other differentiation

Fig. 3 Higher-order chromatin features of the three types of SEs. a Box plot showing the fold enrichment

of SEs at the TAD boundaries over regular enhancers. ***P < 0.001, Mann-Whitney U test. b Bar graph

showing the fold enrichment of the three types of SEs on the FIRE elements in day 15 cells over random

regions. ***P < 0.001, Mann-Whitney U test. c Box plot showing the FIRE scores of the three types of SEs

during differentiation. n.s., not significant, *P < 0.05, **P < 0.01. P-values are determined by using the Mann-

Whitney U test. d Genome browser snapshot showing two DN SEs within dynamic compartments and

increased local contacts. Tracks from top to bottom, RefSeq genes, PC1 compartment signals, and

compartment types from day 00 and day 15, where red represents compartment A and black represents

compartment B. The contact matrix shows interaction patterns for day 00 (above diagonal) and day

15 (below diagonal), respectively. The rectangular boxes indicated by the black dashed lines highlight the

increased local contacts in the SE regions
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processes or species. To this end, we repeated this procedure to analyze several public

datasets.

First, we considered a public H3K27ac ChIP-seq dataset for mouse cardiomyocyte

differentiation [33], which covers four differentiation stages: embryonic stem cells

(ESCs), mesoderm (MES), cardiac precursor (CP) cells, and cardiomyocytes (CM). We

identified three types of SEs with similar temporal patterns, which were annotated

again as Con, TH, and DN, respectively (Additional file 1: Figures S4a-b, S9a). Of note,

the relative proportion of each type is similar between the two species (1:1.5:4.2 for

mouse versus 1:1.4:4.4 for human), suggesting the temporal patterns of SE activities are

evolutionary conserved. Like its human counterpart, we observed significant differences

in the target gene expression patterns across these three types of SEs, with the target

genes of DN SEs undergoing the most dynamic changes in transcriptional activities

(Additional file 1: Figure S4c-e). Functional enrichment analysis also led to similar re-

sults, where DN SEs are enriched with cardiomyocytes related functions, such as “actin

filament-based process” and “heart development” (P < 1e−10, hypergeometric test,

Additional file 1: Figure S4f). Furthermore, compared to Con and TH SEs, DN SEs are

associated with lower gene density, consistent with the pattern in human cardiomyo-

cytes (Additional file 1: Figure S4g). Altogether, these results suggest that our findings

are conserved between human and mouse cardiomyocytes.

Next, we tested whether the observed patterns can be generalized to other lineages.

To this end, we analyzed the data from Astiaso et al. [34], which profiled the chromatin

state dynamics across multiple cell types of hematopoietic differentiation for mouse

in vivo. We dissected the evolving landscape of SEs in three cell types: erythroblasts, B

cells, and granulocytes (GN), respectively, and found that the SEs show similar patterns.

For instance, during erythropoiesis, unbiased clustering of SEs revealed three temporal

patterns: Con, TH, and DN (Fig. 4a, b, Additional file 1: Figure S9b). The three types of

SEs demonstrate the same hierarchy in terms of the potential in up-regulating the ex-

pression of target genes: genes associated with DN SEs are characterized with the high-

est fold changes during differentiation while those associated with Con SEs show

relatively stable expression (Fig. 4c–e). In concordance with the higher specificity levels

of genes associated with DN SEs (Fig. 4e), GO enrichment shows that DN SEs are

highly enriched in biological processes that are specific to erythroid cells, such as

“erythrocyte homeostasis” and “erythrocyte differentiation” (P <1e−5, hypergeometric

test, Fig. 4f). In parallel, DN SEs are more likely to locate in less gene-dense regions

than Con and TH SEs (Fig. 4g). Consistently, the same results were obtained for both B

and GN cell differentiation (Additional file 1: Figures S5 and 6). Collectively, these re-

sults suggest that the three types of evolving landscape for SEs can be generalized to

the development of blood lineages.

