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Mapping the microscale origins of magnetic
resonance image contrast with subcellular diamond
magnetometry
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Magnetic resonance imaging (MRI) is a widely used biomedical imaging modality that derives

much of its contrast from microscale magnetic field patterns in tissues. However, the con-

nection between these patterns and the appearance of macroscale MR images has not been

the subject of direct experimental study due to a lack of methods to map microscopic fields in

biological samples. Here, we optically probe magnetic fields in mammalian cells and tissues

with submicron resolution and nanotesla sensitivity using nitrogen-vacancy diamond mag-

netometry, and combine these measurements with simulations of nuclear spin precession to

predict the corresponding MRI contrast. We demonstrate the utility of this technology in an

in vitro model of macrophage iron uptake and histological samples from a mouse model of

hepatic iron overload. In addition, we follow magnetic particle endocytosis in live cells. This

approach bridges a fundamental gap between an MRI voxel and its microscopic constituents.
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M
agnetic resonance imaging (MRI) is a widely used
biomedical imaging modality, with millions of scans
performed each year for medical diagnosis, human

neuroscience research, and studies in animal models. The con-
trast seen in MRI images is strongly influenced by microscale
magnetic field gradients in cells and tissues, produced by endo-
genous substances such as blood, cellular iron deposits1,2, or
molecular-imaging agents such as iron oxide nanoparticles
(IONs)3–6. The precise dependence of voxel-scale (~0.5 mm) MRI
contrast on the microscale magnetic field has been a topic of
intense theory and simulation due to its importance for disease
diagnosis and contrast agent design2,7–10. These studies predict,
for example, that the spatial frequency of the local magnetic field
can significantly impact the T2 relaxation rate of a tissue, and that

optimizing contrast agent size can maximize T2 contrast for a
given set of material and imaging parameters. However, despite
its significance for biological imaging, the relationship between
microscopic magnetic field patterns in tissue and T2 relaxation
has not been studied experimentally due to a lack of effective
methods to map magnetic fields at the microscale under biolo-
gically relevant conditions.

Nitrogen-vacancy (NV) magnetometry is a recently developed
technique that enables the imaging of magnetic fields with optical
resolution using the electronic properties of fluorescent NV
quantum defects in diamond11. The electronic structure of an NV
center forms a ground-state triplet, with the ms=± 1 states
separated from the ms= 0 state by 2.87 GHz, making ground-state
spin transitions addressable by standard electron spin resonance
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Fig. 1 Subcellular mapping of magnetic fields in cells labeled for MRI. a Schematic of subvoxel magnetic field mapping using a NV magneto-microscope. b

Illustration of a cell labeled with IONs and its expected magnetic field pattern. c Bright-field image of RAW 264.7 macrophage labeled with 200- nm IONs.

White arrows point to internalized IONs. A bright-field imaging artifact also appears as black in the upper right corner of the cell. d Cartoon representation

of each NV orientation and the corresponding representative spectra from fixed-cell experiments. The blue ball represents nitrogen and the red ball

represents the adjacent lattice vacancy. Highlighted peaks in each relative fluorescence (RF) spectrum show the transition corresponding to each of the

four orientations. e Magnetic field images of the field projections along each of the four NV axes of macrophages 2 h after initial exposure to 279 ngml−1

200- nm IONs. f Images in e converted via Gram–Schmidt orthogonalization and tensor rotation to field maps along three Cartesian coordinates with the z

axis defined perpendicular to the diamond surface and the x axis defined as the projection of the applied bias field onto the diamond surface plane. The y

axis is defined to complete the orthogonal basis set. g Representative example of the procedure for dipole localization in cellular specimens. This procedure

comprises three steps: first the local minima in the field map are identified and ranked; next, in decreasing order of magnitude, the neighborhood of each

local minimum is fit to a point dipole equation and the resulting field is subtracted from the field map to reduce the fit-deleterious effect of overlapping

dipole fields; and finally, the results of these fits are used as guess parameters for a global fit over the full field of view. The fit shown has a degree-of-

freedom-adjusted R2 of 0.97. Scale bars are 5 µm
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(ESR) techniques. The Zeeman energy difference between the + 1
and −1 states leads to the splitting of the 2.87 -GHz resonance
into two distinct energy levels, whose separation from each other
increases linearly with magnetic field strength. Upon green laser
excitation (532 nm), the ms=± 1 states are more likely to undergo
non-radiative relaxation than the zero-spin state, so that
microwave-induced transitions from ms= 0 to ms=± 1 cause a
drop in NV fluorescence. Thus, the local magnetic field of an NV
center can be extracted from the optically reported ground-state
spin transition frequency. Diamonds densely doped with NV
centers make it possible to optically image this resonant transition
frequency over a wide field of view, thus providing an Abbe-
limited image of the magnetic field at the diamond surface12. NV
magnetometry has recently been used in proof-of-concept bio-
logical applications such as imaging the magnetic fields produced
by magnetotactic bacteria13, detecting magnetically labeled cancer
cells14, visualizing paramagnetic ions bound to cells15, and
measuring magnetic fields produced by neuronal action
potentials16.

