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SUMMARY 
We examine the problem of determining the fluid flow and the shear (the radial 
derivative of the flow) at the core surface given a model of the temporal variation of 
the magnetic field. Whereas most previous work has focused on determining only 
the flow, which requires only the use of the radial component of the magnetic field, 
here, in addition, we determine the shear for which we must use the horizontal 
component of the magnetic field. Estimates of the jump in the value of the 
horizontal magnetic field Bh across the boundary layer between the top of the free 
stream and the base of the mantle are small, and suggest that to a high level of 
accuracy the mantle valuks of Bh can be used at the top of the core. Except in the 
special case of an insulating mantle, only the horizontal poloidal field is known at 
the core-mantle boundary and supplies one extra equation for the determination of 
velocity and shear. We show how the matrix elements relating the coefficients of the 
spectral expansion of the flow and shear are related to the geomagnetic secular 
variation coefficients in closed form. We examine the uniqueness of the resulting 
inverse problem,and show that one part of the non-uniqueness from which the shear 
suffers is particularly easy to describe: it takes the same form as that which affects 
the flow, namely a toroidal ambiguity in the field u’B,. However, certain uniqueness 
theorems can be derived: we extend the steady motions theorem of Voorhies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Backus (1985) and the geostrophic motions theorem of Hills (1979) and Backus & 
LeMouel (1986) to the determination of the flow and shear, and derive closely 
analogous results. Uniqueness in the steady case depends on the value of the same 
discriminant as the velocity, and in the geostrophic case the shear can be determined 
uniquely in the same areas as can the velocity (i.e. outside certain ambiguous 
patches). For the geostrophic regime, the lateral density (or temperature) variations 
at the top of the core can be found in a self-consistent manner. We apply our 
method to the temporal evolution of the field over the period 1960-1980, and 
produce solutions for each of the assumptions of unconstrained steady motions, 
geostrophic motions, and purely toroidal motions. We find that the form of the flow 
changes very little from solutions based only on the radial induction equation, and 
that the shear is weak and aligned with the flow, with a sense such that the strength 
of the flow decreases with depth with a length-scale for linear decay of half the core 
radius. This suggests that the flow near the core surface is indicative of whole core 
flow, rather than a flow confined to a layer near the core surface. 

Key words: core-mantle boundary, Earth’s magnetic field, fluid flow in core, 
secular variation. 

at the Earth’s surface to infer the pattern of fluid flow at the 
surface of the outer core; for a recent review see Bloxham & 
Jackson (1991). A major motivation for these studies has 
been the hope that maps of the fluid flow at the core surface 

1 INTRODUCTION 

In recent years a number of attempts have been made to use 
our knowledge of the time-varying magnetic field observed 
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might provide some insight into the dynamo process 
operating in the core, by which the Earth’s magnetic field is 
maintained against Ohmic dissipation. A question which 
remains open is whether the fluid flow observed near the 
core surface bears any sensible resemblance to the pattern 
of fluid flow deeper within the core. 

To answer this question we need to determine how the 
flow changes with depth. The best that we can do, 
unfortunately, is to estimate the radial derivative of the flow 
(the shear) at the core surface. Obviously, if the shear at the 
core surface is very vigorous then the flow at depth is likely 
to be very different from that at the core surface; on the 
other hand, if it is weak, then it is possible, although not 
necessarily required, that the flow at depth is similar to the 
pattern at the core surface. 

Determinations of the flow can be based on just the radial 
field at the CMB. However, to determine the shear we need 
to use the horizontal field at the core-mantle boundary 
(CMB). An important step has recently been taken in this 
direction by Lloyd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gubbins zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1990) who derive purely 
toroidal motions near the core surface; they infer a radial 
length-scale of the flow of about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 km. In this paper, we 
seek to extend their work and consider general (i.e. not 
purely toroidal) motions. Lloyd & Gubbins give two reasons 
for considering purely toroidal motions. Their first reason is 
based on the possibility that core fluid may be stably 
stratified, in which case they argue, as many others have 
done in the past (e.g. Whaler 1980; Bloxham 1988), that the 
motions must be purely toroidal. Their second reason is 
based on the possible corruption of poloidal ingredients of 
the flow by diffusion. Bloxham (1989) has argued that the 
toroidal part of the flow can be determined quite reliably, 
while the poloidal part largely depends on the assumptions 
that are made about it: if the flow is assumed purely 
toroidal, of course, the poloidal part is identically zero; if 
the flow is assumed geostrophic, the poloidal part is 
determined so as to force the total flow to be geostrophic; 
and if nothing is specified, the poloidal part is left poorly 
determined. Given this state of affairs we believe that any 
conclusions should be drawn from an examination of the 
flow using as many different assumptions as possible; those 
aspects which are robust to changes in the assumptions are 
perhaps more worthy of notice than those which seem highly 
dependent on the assumptions. 

Throughout this paper we restrict our attention to 
methods of determining global maps of the large-scale flow 
near the core surface; we do not consider methods of 
obtaining estimates of the flow at points or along particular 
curves on the CMB. Although the flow, or particular aspects 
of the flow, can be determined uniquely in this way (Backus 
1968) any estimates will be severely limited by the enormous 
uncertainties associated with point estimates of the secular 
variation at the CMB. 

As usual, our starting point is the magnetic induction 
equation which governs the secular variation of the magnetic 
field in the core: 

d , ~  = v x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U x B) + ~ V ’ B  (1) 

where B, d,B and u are the magnetic field, its 
rate-of-change, and the velocity respectively, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ]  is the 
core difisivity ( r ]  = l /pou where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo is the permeability of 
free space and u is the core conductivity, approximately 

5 x 10’s m-’). This equation describes how the secular 
variation (SV) results from the effects of both advection of 
field by the flow (the first term on the right-hand side) and 
the effects of diffusion (the second term). 

