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Nanophotonics finds ever broadening applications requiring complex components with many

parameters to be simultaneously designed. Recent methodologies employing optimization

algorithms commonly focus on a single performance objective, provide isolated designs, and

do not describe how the design parameters influence the device behaviour. Here we propose

and demonstrate a machine-learning-based approach to map and characterize the multi-

parameter design space of nanophotonic components. Pattern recognition is used to reveal

the relationship between an initial sparse set of optimized designs through a significant

reduction in the number of characterizing parameters. This defines a design sub-space of

lower dimensionality that can be mapped faster by orders of magnitude than the original

design space. The behavior for multiple performance criteria is visualized, revealing the

interplay of the design parameters, highlighting performance and structural limitations, and

inspiring new design ideas. This global perspective on high-dimensional design problems

represents a major shift in modern nanophotonic design and provides a powerful tool to

explore complexity in next-generation devices.
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A
multitude of parameters determine the performance of a
photonic device, encompassing the optical properties of
the constituent materials, structural geometry, and

dimensions. Similarly, the choice of the best design to proceed to
fabrication, integration, and system implementation needs to take
into account many performance criteria. These not only include
the primary functionality but also other metrics, such as insertion
loss, the effect of temperature, and the influence on other system
components (e.g., back reflections), to name a few. Susceptibility
of manufacturing yield to the inherent variability of the fabrica-
tion processes is another important consideration.

Historically, conception of a new device relies on theoretical
knowledge and physical intuition to identify the potential struc-
ture and design parameter range. The design parameter space is
explored semi-analytically or numerically, and the relevant per-
formance metrics are analyzed. This approach is constrained in
scope by computational resources and limited to structures gov-
erned by only a few parameters and where the evaluation process
can be decomposed into sequential steps. As the scope of nano-
photonics broadens in complexity and application range1,2, this
conventional approach poses increasing challenges. For example,
in devices employing metamaterials3–6 or complex geometries
generated by inverse design and topology optimization7–12, not
only the number of design parameters vastly increase but they are
often strongly interdependent. Sequential optimization is no
longer applicable, and simultaneous optimization of multiple
parameters is required.

Optimization tools such as genetic algorithm13–15, particle
swarm16,17, and gradient-based optimization18–21 are now com-
monly used to search more efficiently for high-performance
designs22. More recently, supervised machine-learning methods,
such as the artificial neural network, have begun to enter the fray
in speeding up the search process23,24. While all these approaches
represent significant improvements to the design flow, they still
suffer constitutive limitations: usually a single performance cri-
terion is optimized; only a single or a handful of optimized
designs are discovered; and the optimization process needs to be
repeated for modified performance criteria. Furthermore, opti-
mized designs in isolation reveal very little on the characteristics
of the design space and the influence of the design parameters on
the device performance. Consequently, careful balancing of dif-
ferent figures of merit becomes difficult. A global perspective on
the design space of nanophotonic devices is presently missing.

We propose here a methodology based on machine-learning
(ML) tools to map and characterize a multiparameter design
space. As a first demonstration-of-concept, we analyze a vertical
fiber grating coupler in the silicon-on-insulator (SOI) platform
consisting of multiple segments whose dimensions need to be
optimized simultaneously17,21,25–29. From an initial sparse set of
optimized designs, unsupervised dimensionality reduction reveals
a lower-dimensional design sub-space where good designs with
high-performance reside. Since computational effort grows
exponentially with dimensionality, this sub-space can be mapped
faster by orders of magnitude than the original design space,
enabling the efficient evaluation and visualization of an arbitrary
number of performance criteria. The comprehensive character-
ization of the continuous region that includes all possible good
design solutions highlights their performance as well as structural
differences and limitations. This provides a clear understanding
of the design space, making possible the discovery of superior
designs based on the relative priorities for a particular application.
Furthermore, this global perspective on the design space can be
exploited to arrive at conclusive arguments as to whether certain
features can be obtained with a given structure. With the con-
sidered grating geometry, an upper limit to the minimum feature
size is identified. This design bottleneck revealed by

dimensionality reduction inspired a new grating structure that
incorporates subwavelength metamaterial and allows a minimum
feature size greater than 100 nm without compromising the
device performance. The composite design space of refractive
index and segment dimensions involved here can be equally well
characterized using the same global mapping procedure, indi-
cating the general applicability of our optimization approach to a
wide range of high-dimensional design problems. To the best of
our knowledge, this is the first time such a global perspective is
obtained by leveraging unsupervised machine-learning techni-
ques for high-dimensional design problems in nanophotonics.

Results
Strategy for characterizing a multiparameter design space. In
designing multiparameter devices, it is often difficult or impos-
sible to obtain extensive information on device performance
variation over the large parameter space due to constrains on
computational resources. We tackle this problem by introducing
the three-stage process illustrated in Fig. 1.

In the first stage, multiple iterations of an optimization
algorithm are used to generate a sparse collection of different
good designs, i.e., designs that optimize a primary performance
criterion (Fig. 1a). Supervised ML techniques are exploited to
speed up the search process by quickly providing promising
design candidates as starting points for the optimizer (see the
Methods section). In the second stage (Fig. 1b), dimensionality
reduction is applied to analyze the relationship in the parameter
space between these degenerate designs. The goal is to find a
lower-dimensional sub-space where all good designs reside. This
design sub-space is described by significantly fewer parameters
compared with the original design space. In the last stage
(Fig. 1c), we map the design sub-space by computing across it all
required performance criteria and identifying a continuous region
of good design solutions. Through this process, the sparse initial
set of good designs efficiently leads to the identification and
comprehensive characterization of the continuum of all good
designs in the sub-space.