In addition to normal differentiation, cell reprogramming is induced by forced ex-

pression of master regulators and accompanied by the re-establishment of cell-type-

specific chromatin states and gene expression programs. We next asked whether the

identified temporal patterns could also be applied to this TF-directed reprogramming

process. To this end, we analyzed the data from Chronis et al. [35], in which mouse

embryonic fibroblasts (MEF) were reprogrammed to pluripotency induced by the

Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). We observed similar patterns except

that the endpoint now is the pluripotent state (Additional file 1: Figures S7a-e, S9e).
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Fig. 4 Mapping the evolving landscapes of SEs in mouse erythroid cells reveals similar patterns. a K-means

clustering of the SE signal vectors across erythroblast differentiation. LTHSC, long-term hematopoietic stem

cells; STHSC, short-term hematopoietic stem cells; MPP, multipotent progenitor cells; CMP, common

myeloid progenitor; MEP, megakaryocyte erythroid progenitor; EryA and EryB, erythroblasts. b Average

dynamic profiles of the three types of SEs during differentiation. Each SE is normalized to its maximum

H3K27ac intensity during differentiation and the average profile is shown. c Line plot showing the relative

expression profiles for genes associated with each type of SEs. Each gene is normalized to its maximum

value during differentiation and the average profile is shown. d, e Comparison of the gene expression fold

changes (d) and specificity (e) during differentiation for the three type of SEs. *,P < 0.05, **,P < 0.01, ***,P <

0.001. P-values are determined by using the Mann-Whitney U test. f GO enrichment pattern of the three

types of SEs. g Comparison of gene density near the three types of SEs. *P < 0.05, **P < 0.01, ***P <

0.001. P-values are determined by using the Mann-Whitney U test
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Consistent with this, the functional enrichment analysis shows that DN SEs are more

enriched in terms specific to ESCs, such as “multicellular organism development” and

“embryo development” (P < 1e−5, hypergeometric test, Additional file 1: Figure S7f).

The three types of SEs also exhibit differences in terms of their preferences in genomic

locations, i.e., DN SEs are more likely to be located in less gene-dense regions than

Con and TH SEs (Additional file 1: Figure S7g). Collectively, these results provide

strong evidence that the temporal hierarchy of SE organization is generally applicable

to the differentiation of diverse cell lineages and species.

Decommission of SEs follows reversed temporal dynamics

Cell differentiation is a highly dynamic process that not only requires the activation of

a set of genes and enhancers specific to terminal linages, but also necessitates the de-

commission of genes and enhancers controlling pluripotency. Therefore, how SEs in

the pluripotent cells are lost during differentiation is an intriguing question. To this

end, we classified the temporal pattern of SE decommission.

We first demonstrated the characterization of SE decommissions in the human car-

diomyocyte differentiation system. We identified SEs in ESCs and repeated the same

procedure to classify them into different groups based on the dynamics during differen-

tiation (Fig. 5a, Additional file 1: Figure S9f). Consistent with the SE activation analysis,

the three patterns were also observed for SE decommission: conserved (Con), tempor-

ally hierarchical (TH), and de novo (DN), but in reverse temporal order. In contrast to

Con SEs whose signals are relatively stable, DN SEs display a rapid loss of H3K27ac sig-

nals during differentiation and TH SEs demonstrate a gradual loss of H3K27ac signals

(Fig. 5b). Expression levels of the genes associated with these SEs (Fig. 5c) show similar

dynamics to the SE activation process. Furthermore, significant differences in the target

gene expression patterns were observed for the genes associated with the three types of

decommissioned SEs, with the target genes of DN SEs undergoing the most significant

decrease in expression (Fig. 5c–e). GO enrichment analysis reveals that the DN SEs,

which were decommissioned fast, are enriched in biological functions that are specific

to ESCs, such as “multi-organism cellular process” (P < 1e–6) (Fig. 5f). Moreover, DN

SEs in the SE decommission process are more likely to locate in less gene-dense regions

than Con and TH SEs (Fig. 5g). Consistent with the results in human cardiomyocytes,

the same results for the decommissioned SEs during differentiation of the erythroid

cells were also obtained (Additional file 1: Figure S8, Additional file 1: Figure S9g). In

summary, our results suggest that SE decommission follows reversed temporal dynam-

ics to the SE activation.

