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Abstract Drought is projected to become more frequent

and increasingly severe under climate change in many

agriculturally important areas. However, few studies have

assessed and mapped the future global crop drought risk—

defined as the occurrence probability and likelihood of

yield losses from drought—at high resolution. With sup-

port of the GEPIC-Vulnerability-Risk model, we propose

an analytical framework to quantify and map the future

global-scale maize drought risk at a 0.5� resolution. In this

framework, the model can be calibrated and validated

using datasets from in situ observations (for example, yield

statistics, losses caused by drought) and the literature.

Water stress and drought risk under climate change can

then be simulated. To evaluate the applicability of the

framework, a global-scale assessment of maize drought

risk under 1.5 �C warming was conducted. At 1.5 �C

warming, the maize drought risk is projected to be

regionally variable (high in the midlatitudes and low in the

tropics and subtropics), with only a minor negative

(- 0.93%) impact on global maize yield. The results are

consistent with previous studies of drought impacts on

maize yield of major agricultural countries around the

world. Therefore, the framework can act as a practical tool

for global-scale, future-oriented crop drought risk assess-

ment, and the results provide theoretical support for

adaptive planning strategies for drought.

Keywords Climate change � Future-oriented risk

assessment � GEPIC-Vulnerability-Risk model � Maize

drought risk � Representative Concentration Pathway

(RCP) scenarios

1 Introduction

Frequent and severe droughts have affected nearly half of

the world’s countries, and are among the costliest natural

hazards and disasters because of their destructive impact on

crop growth and the agricultural economy (UNDP 2005;

FAO 2015). As the climate warms, many agriculturally

important areas of the world are likely to face increasingly

frequent and serious droughts due to both reduced precip-

itation and increased evaporation (IPCC 2012, 2013; Dai

2013; Zeng et al. 2020). Drought-related losses to crop

yield are projected to increase (Hoegh-Guldberg et al.

2018; Leng and Hall 2019). Drought risk assessment and

mapping for future climate scenarios are therefore urgently
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needed so that effective adaptation and mitigation strate-

gies can be implemented.

Over the past decades, future drought risk scenarios

were only considered in 10% of drought risk assessments

(Hagenlocher et al. 2019). Climate scenarios simulated by

global climate models (GCMs) have been used to assess

future agricultural drought risk at different spatial scales.

Yue et al. (2018) assessed future wheat drought loss risk in

China, and Webber et al. (2018) projected yield losses to

maize and winter wheat attributable to drought stress in

Europe. At the global scale, Leng and Hall (2019) devel-

oped a copula-based probabilistic model and investigated

the risk of yield losses by the end of the twenty-first cen-

tury for four major crops—wheat, maize, rice, and soy-

beans—due to drought in the 10 countries with greatest

production. However, studies of global-scale, future-ori-

ented agricultural drought risk assessment at the grid level

are rare.

Risk assessments can be divided into three categories:

qualitative, semi-quantitative, and quantitative (Shi 2012).

Recently, there has been a shift from a qualitative or semi-

quantitative approach to a quantitative approach (Schnei-

derbauer et al. 2017). However, few studies focus on the

quantitative assessment of future-oriented agricultural

drought risk because the data required for the risk assess-

ment—hazard, exposure, vulnerability, and crop yield loss

data—are difficult to obtain. Physically-based crop models,

which integrate multiple processes and consider the

impacts of both the environment and management practices

(Thornley and Johnson 1990; Boote et al. 1996), have been

employed to predict potential climate impacts on crops

(Boote et al. 2013) and to identify the drivers of crop yield

losses (Yu et al. 2018; Yue et al. 2018). Over the last

several years, many global gridded crop models (GGCMs)

(for example, GEPIC, pDSSAT, PEGASUS) have been

developed to simulate crop yield and climate impacts at the

global scale. The Global Gridded Crop Model Intercom-

parison (GGCMI), a project of the Agricultural Model

Intercomparison and Improvement Project (AgMIP), used

12-15 models to simulate crop yield over the historical

period from 1948 to 2012 under uniform changes in tem-

perature and water levels (Elliott et al. 2015; Franke et al.

2020). The Inter-Sectoral Impact Model Inter-comparison

Project (ISI-MIP) selected six GGCMs to quantitatively

assess agricultural risks of climate change at different

levels of global warming (Warszawski et al. 2014;

Rosenzweig et al. 2017). Furthermore, using the GGCMs,

the impacts of drought (water scarcity) on agricultural

production were evaluated (Schewe et al. 2014; Wang et al.

