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27 Abstract

28 Confronted with the challenge of understanding population-level processes, disease 

29 ecologists and epidemiologists often simplify quantitative data into distinct physiological 

30 states (e.g. susceptible, exposed, infected, recovered). However, data defining these states 

31 often fall along a spectrum rather than into clear categories. Hence, the host-pathogen 

32 relationship is more accurately defined using quantitative data, often integrating multiple 

33 diagnostic measures, just as clinicians do to assess their patients. We use quantitative data 

34 on a bacterial infection (Leptospira interrogans) in California sea lions (Zalophus 

35 californianus) to improve both our individual-level and population-level understanding of 

36 this host-pathogen system. We create a “host-pathogen space” by mapping multiple 

37 biomarkers of infection (e.g. serum antibodies, pathogen DNA) and disease state (e.g. 

38 serum chemistry values) from 13 longitudinally sampled, severely ill individuals to 

39 visualize and characterize changes in these values through time. We describe a clear, 

40 unidirectional trajectory of disease and recovery within this host-pathogen space. 

41 Remarkably, this trajectory also captures the broad patterns in larger cross-sectional 

42 datasets of 1456 wild sea lions in all states of health. This mapping framework enables us 

43 to determine an individual’s location in their time-course since initial infection, and to 

44 visualize the full range of clinical states and antibody responses induced by pathogen 

45 exposure, including severe acute disease, chronic subclinical infection, and recovery. We 

46 identify predictive relationships between biomarkers and outcomes such as survival and 

47 pathogen shedding, and in certain cases we can impute values for missing data, thus 

48 increasing the size of the useable dataset. Mapping the host-pathogen space and using 

49 quantitative biomarker data provides more nuanced approaches for understanding and 
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50 modeling disease dynamics in a system, yielding benefits for the clinician who needs to 

51 triage patients and prevent transmission, and for the disease ecologist or epidemiologist 

52 wishing to develop appropriate risk management strategies and assess health impacts on a 

53 population scale.

54

55 Author Summary

56  A pathogen can cause a range of disease severity across different host individuals, and 

57 these presentations change over the time-course from infection to recovery. These facts 

58 complicate the work of epidemiologists and disease ecologists seeking to understand the 

59 factors governing disease spread, often working with cross-sectional data. Recognizing 

60 these facts also highlights the shortcomings of classical approaches to modeling infectious 

61 disease, which typically rely on discrete and well-defined disease states. Here we show that 

62 by analyzing multiple biomarkers of health and infection simultaneously, treating these 

63 values as quantitative rather than binary indicators, and including a modest amount of 

64 longitudinal sampling of hosts, we can create a map of the host-pathogen interaction that 

65 shows the full spectrum of disease presentations and opens doors for new insights and 

66 predictions. By accounting for individual variation and capturing changes through time 

67 since infection, this mapping framework enables more robust interpretation of cross-

68 sectional data; e.g., to detect predictive relationships between biomarkers and key 

69 outcomes such as survival, or to assess whether observed disease is associated with the 

70 pathogen of interest. This approach can help epidemiologists, ecologists and clinicians to 

71 better study and manage the many infectious diseases that exhibit complex relationships 

72 with their hosts.
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73 Introduction

74 To gain insights into population-level trends, disease biomarker data are often reduced 

75 to binary form (e.g. presence/absence of a pathogen, antibodies or disease) for statistical 

76 analyses and parameterizing models of disease transmission. By contrast, to understand 

77 disease in an individual, the full quantitative range of available biomarker information is 

78 used to determine the precise clinical status of an individual, make treatment decisions, 

79 assess prognoses and limit transmission risk to others. While clinicians consider a clinically 

80 ill individual with a high or rising antibody titer as diagnostic of a current or recent 

81 infection [1], ecologists or epidemiologists typically classify individuals as exposed or not, 

82 and infected or not, based on a cut-off titer value [2], potentially discarding useful 

83 information contained in finer scale variations in titer magnitude. More detailed data on 

84 infection status and health can provide key information to both the clinician and ecologist 

85 that can help with accurate diagnosis (clinician) and effective system conceptualization, 

86 model construction and parameterization (ecologist).  However, such data can be difficult 

87 to interpret, particularly for wildlife hosts, and all data types may not be available for each 

88 individual assessed. Hence, cases captured in clinical and surveillance data often do not fit 

89 neatly into distinct categories. Severely ill, recently infected individuals are easily identified 

90 (e.g. by high antibody titer, pathognomonic clinical signs, detection of pathogen), but are 

91 often just the tip of the iceberg. In reality, a variety of presentations may exist at each point 

92 along the timeline from infection to recovery, with individuals exhibiting a range of disease 

93 severity and antibody titers (e.g. from severely ill to apparently healthy and with very high 

94 to undetectable titers), and with both infected and uninfected individuals detected at any 

95 given combination of disease severity and antibody titer (Fig 1 and S1 Box).   
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96 Recently, efforts have been made to assess how biomarkers of disease and infection 

97 change relative to each other and over time, with the aim of identifying consistent patterns 

98 to improve our understanding of host-pathogen dynamics in human [3] [4], domestic 

99 animal [5], experimental [3], and wildlife systems [6] [7]. Longitudinal studies in which 

100 individuals are monitored through time provide key insights into how specific host-

101 pathogen biomarkers, e.g. antibody titer, measures of disease severity, and pathogen load, 

102 change through the course of infection and recovery [7-10], with some studies showing 

103 how biomarker values may be associated with specific outcomes such as survival and 

104 transmission [3, 11]. In systems for which biomarkers show predictable temporal 

105 variation, quantitative data may provide information about an individual’s stage in the 

106 infection and recovery process [3, 6, 12, 13], enhancing our understanding of population-

107 level dynamics by providing key data for model structure and parameterization [6, 10, 12-

108 19]. Assessment of quantitative values and multiple biomarkers can also elucidate 

109 individual within-host dynamics such as the outcome of an infection (infection chronicity, 

110 survival), how heterogeneity in antibody titer responses relates to clinical disease or 

111 symptoms, and probability of transmission to others [3, 11-13, 15, 20-22]. These findings 

112 can have direct implications on both the individual scale (e.g. triaging and treating patients, 

113 assessing prognosis and forward transmission risk) and the population scale (e.g. 

114 controlling transmission and hence outbreaks, predicting population dynamics, estimating 

115 incidence). These previous studies highlight the usefulness of including multiple data types, 

116 of understanding the nature of the relationship between multiple biomarkers of infection 

117 and disease, and of using quantitative data to better understand host-pathogen dynamics to 

118 make informed management decisions. However, although these studies explore facets of 
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119 this new frontier in infectious disease dynamics, none combine all facets within a single 

120 study system, and few focus on disease in wildlife species.

121 We address this gap by linking longitudinal and cross-sectional data on multiple disease 

122 measures from an unconventional study system: Leptospira interrogans serovar Pomona 

123 (henceforth “Leptospira”) infection in California sea lions (Zalophus californianus). This 

124 system exhibits yearly, seasonal Leptospira outbreaks of varying magnitude, as reflected in 

125 both clinical cases of Leptospira infection seen at marine mammal rescue and rehabilitation 

126 centers [23] and in population-level serosurveys [24]. Leptospira is a good model for 

127 examining complex manifestations of a host-pathogen relationship, as mammals infected 

128 by pathogenic species within the genus Leptospira can exhibit a wide range of clinical 

129 presentations, from fulminant clinical disease to silent infections, and while some hosts 

130 may clear the infection quickly, others continue to shed the pathogen for months to years. 

131 The dominant clinical signs of leptospirosis (the disease caused by Leptospira infection) in 

132 California sea lions reflect the kidney damage inflicted by the bacteria, and clinically ill sea 

133 lions present in varying stages of renal failure. The host-pathogen relationship for 

134 pathogenic Leptospira spp. is conventionally attributed to specific Leptospira strain-host 

135 species pairs and described dichotomously, as an acute and potentially fatal infection in 

136 ‘accidental’ host species, or as a chronic and predominantly subclinical infection in 

137 ‘maintenance’ host species [1, 25]. Yet, California sea lions show characteristics of both 

138 accidental and maintenance hosts. During major outbreaks, roughly two-thirds of sea lions 

139 stranding with clinical Leptospira infections die – typical of accidental hosts. However, 

140 genetic evidence [26] and age-structured sero-epidemiology [24] suggest that Leptospira is 

141 enzootic in the sea lion population, and furthermore subclinical chronic infections – typical 
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142 of maintenance hosts – occur in sea lions and are the possible mechanism for population-

143 level pathogen persistence from one outbreak to another [19, 27, 28]. 

144 Using longitudinal data on antibody titer, disease severity and pathogen shedding, 

145 we track the temporal progression of Leptospira infections in California sea lions that 

146 experienced either severe illness or subclinical infection. We use the relationship between 

147 these different biomarkers to create a ‘host-pathogen space’ in which we track the 

148 progression of known infected individuals through time and establish that they follow a 

149 clear, unidirectional trajectory. Using this mapping approach, we then plot cross-sectional 

150 data from a broader group of sea lions – either apparently healthy, wild-caught individuals, 

151 or those stranding due to a broad range of health issues (i.e. not pre-selected for or against 

152 leptospirosis), and use the patterns cast by the longitudinal data to interpret those in the 

153 cross-sectional data. In human terms, the longitudinal data are akin to disease-specific 

154 long-term monitoring of individual cases, whereas the cross-sectional data are akin to 

155 prospective, random population surveillance, and unfiltered sampling of hospital patients, 

156 and are therefore more representative of the overall population. We show that the 

157 longitudinal data broadly capture the patterns in the cross-sectional data, suggesting 

158 consistency in dynamics despite the greater set of individual presentations present in the 

159 cross-sectional data. Our identification of a consistent trajectory through host-pathogen 

160 space enables us to roughly situate cross-sectionally sampled individuals in their time-

161 course of infection, showing how our approach could elucidate disease dynamics in many 

162 systems – from wildlife to humans – where most available data are cross-sectional. We also 

163 find that patterns within the host-pathogen space provide population-level insights into the 

164 range of disease experienced, duration of shedding, and associations between antibody 
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165 titer and infection status. This allows us to explore predictive relationships such as links 

166 between disease severity and survival, and between antibody titer and shedding duration. 

