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Abstract

COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic
by the World Health Organization, which has reported over 18 million confirmed cases as
of August 5, 2020. In this review, we present an overview of recent studies using Machine
Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID-
19 crisis. We have identified applications that address challenges posed by COVID-19 at
different scales, including: molecular, by identifying new or existing drugs for treatment;
clinical, by supporting diagnosis and evaluating prognosis based on medical imaging and
non-invasive measures; and societal, by tracking both the epidemic and the accompanying
infodemic using multiple data sources. We also review datasets, tools, and resources needed
to facilitate Artificial Intelligence research, and discuss strategic considerations related to
the operational implementation of multidisciplinary partnerships and open science. We
highlight the need for international cooperation to maximize the potential of AI in this and
future pandemics.

1. Introduction

With the continued growth of the COVID-19 pandemic, researchers worldwide are work-
ing to better understand and suppress its spread. Key areas of research include studying
COVID-19 transmission, facilitating its detection, developing possible vaccines and treat-
ments, and understanding the socio-economic impacts of the pandemic. In this article, we
discuss how Artificial Intelligence (AI) can contribute to these goals by enhancing ongoing
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Figure 1: AI applications for the COVID-19 response organized at three levels: the molec-
ular scale, the clinical scale, and the societal scale.

research efforts, improving the efficiency and speed of existing approaches, and proposing
original lines of research.

We have conducted an extensive review of the rapidly emerging literature and identified
specific applications of AI at three different scales:1 the molecular scale, the clinical scale,
and the societal scale (see Figure 1). From a molecular perspective, AI can be used to
estimate the structure of SARS-CoV-2-related proteins, identify existing drugs that may
be repurposed to treat the virus, propose new compounds that may be promising for drug
development, identify potential vaccine targets, improve diagnosis, and better understand
virus infectivity and severity. From a clinical perspective, AI can support COVID-19 di-
agnosis from medical imaging, provide alternative ways to track disease evolution using
non-invasive devices, and generate predictions of patient outcomes based on multiple data
inputs, including electronic health records. From a societal perspective, AI has been applied
in several areas of epidemiological research that involve modeling empirical data, includ-
ing forecasting the number cases given different public policy choices. Other works use
AI to identify similarities and differences in the evolution of the pandemic across regions.
AI can also help investigate the scale and spread of the “infodemic” in order to address
the propagation of misinformation and disinformation, as well as the emergence of hate
speech. In addition to this, we review open-source datasets and resources that are avail-
able to facilitate the development of AI solutions. Sharing and hosting data and models,
whether they be clinical, molecular, or societal, is critical to accelerate the development and
operationalization of AI to support the response to the COVID-19 pandemic.

The purpose of this review is not to evaluate the impact of the described techniques, nor
to recommend their use, but to show the reader the extent of existing applications and to
provide an initial picture and road map of how Artificial Intelligence could help the global
response to the COVID-19 pandemic. Based on our review of the literature, we conclude
with a series of observations and recommendations. First, we note that while there is a broad
range of potential applications of AI covering medical and societal challenges created by the
COVID-19 pandemic, few of them are currently mature enough to show operational impact.

1. The election of this multi-scale categorization was inspired by the digital in-toto reconstruction of living
organisms at genetic, cellular, organism, and societal scales (Luengo-Oroz et al., 2011).
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Figure 2: Increase over time of scientific articles and preprints related to COVID-19 between
January 2 and August 1, 2020. Note that the y axis scales differ between plots.

Second, we recommend that AI solutions targeted at critical application settings – such as
clinical ones – take into account existing regulatory and quality assurance frameworks to
ensure the validity of use and safety, as well as to minimize potential risks and harms.
Finally, we argue that international AI cooperation based on multidisciplinary research and
open science is needed to accelerate the translation of research into global solutions which
can be tailored and adapted to local contexts. More detailed discussions of these points can
be found in Luengo-Oroz et al. (2020) and Luccioni et al. (2020).

2. Article Selection

The mobilization of the scientific community to address the pandemic is unprecedented in
its scale. An automated search for papers posted in the COVID-19 Open Research Dataset
(CORD-19) (Wang et al., 2020) identified over 30,000 coronavirus-related papers posted
between January 1 and August 1, 2020. Of these papers, over 1,000 included the phrases
“machine learning”, “artificial intelligence”, “deep learning”, or “neural network” in the
title or abstract. As shown in Figure 2, the number of papers has grown dramatically since
mid-March 2020.

To select articles for review, we conducted manual searches of pre-print servers and
Google Scholar; we supplemented this with an automated search of the CORD-19 dataset.
We focused on manuscripts released between the dates of January 1 and April 10, 2020,2

and screened articles based on quality, originality, and clarity. The selection process is
described further in Figure 3.

The scope of this review is restricted to applications of Machine Learning (ML) and
Artificial Intelligence, and we have therefore made judgment calls regarding whether certain
methodologies fall into this category. For example, we have included applications where

2. Given the rapid pace of publication, we note that this survey will not be comprehensive when published.
Instead, we have concentrated our efforts on providing a thorough review of publications during the
initial response to the pandemic.
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Figure 3: Flow chart illustrating how articles were selected for the review, adapted from
the PRISMA standard.

authors have explicitly described the use of models such as neural networks and decision
trees, while excluding applications based on simple linear regression models. Furthermore,
we note that many of the articles cited are still preprints at the time of writing this review.
Some manuscripts have been published since our initial reading of the preprint; where the
content of the published article is faithful to that of the initial preprint, we have cited
the published article directly. Given the fast-moving nature of the crisis we strove to be
comprehensive in our coverage, but the full scientific rigor of the remaining unpublished
manuscripts should still be assessed by the academic community through peer-reviewed
evaluation and other quality control mechanisms. For specificity, we signify all preprints
with †.

Finally, since this article assumes background knowledge of both Machine Learning
and the nature of the SARS-CoV-2 virus, we invite our readers to consult Raghu and
Schmidt (2020)† for further explanation regarding the potential of ML for scientific re-
search, and CDC (2020)† for additional information about the virology, clinical features,
and epidemiology of COVID-19. Accessible overviews of SARS-CoV-2 proteins, the infec-
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tion process, and molecular modeling can be found in Corum and Zimmer (2020a, 2020b)
and Dror and Huang (2019).

3. Molecular Scale: From Proteins to Drug Development

At the most granular scale of the scientific response to COVID-19, biochemistry applications
of AI have been used to better understand the proteins involved in SARS-CoV-2 infection
and to inform the search for potential treatments. With respect to the virus itself, four
types of structural proteins are of interest: nucleocapsid proteins (N), envelope proteins
(E), membrane proteins (M), and spike proteins (S) (Liu et al., 2020a; Zhavoronkov et al.,
2020)†. Also of interest are a number of non-structural proteins (NSPs), which are crucial
for viral pathogenesis, including the 3-chymotrypsin-like (3C-like) protease (also known as
3CLPro, the main protease/MPro, or nsp5) and the papain-like protease (PLpro, part of
nsp3). With respect to the virus’ human hosts, research has focused on the angiotensin-
converting enzyme 2 (ACE2) protein, a receptor that facilitates the virus’ entry into host
cells (Hoffmann et al., 2020). Potential applications of AI on this scale include predicting
the structure of these associated proteins, identifying existing drugs which may be effective
in targeting these proteins, and proposing new chemical compounds for further testing as
potential treatments (Zhavoronkov, 2018).

3.1 Protein Structure Prediction

Proteins have a 3D structure, which is determined by their genetically encoded amino acid
sequence, and this structure influences the role and function of the protein (Berg et al., 2002,
Chapter 3). Protein structure is traditionally determined through experimental approaches
such as X-ray crystallography, but these can be costly and time-consuming. More recently,
computational models have been used to predict protein structure (Senior et al., 2020a)†.
There are two primary approaches to the prediction task: template modeling, which predicts
structure using similar proteins as a template sequence, and template-free modeling, which
predicts structure for proteins that have no known related structure (Jumper et al., 2020)†.

Senior et al. (2020b) have developed a system called AlphaFold which focuses on the
latter challenge. The AlphaFold model is based on a dilated ResNet architecture (He et al.,
2016; Yu & Koltun, 2016) and uses amino acid sequences, as well as features extracted
from similar amino acid sequences using multiple sequence alignment (MSA), to predict
the distribution of distances and angles between amino acid residues. These predictions are
used to construct a “potential of mean force” which is used to characterize the protein’s
shape (Senior et al., 2019). This system has been applied to predict the structures of six
proteins related to SARS-CoV-2 (the membrane protein, protein 3a, nsp2, nsp4, nsp6, and
papain-like protease) (Jumper et al., 2020)†.