2014), but not particularly from a risk assessment

perspective.

Based on the GEPIC model (Liu 2009), we developed a

large-scale crop drought risk assessment model—the

GEPIC-Vulnerability-Risk (GEPIC-V-R) model (Yin et al.

2014)—and assessed the global-scale drought risk for

maize (Yin et al. 2014; Guo et al. 2016), wheat, and rice

(Wang et al. 2016), demonstrating that the model is a

practical and valuable tool for assessing future agricultural

drought risk. Maize (Zea mays L.) is the second most

widely planted cereal in the world, exceeded only by wheat

according to the Food and Agriculture Organization (FAO)

2017,1 and can be grown under precipitation levels from

200 to 2,000 mm (Hartkamp et al. 2001; Ramirez-Cabral

et al. 2017). Here, using the GEPIC-V-R model, an ana-

lytical framework to quantify and map future maize

drought risk at a global scale was developed. The analytical

framework was then applied and evaluated in a case study

evaluating the global drought-driven risk of yield losses for

maize in a world that is 1.5 �C warmer (UNFCCC 2015)

than the pre-industrial period 1881-1910.

2 Analytical Framework

In this study, maize drought risk is defined as the occur-

rence probability of drought and the corresponding

expectation or likelihood of yield losses attributable to

drought. The risk is derived from three factors: hazard,

exposure, and vulnerability (Cardona et al. 2012). We used

the GEPIC-V-R model (Yin et al. 2014), which integrates

ArcGIS with EPIC0509, to develop the assessment

framework. The model runs on a grid with a spatial scale of

0.5� 9 0.5�, and the drought exposure in each grid is set to

unity. Drought risk (R) is the product of hazard (H) and

vulnerability (V) (Eq. 1) (Yin et al. 2014):

R ¼ f H;Vð Þ ¼ H P;DHIh if g � V L;DHIh if g ð1Þ

where P denotes the probability of occurrence; DHI

denotes the drought hazard index; L denotes the yield loss

ratio; H P;DHIh if g describes the relationship between P

and DHI; and V L;DHIh if g describes the relationship

between L and DHI.

The analytical framework for maize drought risk

assessment under a given climate change scenario com-

prises four steps (Fig. 1): (1) calibration and validation of

the EPIC model; (2) establishment of the drought vulner-

ability curve; (3) evaluation of the GEPIC-V-R model; and

(4) quantification of the maize drought risk under the given

scenario. First, the most sensitive parameters—the lowest

harvest index WSYF (water stress yield factor, the coeffi-

cient of maize yield sensitivity to water stress at the most

critical stage of growth), the harvest index HI, and the

energy conversion rate WA (the energy to biomass con-

version factor)—are used to calibrate the regional crop

1 http://www.fao.org/faostat/en/data.
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parameters by carefully comparing simulated yields with

observed yields. Second, using the calibrated EPIC model,

the drought stress and crop yield loss caused by water

stress are calculated under a range of hypothetical irriga-

tion scenarios, and drought vulnerability curves are fitted.

Third, water stress during the maize growth period is

simulated using the meteorological data to force the cali-

brated EPIC model for a reference period of 30 years.

Then, the DHI and the maize yield loss ratio from drought

in the reference period are calculated using the GEPIC-V-R

model. Finally, the loss ratios simulated by the GEPIC-V-R

model are compared to data from previously reported dis-

asters as well as the literature, and the model skill is

evaluated. Fourth, the DHI for a period in the future is

simulated by forcing the GEPIC-V-R model with climate

projections from GCMs, on the basis of Representative

Concentration Pathway (RCP) scenarios to quantify the

future maize drought risk over the selected period.

3 Data and Methods

According to the analytical framework, the soil, land use,

DEM (digital elevation model), meteorological, agricul-

tural, and loss data were required, and they are described in

Sect. 3.1. Sections 3.2-3.5 detail the methods used in each

step in the framework. In Sect. 3.6, the statistical analysis

methods to investigate characteristics of the maize yield

loss ratio from drought are presented.

3.1 Data

To simulate maize growth processes, the EPIC model

inputs include soil, land use, DEM, meteorological, fertil-

izer, irrigation, and phenological data (Table 1). These data

were mapped into a 0.5� grid using the methods detailed in

Yin et al. (2014). Historical meteorological data, statistical

maize yield data, data of losses caused by drought, and

sown area data were used to calibrate and validate the EPIC

model and to validate the GEPIC-V-R model. We deter-

mined the maize distribution by overlaying the layers of

area of maize (Ramankutty et al. 2008) and the cropland.