The well-known frozen flux approximation, put forward 
25 years ago by Roberts & Scott (1965), is based on the 
supposition that, on the time-scale of a few decades, the 
core acts as a perfect conductor, so that the effects of 
difision may be neglected in the induction equation, with 
the consequence that field lines are frozen in the core fluid. 
Backus (1968) showed that for this to hold certain 
conditions must be satisfied by the field and its secular 
variation. Although several attempts have been made to test 
these conditions, the results are, in most cases, somewhat 
equivocal (again, for a review, see Bloxham & Jackson 
1991). However, despite these concerns, the frozen flux 
approximation remains our best tool for mapping the 
zeroth-order non-difisive part of the flow. 

We adopt then the frozen flux version of the magnetic 
induction equation 

d,B = V X (u X B). (2) 

Unfortunately only part of the magnetic field is observable 
at the Earth’s surface. To see this, we decompose the 
magnetic field B into toroidal BT and poloidal BP 
ingredients given by 

B = & + B, = V X  (Z?) + V X V X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Pf) (3) 

where T(r,  8, #) and P(r, 0, 9 )  are the toroidal and 
poloidal scalars respectively (in spherical polar coordinates). 
Applying Amptre’s law we have 

pd = V X B = V X B, + V X B, 

v x v x  (Z?) + v x  v x  v x  (Pf) 

v x v x (7i) + v x [(-V2P)i], (4) 

from which we can see that poloidal fields result from 
toroidal currents, and toroidal fields from poloidal currents. 
In particular, we can also see that if J = 0, for example in an 
insulator, then B, = 0, while B, does not necessarily vanish, 
although P must satisfy V2P = 0 (in which case we call B, a 
potential field). 

At the Earth’s surface, BT=O since J -0  there, so we 
observe only the poloidal field. However, following Bullard 
& Gellman (1954) we can separate equation (2) into toroidal 
and poloidal ingredients 

dtBT = {v [u (BT + BP)I)T (5 )  

and 

d,B, = [V X (u X Bp)lp. 

This decomposition is only valid at the CMB where we 
impose the condition u, = 0. We note that the toroidal field 
is irrelevant to the temporal evolution of the poloidal field at 
the CMB; in other words, we do not need to know B, in 
order to determine u = uh at the CMB from d,Bp. The effect 
of Ekman suction, which allows u,#O, is negligible (see 
Bloxham & Jackson 1991). 

The radial component of the frozen flux induction 
equation can be written in the form 

3,B, = -Vh - (uB,) (7) 
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(1989) on the conductivity of perovskite and 
magnesiowiistite, when extrapolated to deep mantle 
temperatures and pressures, is in good agreement with the 
mantle conductivity profile proposed by Achache, LeMouel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Courtillot (1981) based on induction studies, although 
other experimental evidence is still in conflict (Li & Jeanloz 
1987, 1990). Second, for a range of profiles which have been 
proposed, Benton & Whaler (1983) find that the correction 
to the magnetic field in the insulating limit is only a few per 
cent. In particular, for the profile of Achache et af. (1981) 
the effective spectral diffusion time for degree I ,  t(r), of 
Benton & Whaler (1983) [or equivalently the first-order 
delay time of Backus (1983)l is less than 1 yr for all 
harmonic degrees, and thus is unimportant on the 
time-scales of SV. Given this result, and the great 
uncertainty attending any mantle conductivity profile, we 
choose not to apply any correction for the effects of mantle 
conductivity; this approximation does not imply that we 
believe the mantle to be insulating. The scenario of a 
perfectly insulating mantle has been studied by Lloyd & 
Gubbins (1990), who show that if all three components of 
field are known at the CMB then a purely toroidal velocity 
field can be found uniquely. Their proof relies on the fact 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,B,=B,=O in the mantle, which we find to be 
implausible. 

In Section 2 we consider the forward problem of 
calculating the temporal evolution of both the radial and 
horizontal poloidal components of the field, given an initial 
field and the flow and shear. In Section 3 we consider the 
inverse problem of determining the flow and shear, given an 
initial field and its temporal evolution. We discuss the 
non-uniqueness inherent in such inversions and show that 
part of the non-uniqueness in the shear is closely related to 
that in the flow derived from just the radial induction 
equation. Also, we extend the steady flow uniqueness 
theorem of Voorhies & Backus (1985) and the tangentially 
geostrophic flow uniqueness theorem of Hills (1979) and 
Backus & LeMouel (1986) to the cases of steady flow and 

which only involves the flow u, whereas the other 
components involve both the velocity and its radial 
derivative, the shear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu' = &far. With the exception of 
Lloyd & Gubbins (1990), all previous studies aimed at 
determining the large-scale flow have used just the radial 
component of the induction equation. 

This description of frozen flux induction is incomplete, 
since at the CMB the flow must obey non-slip boundary 
conditions and so, trivially, u=O at the CMB. A viscous 
boundary layer (VBL) is set up, however, through which the 
velocity changes from its value at the top of the free stream 
to zero at the base of the mantle. Our interest, of course, is 
in the velocity at the base of this VBL (i.e. at the top of the 
free stream) rather than the trivially zero flow at the rigid 
CMB. How much does the magnetic field change across this 
VBL? 

The depth of this boundary layer depends on the core 
viscosity which, unfortunately, is one of the most poorly 
known parameters of the Earth, but most estimates suggest 
that the VBL has a depth on the order of only of a few 
centimetres. Across this layer the radial component of the 
magnetic field is continuous, but the horizontal components 
will be discontinuous. Various authors have estimated the 
size of this discontinuity (Roberts & Scott 1965; Backus 
1968; Hide & Stewartson 1972; Benton 1981); Hide & 
Stewartson argue that the discontinuity in the horizontal 
component of the field, labelled [Bh], will be of order 

where B,, u, q,  v and 8 are the radial field strength, 
velocity, core diffusivity, kinematic viscosity and diurnal 
frequency respectively. For typical values for the core 
( ~ , - 5 x  ~ o - ~ T ,  u - 5 x  1 0 - ~ ~ ~ - l ,  q-1m2s-' ,  Y -  

10-6m2s-'), we find that the size of the jump is 
[Bh] - 20 nT, which gives a relative jump of -5 x lop5 when 
compared to the size of the fields themselves, which is 
certainly negligible. 