Genome editing analysis within TH SEs reveals that both early- and late-emerged

enhancers are indispensable in differentiated cells

To gain mechanistic insights into the role of temporal dynamics of SE activities during

cell differentiation, we tested the effects of perturbing specific constituent elements that

are activated at different stages within TH SEs on gene expression. We focused on the

well-characterized in vivo mouse erythropoiesis system due to the availability for gen-

etic manipulation. The genomic locations of the SEs and corresponding types were

identified by our computational analysis described above (Fig. 4). We focused on the
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TH SEs because they contain enhancer elements that come into commission at differ-

ent stages.

Based on the temporal order of enhancers’ commission, we classified the enhancers

within each SE into three types: early, intermediate, and late, as illustrated in Fig. 6a.

Motif enrichment analysis reveals that early and late elements are enriched in distinct

sets of TFs. For mouse erythroblasts, the late enhancers show a similar enrichment

Fig. 5 Decommission of SEs in early stages follows a similar pattern as in SE activation. a Heatmap showing

the three types of SEs defined by progressing landscape during differentiation. b Average dynamic profiles

of the three types of SEs during differentiation. Each SE is normalized to its maximum H3K27ac intensity

during differentiation and the average profile is shown. c Line plot showing the relative expression profiles

for genes associated with each type of SEs. Each gene is normalized to its maximum value during

differentiation and the average profile is shown. d, e Violin plots showing the fold changes (day 15/day 00)

(d) and specificity (e) of genes expression associated with the three types of SEs. f GO analysis showing the

enriched functions for the three types of SEs. g Comparison of gene density near the three types of SEs. *P

< 0.05, **P < 0.01, ***P < 0.001. P-values are determined by using the Mann-Whitney U test
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pattern with enhancers in DN SEs and are enriched in TFs with well-known functions

specific to the erythroid lineage, such as Gata1 and GATA:SCL, while early enhancers

are enriched with factors that are characterized with relatively general functions (e.g.,

ETS [36], Fig. 6b), suggesting the proper control of gene expression requires the coordi-

nated activity of multiple factors in a temporally ordered manner. Furthermore, to test if

there are factors that bind to the different enhancers in a quantitatively different way

that may be omitted by motif analysis, we used Binding Analysis for Regulation of

Transcription (BART) [37]. BART is a bioinformatics tool to infer functional transcrip-

tion factor binding by leveraging thousands of real ChIP-seq datasets from the public

domain for regulator prediction. Consistent with the motif analysis, the master regula-

tors for erythropoiesis, such as GATA1, TAL1, and LDB1, were found to be more

enriched in late enhancers than early enhancers or conserved enhancers (Additional file

1: Figure S10f). Interestingly, the architectural proteins CTCF and RAD21 also show an

increasing enrichment in late enhancers (Additional file 1: Figure S10f), likely suggest-

ing that late enhancers are more involved in regulation related to higher-order

Fig. 6 Dissection of the constituent elements within TH SEs. a An illustration of the early, intermediate, and

late elements within TH SEs. b Heatmap showing the differential motif enrichment pattern for the three

types of elements within TH SEs as well as the elements in Con and DN SEs. Color represents the –log10 (P

value). c Genome browser snapshot showing the progressing landscape of the Dnajb12 SE locus during

erythroid cell differentiation. Early and late enhancers are defined according to the temporal order of

emergence. d ATAC-seq data showing chromatin accessibility landscape of the SE locus in EML and MEL

cells. EML and MEL cells represent the hematopoietic pluripotent cells and differentiated erythroid cells,

respectively. The early enhancer is activated in EML and MEL cells, while the late enhancer is activated in

MEL cells. e Comparison of gene expressions between wild type (WT) and enhancer-knockout EML cells. **P

< 0.01; n.s., not significant. . P-values are determined by using the Student’s t test. f Comparison of gene

expressions between wild type (WT) and enhancer-knockout MEL cells. **, P < 0.01; n.s., not significant. P-

values are determined by using the Student’s t test
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chromatin structure. Similarly, the differences in enriched motifs are also consistent in

other lineages as well as the reprogrammed ESCs [38] (Additional file 1: Figure S10a-e).

