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Abstract: Forest disturbances shape ecosystem composition and structure, and changes in 

disturbance regimes can have strong consequences for forest ecosystem services. Yet we 

currently lack consistent quantitative data on Europe’s forest disturbance regimes and their 

changes over time. Here we used satellite data to map three decades (1986-2016) of forest 

disturbances across continental Europe, covering 35 countries and a forest area of 210 million 

ha at a spatial grain of 30 m, and analyzed the patterns and trends in disturbance size, 

frequency and severity. Between 1986 and 2016, 17% of Europe’s forest area was disturbed 

by anthropogenic and/or natural causes. The 25 million individual disturbance patches had a 

mean patch size of 1.09 ha (range between 1st and 99th percentile 0.18 – 10.10 ha). On average 

0.52 (0.02 – 3.01) disturbances occurred per km² every year, removing 77% (22 – 100%) of 

the canopy. While trends in disturbance size were highly variable, disturbance frequency 

increased and disturbance severity decreased since 1986. Changes in disturbance rates 

observed for Europe’s forests are thus primarily driven by changes in disturbance frequency 

(i.e., more disturbances), and only to a lesser extent by increasing disturbance size. We here 

present the first continental-scale characterization of Europe’s forest disturbance regimes and 

their changes over time, providing spatially explicit information that is critical for 

understanding the ongoing changes in forest ecosystems across Europe. 

 

Keywords: Forest disturbances; Disturbance regimes; Remote sensing; Forest resilience; 

Forest management 
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Forests cover 33 % of Europe’s total land area and provide important ecosystem services to 

society, ranging from carbon sequestration to the filtration of water, protection of soil from 

erosion and human infrastructure from natural hazards 1. Europe’s forests have expanded in 

recent decades 2 and have accumulated substantial amounts of biomass due to intensive post-

WWII reforestation programs, changes in management systems, and timber harvesting rates 

that remained below increment 3. This success story of 20th century forestry in Europe, 

however, also has side effects, as the resultant changes in forest structure and composition 

have – in combination with climate change – led to an episode of increasing forest 

disturbances in recent decades 4–7. Increasing forest disturbances have the potential to erode 

Europe’s carbon storage potential 8,9 and also impact other important ecosystem services 

provided by Europe’s forests 10,11. Given a predicted increase in the demand for wood 1 and an 

expected future intensification of forest dieback under climate change 12, it is fundamental to 

both understand and increase the resilience of Europe’s forests to changing disturbances 13–15. 

Understanding the ongoing changes in forest ecosystems and developing management 

strategies to increase their resilience requires a robust quantitative understanding of the 

prevailing disturbance regimes 16,17. Disturbance regimes characterize the cumulative effects 

of all disturbance events occurring in a given area and time period, and are often characterized 

by metrics such as the size, frequency, and severity of disturbances occurring in a given area 

16. In Europe, forests have been utilized by humans for centuries, transforming species 

composition and structure 18–20, and consequently also the natural disturbance regimes of 

forests. In addition to this indirect effect, human land-use is directly disturbing forest canopies 

through timber harvesting, altering the rate and spatial patterns of forest disturbances 

compared to natural systems 21. Human land-use also interacts with natural disturbances, e.g. 

by salvage logging of disturbed timber 22 and shortening early seral stages through planting 23. 

More broadly, forest management alters biological legacies and landscape structure 22,24, with 

feedbacks on subsequent disturbances. Due to the intricate linkages between natural and 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.03.30.015875doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.015875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

human processes driving forest disturbances in Europe, characterizing the disturbance 

regimes of Europe’s forests requires a holistic perspective covering both natural and human 

disturbances.  