Here, we establish a method that uses the unique capabilities of
NV magnetometry to study the connection between subcellular
magnetic fields and MRI contrast. Doing so requires adapting NV
magnetometry for high-sensitivity imaging of sparse magnetic
fields in cells and tissues, developing methods to convert two-
dimensional (2D) NV data into the three-dimensional (3D) dis-
tribution of magnetic field sources, and simulating the behavior of
nuclear spins in the resulting magnetic fields. In addition, mon-
itoring the evolution of magnetic fields in live cells requires
operating under nondamaging optical and thermal conditions
with reduced available signal. In this work, we address these
challenges to enable the mapping of subcellular magnetic fields in
an in vitro model of macrophage iron oxide endocytosis and
histological samples from a mouse model of liver iron overload,
connecting both to MRI contrast.

Results
Mapping subcellular magnetic fields. Our home-built NV
magneto-microscope (Fig. 1a) was optimized for both high-
resolution magnetic field imaging of fixed samples and dynamic
imaging of living cells. By virtue of a relatively thick NV layer in
our diamond (~4 µm), we were able to significantly reduce the
applied laser power compared to shallower surface-implanted NV
diamond microscopes, while maintaining a strong NV fluorescent
signal for rapid imaging. We used a total internal reflection
geometry to minimize phototoxicity13,16 and bonded a silicon
carbide wafer to the diamond base to improve thermal dissipa-
tion16. For cell-imaging experiments, we applied a moderate bias
field (10 mT) to magnetize cell-internalized superparamagnetic
IONs. While a larger bias field would increase the magnetization
of the sample, it would also produce stronger off-axis magnetic
fields for each NV axis, which significantly reduces the sensitivity
of NV magnetometry17.

As a first test of our method, we imaged the magnetic fields
resulting from the endocytosis of superparamagnetic IONs by
murine RAW 264.7 macrophages. Magnetic labeling and in vivo
imaging of macrophages are under development for a variety of
diagnostic and therapeutic applications4,18–20, which could
benefit from an improved understanding of the resulting MRI
contrast. In particular, although labeling is typically done with
dispersed particles of sizes ranging from a few nanometers to
several microns21–23, their internalization and subsequent
compaction by the cell (Fig. 1b, c) could produce radically
different magnetic field profiles8–10, which cannot be directly
observed by conventional electron microscopy or iron-staining
techniques. We performed vector magnetometry on fixed
macrophages after incubating them for 1 h with 200 -nm,
multicore IONs and allowing one additional hour for inter-
nalization. After measuring the magnetic field along each of the
four NV orientations (Fig. 1d), we projected the field maps along
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Fig. 2 Predicted and experimental MRI behavior in cells. a Schematic of Monte Carlo modeling of spin relaxation using NV-mapped magnetic fields. A

library of 11 cells mapped with vector magnetometry (three representative cells shown) in a 1:1 mix with unlabeled cells, was used to randomly fill a 108-cell

FCC lattice with periodic boundary conditions and run a Monte Carlo simulation of spin-echo MRI to predict T2 relaxation behavior. b Representative

simulated MRI signal. c T2-weighted MRI image of cell pellets containing a 1:1 mixture of supplemented and unsupplemented cells (+ IONs and –IONs,

respectively) or 100% unlabeled cells (bottom). d Simulated and experimentally measured T2 relaxation times for the 1:1 mixture. e Illustration of the same

quantity of magnetic particles endocytosed or distributed in the extracellular space. f Simulated and experimentally measured relaxivity for endocytosed

and extracellular distributions of IONs. Measurements and simulations have N= 5 replicates. All error bars represent± SEM
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Cartesian axes convenient for magnetic dipole localization via
orthogonalization and tensor rotation (Fig. 1e, f).

Connecting microscale fields to MRI contrast. To connect
microscale magnetic field measurements to MRI contrast, we first
converted our 2D images to 3D maps of magnetic field sources in
the sample, and then simulated the behavior of aqueous nuclear
spins in the corresponding 3D field. To convert 2D vector maps
imaged at the diamond surface into a 3D model of magnetic fields
in cells above the diamond, we developed an algorithm for
iterative localization of magnetic dipoles (Fig. 1g, Supplementary
Fig. 1). First, the in-plane coordinates of putative dipole field
sources (clusters of magnetic particles) were identified from local
minima in the x component of the vector field, chosen parallel to
the projection of the bias field onto the diamond surface. Then,
the off-diamond height (z) and magnetic moment of each cluster
were determined by fitting the local dipole field profile. After
fitting the dipole at the strongest local minimum, the resulting
magnetic field pattern was subtracted, and the next strongest local
minimum fitted, with this process repeated until all local minima
were exhausted. A global fit was then performed using the results
from the local fits as starting parameters. The degree-of-freedom-
adjusted R2 for all the global fits made to six representative
particle-containing cells was greater than 0.90. Magnetic locali-
zation of nanoparticle clusters was confirmed in a separate set of
cells using fluorescently labeled nanoparticles (Supplementary
Fig. 2). In addition, independent measurements of intracellular
iron concentration using inductively coupled plasma mass spec-
troscopy, 1.09± 0.10 pg Fe per cell, corroborated the estimated
iron content inferred from NV measurements, which was 1.126
pg Fe per cell. The final dipole values were scaled from the 10-mT
bias field of the NV instrument to the 7 -T field of our MRI
scanner using the bulk magnetization curve of the IONs (Sup-
plementary Fig. 3, Supplementary Note 1).