167 We also identify important differences between patterns in cross-sectional and 

168 longitudinal data, and generate and test hypotheses regarding the source of these 

169 differences, e.g., we identify renal disease from causes other than Leptospira.

170

171 Results

172 Establishing a Host-Pathogen Trajectory with Longitudinal Data

173 We tracked the temporal progression of three important biomarkers of Leptospira 

174 infection – anti-Leptospira serum antibody titer, renal compromise, and urinary leptospiral 

175 DNA shedding – in 15 sea lions that were followed longitudinally from infection to clinical 

176 recovery. Thirteen of these were initially severely ill and were followed for 6-12 weeks 

177 (henceforth termed CLINICAL), and 2 never showed clinical signs and were followed for 3 

178 years (termed SUBCLINICAL for subclinical, or SUB1 and SUB2 when referred to 

179 individually; Table 1). Combined, data from the CLINICAL and SUBCLINICAL animals 

180 enabled us to assess host-pathogen dynamics in animals exhibiting a range of initial clinical 

181 disease. The CLINICAL animals are typical of what would be reported by hospitals or 

182 rehabilitation centers for a given disease but may comprise only a small fraction of 

183 infections experienced in a population. The majority of acute infections may involve no 

184 evident disease, similar to the SUBCLINICAL animals, and would only be detected through 

185 prospective surveillance efforts and unfiltered sampling of hospital cases. 

186
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187 Table 1. Description of the different data sets used in our study. Columns include the category of data “Group” and Sub-group”, 

188 the “Sample Size” of unique individuals, the “Selection Criteria” used for inclusion, the “Additional Details” regarding 

189 individuals included, the “Day 0”, i.e. the first day for which Leptospira infection related biomarkers were tracked in an 

190 individual, longitudinally monitored sea lion, and the “Length of Observation”, i.e. the period of time over which data were 

191 collected.

192
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193

Group Sub-group Sample Size Selection Criteria Additional Details Day 0
Length of 

Observation

C
L

IN
IC

A
L

13

Presented initially with clinical 

signs of severe renal 

compromise consistent with 

leptospirosis*.

Survived infection and released into wild 

6-12 weeks after admission to 

rehabilitation center.

First day anti-

Leptospira antibody 

titer detected (0 – 18 

days of admission)

6 - 12 weeks

SUB1: No detectable anti-Leptospira 

antibodies initially, but seroconversion 

occurred (i.e. acquired anti-Leptospira 

antibodies) at some unknown point during 

rehabilitation, and in the absence of any 

observed clinical signs of leptospirosis.

First day anti-

Leptospira antibody 

titer detected (log2 

titer=10 on 

10/23/11, 15 months 

after admission).L
o
n
g
it

u
d
in

al

S
U

B

2

Never showed clinical signs of 

leptospirosis. Admitted to 

rehabilitation center for 

treatment of other condition. 

Magnitude of the first detected 

anti-Leptospira antibody titers, 

and timing (October of a major 

Leptospira outbreak year in the 

wild sea lion population {Greig, 

2005 #52}, suggest relatively 

recent Leptospira infection.

SUB2:  Moderately high anti-Leptospira 

antibody titer at admission. No clinical 

signs of leptospirosis. Released into wild 

3 weeks after admission. Readmitted 3 

months after initial admission, still no 

clinical signs of leptospirosis.

First day anti-

Leptospira antibody 

titer detected ((log2 

titer=7 on 10/18/11, 

the day of 

admission)

3 years

S
T

R
A

N
D

 724

All sea lions admitted to 

rehabilitation center for any 

cause, including leptospirosis. 

(i.e. not filtered by clinical signs)
 

N/A 1 day

C
ro

ss
-s

ec
ti

o
n

al
 

W
IL

D

730

Apparently healthy, free-ranging 

sea lions.

 
N/A 1 day

194
195 * Leptospirosis is the disease caused by infection with pathogenic species within the genus Leptospira.

196
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197 We tracked changes in clinical disease using a ‘renal index’ that we derived from 

198 serum chemistry values (i.e. blood urea nitrogen, creatinine, sodium, chloride and 

199 phosphorus) associated with the compromised renal function seen in severe cases of 

200 leptospirosis [23]. Within the first 72 hours of admission to rehabilitation the severely ill 

201 animals that survived (CLINICAL) had high initial renal index values that ranged from 4.15 

202 to 13.67, but they recovered rapidly with all scores declining into the healthy range within 

203 15 to 61 days (median = 27 days; Fig 2A). By contrast, in the three years that they were 

204 monitored, we never detected serum chemistry evidence of renal compromise in the 

205 subclinical animals (SUB1 and SUB2; Fig 2B). 

206 Antibody titers in individual CLINICAL sea lions exhibited simple exponential decay 

207 (Fig 2C), while the SUBCLINICAL animals exhibited a more complex pattern. Visual 

208 inspection of the SUBCLINICAL data suggested a biphasic pattern with an initial rapid 

209 phase consistent with that of the CLINICAL animals, followed by much slower decay (Fig 

210 2D). Using a simple linear regression for each individual, we calculated half-life (t1/2) 

211 estimates in CLINICAL sea lions that ranged from 6.4 to 29.4 days with a median t1/2 of 17.1 

212 days (Table 2). Using piecewise linear regression we calculated first phase t1/2 values of 

213 26.8 and 6.1 days for SUB1 and SUB2 respectively, and second phase values of 976 and 433 

214 days (Table 2). The fact that first phase estimates for the two SUBCLINICAL animals fall 

215 within or close to the range seen for CLINICAL suggests consistency in early phase titer 

216 kinetics, regardless of the initial disease severity, and supports the assumption that our 

217 observations captured the end of the initial stage of infection for these SUBCLINICAL 

218 animals. Furthermore, our findings are qualitatively and quantitatively consistent with a 
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219 pattern of initial rapid antibody decay followed by a slower decay, as seen in other systems 

220 where long-term antibody titer kinetics were tracked within individuals [29, 30]. 

221

222 Table 2. Antibody titer decline rates and half-life values in days with their corresponding 

223 95% confidence intervals [95% CI]. Data are reported for each individual in the CLINICAL 

224 and SUB datasets as well as for the first and second phase of titer decline observed for the 

225 SUB animals. Rates for the CLINICAL animals are ordered from high to low with the median 

226 decline and half-life values in bold italics. The titer decline rate marked with an asterisk (*) 

227 was not significantly different from zero.

228

  Antibody Titer

 Animal ID Decline Rate Half-life [95% CI]

1 -0.156 6.4 [6, 6.9]

2 -0.149 6.7 [4.4, 14]

3 -0.099 10.1 [8.7, 12]

4 -0.075 13.4 [9.8, 21.4]

5 -0.065 15.5 [11.1, 25.9]

6 -0.061 16.3 [12, 25.3]

7 -0.058 17.1 [11.5, 33.3]

8 -0.058 17.2 [15, 20.2]

9 -0.058* 17.3 [7.3, infinity]

10 -0.049 20.5 [13.6, 41.7]

11 -0.046 21.7 [13.1, 64.2]

12 -0.043 23.2 [19.2, 29.4]

C
L

IN
IC

A
L

13 -0.034 29.4 [16.1, 168.4]

1 - 1st Phase -0.037 26.8 [21.2, 36.6]

1 - 2nd Phase -0.001 975.9 [546.1, 4584.1]

2 - 1st Phase -0.164 6.1 [4.1, 12]S
U

B

2 - 2nd Phase -0.002 433.4 [327.2, 641.4]

229
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230 To better understand the relationship between antibody titer and renal index, and 

231 to visualize how these biomarkers change relative to each other through time, we plotted 

232 the measures against each other to create a map of the host-pathogen space (Fig 3). With 

233 increasing time since infection, the CLINICAL animals followed a clear temporal trajectory, 

234 tracing a curved path starting in the high renal index and high titer space, dropping rapidly 

235 into the low renal index space with clinical recovery, and staying within the healthy range 

236 as antibody titers continued to drop (Fig 3A).  In these CLINICAL animals, initial renal index 

237 values declined rapidly relative to antibody titers, so that only the earliest data points (<14 

238 days since admission to rehabilitation) were found in the high titer, high renal index space. 

239 After 28 days, renal index scores leveled off within the healthy range and the temporal 

240 signal was dominated by antibody titer decline. By contrast, the SUBCLINICAL animals 

241 followed a straight path, always within the healthy range, as their antibody titers declined 

242 systematically throughout the 3 years that they were monitored (Fig 3A). All initial titers 

243 were high (log2 titer range CLINICAL=10-13, SUBCLINICAL=7-10) with variation among 

244 individuals observed. CLINICAL animals provided detailed information on initial changes in 

245 disease biomarkers, yet were released back into the wild within 6 – 12 weeks, providing no 

246 long-term data. In addition, as these animals stranded some unknown number of days after 

247 initial infection, the ‘upswing’ of antibody titers and clinical disease were not captured. 