Backus (1968) derived conditions for the horizontal field 
to be continuous across the boundary layer. Barraclough, 
Gubbins & Kerridge (1989) have recently examined these 
conditions, finding that they are reasonably well satisfied, in 
fact suggesting that continuity of the horizontal field across 
the boundary layer is as good an approximation as the 
frozen flux approximation. 

We have discussed the fact that finite conductivity within 
the mantle permits the existence of a toroidal field at the 
CMB of which we are completely ignorant, and as (6) shows 
it does not contribute to the poloidal secular variation. The 
presence of finite mantle conductivity means that to 
reconstruct the poloidal field at the CMB we must solve the 
poloidal diffusion equation 

(9) 

in the mantle, where q, = (p,,u,J1 and the conductivity 
a, is assumed to be radially symmetric. Two reasons 
influence our choice not to follow this procedure. First, the 
question of the conductivity of the deep mantle is currently 
not resolved, especially below depths of about 2000km 
where induction studies lose resolution. However, the 
recent experimental evidence of Peyronneau & Poirier 

shear, and geostrophic flow and shear 
present our results in Section 4. 

2 THE F O R W A R D  PROBLEM 

This section describes how the spectral 
poloidal secular variation is related 

respectively. We 

expansion of the 
to the spectral 

expansions of the velocity and the magnetic field. We' begin 
by decomposing the velocity u into toroidal and poloidal 
ingredients 

u = u,+ up= V x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(73)  + V X V x (Ff). 

The condition u, = 0 at r = c (c  is the core radius) imposes 
the boundary condition P = 0, so (10) can be written in the 
form 

(10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d P  S=- 
dr . 

The representation of the shear u; involves two extra 
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scalars; we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= u;( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, T ' ,  S ' )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV X (t ' i) + V X V X (Pi)  - uJr, 

(13) 

where ' represents radial derivatives. We expand the 
potentials 5, S, T', and S' in surface spherical harmonics 

expanded in surface spherical harmonics 

- 4 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S = 2 2 (cs;"cos rn$ + $7 sin rn+)Py(cos e), 

5' = 2 
(15) 

(16) 

I = 1  m = O  
- 1  

(ct;" cos rn@ + . r i m  sin m@)P;"(cos 8). 
1 - 1  m=O 

- 1  

S' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi: cs;" cos rn+ + s ~ l m  sin rn+)P;"(cos 8), (17) 
I=1 m = O  

where the P;"(cos 6 )  are associated Legendre polynomials, 
normalized so that 

4n 
= f (P?)' d Q  = - 

2 1 + l '  

The poloidal magnetic field is represented as in (3), with P 
and P' expanded as above with coefficients {JI;";J;"},- 
{ J I ; " ;  JI;m}. Using t to represent the vector with elements 
t;", s to represent the vector with elements s;", t' to 
represent the vector with elements ti", s' to represent the 
vector with elements s lm,  and Il and II' to represent the 
vectors of coefficients for P and P', and substituting into 
(6), we can obtain, after some manipulation, the 
closed-form matrix equations 

d,n= E,t + G,s 

= HA 
and 

a,n' = E,t + Ghs + Eit' + GAS' 

for the radial and horizontal components of (6) respectively, 
where q = (t: s) and q' = (t' : s'). 

The general matrix elements of H, are given in the 
Appendix in equations (A16) and (A18), and of Hh in (A25) 
and (A26). It is especially noteworthy that the horizontal 
component of (6) (a vector equation in two scalar 
components) yields just one additional equation, namely 
(20). As we have discussed, we approximate the poloidal 
magnetic field in our calculations as a potential field which, 
naturally, we represent as the gradient of a scalar magnetic 
potential 

B(r, 8, +, t )  = -V@(r ,  8, +, t )  (21) 

x [g;"(r) cos rn# + h;"(t) sin rn+] 

x ~ y y c o s  e), (22) 

where a is the radius of the Earth's surface (nominally 
6371.2 km) and the {g;"(t), h;"(t)} are the Gauss geomag- 
netic coefficients. Under this approximation the matrix 
elements of H, are given in the Appendix in equations (A21) 
and (A22), and the elements of H, in (A27) and (A28). 

We contrast this formalism with that of Lloyd & Gubbins 
(1990) who consider the special case u, = uT. They calculate 
the matrix elements numerically using a transform method 
which can offer substantial computational advantages over 
our method; our method, though, has the advantage that it 
requires only relatively minor adaptation to extend 
pre-existing codes for solving (19). 

3 THE INVERSE PROBLEM 

3.1 Uniqueness 

Despite the apparent simplicity of equation (7), Backus 
(1968) showed that solutions for the velocity u were 
necessarily non-unique (i.e. if one eligible velocity field 
existed then so did an infinity of solutions, all of which fit 
the data equally well). The ambiguity results from the use of 
one equation to derive two orthogonal components of flow. 
We have already described how only the radial and 
horizontal poloidal fields can be estimated at the CMB,and 
in this paper we use these two components of field to 
estimate the velocity and shear at the CMB. 

When the radial and horizontal poloidal fields are used at 
the CMB there are two equations with four unknowns, and 
the ambiguity in solving (1) is not diminished. In this section 
we examine the uniqueness of flows which can be obtained 
from using the two poloidal components of the induction 
equation. We begin by applying the Helmholtz repre- 
sentation of an arbitrary vector field (e.g. Backus 1986) to 
the field w = u X B. The Helmholtz representation is more 
general than the poloidal-toroidal (or Mie) representation 
and does not require w to be solenoidal, which would 
require that both u and B are conservative (i.e. curl-free). 
We write 

o = f i  + V l g  + A , h  (23) 

where V, and A1 are the surface gradient and surface curl 
operators defined by 

V l  = r(V - i V )  = rV,,; A, = i X V 1  (24) 

and h and g are determined uniquely if they are required to 
satisfy 

(g>r  = ( h ) ,  = 0 (25) 

where ( g ) ,  is the mean value of g over the sphere of radius 
r. 