To translate subcellular magnetic field maps into predictions
about MRI contrast, we performed Monte Carlo simulations of
nuclear spin T2 decoherence in lattices of representative cells.
These cells contained magnetic dipole distributions and magni-
tudes derived from NV magnetometry of a representative cellular
library (Fig. 2a, Supplementary Fig. 4). The resulting lattice
thereby contains information about the spatial frequencies of the
magnetic field present in the pellet tissue, a critical parameter for
T2 contrast. Importantly, since this information can be obtained
from NV measurements performed on a representative sampling
of cells or tissues, this obviates the need for NV evaluation of the

exact individual sample imaged with MRI, enhancing the
versatility of this approach.

Our simulation predicted a bulk MRI T2 relaxation time of
23.6 ms for a 1:1 mixture of supplemented and unsupplemented
cells (Fig. 2b). Mixing was done to obtain a sufficiently long T2 for
accurate measurement with our MRI system. When compared to
an experimental MRI measurement of T2 in macrophages
prepared as in the NV experiment and pelleted in a 1:1 mixture
with unsupplemented cells, the Monte Carlo prediction was
accurate to within 2.8% (Fig. 2c, d). The T2 relaxation time of the
cell pellets could not have been predicted solely from the
concentration of IONs in the sample, as previous simulations
have suggested a major influence of packing geometry on contrast
agent relaxivity8–10. To establish that this relationship also holds
for our model system, we performed MRI measurements and
Monte Carlo simulations with IONs distributed in the extra-
cellular space (Fig. 2e). Per iron mass, we found that this diffuse
extracellular arrangement produces approximately sixfold faster
T2 relaxation than do endocytosed particles (Fig. 2f), underlining
the importance of the microscale magnetic field patterns mapped
with our method. Simulations of additional particle distributions
examine the relative influence of particle clustering and
confinement inside cells and endosomes (Supplementary Fig. 5,
Supplementary Note 2).

Mapping magnetic fields in histological specimens. To extend
this technique to diagnostic imaging, we performed NV magne-
tometry on liver specimens from a mouse model of hepatic iron
overload. The spatial distribution of iron deposits in the liver and
other tissues has been a topic of interest in clinical literature as an
indicator of disease state, including efforts to discern it non-
invasively using MRI2. Iron overload was generated through
intravenous administration of 900 -nm IONs to C57bl/6 mice
(Fig. 3a). Livers were harvested 18 h after injection and imaged
with 7- T MRI, showing enhanced macroscale T2 relaxation
compared to controls (Fig. 3b). To investigate the microscale
nature of this contrast enhancement, we cryosectioned the livers
of saline- and iron-injected mice and imaged the magnetic field
profiles of these tissue sections on our NV magneto-microscope.
We measured the projection of the magnetic field along a single
NV orientation, probing the ms = 0 to ms = + 1 and ms = 0 to ms

= –1 transitions. The magnetic particle clusters were relatively
sparse, resulting in a punctate distribution of magnetic dipoles
within the liver tissue of the iron-overloaded mouse (Fig. 3c,
Supplementary Fig. 6). We confirmed that these magnetic fields
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Fig. 3 Magnetometry of histological samples. a Diagram of mouse model of iron overload, prepared by injecting 10mg kg−1 of 900 nm iron oxide

nanoparticles into the tail vein. b 7T T2-weighted MR image of fixed, excised mouse livers from mice injected with IONs or saline. c NV magnetic field maps

of 10 µm liver sections obtained from the mice in b. d Fluorescence images of the tissue samples in c. Fluorescence images were taken with autogain to

reduce the necessary exposure time, resulting in the visibility of the autofluorescence of the tissue in the saline control. Magnetometry scans were taken

with a fixed gain. This experiment was repeated a total of three times, with data from two additional experiments shown in Supplementary Fig. 6. Scale bars

in b and c–d are 5 mm and 10 µm, respectively
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resulted from IONs using fluorescent imaging, for which purpose
the IONs were labeled with a fluorescent dye (Fig. 3d). These
results suggest that NV magnetometry could be used to map
subvoxel magnetic field patterns within histological specimens,
increasing the diagnostic power of MRI by correlating magnetic
field distributions to disease state.