For Europe, there is little quantitative information on disturbance regimes and their 

changes through time available to date, especially if considering both natural and human 

disturbances. While previous studies have characterized the disturbance regimes of some of 

Europe’s forest ecosystems 4,18,25–27, those studies have either focused on purely natural 

processes, lack a spatially and temporally consistent data source, or focus only on the regional 

scale. Due to this lack of quantitative information at continental scale, we do, for instance, not 

know how disturbance size, frequency and severity vary across Europe. Furthermore, while 

recent studies indicate an increase in disturbance rates across Europe’s natural and managed 

forests 4,6, it remains unknown whether this change is mainly the result of changes in 

disturbance frequency (i.e., more disturbance events) or disturbance size (i.e., larger 

individual disturbance patches). Likewise, our quantitative knowledge of changes in 

disturbance severity is scant, and it remains unclear whether disturbances in Europe have 

become more severe in recent decades (e.g., through increased burn severities 28) or whether 

recent changes in forest management approaches (e.g., the adoption of “close-to-nature” 

silviculture 29) have reduced disturbance severity, as reported for parts of Central Europe 4, for 

instance. 

Here, our aim was to map and characterize the disturbance regimes of Europe’s forests 

1986 – 2016. Our specific research questions were: (I) What is the size, frequency and 

severity of forest disturbances across Europe’s forests? (II) How did size, frequency and 

severity of forest disturbances change over the past three decades? We addressed these two 

questions by mapping forest disturbance occurrence and severity continuously for continental 

Europe (35 countries covering 210 million ha of forest) at a spatial grain of 30 m using more 

than 30,000 satellite images and nearly 20,000 manually interpreted reference plots. 
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Subsequently, we characterized both the spatial variation of disturbance size, frequency and 

severity and their temporal trends over time at the continental scale, thus providing the 

quantitative baseline critically needed for understanding current changes in Europe’s forest 

ecosystems. 

Results 

Disturbance maps 

We identified a total of 36 million individual disturbance patches occurring across Europe 

between 1986-2016, equaling a disturbed forest area of 39 million ha or 17 % of Europe’s 

forest area (Figure 1). The overall accuracy of the map was 92.5 ± 2.1 % (mean ± standard 

error), with a commission error of 14.6 ± 1.8 % and an omission error of 32.8 ± 0.3 % for 

detecting disturbances (see Supplementary Table S2). Omission errors were mainly related to 

low severity disturbances that could not be separated from noise (Figure S4). The mean 

absolute error between the estimated disturbance year and the manually interpreted 

disturbance year was three years (Figure S5), with 77 % of the assigned disturbance years 

being within three years of the manually interpreted disturbance year. We derived a 

continuous value ranging from zero to one as measure of disturbance severity (see Figure 1C). 

The severity measure expresses the probability of a disturbance being stand-replacing, with 

zero indicating no change in the dominant canopy and one indicating a complete removal of 

the forest canopy in a disturbance. The disturbance severity measure was well able to 

differentiate between un-disturbed areas (no loss of forest canopy), non-stand-replacing 

disturbances (partial loss of forest canopy), and stand-replacing disturbances (complete loss of 

forest canopy; Figure S6), and thus well represents the variable disturbance severities 

prevailing across Europe’s forests. 
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Fig. 1: Forest disturbances in Europe 1986-2016. Disturbance maps were derived from 

analyzing more than 30,000 Landsat images across continental Europe. Panel A shows the 

occurrence of disturbances across Europe. Panels B show the disturbance year and panels C 
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show the disturbance severity for three selected areas: (1) A bark beetle outbreak of varying 

severity in and around Harz National Park (Germany); (2) salvage-logged wind disturbance in 

an intensively managed plantation forest in the Landes of Gascony (France) with very high 

disturbance severity; and (3) fire disturbances on the Peloponnese peninsula (Greece), with 

variable burn severity. See Supplementary Figure S10 for a high-quality version of the main 

disturbance map. 