248 Conversely, the SUBCLINICAL animals were followed for 3 years, providing important long-

249 term biomarker data, but little on their initial dynamics (Table 1). Ultimately the CLINICAL 

250 and SUBCLINICAL paths overlapped, demonstrating convergence of the two trajectories 

251 and, potentially, similar long-term dynamics. 
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252 We used PCR to detect Leptospira DNA shed in the urine – a measure of current 

253 infection and potential transmission risk to others – and added pathogen shedding data to 

254 the map of the host-pathogen space. Addition of this third disease biomarker revealed that 

255 many animals continued to shed despite a rapid return to healthy renal function and 

256 systematic antibody titer decline (Fig 3B). All CLINICAL sea lions tested positive at least 

257 once in the first 38 days, most (11/13) continued shedding despite concurrent antibody 

258 titer decline and clinical recovery, and most (10/13) were still shedding at the last 

259 sampling point 4 – 12 weeks after initial admission (Fig 3B; also see [28]). Subclinical 

260 shedding of at least 8 weeks was detected in SUB1 [27], indicating that initial severe clinical 

261 disease is not a necessary condition for shedding of this duration. Shedding was never 

262 detected in SUB2, but the first urine testing date was 38 weeks after first detection of 

263 serum antibodies. 

264 Altogether, our findings suggest that antibody titers act as a rough clock indicating 

265 time since exposure to the pathogen, with data on disease severity and pathogen shedding 

266 improving the temporal resolution of the host-pathogen trajectory. 

267

268 Using the Host-Pathogen Trajectory to Interpret Cross-sectional Data

269 Having established a temporal host-pathogen trajectory, we used our mapping 

270 approach to maximize the information gained from individuals observed only once. These 

271 cross-sectional data were from stranded (STRAND) and wild-caught, free-ranging (WILD) 

272 California sea lions (Table 1).  When mapped, STRAND data fell along the trajectory 

273 mapped by the longitudinal data, but with greater variation, i.e., they cut a broader path 

274 through the host-pathogen space, and their map contained some outliers (Fig 3C). The 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819532doi: bioRxiv preprint 

https://doi.org/10.1101/819532


16

275 STRAND data contained a wider range of renal index scores (-3.6 – 17.8) and a higher 

276 maximum antibody titer (log2 titer = 15) than did the longitudinal data (renal index = -1.0 – 

277 13.7; maximum log2 antibody titer = 13; Fig 3A-C), suggesting that STRAND data captured a 

278 greater overall range of sea lion-Leptospira host-pathogen dynamics than the smaller 

279 dataset of longitudinally followed animals. The larger size (50-fold larger than CLINICAL) 

280 and broader selection conditions (i.e. including animals so ill from leptospirosis they died 

281 quickly, as well as those compromised for other reasons) of the STRAND dataset could 

282 explain this difference. By contrast, and in keeping with our assessment of apparent health 

283 at capture, the WILD animals chiefly occupied the space defined by the SUBCLINICAL and 

284 the recovered CLINICAL animals (Fig 3D). Notably, the WILD and STRAND datasets both 

285 differed from the SUBCLINICAL and CLINICAL in that they contained substantial numbers 

286 of seronegative animals.

287 We analyzed the distribution of renal index scores in each group, using antibody 

288 titer levels to standardize for time since infection, in order to assess (1) whether each 

289 group had a unique renal index profile or whether the SUBCLINICAL, WILD and CLINICAL 

290 groups were merely opposite extremes within the range seen in the STRAND animals, with 

291 WILD and SUBCLINICAL at one extreme and CLINICAL at the other, and (2) whether all 

292 groups converged to the same point with time since infection (Fig 4; Table 3). Renal index 

293 distributions of WILD and SUBCLINICAL animals never differed significantly. Those of the 

294 WILD and CLINICAL animals differed significantly at each antibody titer level assessed, yet 

295 the difference between their mean renal index values decreased as titers decreased, i.e. 

296 they were converging with time since infection. While some STRAND animals exhibited 

297 markedly greater renal disease than WILD animals, at all titer levels, there is also 
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298 substantial overlap between these groups, suggesting that the WILD animals are similar to 

299 the majority of STRAND animals not suffering from clinical leptospirosis. Altogether, for all 

300 datasets and regardless of the starting point in the trajectory (i.e. the renal index value at 

301 the highest titers), as antibody titers declined, so did mean renal index scores and the 

302 trajectories of each of the different datasets converged towards the healthy range.

303

304 Table 3. Mean renal index scores and sample sizes (n) by antibody titer group for initially 

305 clinical (CLINICAL), initially subclinical (SUB), stranded (STRAND) and wild-caught (WILD) 

306 animals. Titer group “0” contains all seronegative animals, titer group 0* contains only non-

307 shedding (i.e. urine PCR negative) seronegative animals. P-values are for two-sided 

308 bootstrap Kolmogorov-Smirnov (KS) test comparisons between animal groups of renal 

309 index distributions for a given titer. P-values for WILD 11+ v. WILD are for one-sided 

310 bootstrap KS test comparisons within the WILD dataset, with the null hypothesis that the 

311 renal index distribution for the 11+ titer group will be greater. P-values for STRAND 0* v. 

312 STRAND are for two-sided bootstrap KS test comparisons within the STRAND dataset 

313 comparing renal index distributions of seronegative, non-shedding animals with the other 

314 titer groups. 

315
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316

317

  Antibody Titer Group

 11+ 9-10 6-8 1-5 0 0*

WILD 0.65 (8) -0.18 (8) -0.33 (11) -0.27 (22) -0.32 (683) -0.28 (562)

SUB - -0.49 (1) -0.11 (1) -0.42 (27) - -

CLINICAL 6.6 (18) 1.47 (26) 0.57 (22) - - -

M
e

a
n

 (
n

)

STRAND 6.44 (181) 3.66 (76) 0.82 (22) 1.56 (45) 0.3 (473) 0.83 (78)

CLINICAL v. WILD 0.001 0.005 0.002 - - -

SUB v. WILD - - - 0.07 - -

STRAND v. WILD <0.001 <0.001 0.04 <0.001 <0.001 <0.001

STRAND v. CLINICAL 0.56 0.002 0.04 - - -

STRAND v. SUB - - - <0.001 - -

WILD 11+ v. WILD  0.11 0.04 0.02 0.04 -

STRAND 0* v. STRAND <0.001 <0.001 0.66 0.39 - -

K
S

 t
e

st
 p

-v
a

lu
e

WILD 0* v. WILD 0.07 0.38 0.66 0.06 - -

318

319 As with the longitudinally sampled animals, leptospiral DNA was detected in both 

320 STRAND and WILD animals for a wide range of antibody titer and renal index values (Fig 

321 3C&D). However, unlike the longitudinal groups, the cross-sectional data also included 

322 seronegative animals (i.e. no detectable anti-Leptospira antibodies; Fig 3C&D; plotted 

323 above log2 titer of 0). These animals presented with a range of renal index scores and, 

324 intriguingly, included animals shedding leptospiral DNA (Fig 3C and 3D; see section 

325 ‘Antibody Titer Kinetics and Shedding Duration’ for further discussion of these animals). 

326 The broad congruence of the cross-sectional datasets with the longitudinally 

327 collected data corroborates the assumption that the CLINICAL and SUBCLINICAL animals 

328 jointly define the course of infection in this space and establishes that cross-sectional data 

329 can be interpreted within this temporal framework. 
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330

331 Tracking the Distribution of Disease Severity. Defining the mean and range of pathogen-

332 induced disease severity at different times since infection enhances our ability to interpret 

333 confusing host presentations (Fig 2) and hence understand disease dynamics in a system. 

334 However, biases in data sources must be considered when interpreting these data. In our 

335 study, when all data are combined, we see that initial disease severity (i.e. renal indices 

336 when animals have high antibody titers) ranges from healthy to severely ill (Fig 3). 

337 However, by design, initial renal index values in the CLINICAL animals captured only the 

338 upper range of disease severity, while the SUBCLINICAL animals occupied only the lower 

339 healthy range. WILD animals were sampled only if apparently healthy, and their renal 

340 index scores reflected this initial assessment, mostly occupying only the healthy range even 

341 during the presumed initial stage of infection (Fig 3 and Fig 4 titer level 11+). By contrast, 

342 STRAND data, which were collected without applying selection criteria to candidate 

343 animals, showed a wide range of initial disease severity and appear to knit together the 

344 various subset datasets to which specific selection criteria were applied (e.g. WILD, 

345 CLINICAL, SUBCLINICAL; Fig 3). Of note, although most of the seropositive WILD animals 

346 fall within the healthy range of renal index values, at the highest titer values a few exceed 

347 the healthy range (Fig 3D), and the mean renal index score of those individuals at this 

348 highest titer level is greater than those of the other levels (Fig 4; Table 3), suggesting that 

349 these animals can experience some degree of initial renal compromise from which they 

350 recover. 

351 In many systems, disentangling disease caused by the pathogen of interest versus 

352 disease from another etiology can be difficult. In our study, while STRAND data capture the 
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353 full spectrum of disease and follow the trajectory defined by the longitudinal data, this 

354 trajectory is shifted up the renal index axis and there are some obvious outliers (e.g. mid-

355 low antibody titer, high renal index individuals; Fig 3C). STRAND renal index score 

356 distributions were significantly higher than those of almost all other datasets (i.e. 