The secular variation induced is given by (Backus 1986) 

V X w = r-I{?(V;h) + V,[-V,(rh)]  
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where V: is the dimensional surface Laplacian. Denoting 
V,h by h '  we see that if the poloidal secular variation is 
known (26) gives the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and h', but nothing can be 
said regarding g, g' and f, apart from the fact that for (23) 
to hold we require that f and g satisfy 

-(Alh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Vlg) - Bh = fBr (27) 

because of the requirement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw -  B=O. Applying the 
operator i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX to (23). we see that we can write the horizontal 
components of w in the alternative form 

because u, = 0 at the CMB. Since g is unconstrained, there 
is an ambiguity which is exactly of the form for a velocity 
lying in the null-space of the radial secular variation which 
was pointed out by Backus (1968); and g can be chosen 
arbitrarily subject to some mild constraints on the null-flux 
curves where B, = 0. Clearly the horizontal poloidal 
component of SV does not reduce the size of the null-space 
in u from that which occurs when only the radial component 
of secular variation is used. 

An added ambiguity is contained in the toroidal part of 
(26). Differentiating (28) with respect to r ,  we write the 
shear in the form 

u'B, = -V,h' + A,g' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuB: + u:B, 

Now h and h '  are known, and the shear is subject to two 
ambiguities, one of which is a complicated function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg with 
no simple interpretation, and a simpler one containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg'. 
(On null-flux curves, certain conditions must hold which are 
not investigated here.) Even if the flow u is known (g is 
known), then because g' is unconstrained, if uAB, is a valid 
solution then so is 

u'B, = u,!,B, + Alg' (30) 

A heuristic demonstration of the toroidal part of the 
ambiguity in the shear u' is easily given by assuming the flow 
to be known and by writing the induction equation in the 
form (Lloyd & Gubbins 1990) 

d,B = (B . Vh)U - (U * Vh)B + B,U'. (31) 

Now by applying the Helmholtz decomposition to u'B, we 
find that even if u is found uniquely, there is an ambiguity in 
the shear of the form 

u'B, = A,g '  (32) 

where g' is unknown. 

3.2 Resolving the non-uniqueness 

3.2.1 Steady motions 

A trivial extension of the steady motions theorem for 
velocity shows that if the shear is steady over a certain 
interval of time, then measurement of B and d,B at three 
different times will serve to resolve the shear uniquely, 
except in certain cases. To illustrate this, we rewrite 

equation (31) in the form 

3,B - (B - V,)U + (u Vh)B = B,u'. (33) 

We assume that the flow has been found uniquely from the 
radial induction equation, and let 3,B represent the 
left-hand side of (33) which is the secular variation which is 
not produced by the flow u acting on B. Then equation (33) 
becomes 

6's = B,u' (34) 

If only the poloidal part of (34) is known, this is equivalent 
to knowledge of v h  (a$); in contrast the quantity 
i X Vh - (3s) is unknown. Thus (34) becomes 

(35) 

in striking similarity to the radial induction equation, 
although note that the data on the left-hand side are now 
spatial gradients of secular variation, which are likely to be 
much more noisy than the data (radial secular variation) 
used in the determination of velocity. The condition for a 
unique solution for u' and v h  u' is A # 0 where A is the 
discriminant described by Voorhies & Backus (1985). The 
solution is found by substituting -Vh - [a$(t,)] at time t, for 
B,(ti) in equations ( 5 )  and (6) of Voorhies & Backus (1985). 

3.2.2 Geostrophic motions 

The dynamics of the core are determined by the 
Navier-Stokes equation, which, under the Boussinesq 
approximation, is given by 

where D,, R = LZP, p o ,  p ' ,  p ,  g are the Stokes derivative, 
rotation vector, unperturbed and perturbed densities, 
pressure and gravitational vector respectively. Comparing 
sizes of the terms in (36) shows that in the core only a few of 
the forces are important. The Ekman number v/Qc2-  

( c  is the core radius) is tiny, showing that viscosity is 
unimportant, regardless of the badly known value of v. The 
Rossby number (measuring the strength of inertial terms 
relative to the Coriolis term) is similarly small (-lop7). The 
neglect of the viscous and inertial terms leaves a balance 
between Coriolis, pressure, buoyancy and Lorentz terms. 
The Lorentz terms contribute the largest unknown to the 
equations, mainly because the radial dependencies of the 
magnetic fields and the strength of the toroidal field within 
the core are almost completely unknown. The Elsasser 
number (measuring the ratio of the Lorentz and Coriolis 
terms) is small if only the poloidal field is considered; the 
primary contributions comes from the coupling of the 
toroidal field with itself or  with the poloidal field. 

We write the Lorentz force g in the form 

8 = -  
P O  " (37) 

The final term is an equivalent magnetic pressure which can 
be absorbed into the fluid pressure term in (36), but it is not 
clear which of the first two terms will give the largest 
contribution. Almost all discussion of the Lorentz force at  
the CMB has centred on assuming the mantle to be 
insulating, which gives B,=O at the CMB. Then provided 
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d,B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< I d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnT m-l the second term is sufficiently small to be 
unimportant, though this last condition seems unlikely to be 
satisfied unless the toroidal field is everywhere small, since 
large radial gradients in the toroidal field are otherwise to be 
expected at the CMB. 

Some models of the geodynamo, though, do have toroidal 
fields which are comparable in size to the poloidal field, and 
if the geodynamo operated in such a fashion the Lorentz 
terms would be small compared to the Coriolis terms in 
(36). Other models, however, operate in a 'strong field' 
regime suggesting that the toroidal field may be many times 
larger (say lo2) than the poloidal field, in which case the 
Lorentz term is relevant. 