 

Disturbance regimes 

The average patch size of forest disturbances was 1.09 ha, but the disturbance size distribution 

was highly left-skewed (Figure 2-B). The median disturbance size was only 0.45 ha, with 

78 % of the disturbances being smaller than 1 ha and 99 % of the disturbances being smaller 

than 10 ha (Table 1). The largest disturbance patch mapped across Europe was a 16,617 ha 

large forest fire occurring in 2012 in southern Spain. The average disturbance frequency was 

0.52 patches per km2 of forest area per year (median of 0.37 patches per km2), with highest 

frequencies (highest 1 %) ranging from 3 to 31 patches per km2 (Table 1). Disturbance 

severity ranged from 0.23 to 1.00, with an average of 0.77 (median of 0.83). That is, more 

than half of the disturbed patches across Europe had a very high probability of being stand 

replacing, indicating a high prevalence of high severity disturbances. 

 

Table 1: Distribution of the size, frequency and severity of disturbances across Europe’s 

forests (see Supplementary Table S3 for values by country). 

Indicator Description Mean Quantiles 

0 % 1 % 25 % 50 % 75 % 99 % 100 % 

Size The size of a disturbed patch in hectares. 1.09 0.18 0.18 0.27 0.45 0.90 10.10 16,617.42 

Frequency The number of disturbance patches per 
km² forest. 

0.52 < 0.01 0.02 0.20 0.37 0.63 3.01 31.21 

Severity The probability of a disturbed patch 
being stand replacing (i.e., complete loss 
of the forest canopy). 

0.77 < 0.01 0.22 0.65 0.83 0.94 1.00 1.00 
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Spatial variability in the size, frequency and severity of forest disturbances is high 

across Europe (Figure 2). Disturbance patches are generally larger in Northern and Southern 

Europe compared to Central Europe. Also, Eastern Europe has larger disturbance patches 

compared to Western Europe (Figure 2). Above-average disturbance frequencies were found 

in Central Europe, the hemi-boreal zone, parts of France and the Iberian Peninsula (Figure 2). 

The highest disturbance frequencies (i.e., > 3 patches per km2) occurred almost exclusively in 

Portugal. Disturbance severity was more evenly distributed than the other two disturbance 

regime indicators (Figure 2), with a tendency towards higher severities in the Atlantic forests 

of Ireland and the United Kingdom, the Iberian Peninsula, the Po-Valley in Italy, and the 

Pannonian Basin. In contrast, low disturbance severities were recorded for South-Eastern 

Europe along the Dinaric mountain range, as well as in the Apennine mountains of Italy. 
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Fig. 2: (A) Maps of average disturbance size, frequency and severity calculated for hexagons 

on a 50 km grid across continental Europe. (B) Distribution of average disturbance size, 

frequency and severity across Europe. 

 

Trends in disturbance regimes 

Disturbance regimes changed profoundly between 1986 and 2016, but trends differed with 

disturbance regime indicator (Figure 3). Changes in disturbance size were variable across 

Europe. Hot spots of increasing disturbance size were in the Baltic states, the United 

Kingdom, Ireland, and Italy (Figure 3), whereas trends were largely negative in Eastern 

Germany, western Poland and southeastern Europe (Figure 3). Disturbance frequency showed 

a more consistent increase than disturbance size, with disturbance frequency increasing on 

74 % of Europe’s forest area (Table 2). Hot spots of increasing disturbance frequency were 

located in Central and Eastern Europe (Figure 3), whereas negative trends in disturbance 

frequency were found for Belarus, Albania and Greece as well as parts of western Europe and 

northern Fennoscandia (Figure 3). In contrast, disturbance severity decreased for 88 % of the 

European forest area (Table 2), with particularly strong negative trends in Central and 

Southeastern Europe (Figure 3). 
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Fig. 3: Trends in Europe’s forest disturbance regimes 1986 – 2016. (A) Maps of trends in 

disturbance size, frequency and severity calculated at a 50 km hexagon grid across continental 

Europe. (B) Distribution of forest area among trend classes. 