357 CLINICAL, SUBCLINICAL, and WILD) at all antibody titer levels (with the single exception 

358 that renal index distributions for the highest-titer groups of STRAND and CLINICAL were 

359 indistinguishable (Fig 4; Table 3)). We hypothesize that this upward shift in STRAND renal 

360 index score is due to individuals experiencing renal compromise from causes other than 

361 leptospirosis and that overall STRAND host-pathogen dynamics are consistent with those 

362 described by the longitudinal data, i.e., animals are recovered clinically from leptospirosis 

363 by the time their log2 antibody titers have declined below 9 (Fig 3A-C & Fig 4). 

364 To test this idea, we analyzed the group of seronegative, non-shedding STRAND 

365 animals that were presumably never infected and never exposed. Any renal compromise 

366 observed in this group would be from a cause other than leptospirosis and the range of 

367 their renal index values provides a reference against which to compare currently or 

368 previously infected sea lions. We found that the renal index distribution of these 

369 seronegative, non-shedders in the STRAND dataset (denoted 0* in Table 3) was not 

370 significantly different from those of the mid and lower antibody titer STRAND groups (1-5, 

371 6-8; (Fig 4; Table 3). This suggests that outliers found on the map – mid-low antibody titer 

372 with high renal index (Fig 3C) – which, according to the host-pathogen trajectory described 

373 in Fig 3A-B, should have fully recovered from Leptospira-induced renal compromise, are 

374 equivalent to the seronegative non-shedding STRAND animals experiencing disease from 

375 another etiology. Similar analyses of the WILD animals showed no significant difference 
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376 between seronegative, non-shedding animals and animals with titers, further supporting 

377 our assumption of apparent health of this group.

378

379 Predicting Survival. In hospital and rehabilitation settings, determining probability of 

380 survival can be vital for patient triage and efficient allocation of resources. Using data on 

381 renal index scores that are readily available at admission, we found a significant negative 

382 relationship between these scores and survival of animals suspected of having 

383 leptospirosis (Fig 5; OR = 0.64, 95% CI = 0.53 – 0.78, p<0.001). This relationship is not only 

384 informative for guiding management in a clinical setting, but the absence of high renal 

385 index values in the WILD animals suggests that Leptospira-associated mortality in the 

386 apparently healthy animals selected for sampling is likely low. 

387

388 Antibody Titer Kinetics and Shedding Duration. Estimating an individual’s time since 

389 infection aids in assessing infection incidence [6, 16] [4] and, in combination with data on 

390 shedding status, can enable estimation of the duration of infectivity – a value which is 

391 notoriously difficult to determine in wildlife where repeated sampling of individuals is rare. 

392 To approach this problem, we explore the hypothesis that for our system there is a single 

393 dominant pattern of antibody titer decline, regardless of initial disease severity, such that 

394 titer acts as a rough measure of time since infection. We begin by noting that animals 

395 shedding leptospiral DNA exhibited antibody titers ranging from very high to seronegative 

396 (Fig 3B-D; S2 Table). Under the working hypothesis that all animals experience similar 

397 antibody titer kinetics, low titer and seronegative shedders would be chronic shedders. 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819532doi: bioRxiv preprint 

https://doi.org/10.1101/819532


22

398 To test this idea we considered the epidemiological context of our data: during our 

399 study period, outbreaks occurred in 2008 and 2011 (Fig 6A). If antibody titer decline 

400 initially occurs rapidly as seen with the CLINICAL animals and then quite slowly as seen 

401 with the SUBCLINICAL animals (Fig 2C&D), we should see relatively few low titer animals 

402 during an outbreak year, and relatively more with each year until the next major outbreak. 

403 Similarly, observation of seronegative shedders should occur after outbreaks as titers dip 

404 below detection. 

405 We found support for our hypothesis when we plotted data from the combined 

406 WILD and STRAND datasets. The proportion of low titer (log2 titer 1-5) animals increased 

407 following major outbreaks, particularly after 2011 when incidence remained very low (Fig 

408 6A&B). Regarding seronegative shedding, as predicted the proportion of shedding animals 

409 that were seronegative was high in 2012, immediately following the 2011 outbreak; 

410 however, intriguingly, no seronegative shedders were detected in 2013 or 2014 (Fig 6C). 

411 No seronegative shedding was detected in 2008 and 2009 either, but this is likely due to 

412 very small sample sizes of animals tested in these years (N=3-6) compared with 2010-2014 

413 (N=73-291; S2 Table). The fact that seronegative shedding occurred the year immediately 

414 after a major outbreak, but not in the two years that followed, suggests that titer decline 

415 may occur more rapidly in some individuals than predicted by SUBCLINICAL animal titer 

416 kinetics and that shedding duration may be less than 2 years. In addition, the prevalence of 

417 longer-term chronic shedders might be quite low, resulting in low power to detect. 

418 Although noisy, these field data align with our argument that animals that are 

419 shedding while seronegative (or low-titer seropositive) may be chronic shedders. 

420 Combined with our earlier result that antibody titers act as a rough measure of time since 
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421 infection, this provides an opportunity to learn more about shedding duration. Precise 

422 quantitative estimates are impossible, particularly due to wide uncertainty on the slow 

423 decay rate of low titers, but a lower bound on shedding duration can be computed using the 

424 initial rapid decay rate. Assuming a constant titer decay rate of 0.058 log2 antibody titer 

425 units/day (the median decay rate of the CLINICAL animals) and an initial titer of 11 (the 

426 median initial titer of the CLINICAL animals), we conservatively estimate the approximate 

427 time taken to reach a given titer level (S3 Table), e.g. we calculate that it takes at least 189 

428 days to reach seronegative status. From this, we can estimate the approximate duration of 

429 shedding for a PCR-positive individual with that antibody titer. However, applying similar 

430 logic to the decay curves suggested by the SUBCLINICAL animals, and still assuming an 

431 initial titer of 11, we obtain estimates of shedding duration for seronegative shedders that 

432 are much longer, e.g. ~ 6 years. Given the important caveats stated above and the low 

433 SUBCLINICAL sample size (N=2), as well as further biological caveats discussed below, the 

434 true shedding duration of seronegative shedders likely falls somewhere between these two 

435 estimates.  

436

437 Predicting Shedding. Data on antibody titers (and in our case renal index, also derived 

438 from serum samples) are often more readily available than those on active pathogen 

439 shedding. If a clear relationship between one or both of these biomarkers and shedding can 

440 be established, then shedding may be predicted when shedding data are otherwise 

441 unavailable. Using a dataset including all animals (CLINICAL, SUBCLINICAL, WILD and 

442 STRAND) for which shedding data were available, we performed logistic regression to 

443 investigate how antibody titer and renal index were related to pathogen shedding (using 
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444 only the first sample date per individual). We found that antibody titer contributed 

445 significantly to the final model (p<0.001), but that renal index (p=0.96) and the interaction 

446 between renal index and antibody titer (p=0.85) did not. The probability of shedding 

447 increased with increased antibody titer (Fig 7A; OR = 1.67, CI = 1.55 – 1.80). Using this 

448 relationship, we predicted shedding status in STRAND animals for which shedding data 

449 were missing, using only the first sample date per individual, and were able to produce a 

450 more complete map of the host-pathogen space (Fig 7B&C). Using all datasets, but 

451 including only the first sample collected for an animal, we estimated an overall shedding 

452 prevalence of 0.22 (PCR tested and untested, n=1510) which is substantially higher than 

453 the prevalence of 0.15 calculated using the raw data (PCR tested only, n=811), showing we 

454 may be greatly underestimating shedding prevalence when shedding data are rare relative 

455 to antibody titer data.

456

457 Discussion

458 We have introduced a host-pathogen mapping framework that characterizes the 

459 progression of L. interrogans infections and clinical responses in California sea lions, 

460 drawing on longitudinal data from individual animals. The usefulness of our host-pathogen 

461 map for interpreting cross-sectional data arises from the overall consistency in biomarker 

462 dynamics across individuals, and particularly within similar groups of individuals. In 

463 longitudinally sampled animals, we found antibody titer acted as a rough clock marking 

464 time since infection. Although there was heterogeneity in initial antibody titers and decline 

465 rates, animals followed the same broad initial pattern of titer decline regardless of 

466 pathogen shedding status and initial disease severity. Our longitudinal data were censored 
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467 – we lacked data from the earliest stages of infection in these stranded animals, especially 

468 for the SUBCLINICAL animals, and the CLINICAL animals were followed for at most 90 days 

469 – yet trajectories of antibody titer decline for both groups overlapped and converged, 

470 suggesting that ultimately they follow the same long-term dynamics. Analysis of cross-

471 sectional data corroborated this finding, as they traced the same broad trajectory as the 

472 overlapping SUBCLINICAL and CLINICAL groups, knitting them together. In addition, 

473 consistent with our observation of an initial rapid antibody decline followed by a slow 

474 second phase of decline, cross-sectional data revealed that in the years following a major 

475 outbreak and before another one occurred, the relative proportion of low titer animals 

476 increased with time as initially high titers followed biphasic decline kinetics. 