Heo and Feig (2020)† also use a dilated ResNet architecture, implemented as part of
the transform-restrained Rosetta (trRosetta) pipeline (Yang et al., 2020), to predict the
structure of the above proteins as well as proteins ORF6, ORF7b, ORF8, and ORF10. The
trRosetta network has multiple output heads: one which predicts the distances between
residues in a protein’s amino acid sequence, and others which predict the orientations be-
tween these residues as characterized by five different angles. This approach may allow for
better performance by jointly learning features that are relevant to predicting both distance
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and orientation (Yang et al., 2020). Heo and Feig (2020) refine trRosetta and AlphaFold’s
predicted structures using molecular dynamics simulations and compare the results with
structure predictions from a third approach – C-I-TASSER (Zheng et al., 2019) – which
incorporates nine different methods for contact prediction. While the authors find that the
predicted structures generally have a lot of variability between them, there is some consensus
for predicted structures of the papain-like protease, part of nsp4, and the M protein.

3.2 Drug Repurposing

In addition to better understanding the structure of key proteins involved in SARS-CoV-2
infection, a number of research efforts have focused on identifying known compounds which
might be effective in mitigating infection – including, potentially, already-approved drugs.
We have identified four distinct approaches to this problem, which are facilitated by AI:
the construction of biomedical knowledge graphs, the prediction of protein-ligand binding
affinities, the modeling of molecular docking, and the analysis of gene expression signatures.

3.2.1 Biomedical Knowledge Graphs

Biomedical knowledge graphs are networks capturing the relationships between different
entities – such as proteins and drugs – to facilitate higher-level exploration of how they
connect. Richardson et al. (2020) use this technique to identify Baricitinib, a drug which is
commonly used to treat arthritis via inhibition of JAK1/2 kinases, as a promising therapy
for COVID-19 because it inhibits the AP2-associated protein kinase 1 (AAK1) enzyme and
may, therefore, make it harder for the virus to infect host cells. Related work has described
two approaches which potentially inform the graph construction. First, Segler, Preuss, and
Waller (2018) describe an approach to mining a structured database of chemical reactions
(Reaxys) using a three-part neural network pipeline combined with a Monte Carlo Tree
Search approach (3N-MCTS), in order to understand how various compounds are formed
hierarchically from reactions between simpler component molecules. Second, Fauqueur et al.
(2019) describe a strategy for mining a scientific article database (PubMed) to identify
stylized relationships between gene-disease pairs expressed in individual sentences (e.g.,
“GENE promotes DISEASE”).

Ge et al. (2020)† describe a similar approach to constructing a knowledge graph con-
necting human proteins, viral proteins, and drugs using databases that capture the relation-
ships between these entities. The graph is used to predict potentially effective candidate
drugs. This list is further refined using a Natural Language Processing (NLP) model, i.e., a
Biomedical Entity Relation Extraction (BERE) approach (Hong et al., 2020) applied to the
PubMed database, filtered for mentions of the candidate drug compounds and associated
coronavirus targets. The authors identify a Poly (ADP-Ribose) Polymerase 1 (PARP1)
inhibitor, CVL218, as a promising candidate that is already undergoing clinical trials.

3.2.2 Prediction of Protein-Ligand Binding Affinities

Other studies attempt to predict protein-ligand binding affinities in order to tackle the drug
repurposing problem. Ligands are substances (molecules and ions) which bind with a protein
to trigger a signal, such as activation or inhibition. Hu et al. (2020a)† use a multitask neural
network to predict these affinities, selecting a list of 8 SARS-CoV-2 related proteins which
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they attempt to target using a database of 4,895 drugs. They identify 10 promising drugs,
along with their target proteins and binding affinity scores (which indicate the likelihood
that the drug will act as an inhibitor). In an attempt to increase model interpretability,
they also estimate the precise regions of each target protein where binding is likely to occur.

In a similar vein, Zhang et al. (2020) use a Dense Fully Convolutional Neural Net-
work (DFCNN) architecture, trained to predict binding behavior on the PDBbind database
(Wang et al., 2004), in order to identify potential inhibitors of the 3C-like protease. They
develop a homology (template) model of the target protein using its SARS variant, and
explore databases of existing compounds (e.g., ChemDiv and TargetMol) as well as tripep-
tides to find treatments which may be effective at targeting this protein. Nguyen et al.
(2020a)† also build a SARS-based homology model of the 3C-like protease, and apply their
Mathematical Deep Learning (MathDL) approach to identify potential inhibitors for this
protease. In particular, their model uses representations of proteins and ligands based on
algebraic topology as inputs, and relies on two main datasets: information on 84 SARS
coronavirus protease inhibitors from the ChEMBL database (Davies et al., 2015; Mendez
et al., 2019), and a more general set of 15,843 protein-ligand binding affinities from the
PDBbind database (Wang et al., 2004). They fit two different convolutional neural net-
works (CNNs) (LeCun et al., 2015) on this dataset – a pooled (3DALL) CNN which is
trained on both datasets together, and a multitask (3DMT) CNN which is trained on each
dataset separately (Nguyen et al., 2020b)†. Using a consensus between these CNN mod-
els, the authors identify a list of 15 promising drug candidates from the DrugBank dataset
(Wishart et al., 2018).

Finally, Beck et al. (2020) use their own Molecule Transformer-Drug Target Interaction
(MT-DTI) model of binding affinities to identify US Food and Drug Administration (FDA)
approved antivirals which may be effective in targeting six coronavirus-related proteins.
The MT-DTI model ingests string data in the form of simplified molecular-input line-entry
system (SMILES) data and amino acid sequences, and applies a text modeling approach
that leverages ideas from the BERT algorithm (Devlin et al., 2019). The model identifies
drugs that are expected to be effective in targeting each protein studied. Hofmarcher
et al. (2020)† likewise apply a text-based approach to SMILES data (ChemAI), which in
turn relies on a Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)
model called SmilesLSTM, to screen almost 900 million compounds from the ZINC database
(Sterling & Irwin, 2015) for effectiveness in inhibiting the SARS coronavirus 3C-like protease
and the papain-like protease. They rank compounds according to predicted inhibitory
effects, predicted toxicity, and novelty, and produce a list of 30,000 candidate compounds
for screening.

3.2.3 Molecular Docking

Another approach to drug repurposing and discovery involves molecular docking. One
method for docking is simulation, in which a wide range of candidate ligands interact with a
protein in different orientations and conformations, generating a variety of poses (also known
as the binding modes – i.e., the resulting interactions between the ligand and the protein
as they bind). The poses are subsequently scored and used to predict the ligand’s binding
affinity. Since docking approaches such as simulation can be computationally expensive,
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some research has studied how to make the search more efficient by narrowing the pool of
candidates that must be docked. For example, Ton et al. (2020) develop a Deep Docking
(DD) platform that trains a neural network to predict docking scores, which they use to
identify a set of 3 million candidate 3C-like protease inhibitors from a set of over 1 billion
compounds extracted from the ZINC database (Sterling & Irwin, 2015). The authors then
dock the resulting compounds, presenting the top 1,000 results. On the other hand, Batra
et al. (2020)† train random forests (Breiman, 2001) on SMILES data to predict binding
affinity scores which would result from docking simulations and use this approach to select
187 promising molecules to target the coronavirus S-protein and the ACE2 receptor for a
final docking simulation. They also identify 19,000 additional candidate compounds in the
BindingDB dataset (Liu et al., 2007).

3.2.4 Gene Expression Signatures

A fourth approach to drug repurposing involves discovering therapies which have similar
effects to other known effective treatments. To this end, Donner et al. (2018) use the LINCS
dataset (Keenan et al., 2018) of gene expressions from cells targeted by various perturbagens
(i.e., chemical or genetic reagents to treat cells and alter intracellular processes). They
learn an embedding with a deep neural network classifier that predicts the perturbagen
associated with each signature (i.e., the gene expression that is specifically correlated with
a biological state of interest, such as therapeutic response). In order to correctly classify
signatures associated with the same perturbagen, the learned embedding should abstract
away from the noise in the input data and identify core features that are associated with a
perturbagen’s effect. Their approach can utilize similarity in the learned embedding space to
predict pharmacological similarities in structurally different compounds, and hence expand
the horizon of drug repurposing. Avchaciov et al. (2020)† adapt this approach to find drugs
that produce gene expression signatures that are similar to the COBP2 gene knockout,
which might limit the replication of SARS-CoV-2 based on the gene’s role in the replication
of the related SARS coronavirus. They list twenty of the most promising drugs, many of
which have already been identified as antivirals; since these drugs have been authorized for
clinical trials or already approved, the authors argue that their approach could facilitate
the rapid discovery of potentially effective therapies.