Magnetic imaging of endocytosis. Finally, we tested whether NV
magnetometry could be used to follow the magnetic con-
sequences of the dynamic redistribution of magnetic material in
living mammalian cells. Macrophages endocytosing IONs go
through several stages of internalization, gradually reconfiguring
diffuse particles into compacted lysosomal clusters (Fig. 4a). This
process could be relevant to interpreting MRI data from labeled
macrophages and to the development of clustering-based mag-
netic nanoparticle contrast agents24,25. To image living cells, we
adjusted our NV methodology to minimize optical and thermal
energy deposition. We subsampled the NV spectrum to probe
only the ms = 0 to ms = + 1 transition of one NV orientation and
limited laser illumination to 5 min per image. This allowed us to
generate time-lapse images of magnetic fields coalescing inside
macrophages after ION internalization (Fig. 4b, c, Supplementary
Fig. 7), at the expense of precise 3D source localization, which
requires vector magnetometry using multiple NV orientations.
Cell viability (assessed via a Trypan Blue exclusion assay) was
approximately 90%. This technique for magnetic imaging of a
dynamic cellular process could aid the development of dynamic
contrast agents for MRI.

Discussion
In summary, this work establishes the capability of subcellular
NV diamond magnetometry to map microscale magnetic field
patterns in mammalian cells and tissues and introduces compu-
tational methods to connect these patterns to MRI contrast. The
ability to make this connection experimentally will facilitate the
interpretation of noninvasive images through microscopic ana-
lysis of matching histological specimens, and aid the development
of magnetic contrast agents for molecular imaging and cellular
tracking. Alternative methods for magnetic measurement, such as
scanning superconducting quantum interference device (SQUID)
microscopy26,27 and magnetic force microscopy28,29, are more
difficult to apply to tissue-scale biological specimens due to the
need to raster scan samples, the spatial offsets required for
thermal insulation of SQUID magnetometers from biological
materials, and the need to penetrate samples with probe tips for
force microscopy. MRI itself can also be used at higher resolution
to examine ex vivo specimens, but does not typically approach the
single-micron level30,31. Meanwhile, methods such as electron

microscopy or iron staining, which can also reveal the in vitro
locations of putative magnetic materials based on their density or
atomic composition, contain no information about the magnetic
properties of such materials and their resulting fields, limiting the
utility of these methods to examining the distribution of known
magnetic field sources.

Although the present study also used known particles to enable
direct experimental validation of our methods, NV magnetometry
can in principle be used to measure magnetic field profiles arising
from unknown sources, such as biomineralized iron oxide. To
enable such measurements, NV imaging could be performed with
a variable, electromagnet-driven bias field to first map the loca-
tions of magnetic field sources at low field (where vector mag-
netometry is possible), and then apply a ramping field along a
single NV axis to assess the M versus H behavior of each field
source. Such in situ saturation curves would provide the infor-
mation needed to model MRI relaxation in samples with
unknown saturation behavior. Additional improvements in this
technique may be needed to reconstruct the location and mag-
netization of more diffuse magnetic materials that are less easily
detected as point dipoles.

The sensitivity of our current instrument, established by
computing the variance between three sequential magnetic
measurements of the identical sample, was 17 nT at 1 -µm in-
plane resolution. This sensitivity corresponds to the field pro-
duced by a 92 -nm particle situated 10 µm above the diamond
surface (assuming the same volumetric magnetization as the
IONs used in this study), or a 10 -nm particle located immedi-
ately on top of the diamond. This sensitivity was more than
sufficient to detect the 200-nm IONs used in our proof-of-
concept experiments. While these particles are within the size
range used in MRI contrast agents21–23, future work should focus
on improving the sensitivity of NV magnetometry and demon-
strating detection of smaller sources. Sensitivity could be
improved by employing diamonds with thinner NV layers, which
would allow detection of significantly smaller magnetic sources
near the diamond surface and would reduce the point-spread
function of NV-imaged magnetic fields, increasing the precision
of source localization. Combined with improved methods for
positioning tissue sections flatter on the diamond surface, this
would allow the mapping of fields produced by smaller, endo-
genous magnetic inclusions and ultrasmall superparamagnetic
nanoparticles.

The study of microscale sources of T2 contrast could be
complemented by methods to map the concentrations of T1
contrast agents using alternating current (AC) NV magneto-
metry15. In particular, adapting this technique to measure the 3D
distribution of T1 agents inside of the cell using
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nanodiamonds32,33 could enable Monte Carlo modeling of T1

relaxation in contrast-labeled cells and tissues. In addition to
mapping the distribution of contrast agents and the resultant
magnetic fields, recent advances in NV magnetometry could
allow for in situ imaging of water-bound proton relaxation,
enabling a direct measurement of the effect of contrast agents on
the relaxation of surrounding water molecules34.

Besides contributing to the study of MRI contrast, the methods
presented for mapping magnetic field sources in 3D from planar
optical data will enable biological imaging applications directly
using NV diamonds and magnetic labels. Because the optical
readout in this technique is confined to the diamond surface, this
method can be used to study opaque tissues inaccessible to
conventional microscopy. To this end, our demonstration that
time-resolved wide-field NV magnetic imaging can be performed
on living cells increases the utility of this technique for mon-
itoring dynamic biological processes.