A vertical fiber grating coupler with five segments per period is
taken as the study case. The considered grating structure is
illustrated in Fig. 2. Although desirable, perfectly vertical emission
makes the design a challenging problem due to the necessity to
suppress the second-order diffraction that reflects back into the
waveguide26. In a recent work by Watanabe et al.17, a single
optimized design was generated using particle swarm optimiza-
tion, providing a good fiber–chip coupling efficiency and a fairly
low level of back reflections. Each period of the grating consists of
a pillar of 220 nm in height and an L-shaped section with a partial
etch to 110 nm17. The multiple segments in each period need to
be simultaneously optimized, and therefore provide a good target
to demonstrate our machine-learning-based design approach.

Discovery of a sparse collection of good designs. In the first
stage, an in-house optimizer launched from random starting
points in the original parameter space is used to search for the
initial sparse set of grating designs with state-of-the-art fiber
coupling efficiency. A supervised machine-learning predictor is
trained to determine the diffraction angle of these complex
gratings without performing a first principles Bloch mode cal-
culation. The predictor is used to rapidly screen out random start
designs that do not radiate close to the vertical direction, thereby
speeding up the search process by ~250% (see the Methods sec-
tion). This algorithm achieves a wide coverage of the initial
design space.

For the grating illustrated in Fig. 2, the dimensions [L1 … L5]
define the five-dimensional design parameter space we explore in
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this work. As a primary optimization objective, we choose the
coupling efficiency η of the diffracted TE-polarized light to a
standard single-mode optical fiber (SMF-28) placed vertically on
top of the grating. Low back reflection r is another important
criterion in minimizing the impact of the grating to other
upstream components in the system30,31. These considerations
lead to the formulation of the optimization problem for the first
stage represented in Fig. 1a as:

maximize
L1���L5

η L1 � � � L5ð Þ

subject to r L1 � � � L5ð Þ<�15 dB

400 nm<Λ< 1 μm; Li > 50 nm; i ¼ 1 � � � 5:

ð1Þ

The optimization is guided by a single performance metric, the
coupling efficiency η. Only solutions with η larger than 0.74 are
retained, defined here as good designs. Back reflection r is not

optimized, but simply constrained by rejecting design solutions
with r >−15 dB. Additional constraints on the grating period Λ
and the minimum feature size are included to confine the
optimization to designs that are physically manufacturable. The
wavelength of light is set at λ= 1550 nm. A highly efficient
Fourier-type 2-D eigenmode expansion simulator32 is used to
compute the device performance. As detailed in the next section,
the optimization stage is halted after a sufficient number of good
designs is collected. Each good design requires on average
1000 simulations to be identified (computational details in the
Methods section).

Sub-space identification through dimensionality reduction. In
this second and key step, we study the relationship between the
sparse set of good solutions obtained solving the optimization
problem (1) through machine-learning dimensionality reduction.
The goal is to transform a set of correlated variables into a smaller
set of new uncorrelated variables that retain most of the original
information. Here, the linear principal component analysis (PCA)33

is used obtaining a good level of accuracy (see PCA description in
the Methods section).

We find that two principal components are sufficient to
accurately represent the entire pool of good designs, each defined
by five segment length in the original design space. That is, all
good designs approximately lie on a 2D hyperplane—the reduced
design sub-space. The rest of the design space can be excluded
from further investigation. As we discuss in Supplementary
Note 1, post-processing error analysis demonstrates that five good
designs are sufficient for PCA to provide an accurate result. In
order to verify convergence we collect here 45 good designs. The
linear design sub-space is defined by two orthogonal basis vectors
V1αβ and V2αβ. Any design k with dimensions Lk= [L1,k … L5,k]
can hence be written as

Lk ¼ αkV1αβ þ βkV2αβ þ Cαβ: ð2Þ

Cαβ is a constant vector that defines the reference origin on the
hyperplane. Two scalar coefficients αk and βk are thus sufficient to
completely describe design k. Details of vector definitions are
provided in the Methods section.

Now that the area of interest in the design space is limited to a
2D hyperplane, it becomes feasible to adopt a classical design

L1
L2

L3

L4

L5

�

Fig. 2 Schematic representation of the grating coupler structure. The guided

light incident from the left is diffracted vertically by a grating periodically

interleaving a pillar of height 220 nm and an L-shaped section partially

etched to 110 nm. The L-shape approximates the angled facet of a

conventional blazed grating21 in a way that can be fabricated with standard

lithography and etch methods. The pillars are designed to suppress back

reflections by destructive interference. The five design parameters L1–L5

define the original five-dimensional parameter space and the grating

period Λ
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Fig. 1 Mapping of a high-dimensional design space. The procedure in three stages is conceptually illustrated. a An initial sparse collection of good designs

(red circles) is found by optimization (here, random re-start—as indicated by blue circles—followed by local search) in the original high-dimensional design

space. A trained machine-learning predictor is used in conjunction with the optimizer to speed up the search by quickly identifying promising design

candidates as starting points for the optimizer (see the Methods section). b Dimensionality reduction (e.g., principal component analysis) is employed to

reveal the lower-dimensional sub-space where the good designs with high-performance reside, shown here as a hyperplane defined by the vectors V1 and

V2. c The low-dimensional design sub-space can be exhaustively mapped. For the continuum of the designs in the sub-space (that includes also the initial

sparse set), a complete characterization is made possible by computing both the performance criterion selected for optimization and any additional metric.