The cropland was extracted from the global land use and

land cover data with ArcGIS.

Fig. 1 Analytical framework

for crop drought risk assessment

under climate change based on

the GEPIC-Vulnerability-Risk

model
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Table 1 Data used in the analytical framework for crop drought risk assessment under climate change based on the GEPIC-Vulnerability-Risk

model

Data Content Period, resolution/scale, and sources

Soil data Soil type 2005, Food and Agriculture Organization (FAO)2

Depth, percentage of

sand, silt, and clay,

soil bulk, PH,

organic carbon

content, calcium

carbonate content

International Soil Reference and Information Centre—World Inventory of Soil Emission

Potentials, 2000 (Batjes 2000)

Land-use data Global land use 0.00833� 9 0.00833�, United States Geological Survey (USGS)3

DEM data Global DEM 0.0833� 9 0.0833�, USGS4

Historical

meteorological data

Daily mean

temperature,

minimum

temperature,

maximum

temperature, solar

radiation,

precipitation, wind

velocity, and relative

humidity

1971-2004, 0.5� 9 0.5�, Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP)

(Warszawski et al. 2014)

Future meteorological

data

Daily mean

temperature,

minimum

temperature,

maximum

temperature, solar

radiation,

precipitation, wind

velocity, and relative

humidity

2005-2099, 0.5� 9 0.5�, four RCP scenarios, ISI-MIP (Warszawski et al. 2014)

Agricultural data Global fertilizer 1961-2002, country average, FAO5

Global irrigation 2000, country average, Kassel University, Germany (Döll and Siebert 2002)

Global maize sown

date

World Agriculture Climate and Crops Climate (Cui 1994)

Global statistical maize

yield

1961-2010, country average, FAO5

Sown

area

Maize sown

area

1978-2005, provincial, National Bureau of Statistics of China (NBSC)6

Crop sown

area

Loss data Covered areas, affected

areas, and areas of

total crop failure

caused by drought in

China

1978-2005, provincial, NBSC6

2http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/other-global-soil-maps-and-databases
3https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_

objects=0#qt-science_center_objects
4https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation?qt-science_center_

objects=0#qt-science_center_objects
5http://www.fao.org/faostat/en/#data/QC
6https://data.stats.gov.cn/english/easyquery.htm?cn=E0103

123

Int J Disaster Risk Sci 431

http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/other-global-soil-maps-and-databases
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation?qt-science_center_objects=0#qt-science_center_objects
http://www.fao.org/faostat/en/#data/QC
https://data.stats.gov.cn/english/easyquery.htm?cn=E0103


The bias-corrected and downscaled projection data for

the period 2005-2099 for four RCP scenarios—RCP2.6,

RCP4.5, RCP6.0, and RCP8.5 (van Vuuren et al. 2011)—

were used to simulate the future DHI and assess the global

drought risk of maize yield losses under climate change.

The projected data were provided by ISI-MIP with a spatial

resolution of 0.5� 9 0.5� (Warszawski et al. 2014). Climate

data from several Climate Model Inter-comparison Project

Stage 5 (CMIP5) GCMs were provided by ISI-MIP.

However, to reduce computational expense, we used only

the HadGEM2-ES (Dike et al. 2015) simulations to

demonstrate our framework for global assessment of

drought risk to maize.

3.2 Calibration and Validation of the EPIC Model

Energy conversion rate (WA), harvest index (HI), and

lowest harvest index (WSYF) were selected to calibrate the

crop parameters for maize by carefully comparing the

simulated yields with the observed yields. To improve the

simulation accuracy at the global scale, the global maize-

planting area was divided into 36 maize suitability zones

(Yin et al. 2014). Because there were no maize-planting

grids in the Oceania Tropical Irrigated Zone (Yin et al.

2014), the parameters for 35 maize suitability zones were

calibrated. National maize yield statistics (2001-2003)

from maize-planting countries around the world were used

to validate the EPIC model. Figure 2 shows that there is a

good linear relationship between the statistical and simu-

lated yields. Four statistic indices were used to evaluate the

statistical yields and the simulated yields—the Pearson

correlation coefficient (R-square), root-mean-square error

(RMSE), percent bias (PBIAS), and the Nash-Sutcliffe

efficiency coefficient (NSE) (Fig. 2). The values of

R-square and NSE are larger than 0.91 and 0.78, respec-

tively, meaning that the average value of the statistics and

the simulated yield are close. The values of PBIAS are less

than ±20% of the average statistical yield. Therefore, the

EPIC model can accurately simulate maize yield at the

global scale.