Taken together, the enrichment of distinct sets of motifs for early and late elements

within TH SEs suggests that the temporal order of the establishment of elements is di-

rected by the binding of transcription factors.

To rigorously evaluate the function of different constituent elements within TH SEs

during development, we performed CRISPR-Cas9-mediated genome editing in two

complementary in vitro systems: mouse erythroid-myeloid-lymphoid (EML) cells and

mouse erythroleukemia (MEL) cells. EML cells, representing multipotent hematopoietic

precursor cells, provide an ideal validation system in hematopoietic cells at an early

stage [39], while MEL cells, immortalized erythroid cells derived from mouse adult

spleens, provide a model system for mature erythroid cells at a late stage during

hematopoietic differentiation [39, 40]. We focused on the Ddit4 locus (chr10:

59,864,542-59,952,997), where the early enhancer in the locus was persistent during dif-

ferentiation, whereas the late enhancer is erythroid-specific as H3K27ac peaks emerged

at the MEP stage and are well established later in erythroblasts (Fig. 6c, d). For each

system, we applied paired guide RNAs (sgRNAs) targeting 5′ and 3′ flanking regions of

selected enhancers to achieve balletic editing of both enhancers respectively. The dele-

tion size of the enhancers was refined to 1–1.5kb, including GATA1 motifs in the late

enhancer and ETS motifs in the early enhancer. We then examined the expression

levels of all nearby genes by qPCR experiments upon enhancer deletion in EML cells

and MEL cells, respectively. In EML cells, Ddit4 transcripts were reduced after the KO

of the early enhancer but not the late enhancer, suggesting that the early enhancer is

important for regulating the target gene expression (Fig. 6e). In contrast, Ddit4 expres-

sion was remarkably reduced in the absence of either late or early enhancers in mature

erythroid MEL cells, suggesting both early and late enhancers are required for gene ex-

pression at the late stage (Fig. 6f). Transcripts of Micu1 and Dnajb12 in the same locus

remained unaffected upon enhancer deletion in either EML or MEL cells (Fig. 6e–f).

Altogether, these results suggested that both enhancers that emerged at early and late

stages are required for maintaining the proper gene expression during development,

whereas late enhancers are only required for gene expression in differentiated cells.

Discussion

To dissect the evolving landscape of SEs, here we developed an unbiased computa-

tional method to characterize the temporal hierarchy of SE activity based on time-

course H3K27ac ChIP-seq data during cell differentiation. We identified three types of

SEs with distinct temporal patterns, which were annotated as Con, TH, and DN, re-

spectively. The target genes of these SEs differ in biological functions as well as tran-

scriptional responses. In particular, the target genes of DN SEs are enriched with cell-

type-specific functions and exhibit strong dynamic changes of transcriptional activities.

DN SEs are also associated with significant dynamic changes of 3D chromatin

organizations.

SEs have been well characterized in many cell types [41–43]; however, the temporal

characterization of SEs has been limited in few systems or loci. We have analyzed the

genome-wide temporal establishment of SEs in multiple biological systems, including

cardio-genesis, hematopoiesis, and somatic reprogramming, and across human and

Kai et al. Genome Biology          (2021) 22:269 Page 13 of 21



mouse lineages. Observations from those biological systems are highly consistent, sug-

gesting the temporal patterns, Con, TH, and DN, are general features of SE formation

and are conserved in human and mouse differentiation.