To pursue the geostrophic approximation, we adopt the 
'weak field' hypothesis. Let us define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 =p/ (2poQr) .  (38) 

u cos 8 = A,q + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUP - (2p0C2)-'i X I? (39) 

Then the flow must satisfy 

where R =  QP and A, = i X  V, as in (24). At the CMB 
ur = 0 and geostrophy requires that the term in 0 be small, 
so that (39) becomes (LeMouel 1984) 

0 COS e = A,q. 

Now what is the constraint on u'? The derivative of (39) 
shows that u' must obey 

(40) 

U' cos 8 = A,qt + ~ : i  + (2p0Q)-'i X (& - 3,s) (41) 

where ' represents differentiation with respect to r,  
a =  &/p0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqt = (p' - p / r  - ap)/(2p0C2r). The value of 
a measures the variation in density in the adiabatic 
reference state, and can be found from seismology: 
cu=g/Vi  where g is the size of gravity and V' is the 
compressional wavespeed, which gives cud = 0.2 over a 
length-scale d of the size of the core radius. To compare 
sizes of terms in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(41) we need to estimate the size of 111'1. 

Nothing concrete can be said, because the only estimate 
available to us is that obtained from prior core velocity 
studies using the radial component of the induction 
equation, which supply u i ,  and all we offer is a plausibility 
argument. The radial shear u: is known to be badly 
determined, and can vary between zero for toroidal flows to 
ui  - lo-* yr-' for other flows. Taking the latter to be a 
representative value for the shear, and with (uI - 10 km yr-' 
we find that the length-scale for shear L is roughly lo00 km. 
In this case Lqt - q and the term ag can be neglected. The 
size of the term 3,s is particularly difficult to estimate, since 
even in the case of an insulating mantle (BT = 0 at r = c )  it 
involves terms of the form 

Provided these terms are sufficiently small, equation (41) 
becomes 

UI  COS e = A1qt + ~ ; 2  (43) 
and we find that the shear is coupled to the flow and that the 
shear and flow must satisfy the two equations 

where 12 is the upwelling = v h  - u. A similar discussion of 
the extension of tangential geostrophy away from the 
boundary into a region where the Lorentz force remains 
small in comparison to the Coriolis force can be found in 
LeMouel, Jault & Gire (1987). 

To prove that the shear can be found uniquely, we must 
briefly review the geostrophic velocity uniqueness analysis of 
Backus & LeMouel (1986). Recall q =p/(2p0C2r) from (38) 
and let us define 

v = B,/cos 6. (46) 

Then we can write the radial component of the induction 
equation at the CMB as 

v h q  . A I ~  = a<Br. (47) 

Given that 111 and d,B, are known, we should expect to be 
able to solve equation (47) for q,  and hence use (40) to 
obtain uh. However, as discussed by Backus & LeMouel, 
(47) merely gives the derivative of q along the arc length of 
the contours of I#, so that on each contour of I), q may be 
determined only up to an arbitrary constant which may be 
different on each level line of v. Backus & LeMouel show 
that this problem is aleviated somewhat by noting that first, 
since (QXu),=O at the geographic equator, q must be 
constant along the equator; and second is singular at the 
geographic equator. Adopting the terminology of Backus & 
LeMouel, consider two sets of points: the 'visible belt' 
defined as the set of points connected to the geographic 
equator by contours of v; and the 'ambiguous patches' as 
the sets of points consisting of closed contours of v which 
do not intersect the geographic equator. Then, since the 
visible belt includes the magnetic equator where q is 
constant, q is determined (up to a single additive constant) 
in the visible belt and uh is determined uniquely; in the 
ambiguous patches the non-uniqueness remains. In the 
ambiguous patches the component of uh perpendicular to 
contours of t# can always be found, because the induction 
equation takes the form 

a,v + uh - V , v  = 0. (48) 

In Fig. 1 we plot the ambiguous patches for the 1980 main 
field model of Gubbins & Bloxham (1985); they account for 
41 per cent of the area of the CMB, so one component of 
the flow is known everywhere, and the second component 
over almost 60 per cent of the core surface. 

Now to prove an analogous result for the uniqueness of 
the shear, we restrict attention to the areas outside the 
ambiguous patches where the velocity uh is known uniquely. 
Using (43) in (31) gives 

3,B = (B - V,)U - (U - Vh)B + B,u' 

As we have asserted throughout, only the poloidal SV is 
known, which enables us to calculate only the horizontal 
divergence of the left-hand side. Then, applying the 
operator V,. to (49), we find 
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Ppsue 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAmbiguous patches for 1980. The shaded patches depict those areas within which the tangentially geostrophic flow hypothesis fails to 
resolve the non-uniqueness in the determination of the flow. The patches in the figure were calculated using the 1980 field model (D80111) of 
Gubbins zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bloxham (1985). The map is plotted using an Aitoff equal area projection. 

Outside the ambiguous patches the left-hand side of (50) 
is known completely (recall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- v h  - P), and the 
right-hand side gives the derivative of qt along level lines of 
ty in the same manner as did (47) for the velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase; there 
is a similar arbitrary constant on each level line of ty. On the 
equator we find 

0 = A,qt + u;6 (51) 

and u; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-LA is known on the equator from the radial 
equation. Thus 

4 
q t (n /2 ,  $) = q; - L((n/2, $7 &J' (52) 

so that q t (n /2 ,  $) can be found up to an additive constant 
q;. To proceed requires a little care: qt is no longer constant 
on the equator as before. Because each of the level lines of 
ty within the visible belt meets the equator at some point 
where q t  is known, the additive constant for qt can be fixed 
to be the same on each level line (i.e. there is one common 
arbitrary constant 4:). Then P' is found uniquely eveywhere 
within the visible belt. 

In this scenario flows are driven entirely by lateral density 
variations. Curling the Navier-Stokes equation gives the 
vorticity equation 

2pov x (Q x 0 )  = v x (p'g) (53) 

or, if density variations are interpreted in terms of variations 
in temperature €3 from the adiabatic background state 
where 

P = Po(1- m (54) 

the vorticity equation becomes 

(55)  

The temperature variations €3 can be found uniquely from 
(55) outside the ambiguous patches. The two geostrophic 
constraints introduced in (44) and (45) are sufficient for (55) 
to be satisfied exactly by a flow (0, 0'). The requirement of 

vanishing radial vorticity leads directly to (44), whilst 
requiring the horizontal component of (55) to be purely 
toroidal leads to (45). 