3.3 Drug Discovery

Another line of research attempts to discover entirely new compounds for use in targeting
SARS-CoV-2. Zhavoronkov et al. (2020)† use a proprietary pipeline to find inhibitors for the
3C-like protease. Their models use three types of input: the crystal structure of the protein,
the co-crystalized ligands, and the homology model of the protein. For each input type,
the authors fit 28 different models, including Generative Autoencoders (Makhzani et al.,
2016) and Generative Adversarial Networks (Goodfellow et al., 2014). The authors explore
potential candidates using a reinforcement learning approach with a reward function that
incorporates factors such as measures of drug-likeness, novelty, and diversity. Moreover,
they confirm that the identified candidate molecules are dissimilar to existing compounds,
suggesting that they have indeed found novel candidate drugs.
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Tang et al. (2020a)† also apply a reinforcement learning approach to the discovery of
compounds that inhibit the 3C-like protease. Specifically, the authors create a list of 284
molecules known to act as inhibitors in the context of SARS. They break these proteins into
a series of 316 fragments, which can then be combined using an advanced deep Q-learning
network with fragment-based drug design (ADQN-FBDD) that rewards three aspects of
discovered molecules: a drug-likeness score, the inclusion of pre-determined “favorable”
fragments, and the presence of known pharmacophores (which are abstract design patterns
believed to be correlated with a compound’s effectiveness (Qing et al., 2014)). The 4,922
results are heuristically filtered, and the 47 top compounds are assessed with molecular
docking, from which the researchers then select the top most promising compound and
manually tailor it to produce suggested variants for testing.

In a third approach, Bung et al. (2020)† build a generative model to identify potential
3C-like protease inhibitors. Treating SMILES input strings as a time series of characters,
they build a classifier that predicts the next character in the string. The model is first
trained on 1.6 million molecules from the ChEMBL database (Davies et al., 2015; Mendez
et al., 2019), and then adapted to a smaller dataset of protease inhibitors using transfer
learning. Reinforcement learning was then used to train the model to generate compounds
with desirable properties. After filtering the resulting molecules and docking them, the
authors propose 31 candidate inhibitors.

Finally, Nguyen et al. (2020b)† apply a generative network complex (GNC) for drug
discovery. Their pipeline involves gated recurrent unit (GRU) based encoders and de-
coders which ingest SMILES strings and propose new variants with the help of a deep
neural network (DNN) between the encoder and decoder that optimizes candidate vari-
ants. They also use a pretrained 2D fingerprint-based DNN (2DFP-DNN) as well as their
MathDL approach (discussed briefly above) to further predict the properties of the resulting
drugs. The authors identify 15 novel candidate drugs and also analyze two proposed HIV
drugs to estimate their efficacy against SARS-CoV-2. A similar approach to drug discovery
is described in Chenthamarakshan et al. (2020)†; the authors’ Controlled Generation of
Molecules (CogMol) framework uses a variational autoencoder (VAE) trained on SMILES
strings to learn molecule embeddings. On these embeddings, the authors train a model to
predict drug properties and protein binding affinities and use this to constrain the search for
novel strings using Conditional Latent (attribute) Space Sampling (CLaSS). The authors
also use a multitask DNN to predict toxicity, in order to avoid proposing candidate drugs
with a low probability of success later on in the testing pipeline. The authors focus their
search on drugs which target nsp9, the 3C-like protease, and the receptor-binding domain
(RBD) associated with the S protein, proposing 3,000 of the top candidates for further
study.

In the process of mounting an immune response, B-cells in the body produce antibodies,
which attack the part of the pathogen (the virus) known as an antigen. Magar, Yadav,
and Farimani (2020)† thus take a different approach to discovering new therapies in which
they search for antigen-neutralizing antibodies. They first construct a training dataset
(VirusNet) consisting of 1,933 known antigen-antibody sequences from related illnesses such
as HIV, SARS, Ebola, and influenza. The authors then train classification models such as
XGBoost (Chen & Guestrin, 2016) on embeddings of the molecular graphs of these antigens
and antibodies to predict whether an antibody will have a neutralizing effect on an antigen.
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Finally, the authors mutate the SARS coronavirus antibody sequence to generate 2,589
candidate antibody sequences. Given the subset of these antibodies which are predicted
to be effective by the algorithm, they filter these mutations for valid and stable variants
(which they identify through the use of molecular dynamics simulations), and ultimately
propose 8 antibodies as potentially effective treatments.

3.4 Vaccine Discovery

Another area of interest is vaccine discovery. In addition to producing virus-neutralizing
antibodies via B-cells as described above (humoral immunity), the body also uses T-cells
to attack the virus directly (cellular immunity). There is a subset of T-cells called memory
cells which recognize the antigen of a formerly eliminated pathogen, and can quickly activate
more effector T-cells upon re-exposure. These processes inform the targets for vaccine
design. As part of the immune response, helper proteins called major histocompatibility
complex proteins (MHC I and MHC II proteins) present the binding regions of antigens,
called epitopes, for antibodies, B-cells, or T-cells to bind to and attack. These MHC I and
MHC II proteins are encoded by Human Leukocyte Antigen (HLA) gene complexes, which
vary from person to person. In this context, vaccine design involves two key objectives:
(1) identifying suitable epitopes for targeting, and (2) ensuring that these epitopes can be
presented by MHC proteins which are produced by different HLA alleles (i.e., variants of a
gene) that occur in the population.

For example, Fast, Altman, and Chen (2020)† search for B- and T-cell epitopes. They
identify 405 potential T-cell epitopes that can be presented by MHC I and MHC II proteins,
as well as two B-cell epitopes on the S-protein. The search for the T-cell epitopes relies on
two previously-developed neural networks to predict MHC presentation, NetMHCPan4 (Ju-
rtz et al., 2017) and MARIA (Chen et al., 2019). Upon identifying potential epitopes, the
authors examine 68 different genetic variants of SARS-CoV-2 to study how the virus mu-
tates, and identify parts of the virus that are more or less prone to evolution. They conclude
that S-protein epitopes may be a good target for vaccines because they contained no nearby
mutations in the sample. In an alternative approach, Ong et al. (2020) use their Vaxign-
ML framework, which leverages supervised classification models such as XGBoost (Chen &
Guestrin, 2016), in an effort to predict which viral proteins may serve as effective vaccine
targets. While the authors find that the S-protein is the best candidate, they also identify
five possible NSPs – most promisingly, nsp3 and nsp8 – as good candidates for the vaccine
target.

To the best of our knowledge, three candidate vaccines that reported the use of ML in
their development have been approved for clinical evaluation (WHO, 2020b). Nevertheless,
it is worth noting that they were created by corporations which published very limited infor-
mation regarding their methodologies for incorporating ML into their vaccine development
pipelines.

3.5 Improving Viral Nucleic Acid Testing

Researchers are also applying Machine Learning in an attempt to improve the current viral
nucleic acid detection test. Metsky et al. (2020)† combine ML with CRISPR (a tool which
uses an enzyme to edit genomes by cleaving specific strands of genetic code) to develop assay
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designs for detecting 67 respiratory viruses, including SARS-CoV-2. The authors note that
this technology can speed up the processing of test samples in order to assist overburdened
diagnostic facilities, as well as help address the challenge of false positives that occur as
a result of sequence similarity between SARS-CoV-2 and other coronaviruses. ML models
have been built to rapidly design assays which are predicted to be sensitive and specific,
and cover a diverse range of genomes. The authors state that they are aiming to build a
Cas13-based point-of-care assay for SARS-CoV-2 in the future.

Lopez-Rincon et al. (2020)† take another approach, in which they apply a CNN model
(LeCun et al., 2015) to nucleic acid sequences to classify whether they are associated with
SARS-CoV-2 and therefore potentially improve the accuracy of diagnosis. They contrast
SARS-CoV-2 with other human coronaviruses from the 2019nCoVR repository (Zhao et al.,
2020), as well as other genome sequences with the ORF1ab protein from GenBank (Benson
et al., 2012). The authors use a 21-base pair convolution window over the whole genome and
visualize the network’s convolution and max-pooling layers to understand which particular
sequences help to identify SARS-CoV-2. Using only the 21-base-pair sequences retained
after the max-pooling layer, they subsequently fit a simpler classification model (e.g., logistic
regression) for the original classification task, adding a further layer of feature selection to
identify the most predictive sequences. They also apply this classification approach to
distinguish between hospitalized and asymptomatic cases. Based on these results, they
suggest that a limited number of 21-base-pair sequences might suffice to identify SARS-
CoV-2 and predict case severity. Although the data of the study was limited, this work
highlights that bioinformatic processes offer opportunities for researchers to improve existing
diagnostic tools.

3.6 Better Understanding Severity and Infectivity

Additional efforts have used Machine Learning to better understand SARS-CoV-2 infection
severity and infectivity (how likely it is that a pathogen can infect a host) using protein
sequences. For example, Gussow et al. (2020) use Support Vector Machines (SVM) (Cortes
& Vapnik, 1995) on genomes from different coronaviruses to identify which parts of coro-
navirus’ protein sequences distinguish high case fatality rate (high-CFR) from low-CFR
variants. Bartoszewicz et al. (2020)† use reverse-complement neural networks built from
CNN and LSTM architectures to detect whether a virus has the potential to infect a hu-
man host using its viral genome sequence, and apply machine learning interpretability
techniques to identify the parts of the sequence that are most associated with infectivity.
Finally, Randhawa et al. (2020) adopt a Machine Learning with Digital Signal Processing
(ML-DSP) approach, which uses supervised learning approaches such as SVM (Cortes &
Vapnik, 1995) and K-nearest neighbors (KNN) to predict the taxonomic classifications of
viruses based on their genomic sequences at different levels of the taxonomic hierarchy.
Their findings support the classification of SARS-CoV-2 as a sarbecovirus of the betacoro-
navirus class and the hypothesis that it came from bats.