Vectors V1 and V2 are the same as in b and are reported for clarity
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approach and perform an exhaustive mapping of this sub-space,
as illustrated in Fig. 1c. First, we generate a uniform grid of 60 ×
60 points covering the α–β hyperplane. Therefore, 3600 sampling
points are sufficient to provide a wealth of information. As a
comparison, sampling with the same resolution in the original
design space would require ~1.5 million points, increasing the
computation time by about over 400 times (details in the
Methods section). For each point [αk, βk], we obtain the
corresponding dimensions [L1,k … L5,k] in the original design
space through Eq. (2) and compute the coupling efficiency η. The
results are shown in Fig. 3a only for the designs with η > 0.7. Note
that not all points on the α–β plane provide high coupling
efficiency. A unit division in α or β corresponds to a Manhattan

distance
P5

i¼1 jLi;A � Li;Bj of 100 nm. The 60 × 60 grid covering

the α–β hyperplane has a resolution of 5 nm in Manhattan

distance. This exhaustive mapping results in the discovery of a
large and well-defined region of degenerate designs with η > 0.74,
highlighted by the black contour line in Fig. 3a. This region
encloses a continuum of designs in addition to those discovered
in stage 1. Remarkably, although all the good designs have similar
coupling efficiencies ranging from η= 0.74 to η= 0.76, the actual
structure of the gratings can vary quite significantly, as will be
detailed in the next section. Without dimensionality reduction,
there is no obvious way to discover these alternative designs with
similar coupling efficiency, but potentially different properties in
other aspects.

As the last step, we validate the PCA outcome by verifying that
the projection on the low-dimensional design sub-space (the α–β
hyperplane) is sufficient to represent the region of good grating
designs. We generate two additional 2D hyperplanes Γ–Π and
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Fig. 3 Exhaustive exploration of the lower-dimensional parameter sub-space. a Reducing the design parameters from the original five Li to the two principal

component coefficients α and β makes the exhaustive mapping of the sub-space of good designs achievable with modest computation resources. The map

shows the coupling efficiency across the α–β hyperplane for η > 0.70. The large region of good designs with η > 0.74 is enclosed by the black contour line.

Two designs with comparable coupling efficiency are marked along with the design reported in ref. 17. b, c The coupling efficiency simulated across two 2-D

hyperplanes (Γ-Π and X-Π) orthogonal to the α–β hyperplane (whose intersections are shown with dashed white lines). Γ–Π and X–Π intersections with

the α–β plane are shown in a with dashed black lines. Within these orthogonal planes, the cross-section of the sub-space of good designs reduces to a thin

stripe confirming that it is approximately a 2-D geometrical structure. Design 3 represents the global optimum in both Γ–Π and X–Π projections: It has a

coupling efficiency of 0.77, ~0.5% better than the top designs in the α–β hyperplane. The detailed structural parameters are reported in Table 1. d The back

reflection r simulated across the α–β hyperplane. e, f 2D finite-difference-time-domain (FDTD) simulations of e coupling efficiency and f back reflection as

a function of wavelength for designs 1–3. The values obtained by FDTD are slightly different than that reported in the maps, but showing consistent trends.

All three designs have a 1-dB bandwidth exceeding the telecommunication C band (1530 nm–1565 nm, green shaded area). Design 2 affords very low back

reflections near 1550 nm, but only within a narrow wavelength band. In contrast, the back reflections of design 1 and 3 are less dependent on wavelength,

but back reflection lower than −26 dB cannot be achieved
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X–Π that are orthogonal to each other and to the α–β plane
(details in the Methods section). They provide two different cuts
through the α–β sub-space and their projections are shown in
Fig. 3a with dashed black lines. We generate a uniform grid on
Γ–Π and X–Π and simulate the coupling efficiency of the
corresponding grating design. Coupling efficiencies η > 0.7 are
plotted in Fig. 3b and c, respectively. The intersection with the α–
β hyperplane is marked with a white dashed line. The axis uses
the same scale as in Fig. 3a: a unit division on X, Γ, or Π
corresponds to a Manhattan distance of 100 nm. When projected
on Γ–Π and X–Π hyperplanes, the region of good designs
essentially reduces to a thin stripe whose thickness depends on
the range of accepted coupling efficiencies η. This confirms that
this region has approximately a 2D geometry. Although it appears
slightly curved (see the Γ–Π projection, Fig. 3b), it is still well
approximated by the α–β hyperplane which has the advantage of
being a simple linear structure.

Characterization of the low-dimensional good design sub-
space. The exhaustive mapping of the sub-space of all good
designs can now be readily extended to other performance
metrics beyond the primary criterion originally chosen as the
optimization objective (the coupling efficiency). This provides the
designer a complete picture of the device behavior, including the
upper and lower limit of each performance metric. Informed
trade-offs and identification of the best design that fits specific
application needs are hence made possible.

Along with the coupling efficiency, we evaluate here three
additional criteria throughout the sub-space, i.e., back reflections,
minimum feature size, and tolerance to fabrication uncertainty, as
presented in Figs. 3 and 4. All maps use the same axis scale,
range, and sampling as the α–β plane, and the black contour line
marks the region with η > 0.74 for reference. Three designs are
selected for further examination. Their structural and perfor-
mance parameters are listed in Table 1. Designs 1 and 2 are on
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the α–β plane (marked on Fig. 3a, d), while design 3 (marked in
Fig. 3b, c) is the global optimum in both Γ–Π and X–Π
projections (not exactly represented on the α–β plane). The
design proposed in ref. 17, which was found through particle
swarm optimization, also belongs to the sub-space of good
solutions and its location on the α–β hyperplane is marked for
reference. Despite the very different design parameter (especially
for the L-shaped structure), all these gratings have a highly
directional vertical emission and good overlap with the fiber
mode, leading to a high coupling efficiency (η > 0.75 as listed in
Table 1). On the other hand, the attainable back reflection differs
markedly, from −21 dB for design 1 to −37 dB for design 2. The
possibility to exhaustively map other metrics throughout the sub-
space allows the designer to identify a design area with
particularly low back reflections around design 2.