3.3 Establishment of the Drought Vulnerability

Curve for Maize

The maize drought vulnerability curve quantifies the yield

loss in response to different DHIs. The curve can be built

by simulating the drought stress and yield under hypo-

thetical irrigation scenarios. In the optimal scenario, the

potential yield is achieved when the water stress is 0 during

the growing season. In the killing scenario, the crop is

killed and the water stress is 1. The water stress and crop

yields under different hypothetical irrigation scenarios with

a daily time step were simulated. Then, we calculated the

DHIs and yield loss ratio and fitted the maize drought

vulnerability curves for the 35 maize-planting zones (Yin

et al. 2014).

3.4 Evaluation of the GEPIC-Vulnerability-Risk

Model

The GEPIC-V-R model was evaluated by comparing the

simulated expected maize yield loss ratio from drought and

the actual maize yield loss ratio during the reference period

(1971-2000). By forcing the risk assessment model with

meteorological data for the reference period, the DHI and

the maize yield loss ratio from drought were simulated for

each 0.5� 9 0.5� grid cell. The DHI for each grid cell was

calculated using Eq. 2. The maximum value of DHI is 1,

and the minimum is 0.

DHIj ¼

P

n

i¼1

WSji

max
1� j� 30

P

n

i¼1

WSji

� � ð2Þ

where DHIj refers to the drought hazard index for year j;

WSji refers to the water stress for day i in year j; and

n denotes the number of days affected by water stress in

year j.

The expected maize yield loss ratio was calculated using

Eq. 3.

LExp ¼
X

m

i¼1

VðuiÞ � f ðuiÞ ð3Þ

where LExp is the expected yield loss ratio for the period;

VðuiÞ is the corresponding yield loss ratio for the sample ui;

f ðuiÞ is the probability of the sample ui; m is the number of

members in U; and U is a discrete universe of the incom-

plete dataset DHI.

In this study, the length of the period was 30 years. It is

impossible to accurately estimate the probability density

function based on this small sample size, so information

diffusion was used to expand the sample, following Huang

(1997). We defined U ¼ u1; u2; u3; . . .; unf g, and assumed

the resolution of U to be 0.001 (that is,

U ¼ 0; 0:001; 0:002; . . .; 1f g). The normal information

diffusion equation (Eq. 4) was used to diffuse the infor-

mation carried by DHI to ui.

fj uið Þ ¼ 1

h
ffiffiffiffiffiffi

2p
p exp � DHIj � ui

� �2

2h2

" #

ð4Þ

where DHIj is a given sample, and ui is the controlling

point. The normal diffusion coefficient h was calculated

using Eq. 5:
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h ¼

0:8146 b� að Þ ðn ¼ 5Þ
0:5960 b� að Þ ðn ¼ 6Þ
0:4560 b� að Þ ðn ¼ 7Þ
0:3860 b� að Þ ðn ¼ 8Þ
0:3362 b� að Þ ðn ¼ 9Þ

0:2986 b� að Þ ðn ¼ 10Þ

2:8651
b� a

n� 1
ðn� 11Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð5Þ

where b ¼ max
1� i� n

DHIif g, a ¼ min
1� i� n

DHIif g, and n is the

number of DHI samples (n = 30 in this study).

The normalized information distribution of DHIj sample

(t DHIj; ui
� �

) was calculated using Eq. 6.

t DHIj; ui
� �

¼ fj uið Þ
C

ð6Þ

where C refers to the information accumulation of the

sample, which is calculated using Eq. 7:

C ¼
X

n

i¼1

f uið Þ ð7Þ

The probability p uj
� �

of the monitoring sample uj was

calculated from Eq. 8, allowing the probability distribution

functions for drought hazard intensity and disaster risk to

be estimated.

p uj
� �

¼

P

m

j¼1

t DHIj; ui
� �

P

m

j¼1

q uj
� �

ð8Þ

The actual maize yield loss ratio was calculated using

the losses caused by drought and the crop sown area,

following Xu et al. (2011). Twenty-six major planting

provinces in China were selected to calculate the actual

maize yield loss ratio due to drought. The losses caused by

drought, including the covered areas, affected areas, and

areas of total crop failure, were obtained from the Ministry

of Civil Affairs of China. The crop sown area data were

downloaded from the website of the National Bureau of

Fig. 2 Comparison of maize

yields from maize-planting

countries around the world

between the statistics and the

simulation results
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Statistics of China.6 There was a significant positive

relationship between the simulated maize loss ratio and

the actual maize loss ratio (Table 2). The coefficients of the

Spearman, Kendall, and Pearson correlation were 0.83,

0.63, and 0.85, respectively, significant at p\ 0.01. The

results show that the risk assessment model can accurately

simulate the maize yield loss risk from drought. Therefore,

we consider that the GEPIC-V-R model and the drought

vulnerability curves of maize are appropriate for assessing

maize drought risk under 1.5 �C warming.