TH SEs contain a set of temporally heterogeneous regulatory elements. Those ele-

ments come into commission at different time points during differentiation and are

enriched in distinct sets of TFs. Specifically, the early ones are enriched in ETS factors

and late ones enriched in lineage-specific factors, such as GATA1 in erythroid cells and

MEF2C in cardiomyocytes, suggesting that these elements may differentially sense the

external stimuli or signaling during differentiation. To dissect whether the temporal

hierarchy between these enhancer elements correlates with functional hierarchy, we

performed CRISPR-Cas9-based genome perturbation experiments for enhancers that

emerged at early and late stages individually and found that both the early and late en-

hancers are indispensable to maintain the high expression of target genes in differenti-

ated cells, whereas only early enhancers are required to maintain the expression of

target genes in undifferentiated cells. Our finding is consistent with a recent study [44]

that dissects the temporal and functional contributions of individual elements in the

Fgf5 enhancer cluster during exit from naïve pluripotency. These pieces of evidence

suggest the proper control of some genes requires the coordinated activity of multiple

factors in a temporally ordered manner. Another intriguing question is whether the for-

mation of late enhancers is dependent on the early elements. Previous studies on this

aspect have led to inconsistent findings. In some cases, such as the Fgf5 enhancer clus-

ter [44], the activities of late enhancers are not affected by the deletion of the early en-

hancer, whereas in other cases, such as the Wap enhancer cluster [10, 15], the early

enhancer is required to activate the late enhancers. As such, the dependency among

different constituent elements is locus-dependent. The computational approach devel-

oped in this paper will provide a valuable guide for future mechanistic investigations.

Methods

H3K27ac peak calling and unification of peaks

MACS1.4 [16] was used to call peaks for H3K27ac, with P=1e–5 as the statistical cutoff.

Redundant reads were removed before peak calling. Peaks overlapped with the mm10

or hg19 blacklist ([45], https://github.com/Boyle-Lab/Blacklist/tree/master/lists) were

filtered out using “bedtools intersect -v” [46].

To study enhancer dynamics across differentiation stages, we first created a peak set

with unified genomic coordinates. To do this, we pooled peaks from each stage into

one file and merged the overlapped peaks using “bedtools merge -d 0,” which resulted

in a unified set of peaks without overlapping. Next, we compared the peaks from each

individual stage with the unified peak set, and any peaks showing overlap (≥1bp) with

the peaks in the unified set were added to the stage-specific peak set using the coordi-

nates of the unified peak. This stage-specific peak set with the coordinates of the uni-

fied peaks was used for calling SEs later.

We quantified the H3K27ac signals based on the unified peak set. Briefly, we calcu-

lated the reads per million mapped reads (RPM) for each peak at each time point,

which gave a peak by time point matrix. The peak by time point matrice for all the in-

terrogated systems were summarized in Additional file 5: Table S4. To mitigate the
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effects of differential signal-to-noise ratios among the ChIP-seq data, we then applied

quantile normalization to normalize the signals across time points. The normalized

matrix was used for the following clustering analysis.

Identification of SEs and target genes

SEs were identified using the ROSE algorithm [1]. Bam files of the H3K27ac ChIP-seq

data after removing redundant reads and the stage-specific peak set with unified coor-

dinates were used as input. Other parameters were set to default. We noticed that some

SEs contain a high percentage of promoters; therefore, we further filtered out the SEs

whose promoter peak percentage is higher than or equal to 50%. A promoter peak is

defined as a peak that is fully contained by the TSS+/- 2kb region. By applying this cri-

terion, a SE containing 3 or 4 peaks in total is allowed to have at most one promoter

peak.

To identify the targeted genes of SEs, we took a two-step approach. First, all the

expressed genes (RPKM ≥2) within 100kb of a SE were selected as potential targets. Sec-

ond, to improve the accuracy of target gene identification, we further calculated the Pear-

son correlation coefficient between the gene expressions and SEs’ H3K27ac signals across

differentiation stages, and only genes showing high correlations (Pearson correlation >

0.75) were identified as the target genes.