 

While the mean disturbance size generally increased across Europe (65 % of Europe’s 

forests had an increasing trend in mean disturbance size; Table 2) the median disturbance size 

was more stable (increasing for only 19 % of Europe’s forests; Table 2). Hence, the 

disturbance size distribution widened over time, with an increase in large disturbance patches 

(i.e., in the 75 % quantile and maximum of the disturbance patch size distribution; Table 2) in 

approximately half of Europe’s forests. Overall, changes in disturbance frequency explained 

71 % of the variability in changing disturbance rates (i.e., the trend in the annual percent of 

forest area disturbed), whereas changes in disturbance size only accounted for 24 % 

(Supplementary Figure S7). Thus, changes in forest disturbance rates observed in Europe are 

primarily driven by more frequent disturbances, and only to a lesser extent by increasing 

disturbance sizes. 
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Table 2: Distribution of the trends in size, frequency and severity of disturbances across 

Europe’s forests 1986 – 2016 (see Supplementary Table S3 for values by country). 

Indicator Mean (across 

disturbed 
patches) 

Mean (weighted by 

forest area) 

Proportion of forest area 

with positive trends 

Proportion of forest area with 

no trend 

Size (ha)     

 Mean 0.41 0.33 0.65 0.00 
 50 % quantile 0.21 0.23 0.19 0.78 

 75 % quantile 0.53 0.53 0.54 0.32 

 100 % quantile 0.35 0.15 0.52 0.00 
Frequency (# per 
km² forest area) 

1.17 1.19 0.74 0.01 

Severity (0-1)     
 Mean -0.31 -0.33 0.12 0.00 

 

Discussion 

We here provide the first quantitative and spatially explicit characterization of Europe’s forest 

disturbance regimes, highlighting the wide variety in disturbance sizes, frequencies and 

severities prevailing across the European continent. While forest type and general biophysical 

environment certainly explain part of the variability in the disturbance regimes of Europe 6,30, 

it is likely also the variability in forest management approaches across Europe’s forests that 

plays a fundamental role in explaining the observed patterns. Forest management approaches 

across Europe range from small-scale approaches aiming for continuous forest cover to even-

aged forestry based on clearfelling and high-intensity short rotation systems 31,32. For 

example, many countries that predominantly use small-scale management approaches (e.g., 

Slovenia, Switzerland 33) were characterized by substantially smaller disturbances sizes and 

lower disturbances severities in our data (Supplementary Figure S8), despite also 

experiencing large-scale natural disturbances 34. This clearly contrasts with countries largely 

apply even-aged forest management approaches (e.g., Finland, Sweden 35) or have high shares 

of plantation forests (e.g., Denmark, Hungary, Ireland 1), which have on average larger patch 

sizes and higher disturbance severities (Supplementary Figure S8). Disturbance regimes thus 

varied widely between countries, reflecting differences in management objectives and 
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management histories 36. In some instances, these differences occur even for countries which 

have very similar forest types and biophysical environments, which would suggest a 

comparable natural disturbance regime (see, e.g., Figure S9 for additional examples). A 

substantial part of the spatial variability in disturbance size, frequency and severity observed 

here are thus likely driven by variation in forest management across the European continent. 

The disturbance regimes of Europe’s forests are changing profoundly. We here show 

that the previously reported increase in disturbance rates 4,7 is primarily an effect of increasing 

disturbance frequency, while disturbance patch size distributions are becoming more variable 

and disturbance severities are decreasing. The strong increase in disturbance frequencies 

might be caused by both increasing wood production and increasing natural disturbances 

reported throughout Europe 9, with both factors likely interacting (i.e., increasing natural 

disturbances triggering increased salvage harvesting). The widening of the patch size 

distribution likely results from the combined effects of changes in management approaches 

towards smaller intervention sizes (i.e., single-tree or group selection 29) and simultaneously 

increasing natural disturbance activity, leading to infrequent but large canopy removals (e.g., 

large-scale storm events 37 or large-scale fires 38). The combined effects of changes in 

management approaches and natural disturbances also likely explains continental-scale 

decreases in disturbance severity, as management systems are increasingly optimized to 

reduce impact 39 and many natural disturbances that occur frequently (i.e., bark beetle 

infestations and small-scale windthrow) are characterized by mixed severities 40. 