3.5 Quantification of the Maize Drought Risk

under Climate Change

Quantifying maize drought risk under the effects of climate

change includes two steps: calculation of the future maize

drought hazard index, and calculation of the future maize

drought risk. Future water stress was simulated by using

the climate data projected for a selected period to force the

GEPIC-V-R model. The DHI was calculated using Eq. 2.

Future maize drought risk was estimated based on the DHI

probability distribution function for a selected period, and

the maize drought vulnerability curve. We adopted two

commonly used indicators of risk to quantify future crop

drought risk—the loss ratio corresponding to various return

periods (Khare et al. 2015; Davis and Uryasev 2016), and

the expected loss ratio (Eq. 3). The loss ratio corresponding

to a given annual recurrence interval (ARI) was derived as

follows: (1) the hazard map for the return period was

estimated using Eq. 9; and (2) the DHI at each grid was

combined with a vulnerability curve to calculate the loss

ratio corresponding to the return period (Eq. 10).

DHIARI ¼ f�1 1� 1

ARI

� �

ð9Þ

LARI ¼ DHIARI � V L; hh if g ð10Þ

where DHIARI is DHI of the annual recurrence interval. We

selected two annual recurrence intervals, that is, 5-year and

20-year return periods.

3.6 Statistical Analysis

Investigating differences in maize yield loss ratio from

drought between a 1.5 �C warming scenario and the ref-

erence period helps in establishing appropriate preventive

and adaptive planning strategies for drought. We calculated

the loss ratio both globally and in six maize-planting

countries: Brazil, China, India, Russia, Ukraine, and the

United States, respectively. The difference in maize yield

loss ratio from drought of a region is defined as the average

of all grids in the region. The distribution of loss ratio

differences in each region is summarized through a kernel

density plot. To detect changes in annual maize drought

loss ratio, we investigated the statistical significance of

changes in the ratio between two time series for each maize

grid using a two-sample Kolmogorov-Smirnov (K-S) test

(Press and Teukolsky 1988).

4 Global Maize Drought Risk at 1.5 �C Warming

World

As the temperature had risen ? 0.46 �C from the pre-in-

dustrial period to the 1971-2000 period (Vautard et al.

2014), the 1.5 �C warming is equivalent to an additional

Table 2 Correlation between the simulated and actual maize yield loss ratios in 26 provinces in China

Actual Simulated

Pearson Correlation Coefficient Actual 1.00 0.85**

Sig. (2-tailed) 0.00

Correlation Coefficient Simulated 0.85** 1.00

Sig. (2-tailed) 0.00

Kendall’s tau_b Correlation Coefficient Actual 1.00 0.63**

Sig. (2-tailed) 0.00

Correlation Coefficient Simulated 0.63** 1.00

Sig. (2-tailed) 0.00

Spearman’s rho Correlation Coefficient Actual 1.00 0.83**

Sig. (2-tailed) 0.00

Correlation Coefficient Simulated 0.83** 1.00

Sig. (2-tailed) 0.00

**Correlation is significant at the 0.01 level (2-tailed).
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1.04 �C increase above the reference period level. The

? 1.5 �C time slice was bounded by the ?/- 15-year

periods surrounding the central year when the 30-year

running mean crossed the ?1.5 �C threshold. The time

slices for RCP2.6 and RCP8.5 are 2023-2052 and

2021-2050 respectively, while the slices for both RCP4.5

and RCP6.0 are 2026-2055.

The maize loss ratios from droughts with 5-year and

20-year return periods (Eq. 10) under different RCPs for

1.5 �C warming are shown in Fig. 3. The median global

average loss ratio increases at longer return periods, from

25% at the 5-year return period to 35% at the 20-year

return period. Globally, areas with a high loss ratio from

drought (red zone) are mainly located at 40�N-50�N and

close to 20�S, including Ukraine, Kazakhstan, Turkey,

Spain, Iran, Iraq, Tanzania, South Africa, Australia, the

mid-western United States, and northwestern China. The

area subject to severe maize drought is projected to grad-

ually increase with increasing return periods, whereas the

area experiencing light drought is projected to decrease.