Classification of the temporal pattern of SEs

To compare the temporal patterns of SEs , we restricted the H3K27ac intensity matrix con-

structed as above to each SE, and then carried out a series of transformation steps to facilitate

comparison. First, we sorted the columns according to the temporal variation of H3K27ac sig-

nals, which is quantified by the relative standard deviation (RSD) (defined as the standard de-

viation divided by the mean). Here, we used RSD to sort the enhancers to enable that the

enhancers with similar variation/dynamics are grouped together. Since the dimension of each

submatrix is different (due to the variation of the numbers of constituent elements within a

SE), we further standardized the number of columns to 4. Specifically, we inferred the 0th,

33.3th, 66.6th, and 100th percentiles of H3K27ac signal for each time point, termed as the

four representative enhancers, and then constructed a new submatrix based on values corre-

sponding to these percentiles. We then employed K-means clustering (K=3) from scikit-learn

[47] to cluster the SEs based on the four representative enhancers at different time points. 100

rounds of K-means clustering using randomly picked seed numbers were performed, and

consensus clustering ([48], https://github.com/GGiecold/Cluster_Ensembles) was applied to

generate a stable clustering result.

In our method, there are two parameters that could possibly impact the classification

of SEs: the number of representative enhancers and the choice of K in K-means cluster-

ing. To show that our method is robust to the choice of the number of representative

enhancers in the clustering step, we compared the clustering result using 4 enhancers

with the results using 5 or 6 enhancers. We found that the results are similar (Add-

itional file 1: Figure S1c). Moreover, we found that as the number of cluster K in-

creases, the overall pattern shown in different clusters are highly similar (Additional file

1: Figure S1d), despite that the increased number of K used for clustering can reveal
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the SE dynamics in finer resolution. Therefore, our approach is robust to the choice of

parameters in revealing SEs’ temporal patterns.

Gene expression specificity analysis

Gene expression matrices were downloaded from GEO for each dataset involved in this

study (Additional file 2: Table S1). We adopted the gene expression specificity measure,

a metric developed by Xiao et al. [49] for the tissue-specific gene expression database

TiSGeD, to quantify the specificity of a gene to a time point. Specifically, the expression

specificity of a gene G at time point M is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
M

X

all time points

X2
i

v

u

u

t

, where XM is the

expression level of G at time point M and Xi is the expression at time point i.

House-keeping gene analysis

House-keeping genes were downloaded from [20] and were compared with the genes

associated with the three types of SEs.

Hi-C data processing and compartment identification

Raw Hi-C data in human cardiomyocytes were downloaded from GEO with accession

number GSE116862 [17]. SRA files were dumped to fastq format and then were aligned

to the hg19 reference genome using HiC-Pro version 2.11.1 [50], with the default con-

figuration parameters. A/B compartments were then identified at 50kb resolution by

using the “runHiCpca.pl” script from Homer [51]. For visualization, “.hic” files were

downloaded from GSE116862 and visualized using Juicebox [52].

Identification of TAD boundaries and enrichment of SEs at boundaries

We used the insulation score approach by Crane et al. ([53], https://github.com/

dekkerlab/crane-nature-2015) to identify TADs based on the normalized contact matri-

ces at 40 kb resolution, with 600 kb and 200 kb being used as the insulation square and

delta size respectively. Bins with insulation scores higher than 0.5 (≥0.5) were identified

as TAD boundaries. In total, there are 3164 TAD boundaries for the day 15 sample. To

test the enrichment of SE in TAD boundaries, we calculated the percentage of SE con-

stituent enhancers overlapping with TAD boundaries for each type of SEs and com-

pared them to the percentage of 1000 regular enhancers randomly sampled from the

H3K27ac peaks. The sampling of 1000 regular enhancers was performed 20 times, and

the ratio between the SE constituent enhancers and regular enhancers was calculated

for plotting.

Calculation of FIRE score and FIRE identification

We used FIREcaller [31] to detect frequently interacting regions from Hi-C data at

50kb resolution. Briefly, the raw Hi-C contact matrix was used as input and the total

number of local interactions (<200kb) for each genomic locus was calculated as the raw

FIRE score. FIRE scores were then normalized within and across samples by FIREcaller.