As an additional comparison of the performance for designs
1–3, Fig. 3e and f plots the two performance criteria η and r as a
function of wavelength, now computed using 2D finite-
difference-time-domain (FDTD) method as a cross-check. The
results agree well with that predicted by the Fourier-type 2D
simulator. All three designs have a 1-dB bandwidth larger than
the telecommunication C band (1530 nm–1565 nm, green-shaded
area) with design 2 slightly out-performing the other two.
Regarding back reflections, the behavior of the three designs is
remarkably different (Fig. 3f). Back reflections of design 2 near
wavelength 1550 nm are very low, which is particularly important
for coupling to a laser. However, a reflection of less than −30 dB
can only be achieved within a 7-nm wavelength band. In contrast,
the reflection of design 1 and 3 oscillates between −26 dB and
−17 dB within the entire C band.

Minimum feature size determines the manufacturability of any
nanophotonics device. Here, feature sizes can be easily retrieved
exploiting the α–β hyperplane through a query process without
performing any additional photonic simulations. For each point,
the dimensions [L1 … L5] are computed with Eq. (2) and the
shortest section is identified. Figure 4a shows the shortest segment
among the five-dimensional parameters. It is immediately evident
that a design with minimum feature size greater than 88 nm does
not exist for this grating structure, even accepting a small penalty
in the coupling efficiency. This essential information can be easily
retrieved because of the global perspective that our method offers,
and it would be difficult to obtain with a conventional
optimization procedure. Clearly, the bottleneck is predominantly
in either L1 or L2. This finding inspired an improved grating
structure (described in the next section) that allows a minimum
feature size greater than 100 nm while maintaining similar
performance.

Another important aspect for nanophotonic devices is the
robustness against unavoidable fabrication uncertainty. Here, we
examine two sources of common dimensional variability: A width
deviation δw for both shallow and deeply etched sections and etch
depth deviation δe from the nominal 110 nm for the shallow-
etched section. A good measure of the sensitivity of coupling

efficiency and back reflections to variability is provided by a
quantity denoted here as a degradation derivative, defined as the
average of the two directional derivatives with respect to positive
and negative values of δw or δe (definition in the Methods
section). The computed values of the four degradation derivatives
are shown in Fig. 4b–e, with a high value indicating a high
sensitivity. For width deviations, the coupling efficiency has a
particularly sensitive region close to design 1. On the contrary,
back reflection is more sensitive to width deviations in the region
close to design 2. This region has a large overlap with the region
of minimum back reflection shown in Fig. 3d, making design 2
and surrounding designs high-performing when back reflection is
considered, but with stringent fabrication requirements. In
Supplementary Note 2, we provide a direct verification of these
results through a polynomial chaos-based stochastic analysis22.
Regarding sensitivity to etch depth variations, the entire region of
good designs largely overlaps with a region of low sensitivity for
both coupling efficiency and back reflection.

Dimensionality-reduction generality and ML inspired geo-
metry. The proposed design approach requires no physical
assumptions on the device under study, enabling its application to
other design problems with different types of input parameters and/
or objectives. A straightforward demonstration of its generality is
carried out by designing vertical grating couplers for the optical
communication O-band, centered at 1310 nm (see Supplementary
Note 4). We further demonstrate here this generality by investi-
gating a new class of grating couplers utilizing subwavelength
metamaterials3,4 to achieve designs with a minimum feature size
greater than 100 nm in both the propagation and the transverse
directions. This new grating geometry (see Fig. 5) is inspired by the
global mapping of minimum feature size described in the previous
section. The optimization now involves both dimensions and the
effective material index used to represent the subwavelength seg-
ments. Dimensions and refractive index have different numerical
magnitudes, but they both significantly impact the device perfor-
mance when varied. Below, we show that the method presented in
the previous sections can successfully map out the high-
performance region of this new mixed design space.

The subwavelength metamaterial grating structure, schemati-
cally shown in Fig. 5a, is represented by a mixed set of four
geometrical parameters and one material parameter

�L ¼ L1; L2; L3; L4; nswg

h i

. These complex grating couplers can

still be efficiently simulated using the 2D eigenmode expansion
simulator. The formulation of the optimization problem remains
the same as in the Eq. (1), but we additionally set 1.6 < nswg< 3.
Good designs found by the optimization algorithm (η > 0.74) are
used to perform both PCA and the corresponding error analysis
(see Supplementary Note 1). Since the new design space includes
parameters of different nature, before executing PCA it is
essential to normalize the variables through their statistically
estimated standard deviations. Performing the PCA analysis

Table 1 Structural and performance parameters of selected grating designs as marked in Fig. 3

Design [α, β] [L1 … L5] [nm] Λ [nm] Distance [nm] η r [dB] BW [nm]

1 [0.22, 0.97] [77, 84, 115, 249, 171] 696 – 0.76 −21 44.8

2 [1.93, −0.02] [102, 80, 117, 330, 98] 727 216 0.76 −37 48.9

3 [0.97, 0.68]a [82, 87, 111, 283, 139] 702 78 0.77 −20 45.8

ref. 17 [1.49, 0.29] [95, 83, 112, 314, 109] 713 149 0.75b −25b 46.2b

Distance refers to the Manhattan distance with respect to design 1. The coupling efficiency η and reflection r refer to the values at a wavelength of 1550 nm
aClosest projection on the hyperplane
bThe performance for the structure proposed in ref. 17 is recalculated for consistency using the same Fourier-type 2D simulator and settings as the other structures
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(stage 2) reveals that again only two principal components are
sufficient to identify all the good designs within the original 5D
design space (vectors are defined in the Methods section).