For the 5-year and 20-year return periods, areas affected by

extremely severe and severe maize drought (loss ratio

larger than 0.5) account for 14.57% and 24.98% of the

global total maize-planting area, respectively, whereas

Fig. 3 Maize loss ratio from drought with 5-year (left) and 20-year

(right) return periods under different Representative Concentration

Pathways (RCPs) for 1.5 �C warming. Red areas have a higher risk of

maize drought, indicating that drought can lead to a higher yield loss

ratio of maize in these regions, whereas green areas have a lower risk,

indicating that maize in these areas would be less affected by drought.
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areas affected by extremely light (loss ratio less than 0.1)

drought account for 48.07% and 30.31%, respectively.

The global median of expected annual maize yield loss

ratios from drought under the four RCPs is 0.41, but the

expected yield loss ratios vary significantly among regions

and RCPs (Fig. 4a). The areas with high yield loss ratio

(red zone) are located in the midlatitudes, primarily central

Asia, western and central Europe, Australia, southeastern

Africa, and northwestern China. Regions with low loss

ratio are mainly located in the lower latitudes. Western

Africa has the lowest average loss ratio (0.08), whereas

Australia and New Zealand have the highest ratio ([ 0.8).

Areas affected by light and extremely light drought (loss

ratio less than 0.4) comprise approximately 50% of the

total maize-planting area in the world, whereas areas

affected by extremely severe (loss ratio ranging from 0.8 to

1) and severe (loss ratio ranging from 0.6 to 0.8) drought

comprise 8% and 17%, respectively. Nevertheless, due to

the main differences related to the magnitude and spatial

extent of climatic factors (Taylor et al. 2013), the range

(maximum minus minimum) of expected annual maize

yield loss ratio from drought across the four RCPs (rep-

resenting future scenario uncertainty) varies significantly

among regions (Fig. 4b). The expected annual maize yield

loss ratio is projected to vary slightly (dark blue zone, range

\ 0.02) among RCP scenarios in Brazil, western United

States, Spain, Turkey, Iran, Afghanistan, northeast India,

Australia, Southeast Asia, and the Sichuan Basin in China.

Therefore, in those regions, climate risk mitigation has a

relatively small potential impact on drought risks (Taylor

et al. 2013), and the uncertainty associated with RCP

scenarios is negligible. The areas with an extremely broad

range of loss ratios (red zone, range C 0.1) across the four

RCP scenarios are located in Argentina, Russia, Zambia,

and northeast China; in these regions, the potential impacts

of different climate risk mitigation approaches on drought

risk show some notable differences.

The value and distribution of the differences in the

expected annual maize yield loss ratio between the 1.5 �C

warming scenario and 1971-2000, under different RCPs

both globally and in the six selected maize-planting

countries, are shown in Fig. 5. The differences under higher

emission scenarios are generally higher than those under

lower emission scenarios, and the median difference of the

average global maize yield loss ratio under 1.5 �C warming

is - 0.93%, meaning that the climate change could reduce

the global maize drought risk. The differences in expected

annual yield loss ratio in the world have a relatively

‘‘normal’’ distribution, which shows that an overwhelming

majority of the global maize-planting grids have a rela-

tively small yield loss ratio difference (- 10% B differ-

ence B 10%), with only very few grids having very large

differences (an absolute difference larger than 20%). The

difference is projected to be negative in China and India,

but positive in the four other major maize-planting coun-

tries; the maize drought is expected to intensify in these

four countries under a 1.5 �C warming. Those countries

identified in this study as facing increased risk are broadly

consistent with those identified in previous analyses (Leng

and Hall 2019), except for India and China where this study

suggested a slight decrease while a previous study sug-

gested an increase (Leng and Hall 2019). The differences

in yield loss ratio in five of the maize-planting countries

have relatively ‘‘normal’’ distributions, except for Ukraine.

For Brazil, China, and the United States, an overwhelming

majority of maize-planting grids have a relatively small

difference in yield loss ratio. The difference is less than 0

in most maize-planting grids in India, whereas it is larger

than 0 in a small majority of maize-planting grids in

Ukraine.