4 RESULTS AND DISCUSSION 

We have constructed solutions using a smoothly varying 
time-dependent model of the magnetic field (unpublished) 
in which the field is represented spatially by spherical 
harmonics to degree and order 14 and temporally by cubic 
B-splines. We calculate the magnetic field at the CMB as a 
potential field; as discussed we could correct for mantle 
conductivity, but chose not to. This does not imply that we 
believe the mantle to be an insulator, and thus we place no 
constraints on the toroidal SV. We seek the smoothest 
possible flow and shear compatible with the magnetic field; 
the same regularizing condition as was used on the flow by 
Bloxham (1988, 1989) is applied to the fields P and cu', 
using the same damping parameter for both. 

Figures 2-4 show steady solutions for the flow and shear 
constructed over the time-span 1960-1980. The shear has 
been scaled by the core radius c = 3485 km to give the same 
units as the velocity. We will not dwell on describing the 
flow, suffice to mention that the pattern of flow is very 
similar to that described by several authors (e.g. Voorhies 
1986; Whaler & Clarke 1988; Bloxham 1988, 1989), the 
differences being much more pronounced in the poloidal 
component rather than the toroidal component of the flow. 
Poloidal motions are not particularly important in fitting the 
secular variation, because the flows in Fig. 2 and 3 both 
explain over 90 per Cent of the variance in the data, whereas 
there is no poloidal ingredient to Fig. 3. 

Since the poloidal ingredient of the flow is poorly 
determined, two options avail themselves. First it can be set 
to zero (Fig. 3), the toroidal motions hypothesis, or the flow 
can be assumed to be geostrophic (Fig. 4); the poloidal 
motions are then fixed uniquely because they are 
determined by the toroidal members of the basis (Backus & 
LeMouel 1986). 

In each of the solutions we find the shear (scaled as 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20km/yr 
- 2 x  1 0 - 2  2x10-2  

- c40km/yr 
-2x  1 0 - 2  2 x  10-2 

Rgue 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASteady unconstrained velocity (a) and shear (b) for the period 1%0-1980. The vectors show the speed and direction of the flow at 
the core surface and the grey scale the intensity of the horizontal divergence (upwelling and downwelling) of the flow (in units of yr-'). The 
sign of the horizontal divergence can be determined from the flow vectors using the fact that the flow is incompressible. To relate the shear to 
flow, the shear has been multiplied by the radius of the CMB and the scale of the arrows is changed. The projection is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAitofl equal area. 

described above) to be approximately twice as strong as the 
flow. In most areas of the maps, especially where the flow is 
strongest, we find the flow and shear to be almost parallel. 
This correspondence is significant because it means that the 
flow decays with depth with very little change in orientation; 
the length-scale of this decay is of the order of half the core 
radius. This suggests that the flow at the core surface is 
highly correlated with the flow deep within the core, rather 
than being a localized effect; this result appears robust to 
whether we assume the flow to be geostrophic or toroidal. 
The root-mean-square values for the flow and shear for the 
three mddels are given in Table 1. 

This result for the shear is in some disagreement with that 

reported by Lloyd & Gubbins (1990) who, as we have 
mentioned, report a vertical length-scale of about 600 km 
for the flow; our estimate is almost three times their figure. 
This difference is important: 600km could be reasonably 
considered consistent with flow in a weakly stratified upper 
layer of the core (by weakly stratified we mean 
Brunt-Vaisda period greater than 12hr) and Lloyd & 
Gubbins argue that this flow could be largely driven by 
thermal anomalies in the mantle near the CMB (as 
envisaged by Bloxham & Gubbins 1987), whilst our estimate 
implies whole core convection. Whole core convection could 
be driven both from above (by thermal anomalies in the 
mantle) and internally (by growth of the inner core or 
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- c40km/yr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fire 3. Steady toroidal velocity (a) and shear (b) for the interval 1960-1980. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
radiogenic heating in the core). An investigation of the 
relative importance of these two contributions can be found 
in Bloxham & Jackson (1990). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 CONCLUSIONS 

We have adopted the frozen flux hypothesis which ascribes 
the observed SV entirely to the effects of advection. All 
three components of magnetic field are continuous at the 
CMB ( r = c ) ,  the boundary between the mantle and core 
with possibly different conductivities of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,,,(c) and U J C )  

respectively. At r = c ,  stress-free boundary conditions 
require the velocity u to vanish, and a thin viscous boundary 
layer is set up in which sheet currents can flow, causing a 
jump (denoted [B]) in the value of B between the value at 
the top of the free stream and the value at the CMB. 
Certainly [B,]  is negligible, and theoretical and observa- 

tional evidence suggest [Bh] is small enough to be consistent 
with other approximations, although this is the most 
equivocal point of our argument. We note that, even if 
u,(c) # 0 at the CMB, with the consequence that a large 
toroidal field is permitted at r = c,  because u, = 0 at r = c 
the induction equation separates and the poloidal SV 
depends solely on the poloidal field. In considering the 
problem of reconstructing the flow u and shear u' at the 
CMB given only the knowledge of poloidal SV, we show 
that determinations of u and u' suffer from toroidal 
ambiguities in the fields uB, and u'B, respectively. Further 
assumptions are necessary to resolve the non-uniqueness, 
and indeed assuming the flow and shear to be steady 
resolves the non-uniqueness everywhere, whilst assuming 
the flow to be geostrophic resolves the flow and shear 
everywhere on the core surface except within certain 
ambiguous patches, which cover 40 per cent of the core 
surface in 1980. 
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-1x10-2 1x10-2 

-1x10-2 1x10-2 

Figure 4. Steady fully geostrophic velocity (a) and shear (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the interval 1960-1980. Note the change of grey-scale from that in Fig. 2. 