Methods
Nitrogen-vacancy magneto-microscope. The NV magneto-microscope was
constructed from a modified upright Olympus BXFM microscope and a 532 nm
laser source. The diamond used in this work is an electronic grade (N< 5 p.p.b.)
single crystal substrate with nominal rectangular dimensions of 4.5 mm × 4.5
mm × 500 μm, grown using chemical vapor deposition (CVD) by Element Six. The
top-surface NV sensing layer is measured to be 3.87 μm thick, consists of 99.999%
isotopically pure 12C with 21.4 p.p.m. 14N (3.77 × 1017 cm−3) incorporated into the
layer during growth. Layer thickness and nitrogen concentration were determined
by secondary ion mass spectroscopy. The diamond was irradiated with a 4.5 MeV
electron source with an irradiation dose of 9 × 1018 cm−2. The samples were sub-
sequently annealed at 400 °C for 2 h, 800 °C for 16 h, and 1200 °C for 2 h. This
diamond was affixed to a silicon carbide wafer (for enhanced heat dissipation),
which was in turn affixed to a pair of triangular prisms to facilitate a total internal
reflection excitation path. The prisms, silicon carbide wafer and diamond were
fused using Norland Optical Adhesive (NOA 71). The diamond assembly was
removable to allow live-cell culture on the diamond surface in a cell culture
incubator. Light was collected from the top of the diamond through a water-
immersion objective. Images were acquired on a Basler acA2040-180kmNIR—
CMV4000 CCD camera with 2048 × 2040 5.5 µm pixels (we used 256 × 1020 pixels
to increase frame rate). For high-resolution vector magnetometry and tissue
imaging, NV fluorescence was excited using a 100 mW Coherent OBIS LS 532 nm
optically pumped semiconductor laser. For live-cell imaging, we used an attenuated
2W 532 nm laser from Changchun New Industries Optoelectronics. When
necessary, focal drift was adjusted for using a piezo-driven stage (Thorlabs).
Microwave radiation was applied through a single turn copper loop immediately
surrounding the diamond. The microwave signal was generated by a Stanford
Research Systems Inc. SG384 signal generator and amplified by a ZHL-16W-43-S
+ amplifier from MiniCircuits. Experimental timing was controlled by a National
Instruments USB 6363 X Series DAQ. A bias magnetic field was generated by two
NeFeB grade N52 magnets (1″ × 2″ × 0.5″, K&J Magnetics) positioned on opposite
sides of the NV diamond. The NV setup was controlled by custom software written
in LabView.

Cell culture. RAW 264.7 cells (ATCC) were cultured at 37 °C and 5% CO2 in
Dulbecco’s Modified Eagle Medium (DMEM, Corning Cellgro) and passaged at or
before 70% confluence. For particle labeling, media was aspirated and replaced with
phenol red-free DMEM supplemented with 279 ng ml−1 IONs (200 nm Super Mag
Amine Beads Ocean Nanotech, MHA). After 1 h, the ION solution was aspirated
and cells were washed twice with phosphate buffered saline (PBS) to remove
unbound particles. For fixed-cell magnetometry, the cells were trypsinized, quen-
ched with DMEM and deposited on the diamond surface at 40–70% confluency.
After 1 h incubation on the diamond under ambient conditions, the cells were fixed
with 4% paraformaldehyde-zinc fixative (Electron Microscopy Services) and
washed twice with PBS.

For live-cell imaging, the cells were cultured as above until trypsinization and
spotting on the diamond. Their media was supplemented with 0.1 mM ascorbic
acid to mitigate phototoxicity35. For extended imaging, the cells were maintained
on the diamond in DMEM supplemented with 10 mM HEPES to stabilize pH at 7.4
under ambient atmosphere.

Vector magnetometry. The bias magnetic field was aligned close to in-plane with
the diamond surface while having sufficient out-of-plane field strength to resolve
the resonance of each NV axis, and the full NV optically detected magnetic
resonance (ODMR) spectrum was probed. The out-of-plane component was
necessary because a purely in-plane bias field did not provide each NV axis with a
unique parallel B-field, causing absorption lines to overlap. The microwave

resonance for each pixel in the image was set as the center of the middle hyperfine
peak of the transition. Spectra were swept at 0.5 Hz with 2000 images acquired per
spectrum (0.9 ms exposure time). Images were acquired with an Olympus 60×
water immersion objective (NA 1.0). Magnetometry spectra were acquired for 2 h
each. For a sub-set of measurements, this time was extended to 6 h to improve
signal-to-noise ratio (SNR).