Figure 6 shows the fraction of the maize-planting area

experiencing a statistically significant difference of annual

maize yield loss ratio from drought under 1.5 �C warming

compared to the loss ratio in the reference period in the

world and each maize-planting country under different

RCPs. Approximately 26% of the global maize-planting

area is projected to have significant change in maize yield

loss ratio from drought. The area with a significant change

in yield loss ratio increases from RCP2.6 to RCP8.5. The

order of the RCP scenarios in terms of the fraction of the

Fig. 4 Median a and range b of the expected annual maize yield loss

ratio from drought across the four Representative Concentration

Pathways (RCPs) under 1.5 �C warming
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maize-planting area experiencing a statistically significant

statistical change, from the largest to the smallest, is

RCP6.0 (32.40%), RCP4.5 (26.58%), RCP8.5 (26.00%),

and RCP2.6 (16.00%). The fraction of the maize-planting

area with a significant change is the largest in China, with a

median of 47.37%. India would have the smallest fraction

Fig. 5 Difference in expected annual maize yield loss ratio from

drought between the 1.5 �C warming scenario and the 1971-2000

period: a and kernel density plot highlighting the distribution of the

difference; b in six major maize-planting countries and globally under

different Representative Concentration Pathways (RCPs). BRA,

CHN, IND, RUS, UKR, and USA are short for Brazil, China, India,

Russia, Ukraine, and the United States, respectively.
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of its maize-planting area experiencing a significant

change, with a median of 2.79%.

5 Discussion

Based on the GEPIC-V-R model, a global-scale, future-

oriented risk assessment framework is proposed. In this

framework, the spatial scale is a 0.5� 9 0.5� grid, and the

GEPIC-V-R model can be validated by comparing multi-

variate model output (for example, yield, simulated loss

ratio) and observational data (for example, yield, losses

caused by drought, and previous studies). However, the

estimate in grid unit is more computationally expensive

and needs more data to calibrate the crop model to ensure

simulation accuracy, and the reasons why we selected the

0.5� 9 0.5� grid are as follows. Due to the substantial area

difference among regions and countries, a large area could

conceal intra-regional disparity, exaggerate visual impres-

sion, and even lead to wrong perception. Maize is not

distributed over an entire country area or region. The

gridded risk estimates have the flexibility to aggregate risk

estimates into different spatial units. They can be aggre-

gated over various levels of administrative units, but also

over areal units that do not follow administrative bound-

aries, such as river basins, enabling integration and anal-

yses with a range of other spatial datasets. Thus, by

demonstrating the spatial variation across the global 0.5� 9

0.5� grid, the proposed framework can provide scientific

evidence for the development of local agricultural drought

risk reduction management strategies.

In the proposed framework, projection of drought risk

under climate change contains uncertainties associated

with two key sources—crop modeling and GCM output

(Orlowsky and Seneviratne 2013; Asseng et al. 2015; Lu

et al. 2019). First, the EPIC model uses more than 50 crop

parameters to simulate more than 100 types of crops

(Williams et al. 1989), and the performance of the model

largely depends on the parameterizations of crop varieties

and agricultural management factors (for example, planting

date and irrigation) (Yao et al. 2011; Leng and Hall 2020).

Given that regional information on strongly spatially-

heterogeneous parameterizations is scarce, there is larger

uncertainty on a regional scale than on a site scale (Yao

et al. 2011). To reduce uncertainty, it is feasible to calibrate

and validate the genetic parameters in the crop model zone

by zone through comparing the simulated and statistical

yield (Yin et al. 2014). In this study, comparing the sim-

ulation results with national maize yield statistics

(2001-2003) demonstrated that the calibrated EPIC model

can accurately simulate global yield. To ensure the accu-

racy of the simulated risk, we compared the simulated

expected loss ratio with statistics in China. The three cor-

relation coefficients (Spearman, Kendall, and Pearson)

were all more than 0.6, showing that the spatial pattern of

maize yield loss risk from drought could be reproduced

well by the GEPIC-V-R model during the reference period.

Therefore, the reliability of global maize drought risk

assessment under climate change can be guaranteed. While

the process-based model can well reproduce the patterns of

yield variability of maize, there are substantial biases in

predictions of year-to-year variability and average of yield.

Machine learning methods perform well in reproducing the

average and probability distribution of yield (Leng and

Hall 2020). Therefore, the machine learning algorithm

could be supplementary to the framework.

Second, when future climate projections from a GCM

are used to force a crop model, climate model uncertainties

may be amplified. The multiple GCMs and/or multiple crop

models ensemble (MME) has been widely used to assess

the impacts of climate change on agricultural production

(Asseng et al. 2015; Yin et al. 2015; Rodrı́guez et al. 2019).

These studies found that variability between individual

models is large but the ensemble median and mean appear

to be good predictors (Wallach et al. 2018). However, the

MME method is very computationally expensive.