4. Clinical Scale: From Diagnosis to Outcome Predictions

To date, most clinical applications of AI for the COVID-19 response have focused on diagno-
sis based on medical imaging, with an increasing number of studies exploring non-invasive
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monitoring techniques. In recent literature, we have found several works that use AI to
support diagnosis from computational tomography (CT) and X-ray scans, in addition to
others that use patient medical data to predict the evolution of the disease, and original
non-invasive measurements for monitoring purposes.

4.1 Medical Imaging for Diagnosis

Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests are the key approach
used for diagnosing COVID-19, however they present limitations in terms of resources,
specimen collection, time required for the analysis, and performance (Ai et al., 2020). As
such, there is growing interest in other diagnostic methodologies that use medical imaging
for the screening and diagnosis of COVID-19 cases (Kanne et al., 2020). This is notably
due to the fact that COVID-19 has been found to exhibit particular radiological signatures
and image patterns which can be observed in medical imagery (Fang et al., 2020), but
the identification of these patterns remains time-consuming even for expert radiologists.
This makes image analysis from lung CT and X-ray scans of COVID-19 patients a prime
candidate for ML-based approaches which could help accelerate the analysis of these scans,
although the extent to which imaging can be used for diagnosis is still under discussion (Ng
et al., 2020; Weinstock et al., 2020).

There are several approaches that aim to leverage Machine Learning for diagnosing
COVID-19 from CT scans, via binary (i.e., healthy vs. COVID-19 positive) (Wang et al.,
2020a; Chen et al., 2020c; Gozes et al., 2020b)† or multi-class (healthy patients vs. COVID-
19 vs. other types of pneumonia) (Song et al., 2020†; Xu et al., 2020b; Li et al., 2020a)
classification tasks using neural networks. These approaches use different architectures such
as Inception (Szegedy et al., 2015), UNet++ (Zhou et al., 2018) and ResNet (He et al., 2016),
which can be trained directly either on raw CT scans, or on scans labeled with regions of
interest identified by radiologists. Some studies also adopt a hybrid approach, combining
off-the-shelf software with bespoke ML approaches in order to achieve higher accuracy.
For example, in Gozes et al. (2020a)†, a commercial medical imaging program is used for
initial image processing and then combined with a custom ML pipeline. This two-step ML
approach consists of a U-Net architecture (Ronneberger et al., 2015) trained on medical
images of lung abnormalities in order to pinpoint lung regions of interest and a Resnet-50
architecture (He et al., 2016) trained on ImagetNet (Deng et al., 2009) and then fine-tuned
on COVID-19 cases in order to classify the images as COVID-positive or healthy. The
resulting architecture is able to both facilitate initial diagnosis and track patient progress
by measuring disease severity, and it is used in a tool that has been deployed at hospitals
worldwide to help radiologists accelerate the analysis of new cases.

X-ray images, and specifically chest radiographs, can also be used for COVID-19 detec-
tion. Given the accessibility and potential portability of the imaging equipment needed,
X-ray images can be an alternative in settings where access to advanced medical equipment
such as CT scanners is limited, or while waiting for the results of RT-PCR testing. As
shown in Abbas et al. (2020)†, Bukhari et al. (2020)†, and Hammoudi et al. (2020)†, there
is potential in the use of Deep Learning approaches on X-ray imagery, using architectures
similar to the ones used for CT scans (e.g., ResNet (He et al., 2016) and CNNs (LeCun et al.,
2015)). Some of the existing systems have received certification and have been deployed in
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hospitals and clinics worldwide (Murphy et al., 2020). However, further work is ongoing in
order to make predictions interpretable (Karim et al., 2020; Ghoshal & Tucker, 2020)† and
to ensure that the models can be deployed in mobile and low-resource settings (Li et al.,
2020b)†.

Studies which report operational deployment, such as Shan et al. (2020)†, have opted for
human-in-the-loop diagnostic approaches to reduce the analysis time required with the help
of ML architectures. The authors use small manually-labeled batches of data for training
an initial model based on the V-Net architecture (Milletari et al., 2016). This model then
proposes segmentation of new CT scans, which can be corrected by radiologists and fed back
into the model in an iterative process. This approach has enabled the development of a
Deep Learning-based system for both automatic segmentation and the counting of infection
regions, as well as assessing the severity of COVID-19, i.e., the percentage of infection in
the whole lung. The authors show not only that the model improved its own performance
incrementally, but also that the human time required for analysis of new images dropped
from over 30 minutes initially to under 5 minutes after 200 annotated examples were used
to train the model, reducing the effort required by radiologists to review a new scan. This is
a promising line of research which harnesses the power of ML alongside human annotation
and expertise in a complementary and mutually beneficial manner.

While encouraging results have been achieved by many medical imagery-based AI diag-
nostic methods, in order for these methods to be used as clinical decision support systems,
they should undergo clinical evaluation and comply with regulatory and quality control re-
quirements. In particular, their performance should be validated on a relevant and diverse
set of training, validation, and test datasets, and they should demonstrate effectiveness in
the clinical workflow (Nagendran et al., 2020) and adhere to adequate diagnosis reporting
guidelines (Wynants et al., 2020). We note that most of the papers we reviewed lacked
provisions for these measures, relying on small and poorly-balanced datasets with flawed
evaluation procedures and no plan for inclusion in clinical workflows. Nonetheless, some
commercial analysis tools have been certified for use as medical devices and deployed in
hospitals worldwide both for patient diagnosis and outcome prediction.

4.2 Non-invasive Measurements for Disease Tracking

There are also a number of approaches that do not require specialized medical imaging
equipment for diagnosing and tracking COVID-19. For example, one study used a GRU
neural network (Cho et al., 2014) trained on footage from Kinect depth cameras to iden-
tify patient respiratory patterns (Wang et al., 2020b)†, based on recent findings suggesting
that COVID-19 generates respiratory patterns which are distinct from those of the flu and
the common cold, notably because they exhibit tachypnea (rapid respiration) (Cascella
et al., 2020). While these abnormal respiratory patterns are not necessarily perfectly corre-
lated with a real-world diagnosis of COVID-19, prediction of tachypnea could be a relevant
first-order diagnostic feature that may contribute to large-scale screening of potential pa-
tients. Furthermore, new studies aim to understand how wearable device data can help
COVID-19 tracking, based on previous clinical research that has demonstrated the value
of aggregated signals from resting heart rates acquired from smart watches for influenza
surveillance (Radin et al., 2020).
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Finally, a growing number of efforts aim to utilize mobile phones for COVID-19 de-
tection, for instance by using embedded sensors to identify COVID-19 symptoms such as
coughing, fatigue and nausea (Maghdid et al., 2020)†, or via phone-based surveys to filter
high-risk patients based on responses to key questions regarding travel and symptoms (Rao
& Vazquez, 2020). There is also ongoing research on the analysis of recorded cough sounds
for preliminary COVID-19 diagnosis (Imran et al., 2020), which can assist with telemedicine
approaches as well as initial triage efforts. While these are important efforts given the
ubiquity and accessibility of mobile phone technology, these studies are not sufficiently ad-
vanced to evaluate their performance, so more extensive testing and clinical investigations
are needed for deployment.

4.3 Patient Outcome Prediction

It is crucial to know which factors can put patients at risk for hospitalization, develop-
ing acute respiratory distress syndrome (ARDS), and death from respiratory failure. In
this vein, there have been several recent papers that predict potential patient outcomes
and propose triage approaches based on features contained in patients’ medical data and
blood tests, in order to help clinicians identify high-risk patients and those at risk of later
development of ARDS (Feng et al., 2020†; Yan et al., 2020†; Jiang et al., 2020). Using
approaches such as the XGBoost algorithm (Chen & Guestrin, 2016) and Support Vec-
tor Machines (Cortes & Vapnik, 1995), these approaches aim to identify key measurable
features to predict mortality risk, which can later be tested for in hospitals upon patient ad-
mission and during the hospital stay. Clinical indicators that were identified using these ML-
driven approaches include lactic dehydrogenase (LDH), lymphocytes, and high-sensitivity
C-reactive protein (CRP) (Yan et al., 2020)†; alanine aminotransferase (ALT), myalgias,
and hemoglobin (Jiang et al., 2020); and Interleukin-6, Systolic blood pressure, and Mono-
cyte ratio (Feng et al., 2020)†, although more research is needed to define specific thresholds
and ranges of these indicators.

Furthermore, several complementary studies aim to also leverage medical imagery for
patient outcome prediction. These include carrying out severity assessment (Tang et al.,
2020b), predicting the need for long-term hospitalization based on CT imaging data (Qi
et al., 2020)†, and patient risk stratification based on X-ray images (Wang & Wong, 2020)†.
A hybrid approach has also been proposed for this purpose, utilizing both CT findings as
well as clinical features to predict the severity of COVID-19 (Shi et al., 2020). The clinical
features that were identified in this study, i.e., LDH and CRP, are similar to those identified
in the purely clinical studies mentioned above; this overlap is promising for eventual clinical
monitoring of these indicators. While these studies are limited both in scope and in data,
they constitute important avenues of research that can be complemented and extended
with clinical data from incoming cases around the world, thereby hopefully improving the
prognosis of all patients and reducing the mortality of those that are critically ill.