Projection field maps for each NV orientation were generated from the
corresponding peaks in the NV ODMR spectrum, and the background magnetic
gradient from the bias magnets (32 μ Tmm−1 in a representative scan) was
subtracted out by fitting the background to a 2D quadratic function and
subtracting the fit from the signal. Projection field maps were combined to form 3
orthogonal field maps with Bz oriented normal to the diamond sensing surface. Bx
is defined as the projection of the applied field onto the diamond plane and By is
defined along the vector that completes the orthogonal set. Pixels were binned 2 × 2
in post-processing to boost SNR. This does not cause a significant reduction in
resolution, as the binned pixels in the object plane are 92 nm on a side, which
oversamples the Abbe limit of ~340 nm.

Live cell magnetometry. For live cells, the bias magnetic field was aligned such
that it was possible to resolve at least one NV resonance, and the magnetic field
projection along a single NV orientation was probed using the ms= 0→ms= + 1
transition. The microwave resonance for each pixel in the image was set as the
center of the middle hyperfine peak of the transition. While probing only one NV
transition allowed us to reduce the light dose to the sample while maintaining good
SNR, it also limited our information to a projection of the field along one axis. This
limitation precludes the source fitting performed on the fixed samples. Spectra were
swept 10 MHz at 1 Hz with 200 images acquired per spectrum (4 ms exposure
time). In order to limit phototoxicity, each image was averaged for only 5 min and
the laser was shuttered for 5 min in between images, resulting in a 50% duty cycle.
Regions of interest were selected to include all relevant fields for a given cell.
Optical power density was ~40W cm−2. Images were acquired with a Zeiss 40×
near infrared water immersion objective (NA 0.8). Cell viability was assessed by
performing a Trypan Blue exclusion assay after NV measurements.

Intracellular iron quantification. We performed inductively coupled plasma mass
spectrometry (ICP-MS) to independently confirm the intracellular iron con-
centration estimated by NV magnetometry. RAW 264.7 cells were cultured and
labeled with IONs as described above. After trypsinizing, the cells were counted
using a disposable hemocytometer (InCYTO C-Chip). The cells were then pelleted
at 400 g for 5 min, and the supernatant was aspirated. The cell pellet was first boiled
in 2 mL of 70% nitric acid (ICP grade, Sigma) for 24 h to completely oxidize and
dissolve any intracellular iron. The dried residue was then resuspended in 2% nitric
acid and diluted 10-fold with deionized water for analysis using an Agilent ICP-MS
quadrupole spectrometer. Unsupplemented cells contained 0.21 + / − 0.04 pg Fe per
cell. A procedural blank was included throughout the process to account for
background iron contamination (~34 p.p.b.), which was subtracted from measured
samples.

Field fitting and dipole localization. In-plane dipole coordinates were identified
as local minima in the Bx field map. Before localization, the field map was spatially
low-passed (2D Gaussian filter with σ = 0.5 pixels) to eliminate noise-generated
local minima in the background. A pixel was identified as a local minimum if and
only if its Bx field value was smaller than all of its immediate neighbors (including
diagonals) in the spatially low-passed image.

Starting with the strongest local minimum, the measured magnetic field in a
10 × 10 pixel (1.8 × 1.8 µm) square surrounding this minimum was fitted to a point
dipole equation and averaged through the full NV layer depth (assuming uniform
NV density), with the magnetic moment, height off of the diamond, and dipole
orientation as free parameters.

Bxði; jÞ ¼

R�ðzþhÞ
�z Bxo i′; j′; b;M; θ;ϕð Þ � db

�h

where

Bxoði; jÞ ¼
μ0

4π
�

3xðM � rÞ

r5
�
M � x̂

r3

� �

Here i′ ¼ i� i0ð Þ and j′ ¼ j� j0ð Þ, where (i0,j0) are the in-plane coordinates of the
magnetic dipole, θ and ϕ correspond to the in-plane and out-of-plane angles,
respectively, of the point dipole orientation, M is the magnetic moment, z is the
height of the dipole over the diamond, r is the displacement vector, x̂ is the unit
vector along the projection of the dipole axis onto the diamond surface plane,
x ¼ i′ cos θð Þ � j′ sin θð Þ, b is a dummy variable for integration through the NV
layer, and h is the NV layer thickness. All parameters are free to fit other than the
in-plane dipole coordinates, which are fixed by the local minimum of the Bx field
map. While the z offset between the dipole and the diamond and the magnetic
moment of the dipole both affect the strength of the detected field, they have
distinguishable effects on the resultant field pattern. This is clear from the distinct
dependence of the dipole function on M and z (Supplementary Note 3).
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After the strongest minimum has been fitted, the fitted field from the fit dipole
(within the full field of view) was subtracted from the magnetic field image, to
facilitate the fitting of weaker dipoles. The 10 × 10 pixel neighborhood of the
second strongest dipole was then fitted in the subtracted image. The fitted field was
subtracted, and the fitting continued until the list of local minima had been
exhausted.

A global fit was then performed using the results from the neighborhood fits as
starting parameters. The global fit function is the sum of N dipoles (where N is the
number of local minima) with the in-plane dipole coordinates fixed at the local
minima.