Fig. 6 Fraction of the maize-planting area experiencing a statistically

significant difference of annual maize yield loss ratio from drought

under 1.5 �C warming, compared to the loss ratio in the reference

period in the world and each maize-planting country under different

Representative Concentration Pathways (RCPs). BRA, CHN, IND,

RUS, UKR, and USA are short for Brazil, China, India, Russia,

Ukraine, and the United States, respectively.
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Therefore, in the case study, we applied one combination

of GCM/crop model instead of a multiple GCM/multiple

crop model to demonstrate the validity of the proposed

methodology/framework in a global crop drought risk

assessment.

Maize drought risk stems from the interaction of drought

hazard, vulnerability, and exposure (IPCC 2012, 2014).

The risk is not static, but rather dynamic under climate

change, depending on changes of these three factors (Pol-

janšek et al. 2017). In this case study, drought hazard is

derived from an information diffusion analysis of a 30-year

water stress time series in the maize-growing period for a

1.5 �C warming. Physical vulnerability is an inherent

property of maize, and depends on the maize variety.

Adopting drought tolerant maize varieties is one of the

important strategies for climate change adaptation, espe-

cially in semiarid and arid regions (Cairns et al. 2013;

Takim 2017); however, improvement of maize varieties

was not considered in this study and could result in the

overestimation of maize physical drought vulnerability

under climate change in some regions. Vulnerability is

determined not only by physical vulnerability but also by

social and environmental factors (Wang et al. 2013; Pol-

janšek et al. 2017). For example, CO2 is not only a major

cause for climate warming but also an important environ-

mental factor in determining the vulnerability. Elevated

CO2 fertilizes the crop and alleviates the negative impact of

drought and vulnerability (Ottman et al. 2001; Wang et al.

2017; Bhargava and Mitra 2021). Therefore, the risk may

be overestimated in this study because the elevated CO2

was not considered.

In this framework, the exposure of maize to drought is

defined as those maize-planting areas located in drought-

prone areas (UNISDR 2009; Carrão et al. 2016; Alamgir

et al. 2019). The maize-planting areas under 1.5 �C

warming were kept the same as those in the reference

period, and the exposure was assumed to be equal to unity

at the 0.5� resolution (Yin et al. 2014). However, climate

change and variability could alter the geographically suit-

able areas for maize (Ramirez-Cabral et al. 2017; Kogo

et al. 2019). Globally, the tropics of Cancer and Capricorn

indicate the highest loss of climatic suitability, in contrast

to high-altitude and high-latitude regions that exhibit an

increase of suitability (Ramirez-Cabral et al. 2017; Ji et al.

2018). The higher average temperatures also have the

potential to accelerate the phenological development of

maize (Chen and Liu 2014; Hatfield and Dold 2018).

Furthermore, physical vulnerability varies in response to

climate change across phenological development stages

(Wilson et al. 1995; Pan et al. 2017). Therefore, to improve

the future-oriented risk assessment of agricultural drought

under climate change, future studies should consider the

dynamics of exposure and vulnerability alongside climate

variability (Hagenlocher et al. 2019; Meza et al. 2020).

6 Conclusion

With support of the GEPIC-V-R model, an analytical

framework and associated methods for quantifying the

future global-scale maize drought risk at the resolution of

0.5� 9 0.5� have been proposed in this study. The ana-

lytical framework comprises four major steps: calibration

and validation of the EPIC model, drought vulnerability

curve establishment, evaluation of the GEPIC-V-R model,

and quantification of crop drought risk under climate

change. In this framework, the GEPIC-V-R model can be

calibrated and validated using datasets from in situ obser-

vations and previous studies, and the water stress and

drought risk under climate change can then be simulated

accurately.

In a 1.5 �C warming world, the expected annual maize

yield loss ratio from drought is about 0.41. The maize

drought risk in midlatitude regions is projected to be high,

and regions with low loss ratio are mainly located in the

lower latitudes. Globally, the median average loss ratio

increases at longer return periods, and a warming of 1.5 �C

would lead to only slight decreases (- 0.93%) in maize

yield from drought.

Because drought vulnerability and exposure are not

static, but rather dynamic under climate change, future

maize drought risk assessment needs to consider the pat-

terns and dynamics of exposure and vulnerability alongside

climate change and variability. Furthermore, different

maize varieties and phenological stages present different

sensitivities to drought. Future studies should pay greater

attention to assessing the drought risk across different

maize varieties and phenological stages.
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