477 Our host-pathogen map, which shows how severely ill and subclinical infections are 

478 linked, enables us to map the complexity of the host-pathogen relationship, resolve 

479 questions about apparently anomalous presentations, and is useful in addressing a 

480 particular challenge with respect to the traditional dichotomous view of Leptospira-host 

481 relationships. This view describes host species as either reservoir hosts that experience 

482 little disease but can shed chronically for months to years, or accidental hosts that can 

483 become severely ill, and possibly die, but do not become chronically infected [1, 25]. Thus, 

484 sea lions present an interesting challenge to this view as they show characteristics of both 

485 presentations. For example, sea lions showed a range of clinical disease in the initial stage 

486 of infection (i.e. at high titers), and although shedding was detected in the earliest phase 

487 regardless of clinical disease, there was substantial variation in shedding duration as 

488 determined by detection of both shedding and non-shedding sea lions at each antibody 

489 titer magnitude (including seronegative). Our mapping approach resolves this tension by 
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490 showing that, in the case of Leptospira infection in sea lions, the accidental and reservoir 

491 characteristics seen in individual sea lion presentations are extremes of a unifying 

492 trajectory of the host-pathogen interaction, and our map shows how these classical 

493 manifestations are linked both within an individual’s infection as well as on a population 

494 level. This approach is of particular value for wildlife disease ecology, since many host-

495 pathogen relationships are poorly characterized, and an in-depth study in a controlled 

496 experimental setting is generally not possible.

497 Characterizing the temporal trajectory of the infection and recovery process and 

498 establishing consistency in antibody kinetics is especially important for accurately 

499 interpreting the relationship between antibody titer and leptospiral DNA shedding. This 

500 enables rough estimation of shedding duration and potentially identification of chronic 

501 shedders – data that are key to accurate model parameterization, but notoriously difficult 

502 to collect for wildlife systems. Infectious disease theory predicts that shedding duration 

503 will influence transmission dynamics and modeling efforts have shown that chronically 

504 shedding individuals play a critical role in population-level pathogen persistence both in 

505 general [31] and specifically in California sea lions [19]. Using our map of titer decay and 

506 clinical recovery, we identify low titer and seronegative shedders as likely chronic 

507 shedders, and using titer kinetics of longitudinally followed animals we obtain estimates of 

508 shedding duration from animals sampled only once.

509 Quantitative analysis of biomarker data can also define relationships between 

510 biomarkers and specific disease outcomes. Results from these analyses can then be applied 

511 to fill gaps in incomplete datasets. This is particularly important as some desired data types 

512 are more difficult to obtain, or are unavailable at particular time points, e.g., survival data 
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513 are only available when no longer clinically useful, and urine can be more difficult to collect 

514 than serum. We predicted urinary shedding of Leptospira from antibody titer magnitude, 

515 and by applying this relationship across our full dataset we estimated a higher shedding 

516 prevalence than that in the smaller dataset for which shedding data were available. 

517 However, the opposite could have been true had the group composition been different in 

518 the smaller ‘training’ dataset. Therefore, in all cases of establishing these relationships 

519 between biomarkers, the impact of group composition and the epidemiological context of 

520 the data must be carefully considered. For example, in our case, seronegative shedding was 

521 more common the year following a major outbreak, had only these data been used when 

522 establishing the relationship between titer and shedding, shedding prevalence estimates 

523 would have been much higher. In future work, increasing the amount of data included – 

524 biomarker, demographic, environmental – in models defining these relationships, as in 

525 Borremans et al. [6], may further improve estimates by accounting for differences among 

526 individuals, and time periods.

527 By analyzing quantitative antibody titers jointly with other biomarker data, such as 

528 clinical or infection status, individuals that are indistinguishable by one measure but in fact 

529 are biologically distinct, may be better characterized and identified. For example, 

530 subclinical infection was seen across all titer levels, but severe disease was seen almost 

531 exclusively at high titers – as titers declined, only the rare outlier showed evidence of 

532 clinical disease. Using a binary approach to interpreting antibody titers, the outlier 

533 individuals with mid-low titer and severe renal disease may be categorized as 

534 ‘seropositive’ and miscategorized as acute Leptospira infections. However, through 

535 comparisons with a group of individuals thought never to have been infected, we show that 
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536 these outliers were infected in the past (giving rise to the detected antibodies) but likely 

537 exhibited renal disease from another more recent etiology. This argument is supported by 

538 the lack of leptospiral DNA shedding in any of these outlier individuals. This general 

539 principle is relevant to the broader field of public health, as a pervasive health issue in 

540 developing countries is the similarity in disease presentations among a diverse group of 

541 infectious and non-infectious etiologies (e.g. acute febrile illnesses; pneumonia; diarrheal 

542 disease [32, 33]) leading to possible misdiagnosis. Quantitative analysis of multiple 

543 biomarkers, as exemplified by our host-pathogen map, facilitates identification of outliers 

544 and thus cryptic causes of disease. This information can aid appropriate treatment choice 

545 by clinicians, management recommendations by epidemiologists, and accurate estimation 

546 of health and economic burden of a particular pathogen by public health agencies [34, 35]. 

547 Using our map and analyses of multiple biomarkers we are able to make predictions 

548 regarding survival, shedding duration, and etiology of clinical disease. We propose that our 

549 approach, or a similar one, may be applied to other host-pathogen systems, but system-

550 specific modifications may be required. In some systems, antibody titer dynamics may 

551 contain more heterogeneity than seen in the Leptospira-sea lion system [6, 15, 16, 20, 21], 

552 necessitating adjustments in the construction or interpretation of the host-pathogen map 

553 such as using different biomarkers, or including more of them [3, 6]. For example, working 

554 in an experimental system, Torres et al. [3] used blood pathogen concentration, instead of 

555 antibody titer, and multiple measures of host health to build a map of ‘disease space’ within 

556 which individuals that became severely ill and died, and those that survived, traced 

557 different pathways as they moved from time since infection. They hypothesized that using 
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558 this map they could plot cross-sectional data and infer an individual’s infection time-line 

559 and predict their prognosis, but did not test this idea.

560 Heterogeneity in the maximum antibody titer, degree of clinical disease 

561 experienced, the shape of the titer decline curve, and the duration of detectable antibodies 

562 has been noted in a number of host-pathogen systems [8, 10, 13, 15, 20, 21], and in some 

563 cases, such heterogeneity is associated with specific characteristics of an individual’s 

564 infection. Subclinical infections with other pathogens have been associated with lower 

565 maximum antibody titers [15, 21], and with shorter antibody titer persistence [15]. 

566 Therefore, it was not obvious a priori whether antibody kinetics of subclinical and clinical 

567 infections would be the same in California sea lions. However, our findings, and those of 

568 others, indicate that despite some heterogeneity in antibody titer magnitude, titer kinetics 

569 for clinical and subclinical infections were roughly the same for Leptospira in sea lions and 

570 Q fever in humans [22]. 

571 Similarly other studies have examined whether chronic infections might be 

572 associated with different titer dynamics, e.g. higher maximum titers and longer persistence 

573 have been seen for chronic cases of Q fever [13, 20]. However, if anything, our data show 

574 the opposite trend. Instead of higher titers and greater antibody persistence, some of our 

575 hypothesized chronic carriers had no detectable antibodies. While our two subclinical 

576 animals – neither of which shed beyond the first several months of infection – had 

577 detectable antibody titers for years. Long-term persistence of antibodies in the 

578 SUBCLINICAL animals may be due to their captive status and its impact on overall 

579 condition and immune function. Alternatively, the long duration of detectable antibodies in 
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580 the SUBCLINICAL animals and the lack of detectable titers in some of our shedders may 

581 reflect the full range of expected variation in titer decay rates and hence titer persistence. 

582 The antibody titer decline that we detected in our sea lions, despite continued 

583 infection in some, may be due to pathogen-specific differences in the underlying host-

584 pathogen interaction. For example, with some infections, including Q fever, the pathogen 

585 continues to circulate in the blood in chronically infected individuals, [36], stimulating the 

586 immune system to continue to produce antibodies and resulting in persistently high titers. 

587 Conversely, in chronic Leptospira infections, once leptospires have colonized the kidneys 

588 they appear to evade the host immune system [37, 38], which would explain the observed 

589 antibody titer decline in our system, despite chronic renal infection and shedding. 

590 We believe our host-pathogen mapping approach yields many benefits, however the 

591 following caveats – some specific to our system, some more generalizable – must be 

592 considered. Individuals in any study population will experience differences in 

593 environmental exposures and conditions and we know that this, and age specific 

594 differences, can lead to variation in biomarker data. For example, adaptive immunity can be 

595 influenced by many factors including age, nutritional status and pathogen exposure history 

596 [39-41]. In addition, several idiosyncrasies in our study may have affected our findings. 

597 Estimates from the two SUBCLINICAL animals may not precisely reflect population level 

598 trends given the small sample size of the SUBCLINICAL group. Our observations were 

599 censored, as data from the CLINICAL animals were limited to the early phase of disease and 

600 recovery, there were only a few data points from this early phase of infection in the 

601 SUBCLINICAL animals, and the very earliest phase from infection to initial illness was 

602 unobserved for all animals. The initial infecting dose of Leptospira is unknown in all cases 
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603 and may have varied substantially, potentially impacting immune response and disease 

604 severity. Both SUBCLINICAL and CLINICAL animals experienced potentially 

605 immunomodulatory conditions, specific to their time in captivity, that animals in the wild 

606 would not have. For example, the SUBCLINICAL animals remained in captivity where they 

607 were neutered and maintained in excellent body condition in a controlled, predator-free 

608 environment. Such conditions may have increased their reserves and their capacity to 

609 invest in a costly immune response [42], resulting in differences in long-term antibody titer 

610 kinetics relative to free-ranging animals, i.e. a slower decline and more persistent antibody 

611 titers. Similarly, CLINICAL animals received medical treatment and supportive care which 

612 may have affected survival, increased their reserves and boosted their immune potential. 