4.4 Hospital Capacity Planning

Forecasting hospital occupancy is necessary for preparation, planning, and optimization in
overstretched health systems during the COVID-19 pandemic. The availability of Intensive
Care Units (ICUs) equipped with artificial respiratory support has proven critical when
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managing the pandemic, and the lack of equipped ICU beds is one of the main factors that
could make the healthcare system collapse in the face of the virus. At this stage, there are
a number of research projects which attempt to effectively match existing resources (e.g.,
ICUs, ventilators, and personal protective equipment) with the incoming demand for care,
which fluctuates from one day to the next and can increase drastically in a short period
of time. These approaches have used stochastic process simulations to better predict ICU
capacity based on the number of fully utilized ICU beds for COVID-19 and non-COVID-19
patients, as well as the rate of incoming COVID-19 patients (Alban et al., 2020). An AI-
based hospital resource optimization tool is expected to be deployed by the National Health
Service in the United Kingdom to monitor and predict the upcoming demand for intensive
care beds and ventilators needed to treat patients with COVID-19. Other approaches go
further, using patient characteristics such as age, gender and co-morbidities as features in
a Bayesian optimization algorithm that is able to predict future resource usage at both an
individual and a hospital level (Alaa & van der Schaar, 2018). There are also a number
of proprietary and commercial tools that are already used in hospitals and clinics, and are
being adapted to this new situation; further validation and methodological details will be
required to assess their utility in the context of COVID-19 (Singh et al., 2020)†.

5. Societal Scale: Epidemiology and Infodemiology

At the highest level of granularity, we review the use of AI at the societal scale. In this
section we focus on applications to the fields of epidemiology and infodemiology, finding
several parallel approaches in both areas. With respect to epidemiology, many works focus
on either supplementing or augmenting classical epidemiological techniques, largely from
a predictive standpoint. With respect to infodemics, there has been a similar focus on
understanding spread and interaction in the context of information, as well as discussions
on proactive actions which can be taken to slow or halt the spread of misinformation.

5.1 Epidemiology

The spread of the SARS-CoV-2 virus across the globe has received much policy attention,
with advice at the national and local level changing daily in many locations as new infor-
mation and model forecasts become available. Understanding how the virus is transmitted,
and its likely effect on different demographics and geographic locations, is crucial for public
health interventions.

The field of epidemiological research is vast, and given the relevance and scale of the
pandemic, as well as the new data becoming available, multiple modeling efforts have
emerged. While most of these endeavors build on well-established classical models (such
as susceptible-infected-recovered (SIR) models) fine-tuned to the COVID-19 situation, we
focus here on cases specifically employing Machine Learning techniques for epidemiological
modeling tasks.

5.1.1 Modeling and Forecasting Statistics

Most AI applications developed for epidemiological modeling have focused on forecasting
national and local statistics such as: the total number of confirmed cases, mortality, and
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recovery rates. Many authors have attempted to identify optimal approaches or model archi-
tectures for understanding and forecasting data. These works employ modeling techniques
such as an LSTM-GRU architecture (Hochreiter & Schmidhuber, 1997; Cho et al., 2014)
for time series analysis and prediction (Bandyopadhyay & Dutta, 2020)†, or CNN (LeCun
et al., 2015) based approaches in which numerical data has been combined and reshaped
into “images” (Huang et al., 2020)†. In addition, new forecasting models for predicting the
total number of confirmed cases have been developed. For example, Al-qaness et al. (2020)
combine an adaptive neuro-fuzzy inference system (ANFIS) (Jang, 1993) with an enhanced
flower pollination algorithm (FPA) (Yang, 2012) and salp swarm algorithm (SSA) (Mirjalili
et al., 2017) to optimize the parameters of the model. The robustness of their approach
is then assessed by training and testing on weekly confirmed influenza cases collected by
the US Centers for Disease Control and the World Health Organization (WHO) over two
different four-year periods.

While these studies show how a range of different architectural choices can be made
when building forecasting models, they demonstrate the complexities involved in choosing
between such models and the non-trivial interplay between architectures, hyperparameters,
and datasets. Moreover, since much of the data collected for COVID-19 modeling tasks is
limited, the choice of models and datasets can have significant effects on overall performance.
In an attempt to address this, a simple framework has been suggested for exploring models
and datasets during testing by ensuring that models of different categories, as defined by
the authors, are tested in parallel (Fong et al., 2020). Using this framework, the authors
propose and compare a polynomial neural network with corrective feedback (PNN+cf)
(Ivakhnenko, 1970) against other model architectures. This model was found to achieve
optimal performance in predicting daily statistics on small datasets taken from Chinese
health authorities.

Social media and other online data sources also provide a rich source of information
for understanding public opinion, perception, and behavior. Such information can be in-
corporated into modeling efforts to augment existing data with the aim of providing more
contextual understanding. For example, Liu et al. (2020b)† combine related internet search
and news media activity with data from the Chinese Center for Disease Control and daily
forecasts from GLEAM (Balcan et al., 2010), an agent-based mechanistic model, in order to
produce 2-day forecasts for a range of statistics. The authors first cluster provinces based
on geo-spatial similarities in COVID-19 activity, and then train a separate model on each
cluster. An existing autoregressive model (Yang et al., 2015; Lu et al., 2019) is adapted for
forecasting.

In a similar manner, data pertaining to Google search queries and news media have
been used as inputs to forecasting models for predicting daily COVID-19-related statistics.
Lampos et al. (2020)† assess the frequency of searches for different symptoms against data
derived from a UK National Health Service survey of COVID-19 patients in which symptoms
were recorded. Using this data, along with prior daily statistics, the authors train an
ElasticNet (Zou & Hastie, 2005) model for forecasting future trends. Finally, the authors
investigate the transferability of their models between countries. This type of approach
could be useful for probing the viability of training a model on data-rich countries and
applying it to a data-poor ones, although the results of such a transferred model will have
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to be tailored to local contexts given possible differences in demographic characteristics and
cultural norms.

5.1.2 Clustering

Countries have experienced different outbreak timings and growth rates based on a range
of factors including: international travel, demographics, socioeconomic factors, health care
system characteristics, and policy interventions. By assessing commonalities in virus prop-
agation trends, as well as other country and regional data, it may be possible to cluster
countries and regions in order to use data from some areas to predict the outbreak in others.
While useful at a high level, a significant limitation of this approach is heterogeneous data
collection and reporting in different countries due to testing rates, case tracking efforts, and
reporting quality and standards, among others.

Carrillo-Larco and Castillo-Cara (2020) take a simple approach to clustering countries
using an unsupervised k-means algorithm. The authors cluster 155 countries using data
relating to disease prevalence, average health status, air quality, gross domestic product
(GDP), and universal health coverage. They find that their model is able to stratify coun-
tries according to the number of confirmed cases, although it cannot do so in terms of the
number of deaths or the case fatality rate.

More sophisticated approaches have used the latent features of autoencoders, originally
trained to predict infection rates, to identify similar groups of regions or countries. For
example, Hu et al. (2020c)† have compiled a dataset of accumulated and new confirmed
cases in 31 provinces and cities of China. After training a modified autoencoder (MAE) for
real-time forecasting of new cases, the authors extract information from the autoencoder’s
latent variable layers to determine the model’s most important features for each analyzed
region. These features are then fed into a k-means clustering algorithm which groups
similar regions for further analysis. This final step is designed to enable more efficient
investigation of regions showing common characteristics of interest. Similarly, Hartono
(2020) has proposed training a Topological Autoencoder (TA), a simplified version of a Soft-
supervised Topological Autoencoder (Hartono, 2019), on the number of COVID-19 patients
across 240 countries using data collected by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University. The author then studies the latent variables of the
TA to create a 2-dimensional clustering of countries.

5.1.3 Efficacy of Public Policy

In attempting to manage the pandemic, many national and local governments have intro-
duced public policy interventions, such as social distancing and the quarantining of individ-
uals showing symptoms of COVID-19. The impacts of these measures may be modeled using
agent-based approaches, or by introducing regularizers in differential equations governing
statistical interaction models, such as SIR approaches. For instance, Hu et al. (2020b) use
data from WHO reports to train a modified autoencoder (MAE) to predict the number of
cases and deaths on a daily basis. The authors encoded different intervention mechanisms
according to their perceived strength, and used this variable as an input to the model.

Dandekar and Barbastathis (2020)† adopt a different approach which uses data from
Wuhan, China to build on the classical SIR model by adding a time-dependent regularizer
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to model the number of infected people who are in quarantine. Instead of specifying the
form of this function and fitting parameters, the authors use a neural network to learn
the “quarantine strength”, Q(t), based on daily reported statistics, which in turn could
help to determine the number of people who are able to infect others as a function of the
quarantine strength. While this work is heavily dependent on the available data, and does
not differentiate between symptomatic and asymptomatic individuals, the use of neural
networks to augment well-understood techniques could serve as a powerful modeling tool.