Reconstructing the poloidal magnetic field at the CMB 
requires a model of mantle conductivity, which is poorly 
known. If we adopt the results of induction studies and 
recent high-pressure experiments, then probably u,(c) - 
200 S m-', and on the time-scale appropriate to the secular 
variation we commit a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnumerical error of less than 10 per 
cent in approximating the poloidal field with its insulating 
value. Calculations for steady flows and shears indicate that 
the two are highly correlated at the core surface and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
flow decays with depth on a length-scale approximately 

Table 1. Root mean square values of the 
velocity (v) and scaled shear (cv') for the 
models of Figs 2-4. 

Unconstrained Tomidal Geostmphic 

(v)/km yr-' 10.1 13.9 10.2 
(cv')kmyr-' 24.5 23.5 21.6 

equal to half the core radius; these results are fairly robust 
to the other restrictions which we place on the flow. 

Responding to our initial question, we believe on the 
basis of this study that it is at least possible that the pattern 
of flow deeper within the core may not be vastly different 
from that imaged near the core surface. This result is not 
entirely surprising since studies of the main magnetic field 
suggest that the pattern of the steady part of the field at the 
CMB reveals the effect of the inner core (Gubbins & 
Bloxham 1987), which would be rather unexpected if the 
flow at the core surface were vastly different from that 
deeper within the core. This is encouraging for it implies 
that both the steady part of the field and the flow may be the 
result of core-wide processes, and not necessarily far- 
removed from the true dynamo-generated fields, although 
they are probably somewhat perturbed by processes near 
the CMB. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
5
/1

/1
9
9
/6

6
8
7
0
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow and shear near the core surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA209 

ACKNOWLEDGMENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We thank David Lloyd for supplying an early version of his 
code for calculating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmatrix elements, and David Gubbins for 
helpful comments on the manuscript. This work was 
supported by NSF and NASA. 

REFERENCES 

Acache, J . ,  LeMouel, I .  L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Courtillot, V., 1981. Long-period 
geomagnetic variations and mantle conductivity: an inversion 
using Bailey’s method, Geophys. 1. R. astr. SOC., 65, 579-601. 

Backus, G. E., 1968. Kinematics of geomagnetic secular variation 
in a perfectly conducting core. Phil. Trans. R. SOC. Lond., A, 

Backus, G. E., 1983. Application of mantle filter theory to the 
magnetic jerk of 1969, Geophys. J.  R. astr. SOC., 74, 713-746. 

Backus, G. E., 1986. Toroidal and poloidal fields in geomagnetic 
field modeling, Rev. Geophys., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24, 75-109. 

Backus, G. E. & LeMouel, J.-L., 1986. The region on the 
core-mantle boundary where a geostrophic velocity field can 
be determined from frozen-flux magnetic data, Geophys. 1. R. 
mtr. SOC., 85, 617-628. 

Barraclough, D. R., Gubbins, D. & Kerridge, D. 1989. On the use 
of horizontal components of magnetic field in determining core 
motions, Geophys. 1. Int., 98, 293-299. 

Benton, E. R., 1981. Inviscid, frozen-flux velocity components at 
the top of Earth’s core from magnetic observations at Earth’s 
surface: Part 1. A new methodology, Phys. Earth planet. Inter., 
18, 157-174. 

Benton, E. R. & Whaler, K. A,, 1983. Rapid diffusion of the 
poloidal magnetic field through the weakly conducting mantle: 
A perturbation solution, Geophys. J .  R. asfr. Soc., 75, 77-100. 

Bloxham, J., 1988. Thc determination of fluid flow at the core 
surface from geomagnetic observations, in Mathemarical 
Geophysics, A Survey of Recent Developments in Seismology 
and Geodynamics, eds Vlaar, N. J., Nolet, G. ,  Wortel, M. I .  
R. & Cloetingh, S. A. P. L., Reidel, Dordrecht. 

Bloxham, J., 1989. Simple models of fluid Row at the core surface 
derived from geomagnetic field models, Geophys. J. Int. 99, 
173- 182. 

Bloxham, J. & Gubbins, D., 1987. Thermal core-mantle 
interactions, Nature, 325, 511-513. 

Bloxham, J. & Jackson, A., 1990. Lateral temperature variations at 
the core-mantle boundary deduced from the magnetic field, 
Geophys. Res. Lett., 17, 1997-2000. 

Bloxham, J. & Jackson, A., 1991. Fluid flow near the surface of 
Earth’s outer core, Rev. Geophys., in press. 

Bullard, E. C. & Gellman, H., 1954. Homogeneous dynamos and 
terrestrial magnetism, Phil. Trans. R. SOC. Lond., A, 247, 

Burridge, R., 1969. Spherically symmetric differential equations, 
the rotation group, and tensor spherical functions, Proc. Camb. 
Phil. SOC., 65, 157-175. 

Edmonds, A. R., 1960. Angular Momentum in Quantum 

263,239-266. 

213-278. 

Mechanics, Princeton University Press, Princeton, NJ. 
Gubbins, D. & Bloxham, J., 1985. Geomagnetic field analysis-111. 

Magnetic fields on the core-mantle boundary, Geophys. 1. R. 
astr. SOC., 80, 695-713. 

Gubbins, D. & Bloxham, J., 1987. Morphology of the geomagnetic 
field and implications for the geodynamo, Nature, 325, 
509-511. 

Hide, R. & Stewartson, K., 1972. Hydromagnetic oscillations of the 
Earths core, Rev. Geophys. Space Phys., 10, 579-598. 

Hills, R. G., 1979. Convection in the Earth’s mantle due to viscous 
shear at the core-mantle interface and due to large-scale 
buoyancy, PhD thesb, New Mexico State University, Las 
Cruces, NM. 

James, R. W., 1974. The spectral form of the magnetic induction 
equation, Proc. R. SOC. Lond., A, 340,287-299. 

LeMouel, J.-L., 1984. Outer core geostrophic flow and secular 
variation of Earth’s magnetic field, Nature, 311, 734-735. 