In Fig. 5b and c, we exhaustively map out the coupling
efficiency and the back reflection over the 2D hyperplane
(stage 3), discovering again a large continuous region with η >
0.74. The map covers the region where the coupling efficiency
exceeds 0.7. The black contour encloses all devices with a
minimum feature size greater than 100 nm in both propagation
and transverse directions and maintains η ≥ 0.74. Three devices
are marked on the maps for further investigation, where
independent 2D-FDTD simulations provide full wavelength
analysis in Fig. 5d, e (see Supplementary Note 3 for structural
details and performance metrics). The results show that
physically distinct devices with similar performances can be
identified very efficiently. Delivering on such objectives would be
very challenging by conventional optimization methods.

Discussion
We have demonstrated a new approach for the design of complex
photonics devices with a large number of parameters, case studied
on a multiparameter vertical fiber grating coupler. Rather than
generating a single optimized design solution, our methodology
exploits the dimensionality reduction technique from the suite of
machine-learning pattern recognition tools to identify within the
large design space the lower-dimensional sub-space of good
devices with high performance. This approach exponentially

scales down the complexity of the problem, making it feasible to
exhaustively map the continuous region of grating couplers with
comparable fiber coupling efficiencies (η> 0:74 at 1550 nm).
Significant differences emerge when different performance cri-
teria are considered, such as back reflection, minimum feature
size, and tolerance to fabrication uncertainty. Such a global per-
spective also reveals performance and structural limitations of the
design geometry. In particular, we were able to conclude that
good coupling efficiency and a minimum feature size greater
than 88 nm could not be obtained simultaneously for this first
structure. The analysis of this shortcoming inspired a new class of
grating couplers that uses subwavelength metamaterial, achieving
a minimum feature size greater than 100 nm while maintaining
state-of-the-art coupling efficiency and back reflection.

Given the generality of our implementation, the presented
methodology can be readily exploited to navigate and compre-
hend a wide range of high-dimensional design spaces that pho-
tonic designers often encounter. While it is demonstrated here for
two different design problems in nanophotonics, applications to
photonic circuits or even sub-systems can be foreseen. This
design methodology opens up new avenues in photonic device
analysis and design where other dimensionality reduction meth-
ods such as Kernel PCA34, Principal manifolds35, and Auto-
encoders36 can deal with navigating through even more complex
design spaces. Indeed, automation and integration of dimen-
sionality reduction within the design flow will provide a powerful
platform potentially transforming how advanced photonic devi-
ces are discovered and investigated.
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Fig. 5 Vertical grating coupler with subwavelength metamaterial. a Schematic representation of the grating structure, with the subwavelength segment

highlighted. The inset shows a 2D cross-section of the grating where the subwavelength metamaterial is modeled by an effective medium. Dimensionality

reduction reveals that two principal components are sufficient to represent the good designs instead of the original five parameters. Plotted in b and c are

the corresponding exhaustive maps of coupling efficiency and back reflection over the reduced parameters sub-space, respectively. Only designs with η >

0.7 are shown. The black contour encloses the design region that ensures η > 0.74 (as in Fig. 3) and also a minimum feature size greater than 100 nm in

both the propagation and transverse directions. These solutions were not possible with the grating structure shown in Fig. 2. d, e 2D-FDTD simulations of

d coupling efficiency and e back reflection as a function of wavelength for designs 1–3. All three have η > 0.74 and back reflections below −15 dB within

the C band
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Methods
Grating coupler simulation. The simulation of coupling efficiency and back
reflections for each design of the grating coupler is performed exploiting either a
2D vectorial Fourier eigenmode expansion simulator32 or a commercial 2D-FDTD
solver. We consider a structure including silicon substrate, 2-μm buried oxide, 220-
nm-thick silicon core and a silica upper cladding of 1.5 μm thickness. Silicon and
silica refractive indices are 3.45 and 1.45 at λ= 1550 nm. The mode of an SMF-28
single-mode optical fiber vertically coupled on top of the grating is modeled with a
Gaussian function with a mode field diameter of 10.4 μm (λ= 1550 nm). The fiber
facet is assumed to be in direct contact with the top of the upper cladding and its
longitudinal position along the grating is optimized for each design to maximize
the coupling efficiency. The latter is calculated as the overlap integral between the
simulated field diffracted upwards by the grating and the Gaussian function.

Machine learning enhanced optimization. We implemented a random restart
local-search algorithm to solve problem (1), although other search methods could
also be used. For each initial random design, small perturbations are made until a
better solution in terms of coupling efficiency is found and a line search is exploited
to seek further improvement until convergence. The perturbation and line search
process is repeated until no improvement is found in the perturbation stage.

Following an initial optimization round with random-restart where a small
collection of good designs was obtained, we trained a supervised machine-learning
model, specifically gradient boosted trees, to predict if the radiation angle is within
5° of vertical. Once trained, we used the predictor to sample random designs that
are nearly vertical while rejecting other random designs. Only near vertical
emitting designs proceed to the local search stage. The use of the predictor in the
optimization led to ~250% increase in optimizer speed to find new designs meeting
the coupling efficiency criteria η > 0.74.