We here provide the first high-resolution forest disturbance map for continental 

Europe covering three decades of forest development, a dataset of importance for future 

research on the dynamics of Europe’s forests. Yet, there are methodological limitations that 

should be considered when using the data presented here. First, we do not distinguish 

disturbance agents in our analysis, that is an individual disturbance patch can currently not be 

attributed to either natural or human origin. While methodological advances in attributing 
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disturbance agents based on satellite-based forest change products have been made recently 

41, those approaches are not yet applicable at the spatial and temporal scale of our analysis. 

The key reasons for this are missing reference data on the actual occurrence of disturbance 

agents and the fact that management signals are often superimposed on natural disturbances 

(i.e., subsequent salvage logging). Future work should thus aim for improved attribution 

algorithms that consider the complex interactions between humans and natural processes in 

Europe’s forest ecosystems more explicitly. Second, we here only map the greatest 

disturbance per pixel, that is there is only one disturbance event recorded for the whole 30-

year period for each 30 × 30 m pixel. For short-rotation systems we thus might miss some 

disturbances if, e.g., two harvests have occurred in the past three decades. Finally, we note 

that despite careful processing (historic) satellite data can be noisy, preventing the detection 

of very low-severity disturbances. This limitation is intrinsic to the data used herein, there are, 

however, very few alternative data sources that allow the consistent analysis of vegetation 

dynamics over three decades at continental scale.  Despite these limitations we are confident 

that our first quantitative and spatially explicit analysis of patterns and trends in forest 

disturbances provide a crucial step towards better understanding the ongoing changes in 

Europe’s forest ecosystems. 
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Materials and Methods 

Reference data 

Acquiring consistent reference data across large areas – such as continental Europe – is 

challenging. We here made use of manually interpreted satellite data, serving as valuable 

alternative to field-based data 42. Manual interpretation of satellite data for calibrating and 

validating Landsat-based forest change maps is a well-established approach and has been used 

in numerous studies previously 43–46. In essence, an interpreter inspects the temporal profile of 

the spectral trajectory of a Landsat pixel and, with the help of Landsat image chips and very 

high-resolution imagery available in Google Earth, makes a well-informed call whether the 

trajectory represents stable forest canopy cover or whether a mortality event occurred 47. We 

here used a previously established set of 19,996 interpreted Landsat pixels 7 as reference data. 

The initial sample was drawn at random within forests of Europe, with samples stratified by 

country (500 samples per country). As interpreters might declare a plot as no-forest during 

interpretation (caused by errors in the automatically generated forest mask used as the basis 

for stratified sampling), the realized sample size varied between countries (Table S1). The 

response design followed well-documented protocols developed and published previously 4,7. 

Manual interpretation was done by a total of nine interpreters using established software tools 

47, and the data is freely accessible under following repository: 

https://doi.org/10.5281/zenodo.3561925  

The reference sample set only consisted of forest pixels and there was thus need for 

substituting the sample with non-forest reference pixels. We therefore drew a country-

stratified sample of non-forest pixels using a Landsat-based land cover map from 48. Each 

countries sample size was chosen to match the forest proportion of the respective country 

(based on data from the FAOSTATS database), that is the total sample of each country 

equaled a random sample across its terrestrial forested and non-forested land surface (see 

Table S1). In total we drew 46,461 non-forest reference pixel that, paired with the 19,996 
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forest reference pixels manually interpreted, totaled to 66,457 reference pixels used for 

calibration and validation. From the full reference sample, we randomly drew a sub-sample of 

5,000 pixels for map validation, and the remaining 61,457 pixels were used for model 

calibration. The validation sub-sample was drawn proportionally to the size of each country to 

ensure a consistent and unbiased estimation of mapping accuracies for the final European map 

product.  

Mapping disturbances 

At the core of our mapping workflow we rely on an established time-series segmentation 

approach called LandTrendr 49, implemented in the high-performance cloud-computing 

environment Google Earth Engine 50. In essence, LandTrendr segments annual Landsat pixel 

time series into linear features, for which a set of metrics can be extracted. We here do not 

provide details on the underlying LandTrendr routines but focus on the salient details of our 

mapping workflow (cf. Figure S2 for a graphical outline). The workflow was based on code 

published in Kennedy et al. 50. 