5.1.4 Risk Assessment

The models discussed in the previous sections mainly focused on predicting daily aggregate
statistics for different regions or countries. Other work has specifically attempted to fore-
cast the risk of outbreaks, often by reducing aggregate statistical trends into a single risk
score, which facilitates interpretation, distills information for rapid analysis, and acts as a
precursor to further investigation. However, it is important to note that such a distillation
may not be robust to important changes in the underlying data or its coverage, and so
should be interpreted with caution by policy makers.

Pal et al. (2020)† train an LSTM (Hochreiter & Schmidhuber, 1997) on variables derived
from daily statistics and weather data to predict the long-term duration of the pandemic.
In assessing which variables should be included in the model, the authors use an ordinary
least-squares regression model to assess the p-value of all candidate features. The output
of the LSTM is then used alongside explicit fuzzy rules (based on rates of death, confirmed
cases, and recovery) to determine a risk category for the country or region.

In a similar study, Ronsivalle et al. (2020)† looked at the Inherent Risk of Contagion
(IRC), which is defined and calculated by the authors for similar geographic regions based
on the acceleration of disease spread. The authors use k-means clustering to identify similar
regions based on a non-linear combination of demographic and social characteristics and
trained a Fully Connected Network (FCN) on data from Lombardy, Italy to forecast the
IRC of the remaining provinces and municipalities of the country.

A more detailed approach was taken by Ye et al. (2020), who develop a hierarchical
community-level risk assessment. Given a location, the proposed α−Satellite framework
provides risk indices associated with different geographic levels (e.g., state, county, and city).
To test this framework, the authors use data from the WHO, the United States Centers
for Disease Control, county governments, and other media. They incorporate data on new
cases, death rates, confirmed cases, demography, mobility, and social media usage. For
regions in which social media data is sparse, the authors use a cGAN (Mirza & Osindero,
2014)† trained on similar areas to generate synthetic social media content. The authors
then attempt to estimate how information at each of the different regional levels impacts
the others, as well as how different attributes at each level influence the overall spread of the
disease. After building a graph defining relationships between different geographic levels,
the authors extract the latent variables from an autoencoder which is designed to aggregate
information propagated between different nodes on the graph. The autoencoder plays the
role of a dimensionality reduction algorithm to better understand the interplay between
different geographic areas and their attributes.
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5.1.5 Bayesian Analysis

Although Bayesian analysis techniques are sometimes considered to be statistical rather
than Machine Learning approaches, they can provide useful insights with respect to uncer-
tainty and the handling of small datasets. In one study, Roy and Karmakar (2020)† develop
a time-varying Bayesian autoregressive model for counts (TVBARC) with a linear link func-
tion to estimate time-dependent coefficients which could allow for better temporal modeling
of the virus spread.

A more case-specific application of such methods is employed by Mizumoto et al. (2020),
who seek to understand the rate of asymptomatic cases using data on 634 confirmed cases
collected during the COVID-19 outbreak on board the Diamond Princess cruise ship. The
authors use a Bayesian time-series model, with a Hamiltonian Monte Carlo (HMC) algo-
rithm and a No-U-Turn-Sampler (Homan & Gelman, 2014) for model parameter estimation,
in order to estimate the probability that a given patient is asymptomatic conditional on
infection, along with the duration for which an individual is infected. The authors conclude
that 17.9% of patients are asymptomatic. Although it is unclear if this result applies to
the broader population, contained environments such as this one can be useful for tracking
infection because they can allow for more comprehensive case data collection.

5.2 Infodemiology

The WHO defines an infodemic as “an over-abundance of information – some accurate and
some not – that makes it hard for people to find trustworthy sources and reliable guidance
when they need it”, and deems it a second “disease” which needs fighting (WHO, 2020c). In
this section, we highlight efforts to quantify the spread of information surrounding the pan-
demic and to understand its dynamics. Handling this vast amount of information requires
the development and adoption of new tools, particularly for studying the dissemination
of misinformation and disinformation. While much AI and ML research has already been
carried out in this area, there is still a need for greater understanding of the underlying
social dynamics specific to the pandemic.

Social media and online platforms have become key distribution channels for information
surrounding the virus. Although national and international organizations have used these
platforms to constructively communicate with the public, populations can also become
overwhelmed with information, and the propagation of misinformation and disinformation
is increasingly prevalent.

Furthermore, we note that the infodemic may even extend to scientific research. As
highlighted in Figure 2, there has been a significant increase in the number of scientific
articles related to the SARS-CoV-2 virus. Given that the virus is still relatively new and
our understanding is quickly developing, many of these articles are disseminated via preprint
archives, making it difficult to assess their quality. This does not mean that information
contained within these articles cannot be valuable, but rather that there is a need for
ongoing efforts to distill and critically assess this vast body of literature.

5.2.1 Spread and Interaction

Understanding more about the dissemination of information is crucial to intervening proac-
tively or reactively. While there is a wealth of literature on information propagation, net-
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work analysis, and social media interaction, in this section we specifically discuss those
works applying such methods to the current infodemic.

At a high level, some research looks at global trends on Twitter by country. Singha et al.
(2020)† analyze tweet volume according to specific themes discovered in coronavirus-related
queries. The authors also analyze posts pertaining to specific myths surrounding the virus,
examining the number of tweets containing certain terms they deem related to the myths,
as well as the website links included in the tweets (categorized as either high-quality or
low-quality sources).

In an effort to find early warning signals of a country or region experiencing an info-
demic, Gallotti et al. (2020)† analyze social media posts on Twitter across 64 languages.
The authors develop an Infodemic Risk Index (IRI) to quantify the rate at which a given
generic user from a country or region is exposed to unreliable posts from different classes of
users, i.e., verified humans, unverified humans, verified bots, and unverified bots. The IRI
considers the expected number of followers of the focal users which fall into each class, the
number of messages the focal users post, and their reliability (as measured by fact-checked
samples of the user posts). This study highlights potentially actionable insights, observing
that “the escalation of the epidemics leads people to progressively pay attention to more
reliable sources thus potentially limiting the impact of the infodemics,” while “the actual
speed of adjustment may make a major difference in determining the social outcome”.

In a broad-ranging study, Cinelli et al. (2020)† analyze interaction and engagement with
COVID-19-related social media content. From a collection of eight million comments and
posts selected from Twitter, Instagram, YouTube, Reddit, and Gab using COVID-19-related
keywords, the authors estimate engagement and interest in COVID-19 and comparatively
assess the evolution of discourse on each platform. Interaction and engagement are measured
using the cumulative number of posts and the number of reactions to these posts (e.g.,
comments, likes etc.) across a 45-day period. The authors then employ phenomenological
(Fisman et al., 2013) and classical SIR models to characterize the reproduction numbers
of the posts. Specifically, they examine the average number of secondary cases (users that
start posting about COVID-19) created by an “infectious” (already posting) individual on
each of the social media platforms. As in epidemiological models, the authors simulate the
likelihood of an infodemic, in which discussion of COVID-19 will grow exponentially in its
initial stages. Moreover, the authors examine the spread of misinformation (which they
identify using external fact-checking organizations) and find that information from both
reliable and less-reliable sources propagates in similar patterns, but that user engagement
with posts from the latter is lower across major social media streams.

Similarly, Mejova and Kalimeri (2020)† have examined the use of Facebook advertise-
ments with content related to the virus. The authors used the Facebook Ad Library to
search for all advertisements using the keywords “coronavirus” and “covid-19” and col-
lected results across 34 countries, with most in the US (39%) and the EU (Italy made up
25% of the advertising market). While the majority of advertisements were paid for by
non-profits to disseminate information and solicit donations, the authors found that around
5% of advertisements contained possible errors or misinformation.
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5.2.2 Hate Speech

Along with the propagation of misinformation and disinformation, the increase in hate
speech in recent months has been of significant concern. As reported by the United Nations,
there is an alarming rise in verbal abuse which might turn into physical violence against
vulnerable and discriminated groups (United Nations, 2020).

Velásquez et al. (2020)† take a high-level approach to understanding the spread of hateful
and malicious COVID-19 information and content within a variety of different social media
channels, and attempt to characterize the methods by which such content moves between
them. Concerningly, the authors find that hateful content is rapidly evolving and becoming
increasingly coherent as time continues. As in Cinelli et al. (2020)†, this study makes a
comparison to the epidemiological reproduction number, R0, in an attempt to determine
the “tipping point” at which information will spread more rapidly between information
channels.

Schild et al. (2020)† examine the emergence of Sinophobic behavior on social media,
specifically Twitter and 4chan. This study uses data from October 2019 to March 2020
and uses word embeddings to assess context and word similarity over the entire five month
period, as well as on a weekly basis. The authors also compared their findings to models
trained on content gathered prior to COVID-19. The authors observe a distinct increase in
Sinophobic content across social media channels, and conclude that the Web is being “ex-
ploited for disseminating disturbing and harmful information, including conspiracy theories
and hate speech targeting Chinese people”.