The performance of the general purpose machine-learning predictor is
comparable to that of a predictor based on the scalar grating equation relating the
section lengths, effective indices and the radiation angle:

X

5

i¼1

NiLi ¼ cþ a sin θ �
X

5

i¼1

Li;

where a; c are constants related to the wavelength and the overcladding effective
index, Ni is the effective index of the ith section, Li is the length of the ith section,
and θ is the radiation angle. Given the simulated data ( θ; Lið Þ, one can use linear
regression to estimate all the constants and then use those to predict the radiation
angle of the structure for any combination of the section lengths. Despite the fact
that the general machine-learning predictor is not aware of this approximation, its
predictions are comparable with those obtained using the scalar grating equation.
Furthermore, this approach can be applied to predict other quantities that cannot
be described by simple closed-form expressions.

PCA. PCA is a dimensionality reduction technique that has been used widely and
successfully across various engineering and science disciplines37–40 and is imple-
mented in most scientific computing platforms (e.g., Matlab, R, Python, etc.).
Consider m data points in an n-dimensional design space. This can be written as a
centered data matrix L 2 Rm ´ n , where the statistical average along each dimension
is subtracted. PCA finds a sequence of best orthogonal linear projections (called
principal components) that maximizes the corresponding variances. Mathemati-
cally, this is done by finding a set of vectors V1;V2; ¼ ;Vn 2 Rn that are L2
normalized and orthogonal, Vik k2¼ 1;Vi ?Vj , and for every k<n, minimize

LR� L Rk ; 0n ´ ðn�kÞ
h i

�

�

�

�

�

�

2
;

where, R ¼ ½V1;V2; ¼ ;Vn� 2 R
n ´ n is the transformation matrix that is formed

by using the PCA vectors as its columns, Rk ¼ ½V1;V2; ¼ ;Vk � 2 R
n ´ k is similar

but transforms to a lower-dimensional space consisting of only k first components,

and 0n ´ ðn�kÞ is a null matrix used for padding. Such an exercise also returns the
weights associated with PCA vectors from which the main principal components
can be selected and the remaining can be dropped, with negligible amount of
information lost. The original data set can now be approximately represented by

k<n effective parameters using a matrix product LPCA ¼ LRk , where each row
corresponds to a transformed representation of a single data point. The transfor-

mation back to the original n-dimensional space can be done using Lest ¼ LRkR
T
k ,

which can be used to quantify approximation errors incurred by reducing the
dimensionality.

Hyperplanes definitions. The hyperplane approximation given in Eq. (2) and
computed by PCA is defined by three 5D vectors V1, V2, and C, the latter being the
reference origin within the hyperplane. The scaled vectors computed for the grating
structure in Fig. 2 are: V1αβ= [−0.43, 3.78, −20.82, 44.77, −30.21] nm, V2αβ=

[−25.80, 10.81, −37.69, −3.86, 21.93] nm and the origin Cαβ= [102,73,156,
243,156] nm.

For the two orthogonal hyperplanes Γ–Π and X–Π described in Fig. 3b and c, the
vectors are found following linear algebra considerations. Γ–Π is defined enforcing
the plane to pass through the two points (defined in the 5D design space) [77, 84,

115, 249, 171] nm (design 1 in Table 1) and [95, 83, 104, 336, 98] nm and to be
orthogonal to the α–β hyperplane. The resulting vectors are V1ΓΠ= [9.45, −0.35,
−6.13, 45.95,−38.35] nm, V2ΓΠ= [−22.48, 33.08, 9.87,−17.87,−28.78] nm, CΓΠ=

[85, 84, 110, 289, 138] nm. X–Π is defined as orthogonal to both α–β and Γ–Π and
passing through the point [82, 87, 111, 283, 139] nm (design 3 in Table 1). The
vectors are V1×Π= [−25.92, 11.96, −44.16, 10.05, 12.61] nm, V2×Π=V2ΓΠ, and
C XΠ= [85, 84, 110, 284, 142] nm.

For the grating structure with subwavelength transverse metamaterial (Fig. 5a),
the 5D vectors defining the 2D hyperplane are V1αβ= [13.37 nm, −3.34 nm, 17.21
nm, −19.5 nm, −0.03], V2αβ= [5.07 nm, 14.07, −7.33 nm, 2.53 nm, −0.076] and
Cαβ= [272 nm, 71 nm, 247 nm, 120 nm, 2.63].

Computational resources. In the proposed method, the largest fraction of the
computational time is dominated by design simulations with a negligible over-
head time for data processing. The initial optimization (stage 1) enhanced by the
ML angle predictor required ~5000 photonic simulations to identify the
initial five good designs used to find the reduced design sub-space through
PCA. The exhaustive mapping was then performed by sampling 3600 points
(design) arranged in a square grid in the sub-space and doing the corresponding
3600 photonic simulations to compute simultaneously coupling efficiency
and back reflections. Other sampling strategies or sparser grids can be used
to reduce the number of simulations. Likewise, a different simulation approach
could be used to retrieve additional metrics within the same simulation. The
computation of additional performance metrics may require additional simu-
lations, for example, when fabrication tolerance is estimated through the
degradation derivatives as reported in Fig. 4b–e. On the other hand, the com-
putation of the minimum feature size does not require any additional
simulation.