Within each time point, the regions with the top 10% FIRE scores were identified as

FIREs.
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Motif enrichment analysis

The “findMotifsGenome.pl” script from the HOMER package [51] was used to search

for enriched motifs. The whole genome was used as the background. Factors with P

values lower than 1e−2 were considered as enriched. Redundant enriched motifs were

merged and represented by the one with the most significant P value. Enriched factors

were further filtered out if the expression level of the corresponding gene is lower than

2 RPKM value throughout the differentiation.

Cell culture, RNA extraction, and qRT-PCR

EML cells were cultured in IMDM media supplemented with 20% fetal bovine serum, 2

mM L-glutamine, 1.5 g/L sodium bicarbonate, and 100 ng/ml mouse SCF. MEL cells

were cultured in a low-glucose DMEM supplemented with 10% fetal bovine serum, 2

mM L-glutamine, and Penicillin and Streptomycin. 2% DMSO in culture medium was

used to induce MEL cell differentiation. Medium was changed every other day.

The total RNA was extracted with TRIzol (Thermo Fisher) and reverse transcribed to

cDNA with QuantiTect Reverse Transcription Kit (Qiagen) according to the manufac-

turer’s instructions. cDNA samples were subjected to qRT-PCR using the iQ SYBR

Green Supermix (Bio-Rad) in the CFX384 Touch Real-Time PCR Detection System

(Bio-Rad). Primer sequences are listed in Additional file 4: Table S3. Values are

expressed as log102^DeltaCt using Actin beta (Actb) or Gapdh as a control gene.

Each transcript analysis experiment was repeated at least twice using a minimum of

three biological replicates per condition. Statistical analysis was performed with an un-

paired Student’s t test. Error bars indicate the S.E.M.; n=3 and 5 in Fig. 6d, e respect-

ively. P values were calculated and statistical significance indicates *P < 0.05, **P < 0.01,

and ***P < 0.001.

CRISPR-Cas9-mediated perturbation of enhancers

To generate biallelic deletion of the late enhancer in SE loci, sgRNAs targeting 5′- and

3′-flanking regions of the targeted enhancers were designed and synthesized respect-

ively. sgRNA sequences are listed in Additional file 3: Table S2. Two overlapping oligo-

nucleotides carrying sgRNA sequence targeting 5′-flanking region and two overlapping

oligonucleotides carrying sgRNA targeting 3′-flanking region were annealed and

cloned, respectively, as previously described [54]. In brief, 10-uM guide sequence oligos

and 10-uM complement oligo were mixed with 1X ligation buffer supplemented with 5

U of T4 polynucleotide kinase (PNK) in 10 ul reaction. Anneal in a thermocycler using

37oC for 30 min; 95oC for 5 min and then ramp down to 25oC at 0.1oC/s. The annealed

oligos were then ligated into pKLV-U6gRNA(BbsI)-PGK-BFP (Addgene #50946) vector

using a Golden Gate assembly. Ligation mixture [100 ng vector, 1uM annealed oligos,

40 U BbsI restriction enzyme (NEB), 1 mM ATP, 0.1 mg/ml BSA and 750 U T4 DNA

ligase (NEB), and 1X restriction enzyme buffer] were incubated in a thermocycler using

20 cycles of 37oC for 5 min, 20oC for 5 min; followed by 80oC for 20 min.

pKLV-U6gRNA(BbsI)-PGK-BFP construct with sgRNA targeting 5′-flanking region

and pKLV-U6gRNA(BbsI)-PGK-BFP construct with sgRNA targeting 3′-flanking region

were co-transfected with pCas9-GFP (Addgene #44719) at the ratio of 1:1:2 into MEL

cells by Lipofectamine 2000 (Invitrogen). The top 5% of GFP+/BFP+ cells 48 h post-
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transfection were isolated by FACS. Single cell-derived colonies were screened for bi-

allelic deletion of the targeting region.

A similar strategy with sgRNAs targeting flanking regions of selected enhancers has

been applied to generate biallelic deletion of the late enhancer in Ddit4 locus, and bial-

lelic deletion of the early enhancer in Ddit4 locus. sgRNA sequences and genotyping

primer sequences are listed in Additional file 4: Table S3. Similar strategies were used

to generate biallelic deletion of enhancers in EML cells with the exception that both

Cas9 and sgRNA were stably expressed using lentivirus.
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