613 Together, these factors may help explain why estimates of shedding duration for 

614 seronegative shedders, based on SUBCLINICAL antibody titer kinetics (i.e. roughly 6 years 

615 to become seronegative), differed from patterns of seronegative shedding detected in the 

616 wild after a major outbreak (i.e. decline to seronegative within 2 years). However, despite 

617 the unique circumstances of our SUBCLINICAL and CLINICAL animals, the combined 

618 longitudinal datasets describe a multiphase titer decline consistent with that found in other 

619 studies [29, 43], and overall patterns seen in the longitudinal data were consistent with 

620 those in the cross-sectional data and likely reflective of the entire sea lion population.

621 Approaches that integrate biomarker kinetics to interpret cross-sectional data can 

622 be useful to clinicians and ecologists alike, and bridge perspectives from these often 

623 separate worlds. Clinicians tend to focus on individual health, while ecologists focus more 

624 on quantifying the natural process and understanding disease dynamics at the population 

625 scale. Using this integrated approach, clinicians can improve individual patient survival 
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626 through more accurate patient triage and efficient allocation of resources, and can reduce 

627 transmission risk to others. Treatments that are expensive, of limited availability, or time 

628 intensive (e.g. dialysis) may be reserved for those individuals with the most severe disease 

629 and the lowest probability of survival in the absence of such therapy. Conversely, in a 

630 wildlife rehabilitation setting, limited resources might be directed towards those with the 

631 highest probability of survival. Stricter, but possibly more expensive, measures to prevent 

632 transmission can be efficiently directed at those individuals with the highest probability of 

633 shedding. Ecologists can better conceptualize model structure using estimates of shedding 

634 prevalence and duration and can better describe population level transmission dynamics. 

635 For example, Buhnerkempe et al. [19] found that the addition of a chronic shedder 

636 compartment to the traditional SIR (susceptible, infected, recovered/resistant) model was 

637 necessary to accurately describe California sea lion-Leptospira dynamics and to capture 

638 long-term patterns of pathogen persistence. Once model structure has been determined, 

639 survival probabilities based on quantitative data (e.g. health, antibody titers) will influence 

640 the duration spent in various model compartments and thus how they contribute to 

641 onward transmission or herd immunity.

642 Historically, many of the principles of disease ecology were developed with 

643 childhood diseases such as measles in mind, and these acute infections have much crisper 

644 life histories for which the relatively simple SIR models can be used to capture the 

645 dynamics [44] (See Fig 1 and S1 Box). As the field addresses more complex host-pathogen 

646 relationships, these old assumptions break down and other models and approaches are 

647 needed. Models need to include greater complexity such as longer and variable infectious 

648 periods [19, 31], quantitative data and antibody titer kinetics [6, 15, 18], and multiple 
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649 biomarkers of disease [6] [4]. Models based on quantitative data and that integrate 

650 antibody titer kinetics have been found to result in better estimates of model parameters 

651 (e.g. transmission rate, basic reproductive rate) and improved model performance and 

652 predictive capability (e.g. force of infection, incidence of infection), especially when only 

653 cross-sectional data were available [6, 10, 12-14, 16-18]. Similarly, models integrating 

654 quantitative serologic data may provide better estimates of incidence, especially relative to 

655 estimates based on reported rates of illness, as such reports miss subclinical infections [12] 

656 [6, 15-17]. We propose that our host-pathogen map provides a framework with which to 

657 visualize quantitative data from multiple biomarkers, determine the relationships between 

658 them, and identify the temporal trajectory of infection and recovery as reflected in changes 

659 in biomarker levels through time. This approach is especially useful for elucidating 

660 pathogen dynamics in wildlife systems, which typically rely on cross-sectional data. 

661 Ultimately this approach can clarify the biology of more complex host-pathogen systems, 

662 and enable the design of more appropriate dynamical models and statistical methods.

663

664 Materials and Methods

665 Study Animals 

666 An overview can be found in Table 1.

667 Wild-caught California sea lions. Urine (n=637) and serum (n=732) samples were 

668 collected from anesthetized or physically restrained unique sea lions (n=730; 2 animals 

669 were recaptured and resampled) caught between September 2008 and November 2014 

670 from three regions – southern California (San Miguel and San Nicolas Islands), central 

671 California (Año Nuevo Island, Monterey and San Francisco’s Pier 39) and northern Oregon 
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672 (Astoria, OR). All urine collection occurred under anesthesia. To minimize anesthetic risk, 

673 only apparently healthy animals were captured and sampled. Estimated ages ranged from 1 

674 to 5 years. These animals represent a cross-sectional sampling of the apparently healthy, 

675 wild, free-ranging population and we refer to them as “WILD”. 

676 Stranded California sea lions. Urine (n=166) and serum (n=797) samples were collected 

677 from 724 unique California sea lions that stranded along the central and northern 

678 California coast and were admitted to a marine mammal rehabilitation center (The Marine 

679 Mammal Center, Sausalito, CA) between 2008 and 2014. Animals stranded due to illness or 

680 injury of all kinds, including, but not limited to leptospirosis, domoic acid toxicity, trauma, 

681 neoplasia, pneumonia and malnutrition. To match the age range for the wild-caught 

682 animals, only animals between the ages of 1 and 5 years were included in the study. These 

683 animals represent a cross-sectional sampling of the ill and injured sea lion population and 

684 we refer to them as “STRAND”. Only STRAND animals with both Microscopic Agglutination 

685 Testing (MAT) and chemistry results from within 14 days of each other were included in 

686 the study (>95% were from within 24-hours of each other). Urine PCR results were 

687 included only if these results were from urine collected within 24 hours of serum collection 

688 for chemistry analysis.  This was to ensure that data on current infection (PCR) was from 

689 the same time point as data on clinical status (serum chemistry), which can change 

690 substantially quite rapidly.  Serum antibody titers have a much slower rate of change, 

691 therefore we allowed serum MAT results to be within 14 days of PCR and serum chemistry 

692 sample collection dates.

693 CLINICAL: In 2010 and 2011, The Marine Mammal Center rescued and initiated treatment 

694 on 91 subadult, juvenile and yearling sea lions that stranded due to severe leptospirosis. Of 
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695 these, 66 died, typically within days of stranding (median = 4 days, interquartile range =2-

696 7). We tracked the progression of host response (serum chemistry values, anti-Leptospira 

697 antibody titers) and active infection (leptospiral DNA shedding in urine) in 13 sea lions that 

698 survived to be released, and we refer to them as “CLINICAL” animals. Animals were 

699 diagnosed with leptospirosis using a combination of clinical observation, serum chemistry 

700 data and necropsy data [45]. Animals were longitudinally sampled starting on Day 0 (their 

701 first day in rehabilitation; serum only) and then approximately every 14 days thereafter 

702 (serum and urine) until an individual’s release back into the wild 6-12 weeks later, as 

703 described in Prager et al. [28]. These animals were not included in analyses of the larger 

704 STRAND dataset except when specifically noted. 

705 SUBCLINICAL: Two animals, which we will refer to individually as SUB1 and SUB2, 

706 collectively as SUBCLINICAL, never showed clinical signs of disease the entire period 

707 during which they were monitored as determined by clinical observation, complete 

708 physical examinations, complete blood counts and serum chemistry data. SUB1 stranded as 

709 a yearling male (i.e. between 1 and 2 years) in southern California in June 2010 (as 

710 described in Prager et al. [27]) with a flipper injury that precluded release back into the 

711 wild, and initially had no detectable anti-Leptospira antibodies. SUB1 seroconverted (i.e. 

712 acquired anti-Leptospira antibodies) in rehabilitation, with no observed clinical signs, at 

713 some unknown time-point within a 15-month period and was shedding leptospiral DNA 62 

714 days after the first detected anti-Leptospira antibodies [27]. SUB1 was adopted by the U.S. 

715 Navy Marine Mammal Program (MMP) July 12, 2012, and samples were provided for 

716 monitoring every 1 to 9 months for a total of 44 months from the initial date that 

717 antibodies were detected. Because the date of infection was unknown, for our analyses we 
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718 used the date of the first detected titer as Day 0. SUB2 stranded as a juvenile male (i.e. 

719 between 2-4 years), moderately underweight with a neck laceration, and was brought to 

720 The Marine Mammal Center October 22, 2011 for treatment. He showed no clinical signs of 

721 leptospirosis, but had an initial, moderately high anti-Leptospira antibody titer (log2 titer = 

722 10). SUB2 was released back into the wild 3 weeks later but stranded again 3 months after 

723 the initial stranding event with flipper injuries and still no clinical signs of leptospirosis. He 

724 was never re-released and was adopted by the Navy July 11, 2012. Samples were provided 

725 for monitoring every 1-7 months for 44 months from Day 0, defined as the date of the first 

726 detected antibody titer, which was also the day of first stranding. It is possible that this 

727 animal experienced clinical disease prior to being monitored, however he never showed 

728 clinical signs consistent with leptospirosis while in rehabilitation or while at the U.S. Navy 

729 MMP. For both SUB1 and SUB2, the magnitude of the first detected anti-Leptospira 

730 antibody titers, and timing (autumn of 2011, during a major Leptospira outbreak in the 

731 wild sea lion population; Fig 2C&D and Fig 6A [23, 45]), suggest that exposure to Leptospira 

732 was recent – i.e. within weeks or months. 