Bxtot i; jð Þ ¼
X

q

Bxq ði; jÞ

Here q is an index that runs from one to N and indicates the dipole field source.
The precision of this technique is limited by the key assumption that the local
minima are not significantly shifted in the x–y plane by neighboring dipoles. The
degree of freedom-adjusted R2 for each of the four global fits in the cell library was
greater than 0.9. For 3 of the 6 labeled cells, with image acquisition time increased
from 2 to 6 h, the R2 was greater than 0.95. While this approach was able to
produce a sufficiently precise magnetic field reconstruction to predict MRI
relaxation, other methods are also available for analytic dipole localization and
magnetic field reconstruction36.

Fluorescent colocalization. For fluorescence colocalization, IONs were labeled at
their amino groups with Alexa 488-NHS (ThermoFisher Scientific). Before label-
ing, nanoparticles were diluted to 1 mgml−1 in 0.1 M sodium bicarbonate at pH =

8.2. Alexa 488 dye was dissolved in dimethyl sulfoxide (DMSO) at 10 mgml−1 and
added in 10 times molar excess to the nanoparticle surface amino groups. Fluor-
escent images were taken before the NV magnetometry commenced to avoid
photobleaching due to NV illumination. A 2-h vector magnetometry scan was then
performed for localization of magnetic field sources. Alexa 488 fluorescent signal
was Wiener filtered to remove background speckle and then Gaussian blurred.
Local maxima of the Gaussian blurred image were designated the centroids of the
fluorescent signal. In one case, we were unable to establish a fluorescent centroid
corresponding to a dipole that was visible on the NV magnetometry scan. Fitting of
this magnetic source predicted a magnetic moment corresponding to a single
nanoparticle, which may explain its weak fluorescent signal.

Monte carlo simulations and cell library. Nuclear spin relaxation was simulated
by assigning 11 representative cells from vector magnetometry to random positions
in a repeating face-centered cubic (FCC) lattice containing a total of 108 spherical
cells with periodic boundary conditions. The intracellular volume fraction of this
packing geometry is 74%. While spherical cells in a periodic lattice represent a
geometric simplification compared to real tissues, this and similar simplifications
have been used previously to model diffusion in cell pellets and tissues37–39. Cell
size was set to match previously measured values for RAW 264.7 cells40. Water
molecules were randomly assigned initial x, y, and z coordinates in the lattice and
allowed to diffuse while their phase in the rotating frame evolved from ϕ(0) = 0 by
δϕ(t) = − γBx(x,y,z)δt, where Bx(x,y,z) is the component of the local nanoparticle-
induced field along the MRI bias field. This phase step does not account for inner-
sphere effects from water coordinating to the nanoparticle surface, which will cause
rapid dephasing of water coordinated to the ION surface that cannot be refocused
by the pi pulses in the CPMG sequence. Re-focusing pulses were simulated at 5.5
ms Carr–Purcell time (11 ms echo time) by setting ϕ(t) = − ϕ(t − δt) Adjusting the
Carr–Purcell time can affect the determination of T2. We used an 11 ms echo time
to match the echo time of our cell pellet MR measurements. The magnetic field was
mapped within this 3D-volume using a finite mesh whose mesh size was inversely
proportional to the local field gradient. If a water molecule moved within a distance
equivalent to six nanoparticle cluster radii of a cluster, the field contribution from
that cluster was calculated explicitly. Background RAW cell relaxation was
accounted for by post-multiplying the simulated signal with an exponential decay
with time constant set to the measured relaxation rate of an unlabeled RAW cell
pellet. Cell membranes were modeled as semi-permeable boundaries with a per-
meability of .01 μmms−1 in accordance with previously measured values for
murine macrophage-like cells, adjusted to the temperature in our magnet bore
(12.9 °C)41. Intracellular and extracellular water diffusivity were set, respectively, to
0.5547 and 1.6642 μm2ms−1 in accordance with previous studies of cellular dif-
fusion37,38,42 and established values for water diffusivity at 12.9 °C43, the tem-
perature of our scanner bore. Bulk spin magnetization in the sample was calculated
as M tð Þ ¼

P

i cos½ϕi tð Þ�, where i is the index of simulated water molecules and the
magnetic moment of a single molecule is normalized to 1.

Nanoparticle clusters were modeled as spheres packed so as to occupy three
times the volume of their constituent nanoparticles, within the range of measured
literature values and grain packing theory44–46. To account for the increase in
nanoparticle magnetizations at 7 T compared to our NV bias field, we scaled dipole
magnetization using a SQUID-measured curve (Supplementary Fig. 3). Magnetic
dipole coupling effects between particles were neglected, as is valid for our average
cluster size and geometry. (See Supplementary Information for further discussion).
The data presented in the manuscript represents the output of N = 10 simulations,

each containing 20 random arrangements of cells and 2000 water molecules. The
number of trials was chosen such that the SEM for our simulations was smaller
than the SEM of our corresponding experiments.