Understanding and fighting the spread of hate speech is of vital importance for the pro-
tection of human rights, in particular those of the most vulnerable and marginalized. By
better comprehending the dynamics and the landscape of hateful speech, effective interven-
tion mechanisms can be designed to disrupt and change the narrative.

5.2.3 Positive Action

In the process of studying the features and dynamics of the infodemic, many of the works
mentioned above suggest possible intervention options. In this section we explore several
examples of such positive actions that are being considered and/or deployed to counter the
infodemic.

The World Health Organization has taken steps to proactively confront the infodemic
and bring together actors to assess aspects of the infodemic which still need to be addressed.
Indeed, the WHO has been combating the infodemic through the use of its Information
Network for Epidemics (EPI-WIN) platform for sharing information with key stakeholders,
and is also working with social media and internet search companies to track the spread
of specific rumors and ensure that WHO content is displayed at the top of searches for
terms related to the virus (Zarocostas, 2020). Indeed, in April 2020, the WHO conducted
a wide-ranging consultation on understanding and managing the infodemic (WHO, 2020c).

Efforts are also underway to curate specific news content related to the virus and to
perform both manual and automated fact-checking and relevance analysis. For instance,
Pandey et al. (2020)† have developed a pipeline for assessing the similarity between daily
news headlines and WHO recommendations. The pipeline uses word embedding and sim-
ilarity metrics, such as cosine similarity, to assess the level of relevance between WHO
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recommendations and news articles. If the similarity is above a certain threshold, the arti-
cle is displayed on the user’s timeline with the associated relevant WHO recommendation.
The similarity threshold is determined by human reviewers prior to release and then can be
updated through user feedback. In the face of conflicting information, such methods could
help identify accurate and trustworthy news articles which highlight important guidelines
and promote official recommendations.

Another possible intervention strategy under consideration is the use of chatbots, which
can be used to disseminate information while relieving pressure on other communication
channels, such as question-and-answer hotlines. For example, the WHO who has developed
an interactive chatbot in multiple languages that allows users to explore pre-coded topics
(WHO, 2020d). Finally, there is also the potential to use digital personal assistants to
interactively disseminate official information, although governments and international actors
would need secure ways to update recommendations as their understanding of COVID-19
changes over time.

6. Datasets and Resources

The success of the global effort to use AI techniques to address the COVID-19 pandemic
hinges upon sufficient access to data. Machine Learning, and Deep Learning in particular,
requires notoriously large amounts of data and computing power in order to develop and
train new algorithms and neural network architectures. In this section, we describe some
of the datasets and data collection efforts that exist at the present time.

6.1 Case Data

The current number and location of cases is essential for tracking the progress of the COVID-
19 pandemic, calculating the growth rate of new infections, and observing the impact of
preventive measures. Several datasets from organizations such as the WHO (2020a) and
national Centers for Disease Control (CDCs) exist for this purpose. They have been aggre-
gated into public repositories hosted by institutions such as the Johns Hopkins CSSE (Dong
et al., 2020) or on platforms such as GitHub (Xu et al., 2020a), in order provide daily in-
formation on COVID-19 cases gathered from a variety of reliable sources. There are also
other complementary data sources – including regional data on school closures, bank in-
terest rates, and even community perceptions of the virus – which are continuously being
added to a data portal hosted by the Humanitarian Data Exchange (2020). A multitude of
algorithms can be applied on this kind of data, including time series forecasting approaches
such as LSTM networks (Hochreiter & Schmidhuber, 1997) or Autoregressive Integrated
Moving Average (ARIMA) models to predict the evolution of cases on a global and regional
scale.

There is also an increasing quantity of tools and resources developed specifically for
medical professionals and institutions, using data to help them prepare for managing the
pandemic. For instance, CHIME (Penn Medicine, 2020) is an open-source COVID-19 Hos-
pital Impact Model for Epidemics based on SIR modeling, which uses the number of sus-
ceptible, infectious, and recovered individuals to compute the theoretical number of people
infected over time, predict outcomes in specific circumstances, and plan for the quantity
of hospital beds that may be needed. While the CHIME project does not currently use
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ML techniques, it could benefit from them in order to incorporate more features and data
points such as hospital capacity information (Su et al., 2020), to be used in applications
such as dynamic ventilator allocation and surge capacity planning. Finally, there are also
efforts underway to use de-identified, large-scale data to assess mobility changes and their
impact on the local evolution of the epidemic, for instance in Italy (Pepe et al., 2020) and
in North America (Safegraph, 2020).

6.2 Text Data

Unstructured textual data can be an immensely useful source of information, and NLP
approaches can be used to mine such data to extract relevant passages and topics. These
methods have been applied to a variety of data sources, including scientific articles, news
articles, and social media data, in order to provide insights and indicators useful to a range
of different stakeholders.

6.2.1 Scientific Literature

As mentioned in previous sections, Machine Learning approaches can be used to analyze
and parse the vast quantity of written information on COVID-19 and other coronaviruses, in
order to make it easier for researchers and clinicians to use this information. Key questions
of interest include:

1. What is known about the virus’ transmission, incubation, and environmental stability?

2. What do we know about COVID-19 risk factors?

3. What do we know about non-pharmaceutical interventions?

4. What do we know about vaccines and therapeutics?

5. What has been published about ethical and social science considerations?

6. What has been published about best practices for medical care?

These questions can be studied using different sources, including the WHO Global Re-
search Database on COVID-19 (WHO, 2020e)†, a curated literature hub for COVID-19
scientific information, and the CORD-19 dataset (Wang et al., 2020)†, which is currently
the largest open dataset available with over 52,000 relevant research articles. Several stud-
ies aiming to analyze this information have already been published, including Ahamed and
Samad (2020)†, which uses a graph-based model to search through abstracts to find rele-
vant information, and Fister et al. (2020)†, which extracts key terms and compares their
usage in pre- and post-COVID-19 articles. There are also several ongoing Kaggle challenges
involving this data, with dozens of questions submitted daily and many teams involved.
Other scientific research datasets that can be exploited include LitCOVID (Chen et al.,
2020d)† and the Dimensions AI Dataset (Dimensions AI, 2020)†, which can contain impor-
tant supplementary information such as clinical trial data when available. Using any of
the sources mentioned above, NLP techniques can be applied to develop text mining tools
and resources that can help the medical community find answers to key scientific questions
regarding the nature and progress of COVID-19.
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6.2.2 News and Social Media Data

Depending on the research questions addressed, data from scientific articles can also be com-
plemented with data from other sources, such as news articles and social media. Datasets
such as the COVID-19 TweetIDs dataset (Chen et al., 2020b) and the Covid-19 Twitter
dataset (Banda et al., 2020)†, which are maintained with general coronavirus-related tweets,
can be useful for tracking the propagation of misinformation and unverified rumors on Twit-
ter (Chen et al., 2020a), as well as for monitoring the reactions of different populations to
the virus. A potentially complementary source of information for this task is the COVID-19
Real World Worry Dataset (Kleinberg et al., 2020)†, which includes labeled texts of indi-
viduals’ emotional responses to COVID-19, and therefore can contain data regarding public
sentiment and the impacts of the pandemic on mental well-being in different regions of the
world.

There is also information available from official sources and news outlets, since the
global media coverage of the pandemic is substantial and ongoing. For instance, the Insti-
tutional and News Media Tweet Dataset (Yu, 2020)† brings together tweets based on a list
of manually verified sources, and can be used to track official and institutional messaging
around the pandemic in different countries. Repositories such as the Coronavirus News
Article database (Mezei, 2020)† and the COVID-19 Television Coverage Dataset (GDELT
Project, 2020)† can also be used to explore the question of how both print and television
media outlets are covering the outbreak. These are rich sources of data for researchers inter-
ested in analyzing how media coverage evolves as the virus spreads globally, or in tracking
misleading reports and disinformation in the media.

6.3 Biomedical Data

In addition to case data and textual data, biomedical data is an important source of data
for training many of the ML algorithms above. Biomedical data at different scales, from
the clinical scale to the molecular scale, can be used to ensure that the ML approaches
developed take into account both the different features of patients in different contexts, as
well as the evolution of the virus across time and space, the structure of the virus, and the
effectiveness of potential therapies.