733 Samples collected from stranded animals (STRAND, CLINICAL and SUBCLINICAL) 

734 for this study were collected during routine clinical care at the rehabilitation centers and 

735 under their approved National Oceanic and Atmospheric Administration (NOAA), NMFS-

736 Southwest Region Stranding Agreements under the authority of the Marine Mammal 

737 Protection Act. Samples collected from SUB1 and SUB2 at the U.S. Navy MMP were collected 

738 during their routine care and under U.S. Code, Title 10, USC 7524. The MMP houses and 

739 cares for a population of California sea lions in San Diego Bay (CA, USA). MMP is accredited 

740 by AAALAC International and adheres to the national standards of the U.S. Public Health 
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741 Service Policy on the Humane Care and Use of Laboratory Animals and the Animal Welfare 

742 Act. During their clinical care, stranded animals received a variety of treatments which may 

743 have included, but were not limited to, subcutaneous fluids, antimicrobials, sedatives, and 

744 gastro-intestinal protectants.

745

746 Sample Analysis

747 Serum agglutination testing (MAT) was performed at the California Animal Health 

748 and Food Safety (CAHFS) laboratory, Davis, California, or at the Centers for Disease Control 

749 and Prevention (CDC), Atlanta, Georgia, using live cultured Leptospira spp. (reference 

750 strains) to measure the serum anti-Leptospira antibody titers. Samples run at CAHFS were 

751 run against a 6 serovar panel and samples run at the CDC were run against a 2 or 19 

752 serovar panel (as described in Prager et al. [28]). We only report MAT titer results against 

753 L. interrogans serovar Pomona as historically this is the strain that elicits the highest MAT 

754 titer in the majority of California sea lions tested [24] and it is the only serovar isolated 

755 from this species to date [27, 46]. Serum samples were tested at doubling dilutions starting 

756 from 1:100, and agglutination was read using dark field microscopy. Endpoint titers were 

757 reported as the highest dilution that agglutinated at least 50% of the cells for the strain 

758 tested [47]. Titer results were log transformed for ease of interpretation using the 

759 following formula: log2(titer/100) + 1, thus a titer of 1:100 = 1, 1:200 = 2, etc. Titers 

760 reported as <1:100 were set equal to 0 on both the log and regular scale. Throughout the 

761 paper “antibody titer” refers to this log transformed titer value. All animals with a 

762 detectable titer (i.e. ≥1:100) were considered seropositive and assumed to have been 

763 infected with Leptospira at some point.
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764 Serum chemistry analyses of wild-caught sea lions and stranded sea lions from The 

765 Marine Mammal Center were performed on an ACE® Clinical Chemistry System (Alfa 

766 Wassermann, Inc., West Caldwell, New Jersey, USA), those of SUB1 were performed initially 

767 on either a VetTest® 8008 Chemistry Analyzer (IDEXX Laboratories, Inc., Westbrook, 

768 Maine, USA) or a Cobas 800 modular analyzer (Roche Diagnostics, Indianapolis, Indiana, 

769 USA). Once SUB1 and SUB2 were at the MMP, serum chemistry analyses were performed 

770 on a Roche Cobas 8000 system (Roche Molecular Systems, Pleasanton, CA, USA) by the 

771 Naval Medical Center in San Diego, CA. 

772 We assessed leptospiral DNA shedding in urine using real-time polymerase chain 

773 reaction (PCR) as described in Wu et al., [48]. Because urine was collected under 

774 anesthesia, and anesthesia can pose a health risk to compromised animals, only apparently 

775 healthy wild-caught animals were caught and sampled, and of the STRAND animals, urine 

776 was collected only from those undergoing anesthesia for other reasons or during necropsy. 

777 Individuals shedding leptospiral DNA were considered infected and infectious as the 

778 primary mode of transmission of Leptospira is through either direct or indirect contact 

779 with leptospires shed in the urine of infected individuals [49]. 

780

781 Data Analyses

782 Antibody Titer Kinetics. For data from each CLINICAL individual, we used linear 

783 regression to characterize how the log2-transformed antibody titer declined with time. We 

784 calculated the rate of antibody titer decline as the slope of the regression line and the t ½ as 

785 the negative inverse of the slope. Using these data we determined the median titer decay 

786 rate and t1/2 for the CLINICAL animals.
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787 Visual inspection of the SUBCLINICAL data suggested a biphasic pattern of titer 

788 decline (Fig 2D) during the time that they were monitored, echoing findings from earlier 

789 work [29, 30].  Thus we used piecewise linear regression to estimate the titer decline rate 

790 and t1/2 of the first and second phases separately for SUB1 and SUB2. For each animal, we 

791 estimated the specific day that determined the change point of the regression by fitting 

792 models over a range of possible change points from 10 to 500 days and using the day that 

793 yielded the model with the minimum mean-squared error.

794 Shedding Duration. We used the median antibody titer decline rate (r = 0.058 log2 

795 antibody titer units/day) of the CLINICAL animals (Table 2) as well as their median initial 

796 antibody titer (ti = 11) to calculate an approximate estimate of the lower bound of shedding 

797 duration (D) in days for each observed titer level t in PCR-positive sea lions using the 

798 following equation:

799 𝐷= 𝑡𝑖 ‒ 𝑡𝑟
800 This is a lower bound because it ignores further shedding after the date of observation, and 

801 it neglects any shedding that occurred at titer levels > ti.

802 Similarly, using SUBCLINICAL animal biphasic decay rates, we calculated an approximate 

803 estimate of the duration of shedding (Ds) if an animal started at an initial titer equivalent to 

804 the median initial antibody titer of the CLINICAL animals (ti = 11) and continued shedding 

805 until the animal became seronegative. Using the following equation we used the 

806 SUBCLINICAL specific decay rates (Table 2; r1 and r2) to estimate the durations of the initial 

807 and secondary phases for each animal, and the SUBCLINICAL specific titer at which the 
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808 phase switch occurred (SUB1 ts = 2; SUB2 ts = 5) to mark the switch from initial to second 

809 phase decay rates:

810 𝐷𝑠= 𝑡𝑖 ‒ 𝑡𝑠𝑟1 +

𝑡𝑠𝑟2
811 Renal Index. Blood urea nitrogen, creatinine, sodium, chloride and phosphorus are serum 

812 chemistry values known to change with leptospirosis-induced renal compromise [23]. We 

813 used principal components analysis (PCA) to derive a single measure of renal function from 

814 these five serum chemistry values, which we termed the renal index. PCA was performed in 

815 R using the command “prcomp” in the program “stats”[50]. BUN was log10 transformed and 

816 each individual serum chemistry measure was scaled to have unit variance prior to 

817 analysis. The dataset used included all longitudinal data (CLINICAL and SUBCLINICAL), as 

818 well as all WILD animals that were both seronegative for anti-Leptospira antibodies and 

819 negative for urinary leptospiral DNA shedding (i.e. the 0* group from Table 3). CLINICAL 

820 and SUBCLINICAL animals were included to capture the range of clinical compromise in 

821 infected animals from initial infection through recovery, and the subset of WILD animals 

822 was included to anchor the analysis with a group of apparently healthy, uninfected, 

823 unexposed animals. The first principal component (PC1) explained 54.8% of the variation 

824 in the data, and had factor loadings consistent with clinical reports of leptospirosis-induced 

825 disease (i.e. indicating elevated blood urea nitrogen, creatinine, sodium, chloride and 

826 phosphorus [23]). Therefore we used PC1 as the renal index to assess clinical severity of 

827 leptospirosis. Similar PCA results were found using just cross-sectional data (STRAND). To 

828 establish the range of values corresponding to healthy renal function, we computed the 

829 95% interquantile range of renal index values (i.e. PC1) experienced by the apparently 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819532doi: bioRxiv preprint 

https://doi.org/10.1101/819532


41

830 healthy WILD animals (-1.72 to 1.74). As values increased above this range, so did the 

831 degree of renal compromise.

832 Using the linear coefficients associated with each serum chemistry variable for PC1 

833 from this analysis of longitudinal and WILD data, we calculated renal index values for all 

834 animals with serum chemistry results in the STRAND and WILD datasets.

835

836 Predicting Survival and Shedding. We used logistic regression to assess renal score as a 

837 predictor of survival in stranded animals at admission. We used the first sample available 

838 from all animals in the STRAND and CLINICAL groups with samples collected within 72 

839 hours of admission (n=103) and that were categorized as leptospirosis cases based on 

840 clinical signs and serum chemistry values (BUN > 100 mg/dl, creatinine > 2mg/dl). Because 

841 we sought to assess the usefulness of this prediction as a tool for triaging animals in a 

842 rehabilitation center, antibody titer data were not included as only serum chemistry results 

843 would be available at this time. 

844 In a separate analysis, we used multivariate logistic regression to assess predictors 

845 of leptospiral DNA shedding. Candidate predictors included serum anti-Leptospira antibody 

846 titer, renal index scores, and the interaction between these two variables. The dataset 

847 included all study animals for which we had PCR results, but only the first PCR result per 

848 individual. We used the “anova” command in the R package “stats” [50] to perform 

849 backward stepwise selection and the likelihood ratio method to include only variables that 

850 contributed significantly at the 0.05 level to the final model. Our final model included only 

851 antibody titer, so we then used the relationship between shedding and titer to predict the 

852 shedding status of the untested animals. To do this, we calculated the expected number of 
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853 shedders amongst the untested animals at each observed titer level using the total number 

854 of untested animals and the probability of shedding at that titer level. We then randomly 

855 selected this expected number of animals from amongst the untested animals at that titer 

856 level and assigned them a positive shedding status. We performed logistic regression in R 

857 using the “glm” command in the package “stats” [50]. 