To assess the impact of an alternative nanoparticle distribution (Fig. 2e, f;
Supplementary Fig. 5), we simulated the same 200 nm nanoparticles in the
arrangements indicated in the figures. The presented data comprises N =

10 simulations, each containing 20 random arrangements of particles and 2000
water molecules.

MR imaging and relaxometry. Imaging and relaxometry were performed on a
Bruker 7 T MRI scanner. A 72 mm diameter volume coil was used to both transmit
and receive RF signals. To measure the T2 relaxation rate of RAW cells after
nanoparticle labeling, the cells were labeled identically to their preparation for NV
magnetometry, then trypsonized, resuspended in 10 mL DMEM and pelleted for 5
min at 350 g. DMEM was aspirated and cells were resuspended in 150 µL PBS. The
cells were mixed with an equal number of unsupplemented cells during resus-
pension in PBS to extend the T2 time of the final pellet, improving the fidelity of the
T2 fit. After transferring the cells to a 300 µL centrifuge tube, the cells were pelleted
for 5 min at 350 × g. These tubes were embedded in a phantom comprising 1%
agarose dissolved in PBS and imaged using a multi-echo spin-echo (CPMG)
sequence (TR = 4000 ms, TE = 11 ms, 2 averages, 20 echoes, 273 × 273 × 1000 µm
voxel size). T2 relaxation was obtained from a monoexponential fit of the first 6
echoes. In order to establish the intrinsic T2 of RAW cell pellets for our Monte
Carlo simulations, we measured the T2 relaxation of 4 pellets of unsupplemented
RAW cells using the same parameters as above, except that, since the T2 was
significantly longer, we fitted the first 20 echoes. Fitting using only even echoes
produced the same results as fitting all echoes (Supplementary Fig. 8).

For the scenario in which nanoparticles are unclustered in the extracellular
space, unsupplemented RAW cells were pelleted and resuspended in PBS
supplemented with 100 µg ml−1 IONs. This concentration was selected to ensure a
measurable T2 and allow both in silico and in cellulo comparisons between the per-
iron relaxation rates of extracellular and internalized particle scenarios. The validity
of a per-iron comparison was confirmed by previous studies of the linearity of
relaxivity for this size of iron oxide nanoparticles when unclustered47. To limit
endocytosis, cells were moved to the cold MRI bore and imaged immediately after
supplementation and pelleting. Imaging parameters were as described above.

Mouse model of iron overload. Animal experiments were conducted under a
protocol approved by the Institutional Animal Care and Use Committee of the
California Institute of Technology. Female C57bl/6 mice were injected in the tail
vein with 10 mg kg−1of dragon green labeled 900 nm ION (Bangs) or saline. A total
of three mice were used in this study. No randomization or blinding were needed
given the design of the study. Eighteen hours after injection, the mice were perfused
with 20 mL of 10% neutral buffered formalin, and their livers were collected for
MRI or NV magnetometry. MRI was performed on livers embedded in 1% agarose
using the 7T scanner described above, using a spin-echo pulse sequence with TR =

2500 ms, TE = 11 ms, 4 averages, and a 273 × 273 × 1000 µm voxel size. For NV
magnetometry, the liver was frozen in OCT embedding media and sectioned into
10 µm slices. Sections were mounted in on glass coverslips. We inverted the glass
cover slip and pressed the tissue sample against the NV diamond. Silicon vacuum
grease was applied at the edge of the cover slip (away from the diamond) to hold
the sample against the diamond. After this preparation was complete, PBS was
added to the dish to wet the sample. We performed fluorescent imaging to locate
magnetic sources in the tissue. As the sources were sparsely distributed, the camera
was set to an autogain function to allow for short exposure time and rapid scan-
ning. The camera was set back to fixed gain before NV imaging commenced. To
compensate for magnetic field sources being further from the diamond due to
tissue thickness and/or folds in the sections, NV imaging was performed with a
strong (25 mT) bias field applied along a single NV axis. This strong bias field
served to increase the magnetization of the magnetic inclusions in the liver. As it
was applied along an NV axis, this bias field did not significantly reduce the
contrast of the relevant ODMR spectral lines. However, such a strong bias field
precludes the use of vector magnetometry. Future improvements to histological
sample preparation should increase the sample flatness and bring the magnetic
material closer to the diamond surface, allowing for a lower bias field and, as a
result, vector magnetometry and source localization. Images were acquired with a
Zeiss 40× near infrared water immersion objective (NA 0.8).

Software and image processing. All fits and plots were generated in MATLAB.
Monte Carlo Simulations were performed in C + + on a Linux High Performance
Computing Cluster.

Statistical analysis. Sample sizes were chosen on the basis of preliminary
experiments to have sufficient replicates for statistical comparison. Data are plot-
ted, and values are given in the text, as mean± S.E.M. Statistical comparisons
assumed similar variance.

Code availability. All the relevant software scripts are available from the authors
upon request.
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Data availability. All the relevant data are available from the authors upon
request.
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