It is worth calculating the number of points of a grid with the same resolution
used for the α–β hyperplane, but across the five grating dimensions and covering
all designs with coupling efficiency η > 0.74 found in stage 1. The five dimensions
of these good designs span a range of 60 nm, 27 nm, 86 nm, 138 nm, 118 nm,
respectively. A grid with 5 -nm resolution across all segments and covering all good
designs, including two extra points to confirm the boundaries per segment, results
in 14 × 7 × 19 × 30 × 26 ≈ 1.5 ∙ 106 points (designs). Compared with mapping
directly the original 5D design space, mapping the α–β hyperplane thus reduces the
computation time of about 400 times. For higher dimensions, the reduction can be
even more significant.

Uncertainty model. For the investigation of design tolerance to fabrication
uncertainty, we assume a width deviation δw for both shallow-etched and deeply
etched sections

L01 ¼ L1 � δw; L
0
2 ¼ L2 þ δw; L

0
3 ¼ L3 � δw; L

0
4 ¼ L4; L

0
5 ¼ L5 þ δw

We define a degradation derivative that is computed from two directional
derivatives, assuming that over-etch and under-etch are equally likely (positive and
negative values of δw can in general affect the device performance differently).
Calculating the common derivative would not be informative, as for locally
optimized devices it would be close to zero. For coupling efficiency, we are
interested in calculating

αη ¼ �
1

2

∂
þη

∂δw
�
∂
�η

∂δw

� �

ffi �
1

2jΔδwj
ηþ þ η� � 2η0
� �

;

where ∂+ and ∂− are the derivatives computed for positive and negative values of
δw. The minus sign ensures that a positive value of αη indicates a worse (lower)
coupling efficiency. Derivatives are numerically computed considering a small
width variation and simulating the coupling efficiencies η+ (when Δδw= 5 nm)
and η− (when Δδw=−5 nm). η0 is the coupling efficiency for δw= 0. Similarly, for
back reflections

αr ¼
1

2

∂
þη

∂δw
�
∂
�η

∂δw

� �

ffi
1

2jΔδwj
ηþ þ η� � 2η0
� �

:

Also in this case, a positive αr indicates worse (higher) back reflections. The
degradation derivatives plotted in Figs. 4b and c are finally computed as

d ¼
α if α> 0

0 otherwise

�

When etch uncertainty is considered, δe represents the variability on the 110 nm
etch depth in the fourth section of the grating. The same definitions apply for the
degradation derivatives.

Data availability
The data that support the plots within this paper and other findings of this study are

available from the corresponding author upon request.

Code availability
The custom code that has been used to generate the results reported in this paper is

available from the corresponding author upon request.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12698-1

8 NATURE COMMUNICATIONS |         (2019) 10:4775 | https://doi.org/10.1038/s41467-019-12698-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Received: 24 June 2019; Accepted: 19 September 2019;

References
1. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).
2. Smit, M. et al. An introduction to InP-based generic integration technology.

Semicond. Sci. Technol. 29, 083001 (2014).
3. Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A. & Smith, D. R.

Subwavelength integrated photonics. Nature 560, 565–572 (2018).
4. Halir, R. et al. Subwavelength-grating metamaterial structures for silicon

photonic devices. Proc. IEEE 106, 2144–2157 (2018).
5. Cheben, P. et al. Refractive index engineering with subwavelength gratings for

efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett.
35, 2526–2528 (2010).

6. Frellsen, L. F., Ding, Y., Sigmund, O. & Frandsen, L. H. Topology optimized
mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt.
Express 24, 16866 (2016).

7. Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser
Photonics Rev. 5, 308–321 (2011).

8. Lu, J. & Vučković, J. Nanophotonic computational design. Opt. Express 21,
13351 (2013).

9. Piggott, A. Y. et al. Inverse design and demonstration of a compact and
broadband on-chip wavelength demultiplexer. Nat. Photonics 9, 374–377 (2015).

10. Shen, B., Wang, P., Polson, R. & Menon, R. Integrated metamaterials for
efficient and compact free-space-to-waveguide coupling. Opt. Express 22,
27175–27182 (2014).

11. Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics
polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 9,
378–382 (2015).

12. Liu, D., Gabrielli, L. H., Lipson, M. & Johnson, S. G. Transformation inverse
design. Opt. Express 21, 14223 (2013).

13. Covey, J. & Chen, R. T. Efficient perfectly vertical fiber-to-chip grating coupler
for silicon horizontal multiple slot waveguides. Opt. Express 21, 10886 (2013).

14. Håkansson, A. & Sánchez-Dehesa, J. Inverse designed photonic crystal de-
multiplex waveguide coupler. Opt. Express 13, 5440–5449 (2005).

15. Melati, D., Waqas, A., Xu, D.-X. & Melloni, A. Genetic algorithm and
polynomial chaos modelling for performance optimization of photonic
circuits under manufacturing variability. In Optical Fiber Communication
Conference M3I.4 (Optical Society of America, 2018). https://doi.org/10.1364/
OFC.2018.M3I.4

16. Ma, Y. et al. Ultralow loss single layer submicron silicon waveguide crossing
for SOI optical interconnect. Opt. Express 21, 29374–29382 (2013).

17. Watanabe, T., Ayata, M., Koch, U., Fedoryshyn, Y. & Leuthold, J.
Perpendicular grating coupler based on a blazed antiback-reflection structure.
J. Light. Technol. 35, 4663–4669 (2017).

18. Jensen, J. S. & Sigmund, O. Systematic design of photonic crystal structures
using topology optimization: low-loss waveguide bends. Appl. Phys. Lett. 84,
2022–2024 (2004).

19. Lalau-Keraly, C. M., Bhargava, S., Miller, O. D. & Yablonovitch, E. Adjoint
shape optimization applied to electromagnetic design. Opt. Express 21, 21693
(2013).