6.3.1 Clinical Data

At this time, there are not many open-source datasets and models that can be used for
diagnostic purposes. Some of the CT scan detection approaches described in Section 4.1
are available online and accessible to the public, for instance those of Wang et al. (2020a)
and Song et al. (2020). However, the data used to train the various models described is not
systematically shared, although such sharing would be of great value to the ML research
community. Several initiatives exist to crowdsource and open source relevant data, for
instance the Covid Chest X-ray Dataset (Cohen et al., 2020) for medical imagery and the
COVID-19 Risk Calculator (2020)† for symptoms, but these are challenging to assemble
and maintain manually. Furthermore, while data collection and ML model training can be
carried out by computer scientists, data labeling, vetting, and annotation often require the
involvement of medical professionals such as radiologists or clinicians.
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To address this lack of accessible data, there is an increasing number of initiatives
and repositories that aim to share data and models; for instance, the COVID-19 Dataset
Clearinghouse (2020)† has links to dozens of open-source data repositories from different
geographical areas and levels of granularity. Initiatives such as United Against COVID-19
are particularly important, since they have become online platforms where data scientists
and ML researchers can apply their skills to address requests for help from the research
community, for instance by performing cleaning of clinical data, extracting actionable infor-
mation regarding COVID-specific research questions, and collaborating to develop tools for
deployment on the ground in hospitals. Such initiatives are promising given their potential
to bridge the gap between those with medical and biological knowledge or experience, and
those with computational and data skills.

6.3.2 Molecular Data

In terms of genomic sequencing and drug discovery, there are several datasets available from
pre-existing initiatives, or which have been created from scratch for COVID-19 specifically.
On the one hand, tracking the genome sequence of SARS-CoV-2 is crucial for designing
and evaluating diagnostic tests, tracing the pandemic, and identifying the most promising
intervention options. Notably, the GISAID Initiative, founded over a decade ago for the
specific purpose of promoting the international sharing of influenza virus sequences and
related clinical and epidemiological data, is tracking the genomic epidemiology of SARS-
CoV-2. Other projects such as Nextstrain (Hadfield et al., 2018) are looking at the genetic
diversity of coronaviruses, in order to characterize the geographic spread of COVID-19 by
inferring the lineage tree of hundreds of publicly shared genomes of SARS-CoV-2.

On the other hand, in terms of drug discovery, there are well-established initiatives such
as the RCSB Protein Data Bank (Burley et al., 2017) and the Global Health Drug Dis-
covery Institute Portal (GHDDI, 2020)† , which have created centralized portals with data
and resources for better understanding COVID-19 and for carrying out structure-guided
drug discovery. In addition, CAS, a division of the American Chemical Society, has re-
cently released the open-source COVID-19 antiviral candidate compounds dataset (CAS,
2020)†, containing information regarding antiviral compounds and molecules that have sim-
ilar chemical structures to existing antivirals, to help the discovery of both new and repur-
posed treatments against the disease. Finally, another potentially interesting crowdsourced
resource is the citizen science game Fold.it, which leverages collective intelligence against
COVID-19 by challenging participants to design an antiviral protein.

7. Discussion

This research mapping exercise suggests that ML and AI can support the response against
COVID-19 in a broad set of domains. In particular, we have highlighted emerging ap-
plications in drug discovery and development, diagnosis and clinical outcome prediction,
epidemiology, and infodemiology. However, we note that very few of the reviewed systems
have operational maturity at this stage. In order to operationalize research, it is crucial to
define a research road map and a funnel for AI applications to understand how the technol-
ogy of interest can immediately assist with the response, how it might help later on in the
evolution of the current pandemic, and how it can be used to combat future pandemics. In
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the face of overstretched health care networks, we must strengthen our health systems to
sustain services beyond the control and management of COVID-19 in order to truly protect
the vulnerable, such as people living with noncommunicable diseases (NCDs). As members
of a global community of researchers and data scientists, we identify three key calls for
action.

First, we believe that scalable approaches to data and model sharing using open reposito-
ries will drastically accelerate the development of new models and unlock data for the public
interest. Global repositories with anonymized clinical data, including medical imaging and
patient histories, can be of particular interest in order to generate and transfer knowledge
between medical institutions. To facilitate the sharing of such data, clinical protocols and
data sharing architectures will need to be designed and data governance frameworks will
need to be put in place. It is important to ensure that research with medical data is sub-
ject to strong regulatory requirements and privacy-protecting mechanisms. In particular,
clinical AI applications should demonstrate not only their performance on test datasets,
but also their effectiveness and safety when integrated into real clinical workflows. Overall,
any AI application should undergo an assessment to ensure that it complies with ethical
principles and, above all, respects human rights.

Second, the multidisciplinary nature of the research required to deploy AI systems in
this context calls for the creation of extremely diverse, complementary teams and long-
term partnerships. Beyond the examples shown in this review, other promising domains
in which AI could be used to fight against COVID-19 include robotics (e.g., cleaning or
disinfecting robots) and logistics (e.g., the allocation and distribution of personal protective
equipment). Funding opportunities which encourage such collaborations and define key
research directions may help accelerate the success of such partnerships.

Third, we believe that open science and international cooperation can play an impor-
tant role in this pandemic that knows no borders (Luengo-Oroz et al., 2020). Proven
solutions can be shared globally and adapted to other contexts and situations, prioritizing
those solutions that target local unmet needs. In particular, given that many international
organizations, private sector companies and AI partnerships operate across international
borders, they may be in the position to facilitate the knowledge dissemination and capacity
building of national health systems. Regions with less capacity can benefit from global co-
operation and concentrate their efforts on the most important local challenges. AI systems,
methods, and models can act as a compact form of knowledge sharing which can be used in
and adapted to other contexts if they are designed to be widely deployable, requiring low
energy and computing resources.

We acknowledge the difficulty of adding value through AI in the current situation. Nev-
ertheless, we hope that this review acts as a first step towards helping the AI community
understand where it can be of value, which are the promising domains for collaboration, and
how research agendas can be best directed towards action against this or the next pandemic.
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gens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., et al. (2020). SARS-CoV-2 cell entry
depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease in-
hibitor. Cell, 181 (2), 271–280.

Hofmarcher, M., Mayr, A., Rumetshofer, E., Ruch, P., Renz, P., Schimunek, J., Seidl, P.,
Vall, A., Widrich, M., Hochreiter, S., & Klambauer, G. (2020). Large-scale ligand-
based virtual screening for SARS-CoV-2 inhibitors using deep neural networks. arXiv
preprint arXiv:2004.00979.

Homan, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15 (1),
1593–1623.

Hong, L., Lin, J., Li, S., Wan, F., Yang, H., Jiang, T., Zhao, D., & Zeng, J. (2020). A
novel machine learning framework for automated biomedical relation extraction from
large-scale literature repositories. Nature Machine Intelligence, 2, 347–355.

837



Bullock, Luccioni, Hoffmann Pham, Lam, & Luengo-Oroz

Hu, F., Jiang, J., & Yin, P. (2020a). Prediction of potential commercially inhibitors against
SARS-CoV-2 by multi-task deep model. arXiv preprint arXiv:2003.00728.

Hu, Z., Ge, Q., Li, S., Boerwinkle, E., Jin, L., & Xiong, M. (2020b). Forecasting and
evaluating multiple interventions for COVID-19 worldwide. Frontiers in Artificial
Intelligence, 3, 41.

Hu, Z., Ge, Q., Li, S., Jin, L., & Xiong, M. (2020c). Artificial intelligence forecasting of
COVID-19 in China. arXiv preprint arXiv:2002.07112.

Huang, C.-J., Chen, Y.-H., Ma, Y., & Kuo, P.-H. (2020). Multiple-input deep convolu-
tional neural network model for COVID-19 forecasting in China. medRxiv preprint
medRxiv:2020.03.23.20041608.

Humanitarian Data Exchange (2020). COVID-19 pandemic – Humanitarian data exchange.
https://data.humdata.org/event/covid-19. Accessed: 2020-08-05.

Imran, A., Posokhova, I., Qureshi, H. N., Masood, U., Riaz, S., Ali, K., John, C. N., Hussain,
I., & Nabeel, M. (2020). AI4COVID-19: AI enabled preliminary diagnosis for COVID-
19 from cough samples via an app. Informatics in Medicine Unlocked, 100378.

Ivakhnenko, A. G. (1970). Heuritic self-organization in problems of engineering cybernetics.
Automatica, 6, 207–219.

Jang, J.-S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans-
actions on Systems, Man, and Cybernetics, 23 (3), 665–685.

Jiang, X., Coffee, M., Bari, A., Wang, J., Jiang, X., Huang, J., Shi, J., Dai, J., Cai, J.,
Zhang, T., et al. (2020). Towards an artificial intelligence framework for data-driven
prediction of coronavirus clinical severity. CMC-Computers, Materials & Continua,
63, 537–551.

Jumper, J., Tunyasuvunakool, K., Kohli, P., Hassabis, D., & AlphaFold Team
(2020). Computational predictions of protein structures associated with
COVID-19. https://deepmind.com/research/open-source/computational-predictions-
of-protein-structures-associated-with-COVID-19.

Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., & Nielsen, M. (2017).
NetMHCpan-4.0: Improved peptide–MHC class I interaction predictions integrating
eluted ligand and peptide binding affinity data. The Journal of Immunology, 199 (9),
3360–3368.

Kanne, J. P., Little, B. P., Chung, J. H., Elicker, B. M., & Ketai, L. H. (2020). Essentials for
radiologists on COVID-19: an update—radiology scientific expert panel. Radiology,
200527.
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