858 Comparing Renal Index Distributions. We used the Kolmogorov-Smirnov (KS) test to 

859 assess differences in distributions of renal index scores between groups of sea lions 

860 (CLINICAL, SUBCLINICAL, STRAND, and WILD) and within groups by anti-Leptospira 

861 antibody titer level. Because distributions were not continuous, we used the bootstrap 

862 Kolmogorov-Smirnov test “ks.boot” in the “Matching” package in R [51]. To achieve 

863 sufficient sample sizes, titers were collapsed into five groups, based on the titer kinetics 

864 observed in longitudinally followed animals (CLINICAL and SUBCLINICAL). The highest 

865 grouping included titers ≥ 11, consistent with the majority of the initial titers in CLINICAL 

866 animals (11/13 had titers ≥ 11). All CLINICAL animals were in the healthy renal index 

867 range by the time they had a titer of 8 and were released by the time their titer declined to 

868 6, so these levels were used to define the ranges of the next two groupings: titers 9-10 to 

869 capture animals recovering from clinical disease, and 6-8 to capture the recovered, 

870 subclinical phase as seen in CLINICAL animals. Titer group 1-5 captured the longer-term 

871 subclinical phase, as seen in SUBCLINICAL animals. Titer group 0 captured seronegative 

872 animals.  

873 95% Confidence Intervals (CI). 95% CI in Fig 6 were calculated in R using binom.confint 

874 in the package “binom” using the Pearson-Klopper method [52]. 95% CI for Table 2 were 
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875 calculated using normal approximations based on linear regressions for antibody titer 

876 kinetics. 

877 Figures. All figures were made in R. Logistic regressions were plotted using logi.hist.plot in 

878 the package “popbio” [53], all other figures were made using ggplot in the package 

879 “ggplot2” [54].
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1104 Supporting Information Legends

1105 S1 Box. Comparison of host-pathogen interactions based on the canonical ecological model 

1106 of infectious disease dynamics in which individuals can be classified into four groups: 

1107 susceptible (S), exposed (E), infected/infectious (I) and recovered (R), with more complex 

1108 host-pathogen interactions.

1109 S2 Table. Total number of sea lions with a given log2 antibody titer by year for wild-caught 

1110 (WILD), stranded (STRAND) and subclinically infected (SUB1 and SUB2) sea lions. In 

1111 parentheses are the number of animals shedding leptospires for each log2 antibody titer 

1112 level over the total number of PCR tested animals.

1113 S3 Table. Predicted shedding duration by titer level assuming a constant titer decay rate of 

1114 0.058 log2 antibody titer units/day (the median decay rate of the CLINICAL animals) and 

1115 an initial titer of 11 (the median initial titer of the CLINICAL animals).

1116 S4 Data. Raw data on used for analyses. Columns include animal ID, DataType (i.e. 

1117 CLINICAL, SUBCLINICAL, STRAND, WILD), AdmitYear (i.e. the year an animal was caught – 

1118 WILD – or admitted for rehabilitation - CLINICAL, SUBCLINICAL, STRAND), 

1119 SampleYearMAT (year serum was collected for serum MAT), LogMAT (log2 MAT result), 

1120 SampleYearChem (year serum was collected for serum chemistry analysis), RenalIndex 

1121 (renal index score calculated as described in the manuscript), SampleYearPCR (year urine 

1122 was collected for PCR, PCR (result of PCR analysis), SurvivalData (information whether the 

1123 animal survived or died during rehabilitation; wild-caught animals were released after 

1124 capture, therefore survival data was unknown – NA), DaySinceAdmission (the number of 

1125 days between admission to rehabilitation and date of sample collection for analysis (MAT, 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/819532doi: bioRxiv preprint 

https://doi.org/10.1101/819532


55

1126 PCR, serum chemistry), DaysSinceFirstMAT (the number of days since sample collection for 

1127 the first MAT analysis). 

1128
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1129 Figure Captions

1130 Fig 1. Map showing how infected individuals move through the “host-pathogen 

1131 space” in dimensions reflecting severity of clinical disease (y-axis) and time since 

1132 infection (~antibody titer, x-axis). When susceptible individuals become infected 

1133 (indicated by red shading – the intensity of shading indicates the probability that an assay 

1134 for current infection – e.g. PCR – would be positive), they move through this space in a 

1135 trajectory towards higher titer and more severe clinical disease states and then, depending 

1136 on the type of pathogen and the host-pathogen interaction, they eventually return to a state 

1137 of good health and their titers decline. The shape of this trajectory and their infection state 

1138 will differ based on the host-pathogen system and the degree of heterogeneity in host 

1139 responses. Here we show the trajectory that would be expected based on the canonical 

1140 susceptible (S), exposed (E), infected/infectious (I) and recovered (R) model of infectious 

1141 disease dynamics with the position of individuals as they would pass through each of the 

1142 four states indicated by the blue circles. However, individuals – represented by question 

1143 marks in this figure – experiencing more complex host-pathogen interactions may fall 

1144 outside of this canonical trajectory (see S1 Box for further detail).

1145

1146 Fig 2. Changes in antibody titer and renal index in longitudinally sampled California 

1147 sea lions. Renal index scores (A) and log2 anti-Leptospira antibody titer (C) by time in 

1148 individual sea lions that stranded with clinical signs of leptospirosis and were followed for 

1149 6 – 12 weeks (CLINICAL dataset). Renal index scores (B) and log2 antibody titer (D) by time 

1150 in two stranded sea lions – SUB1 (square, grey line) and SUB2 (triangle, orange line) – that 

1151 never showed Leptospira-related clinical disease and were monitored for 3 years (SUB 
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1152 dataset). In panel D, regression lines, as determined by piecewise linear regression, are 

1153 drawn through first and second phases of antibody titer decline for each SUB animal. For 

1154 CLINICAL animals, day 0 is the day of admission to rehabilitation, for SUB1 and SUB2, day 0 

1155 is the day when anti-Leptospira antibodies were first detected. Grey horizontal bands in 

1156 panels C and D delineate the full range of initial antibody titers in the CLINICAL animals, 

1157 and in panels A and B they delineate the 95% interquantile range of renal index scores in 

1158 apparently healthy, uninfected, seronegative wild-caught animals. 

1159

1160 Fig 3. Map of host-pathogen space. Maps of the host-pathogen space created by plotting 

1161 jittered log2 anti-Leptospira antibody titers (x-axis) against renal index values (y-axis). 

1162 Plots created using data from the longitudinally followed animals (CLINICAL and 

1163 SUBCLINICAL), color-coded by time since admission to a rehabilitation center (A) and by 

1164 urinary leptospire shedding status (B). Plots created using cross-sectional data from 

1165 stranded animals (STRAND; C) and wild-caught, free-ranging animals (WILD; D) color-

1166 coded by urinary leptospire shedding status. In all panels, horizontal grey bands are 

1167 equivalent to those in Fig1 C&D, and the vertical grey bands are equivalent to the 

1168 horizontal bands described in Fig1 A&B. 

1169

1170 Fig 4. Renal index score distributions by log2 antibody titer level, for each sample 

1171 group. Sample groups are as described in the methods and are wild-caught (WILD), 

1172 subclinical (SUB), clinical (CLINICAL), stranded (STRAND) sea lions. Titer groups were 

1173 chosen based on the titer dynamics observed in the longitudinally followed animals 

1174 through time. Groups roughly match the different phases of the host-pathogen relationship 
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1175 ranging from initial infection (11+), clinical recovery (9-10) and two stages of historic 

1176 infection (1-5 and 6-8). Group 0 contains seronegative animals. The grey line denotes the 

1177 upper boundary of the healthy range for renal index values. The upper whisker extends 

1178 from the hinge to the highest value that is within 1.5 * IQR of the hinge, where IQR is the 

1179 interquartile range. The lower whisker extends from the hinge to the lowest value within 

1180 1.5 * IQR of the hinge. 

1181

1182 Fig 5. Survival probability predicted from renal index score. The probability of survival 

1183 as a function of renal index score plotted over histograms of the number of animals 

1184 surviving (top histogram) or not surviving (bottom histogram) by renal index value. 

1185 Analyses were run using data from samples collected within 72 hours of admission to a 

1186 rehabilitation center from animals stranding and diagnosed with leptospirosis.

1187

1188 Figure 6. Proportion of stranded animals with leptospirosis (A), proportion of seropositive 

1189 animals that have low titers (log2 titer 1-5) by year with 95% CI (B), and proportion of 

1190 shedding animals that are seronegative by year with 95% CI (C). Total sample size for each 

1191 proportion is indicated within the box. Only STRAND data included in (A) WILD and 

1192 STRAND data for (B) and (C). The proportion of leptospirosis strands is highest in the two 

1193 outbreak years – 2008 and 2011 – and the proportion of low titer animals increases with 

1194 each year after the outbreaks. Similarly, the proportion of seronegative shedders increases 

1195 after the major outbreak in 2011, but then declines to zero by 2013. The single shedder in 

1196 2013 had a log2 antibody titer of 3, no animals were shedding in 2014; therefore a 

1197 proportion could not be calculated. Few shedders were detected in 2008 and 2009 due to 
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1198 small sample sizes of animals PCR tested for shedding (2008 N=6, 2009 N=3, 2010 N=73, 

1199 2011 N=158, 2012 N=119, 2013 N=162, 2014 N=291).

1200

1201 Fig 7.  Shedding probability predicted from log2 anti-Leptospira antibody titer. (A) 

1202 The probability of shedding as a function of log2 anti-Leptospira antibody titer plotted over 

1203 histograms of the number of animals shedding (top histogram) and not shedding (bottom 

1204 histogram) by antibody titer (A). STRAND data plotted using the ‘host-pathogen map’ 

1205 framework as in Fig 3C. Data divided into those individuals that were PCR tested and for 

1206 which shedding status was known (B), and those that were not PCR tested and for which 

1207 shedding status was predicted (C; positive = red, negative = black).
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