LeMouel, J.-L., Jault, D. & Gire, C., 1987. Sur la forme des 
mouvements lents animant le fluide du noyau terrestre, C. R. 
Acad. Sci. Paris, 305, 619-624. 

Li, X. & Jeanloz, R., 1987. Measurement of the electrical 
conductivity of (Mg, Fe)SiO, perovskite and a perovskite- 
dominated assemblage at lower mantle conditions, Geophys. 
Res. Lett., 14, 1075-1078. 

Li, X. & Jeanloz, R., 1990. Laboratory studies of the electrical 
conductivity of silicate perovskites at high pressures and 
temperatures, Geophys. Res. Lett., 95, 5067-5078. 

Lloyd, D. & Gubbins, D., 1990. Toroidal fluid motion at the top of 
Earth’s core. Geophys. 1. Int., 100, 455-467. 

Mochizuki, E., 1988. Spherical harmonic decomposition of an 
elastic tensor, Geophys. J .  Int., 93, 521-526. 

Peyronneau, J. & Poirier, J. P., 1989. Electrical conductivity of the 
earths lower mantle, Nature, 342, 537-539. 

Phinney, R. A. & Burridge, R., 1973. Representation of the 
elasto-gravitational excitation of a spherical Earth model by 
generalized spherical harmonics, Geophys. 1. R. astr. SOC., 34, 

Roberts, P. H. & Scott, S., 1965. On the analysis of the secular 
variation, 1 A hydromagnetic constraint: Theory, J .  Geomagn. 
Geoelectr., 17, 137-151. 

Voorhies, C. V., 1986. Steady flows at the top of Earth’s core 
derived from geomagnetic field models, 1. geophys. Res., 91, 

Voorhies, C. V. & Backus, G. E., 1985. Steady flows at the top of 
the core from geomagnetic field models: The steady motions 
theorem, Geophys. Astrophys. Fluid Dyn., 32, 163-173. 

Whaler, K. A., 1980. Does the whole of the Earth’s core convect? 
Nature, 287, 528-530. 

Whaler, K. A., 1986. Geomagnetic evidence for fluid upwelling at 
the core-mantle boundary, Geophys. J.  R. mtr. SOC., 86, 

Whaler, K. A. & Clarke, S. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.. 1988. A steady velocity field at the 
top of the Earth’s core in the frozen-flux approximation, 
Geophys. 1., 94, 143-155. 

45 1-487. 

12 444-12 466. 

563-588. 

APPENDIX: MATRIX ELEMENTS 

In this section we derive the elements of the matrices H,. and H h  in equations (19) and (20). The derivation of the elements 
of H, has been given previously by a number of authors; see for example Whaler (1986). The derivation of the elements of 
H h  has not been previously given. We derive explicit closed form relations for the elements. We find that  this is most readily 
accomplished by using the complex canonical basis of Burridge (1969) and Phinney & Burridge (1973); for an application to  
the magnetic induction equation see James (1974). 

We begin from the usual spherical polar coordinates ordered (f3,$, T )  defined by basis vectors ee: em,  e, .  Following Burridge 
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(1969) we define the complex canonical basis 

eo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe r  

1 
e+ = -(-ee - ie4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJz 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 
The contravariant components zn of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx may then he expanded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lm 

where the generalized spherical harmonics Y , a m ( B ,  4) are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas defined by Phinney & Burridge, with 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1' 1" ) ( 1 1' 1" ) 

-N N' N" -m m' m" 
sinBdBd4 = 4 ~ ( - 1 ) ~ - ~  

and the Wigner 3-j  symbol is as defined by Edmonds (1960). 
Rules for differentiation are given by Phinney & Burridge and Mochizuki (1988). We have 

d 
dr 
-xp- 
1 - ( C & + ~ X ~ ~  + e,+xprn - eaOXlfm) 

where 0; = d [ ( l+  a)( l  - Q + 1)/2], and e,B are the covariant components of the isotropic tensor &. 
Specializing to the case of solenoidal fields, x may be decomposed into toroidal and poloidal ingredients, which may be 

expanded in vector spherical harmonics (see $2). We depart slightly from the notation of $2 by using complex spherical 
harmonic expansions. If x has defining scalars 7 and P, we write 

7=Ct" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ( r )Krn(@,4) ('49) 
lm 

and likewise for P ,  where xm = & O m ,  and cty = Re(t?) ,  ct;" = 2Re(t ;") ,  and = -2 lm( t ; l ) .  Here, we use t;" and 
s;" = dp;"/dr for the expansion of the velocity potentials, and Pfm for the poloidal magnetic field. 
Mochizuki shows how the coefficients of the expansions of the toroidal and poloidal scalars are related to the generalized 
spherical harmonic exapnsion coefficients. For the toroidal part, we have 

and for the poloidal part 

Note in particular that the two horizontal canonical components of a poloidal vector are identical; hence we obtain only one 
equation for thc horizontal component of the poloidal magnetic induction equation. 
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Writing the frozen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflux induction equation in the form 

drB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= B.VU - u.VB 

we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 3 t ~ a  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( B ' U " ~ ~  - u ' B " ' ~ )  eg, 

Wc, t,hen expand the contravariant components B" of B and U" of u. 
Considering the 0-component of &B", and applying the condition ?I,. = 0, we obtain 

Fluid flow and shear near the core surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA211 

( A W  

('413) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y .  

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.3 2,3 2,3 

Miilt,iplying through by ( ~ ~ " ' ) * ,  and integrating over the unit sphere, we obtain 

Then for a toroidal velocity u we oht.ain 

where 

For the special case where B is pot,ential. with B = -V@ with 

wc have for a toroidal velocit,y 

and for a poloidal velocity 
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Next we consider the +-component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&Be,  apply the condition ur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, and obtain 

c a, Bt"' q:"' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

Multiplying through by (q:"')', integrating over the unit sphere, and considering only the poloidal part of B, we obtain 

Then for a toroidal velocit,y u we obtain 

and for a poloidal velocity u we obtain 

For the special case where B is potential, we have for a toroidal velocity 
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