20. Niederberger, A. C. R., Fattal, D. A., Gauger, N. R., Fan, S. & Beausoleil, R. G.
Sensitivity analysis and optimization of sub-wavelength optical gratings using
adjoints. Opt. Express 22, 12971–12981 (2014).

21. Su, L. et al. Fully-automated optimization of grating couplers. Opt. Express 26,
4023–4034 (2018).

22. Weng, T.-W., Melati, D., Melloni, A. & Daniel, L. Stochastic simulation and
robust design optimization of integrated photonic filters. Nanophotonics 6,
299–308 (2017).

23. Turduev, M. et al. Ultracompact photonic structure design for strong light
confinement and coupling into nanowaveguide. J. Light. Technol. 36,
2812–2819 (2018).

24. Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using
artificial neural networks. Sci. Adv. 4, eaar4206 (2018).

25. Michaels, A. & Yablonovitch, E. Inverse design of near unity efficiency
perfectly vertical grating couplers. Opt. Express 26, 4766 (2018).

26. Wang, B., Jiang, J. & Nordin, G. P. Embedded slanted grating for vertical
coupling between fibers and silicon-on-insulator planar waveguides. IEEE
Photonics Technol. Lett. 17, 1884–1886 (2005).

27. Roelkens, G., Thourhout, D. V. & Baets, R. High efficiency grating coupler
between silicon-on-insulator waveguides and perfectly vertical optical fibers.
Opt. Lett. 32, 1495–1497 (2007).

28. Dabos, G. et al. Perfectly vertical and fully etched SOI grating couplers for TM
polarization. Opt. Commun. 350, 124–127 (2015).

29. Chen, X., Li, C. & Tsang, H. K. Fabrication-tolerant waveguide chirped grating
coupler for coupling to a perfectly vertical optical fiber. IEEE Photonics
Technol. Lett. 20, 1914–1916 (2008).

30. Liu, A. Y., Komljenovic, T., Davenport, M. L., Gossard, A. C. & Bowers, J. E.
Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on
silicon. Opt. Express 25, 9535–9543 (2017).

31. Melati, D., Melloni, A. & Morichetti, F. Real photonic waveguides: guiding
light through imperfections. Adv. Opt. Photon 6, 156–224 (2014).

32. Zavargo-Peche, L., Ortega-Moñux, A., Wangüemert-Pérez, J. G. & Molina-
Fernández, I. Fourier based combined techniques to design novel sub-
wavelength optical integrated devices. Prog. Electromagn. Res. 123, 447–465
(2012).

33. Pearson, K. On lines and planes of closest fit to systems of points in space.
Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901).

34. Schölkopf, B., Smola, A. & Müller, K.-R. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998).

35. Gorban, A. N., Kégl, B., Wunsch, D. C., & Zinovyev, A. Y. (Eds.). Principal
manifolds for data visualization and dimension reduction. 58, 96–130
(Springer Berlin Heidelberg, 2008)

36. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. Preprint at
https://arxiv.org/abs/1312.6114 (2013).

37. M. Shenai, P., Xu, Z. & Zhao, Y. Applications of principal component analysis
(PCA) in materials science. In Principal Component Analysis - Engineering
Applications, 25–40 (ed. Sanguansat, P.) (InTech, 2012).

38. Kassahun, Y. & Kebedee, T. Application of principal component analysis in
surface water quality monitoring. In Principal Component Analysis -
Engineering Applications, 83–100 (ed. Sanguansat, P.) (InTech, 2012).

39. Pasini, G. Principal component analysis for stock portfolio management. Int.
J. Pure Apllied Math. 115, 153–167 (2017).

40. Dunteman, G. H. Principal Components Analysis (SAGE, 1989).

Author contributions
D.M., Y.G. and D.X.X. conceived the design approach and developed the theoretical

framework. Y.G. developed the machine-learning algorithms. D.M. analysed the data and

performed the stochastic analyses. P.C., A.S.P. and J.H.S. assisted in selecting the grating

coupler study case. A.S.P. contributed to the development of the interface between the

photonic simulator and machine-learning algorithms. S.J., P.C. and J.H.S. provided

theoretical and design guidance. D.X.X. and Y.G. supervised the project. M.K.D. and

A.S.P. conceived and analysed the grating design with subwavelength patterning. All

authors contributed to the discussion and paper preparation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-

019-12698-1.

Correspondence and requests for materials should be addressed to D.-X.X.

Peer review information Nature Communications thanks Andrea Melloni and the other,

anonymous, reviewer(s) for their contribution to the peer review of this work. Peer

reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© Crown 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12698-1 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4775 | https://doi.org/10.1038/s41467-019-12698-1 | www.nature.com/naturecommunications 9

https://doi.org/10.1364/OFC.2018.M3I.4
https://doi.org/10.1364/OFC.2018.M3I.4
https://arxiv.org/abs/1312.6114
https://doi.org/10.1038/s41467-019-12698-1
https://doi.org/10.1038/s41467-019-12698-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Mapping the global design space of nanophotonic components using machine learning pattern recognition
	Results
	Strategy for characterizing a multiparameter design space
	Discovery of a sparse collection of good designs
	Sub-space identification through dimensionality reduction
	Characterization of the low-dimensional good design sub-space
	Dimensionality-reduction generality and ML inspired geometry

	Discussion
	Methods
	Grating coupler simulation
	Machine learning enhanced optimization
	PCA
	Hyperplanes definitions
	Computational resources
	Uncertainty model

	Data availability
	Code availability
	References
	Author contributions
	Competing interests
	Additional information