In a first step we screened all available Tier 1 Landsat 4, 5, 7 and 8 images in the 

United States Geological Survey archive. Tier 1 images are delivered as ready-to-use surface 

reflectance images including a cloud mask, yet we used coefficients from Roy et al. 51 to 

spectrally align the varying sensor types used onboard Landsat 4/5 (Thematic Mapper), 

Landsat 7 (Enhanced Thematic Mapper Plus), and Landsat 8 (Operational Land Imager). 

After spectral alignment we filtered all available images for summer-season acquisition dates 

(1st of June to 30th September) and built annual medoid composites following Flood 52.  

Second, we ran LandTrendr for two spectral bands (shortwave infrared I and II) and 

two spectral indices commonly used for forest disturbance and mortality mapping 45,46,53–55: 

the Tasseled Cap wetness (TCW) and the Normalized Burn Ration (NBR). We used a 

standard parameter set for LandTrendr with no filtering or thresholding and thus allowing for 

maximum sensitivity in detecting change (i.e., allowing for a high commission error).  
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Third, we extracted the greatest change segment from each pixel’s LandTrendr 

trajectory, fit to both spectral bands and both spectral indices. From the greatest change 

segment we derived a set of three metrics describing the magnitude, duration and rate of 

change 53 as well as a measure of the signal-to-noise ratio as described in Cohen et al. 54. We 

further derived the spectral band/index value prior to, and the rate of change following the 

greatest change segment. Similar metrics as the ones used here have been applied also in 

previous studies mapping forest cover changes 44,46,55.  

Fourth, we used the set of metrics derived from the greatest change segment for the 

two spectral bands and the two spectral indices, the calibration data outlined in the previous 

section, and random forest classification 56 to classify each pixel into either no-forest, 

undisturbed forest, or disturbed forest (i.e., at least one disturbance event during the study 

period). This last step filtered out commission errors by LandTrendr and thus greatly 

improves mapping accuracy compared to purely automatic algorithms 57. Yet, we experienced 

difficulties in correctly separating forest and no-forest areas solely based on LandTrendr 

outputs. This was due to high spectral changes in agricultural areas, which were identified as 

disturbances by LandTrendr. To tackle this problem, we added a three-year Tasseled Cap 

Brightness, Greenness and Wetness median composite centered on 1985 and 2018, 

respectively, to the classification stack. The additional six bands delivered more detailed 

spectral information on stable forest and non-forest pixels. Finally, we applied the trained 

random forest model to the full classification stack (i.e., LandTrendr metrics from the two 

spectral bands and two spectral indices plus the Tasseled Cap composite from 1985 and 2018) 

to consistently map the categories no forest, undisturbed forest and disturbed forest across 

continental Europe. We validated the final map using the validation sub-sample described in 

the previous section. We derived a confusion matrix and report overall accuracy, errors of 

commission and errors of omission following best-practice recommendations given in 42. 
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Fifth, while the thus derived map indicates whether a mortality event has happened or 

not, it does not inform about when the mortality event happened. We therefore calculated the 

year of the disturbance onset (i.e., the year of the greatest spectral change) from all spectral 

bands and spectral indices using an automated majority vote. If there was a tie (e.g., all four 

bands/indices indicated a different year), we reverted to the median value. To validate this 

processing step, we compared the year assigned from LandTrendr to the manually interpreted 

year of disturbance for the 19,996 forest reference plots. 

Spatial filtering 

The last step in creating disturbance maps for continental Europe was to apply a set of spatial 

filters for removing unrealistic outliers from the resulting disturbance maps and enhancing 

spatial pattern analysis. We first set a minimum mapping unit of two 30 × 30 m pixels (i.e., 

0.18 ha) and removed all disturbance patches smaller than the minimum mapping unit. In a 

second filtering step, we identified all patches smaller than the minimum mapping unit for 

each year, and assigned them to the year of the surrounding disturbed pixels (if any), thus 

accounting for artefacts related to uncertainties in the correct identification of the disturbance 

year (see Figure S3). In a final filtering step, we removed holes within disturbance patches 

smaller than the minimum mapping unit by filling them with the year of the surrounding 

pixels. While the filtering was done to improve the spatial analyses described in the following 

section, we note that the filtering was applied after the accuracy assessment. The accuracy 

assessment thus reports the raw classification performance without additional filtering. 

Characterizing disturbance regimes and their changes 

From the annual forest disturbance maps we calculated three disturbance regime indicators 

based on Turner 16 and Johnstone et al. 17: disturbance size, frequency and severity. 

Disturbance size and severity were calculated at the patch level and subsequently aggregated 

to the landscape level, while disturbance frequency was calculated at the landscape level 

directly. Disturbance size is the number of disturbed pixels for each individual patch (patches 
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were defined annually using rook-contiguity) multiplied by pixel size (0.09 ha). For 

calculating disturbance frequency, we sub-divided the total study area into a 50 * 50 km 

hexagon grid (here representing the landscape scale, hexagon area of 2165 km²), with a total 

number of 3,240 hexagons across Europe’s land area. We chose hexagons over squares as 

hexagons minimize the spatial differences to the more complex landforms of the European 

continent and the borders of European countries 58. For each hexagon, we counted the number 

of individual disturbance patches per year and divided this number by the total forest area 

within the hexagon, resulting in a measure of the number of disturbed patches per km2 forest 

area per year as an indicator of disturbance frequency. 

 For quantifying disturbance severity, we made use of the spectral change magnitude 

provided by the LandTrendr analysis. The spectral change magnitude is well correlated with 

changes in forest structure during disturbance 45,53,59 and we here use it as proxy of 

disturbance severity. To combine and scale the spectral change magnitude from all four 

spectral bands/indices into one measure of disturbance severity we used logistic regression to 

predict the occurrence of stand-replacing disturbances from the four spectral change 

magnitudes. Data on stand replacing disturbances were generated from the reference sample 

by analyzing the manually interpreted land cover after a disturbance segment. If the land 

cover switched to non-treed following a disturbance segment (e.g., after clear-cut harvest or 

high intensity fire), the disturbance was assumed to be stand-replacing. If the land cover 

remains treed following a disturbance segment (e.g., following a thinning operation or a low 

intensity windthrow), the disturbance was classified as non-stand-replacing. The method is 

based on Senf et al. 4 who showed that visual interpretation of post-disturbance land cover is 

an accurate measure for separating stand-replacing from non-stand-replacing disturbances. By 

predicting the occurrence of stand-replacing disturbances (i.e., complete removal of the 

canopy and thus a disturbance with very high severity), we scale the spectral change 

magnitudes to a value between zero and one, where one indicates complete loss of the canopy 
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(i.e., high severity disturbance) and values close to zero indicate little change in the forest 

canopy (i.e., low severity disturbance). Values in-between represent variable levels of canopy 

loss and thus intermediate disturbance severities. While it is difficult to validate this proxy 

retrospectively across Europe (i.e., no reliable pan-European data on canopy changes during 

past disturbance events exists), we here performed an indirect validation by comparing the 

disturbance severity measure among stand-replacing disturbances, non-stand-replacing 

disturbances and undisturbed reference pixels (see Supplementary Figure S6). 

 For spatially visualizing disturbance size, frequency and severity as well as for 

calculating and visualizing trends we aggregated patch-based metrics (i.e., disturbance size 

and severity) to the landscape level (i.e., the hexagon) by calculating the arithmetic mean. We 

report the mean over the median as it is sensitive to changes in both the central tendency and 

the spread of the distribution, but we also include other descriptors in the Tables and 

Supplement. Trends in disturbance size, frequency and severity were quantified using a non-

parametric Theil–Sen estimator, which is a non-parametric measure of monotonic trends in 

time series insensitive to outliers 60. 
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