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Abstract

Amino acids committed to a particular function correlate tightly along evolution and tend to form clusters in the 3D
structure of the protein. Consequently, a protein can be seen as a network of co-evolving clusters of residues. The goal of
this work is two-fold: first, we have combined mutual information and structural data to describe the amino acid networks
within a protein and their interactions. Second, we have investigated how this information can be used to improve methods
of prediction of functional residues by reducing the search space. As a main result, we found that clusters of co-evolving
residues related to the catalytic site of an enzyme have distinguishable topological properties in the network. We also
observed that these clusters usually evolve independently, which could be related to a fail-safe mechanism. Finally, we
discovered a significant enrichment of functional residues (e.g. metal binding, susceptibility to detrimental mutations) in the
clusters, which could be the foundation of new prediction tools.
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Introduction

Some protein functions are maintained by concerted changes of

a group of residues forced to co-evolve (i.e. when a residue is

mutated, other residues must change to preserve or restore the

structure or function of the protein). Such is the case of enzymes,

where the environment of the active site must conserve certain

characteristics so that the protein maintains its function during the

course of evolution [1]. It is also known that protein folds have

evolved under constraints imposed by function, so their structure is

robust against random mutational events, yet extremely sensitive

to perturbations at key positions [2].

Likewise, functionally important residues undergo sequence

variations as they evolve and form spatial clusters in the protein

structure. Such clusters may be part of binding sites, catalytic

sites or allosteric pathways [3]. Previous works have suggested

a link between functionally important sites (for specificity or

allosteric regulation) and neighbouring co-evolving residues

[1,4,5–9]. Halabi et al., using sequence-based analysis, in-

troduced the concept of groups of correlated amino acids that

evolved quasi-independently, called sectors. Strikingly, those

sectors were observed to be physically in contact in the 3D

structure [10].

In addition, the information within a protein must be trans-

mitted, at least partly, between residues in physical contact, some

being important to maintain a short path in the distance network

[2,11]. Thus, it is reasonable to consider a protein as an undirected

network of contacting residues. Decomposing protein structures

into modules of densely-interconnected residues using this kind of

network representations has been useful to explain allosteric

communication [12].

In this work we analyse the mutual information networks

between residues (MIN) in 187 families of enzymes and describe

the relationship between co-evolution and the 3D structure of

the protein. We introduce a new concept, the analysis of MI3D

clusters which combine both evolutionary and three-dimensional

information. In accordance with Halabi et al., we observed that

networks of co-evolving residues tend to be close, forming a sector

(which we called MI3D cluster) when mapped onto the 3D

structure [10]. Furthermore, we found that, amongst the many

MI3D clusters usually present in a protein domain, those

containing catalytic residues have distinguishable network

properties. This finding could be used to predict such catalytic

residues. Finally, we measured the enrichment of the clusters in

residues with different functionalities, e. g: catalytic activity,

metal binding, and susceptibility to detrimental mutations.
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Results and Discussion

Are Mutual Information Networks and Distance Networks
Topologically Different?

We created the Mutual Information Networks (MINs) by

connecting residues with a mutual information value .= 6 since

such value was determined to be indicative of a significant

evolutionary relationship [13] (see Methods). The Distance

Networks (DNs) were created by connecting any two residues if

any heavy atom of each was closer than 5 Å. As an example, figure

S1 shows the MIN and DN for the Pfam family PF00884.

We observed that the topological properties of MINs and DNs

cannot be inferred from one another. The degree distribution of

the DN of any protein structure follows a bell-like Poisson

distribution as would be expected for a statistically homogeneous

random model (Figure 1). This has been observed by other

authors, and has been attributed to a restriction in the number of

residues occupying a volume in the protein space [14–16]. The

distribution degree of the MINs displays a mixture of distributions

ranging from fast-decaying power-law to Poissonian (Figure 1).

Since co-evolution demands some degree of physical proximity

[17,18], deviations from a purely scale-free architecture may be

due to a limit in the possible number of neighbours that a node can

have. Also, there are a number of biological factors influencing the

ability of two residues to co-evolve (e.g. their functional roles, their

biochemical nature, their structural surroundings, etc.), which can

possibly hinder the existence of a large number of simultaneously

co-evolving residues. This would prevent the existence of nodes

with distinctly large numbers of neighbours in the MINs, thus

truncating the characteristic long tails in power-law degree

distributions.

The clustering coefficient distribution of the MINs and DNs is

shown in Figure 2. The mean values for the distributions are 0.365

for MINs, and 0.514 for DNs. This implies networks with very

dense regions, which is in line with the observations of some other

biological networks [19]. However, the dispersion of the clustering

coefficient in MINs is significantly larger than in DNs (p-value

,2.2*10216, KS test; Figure 2, inset). This large dispersion is

characteristic of modular architectures [20]. This means that

residues in the MINs tend to form small clusters where all residues

evolutionarily influence one another, while there is very little

evolutionary dependence between clusters. Finally, analysis of

clustering coefficient and characteristic path length shows that

MINs and DNs show a small-world structure as described by

Watts and Strogatz in their seminal work [21]: characteristic path

length L.= Lrandom and clustering coefficient C.. Crandom, where

Crandom and Lrandom are parameters for random networks (details in

text S1). We also compared MINs and DNs to regular networks

(see text S1). Our results for DNs agree with the observations of

Vendruscolo et al. for protein structures [22]. Results for MINs are

similar to those observed by Chakrabarti and Panchenko [23].

The only difference is that, in our case, C , Cregular in most MINs

(95.6%), while in theirs C . Cregular on average. Two possible

explanations for this discrepancy are: (1) Chakrabarti and

Panchenko used a lower number of aligned sequences in order

to calculate MI values (which can be source of bias [24]), and (2)

a different method for mutual information threshold calculation

was used, which in our case produced sparser networks.

Are Groups of Co-evolving Amino Acids Close in the 3D
Structure?

The MCL algorithm was used to identify clusters of co-evolving

residues in the MINs (see Methods), hereinafter called MI clusters.

These MI clusters contain groups of co-evolving residues, regard-

less their distance in the 3D structure of the protein. Figure S2

shows the modularity of the MINs (see Methods).

It has been demonstrated that co-evolving residues are

distributed in a particular fashion in the 3D structure [1]. For

instance, two distant residues can actually belong to the same MI

cluster (this is, they co-evolve) while two neighbouring residues

may evolve separately despite their physical proximity. We

investigated the spatial arrangement of MI clusters by mapping

them onto the DN (i.e. onto the 3D structure of the reference

protein, see Methods). The resulting clusters were called MI3D

clusters (see Methods). These MI3D clusters contain groups of co-

evolving residues which are close (,5 Å) in the 3D structure of the

protein.

About 80% of the MI clusters generate MI3D clusters once

mapped onto the DN (clusters with less than four residues were not

considered in our analysis). The number of MI3D clusters per

Pfam and their size distribution are shown in figures S3 and S4.

About 75% of MI clusters are preserved as a single cluster and

only about 6% of the MI clusters are split into two or more isolated

MI3D clusters when mapped onto the structure of the protein.

These results confirm that groups of co-evolving amino acids tend

to be spatially close [25,26] Although previous studies have shown

that co-evolution does also occur between non-contacting residues

[27,28], our findings show that there is a link between co-evolution

and physical contact. However, the fact that about 6% of MI

clusters are broken into several isolated MI3D clusters means that

a pair of residues can actually co-evolve even though they are

neither in physical contact nor ‘‘connected’’ by single-linkage of

co-evolving residues. A common selective pressure in two

separated areas of the protein could explain this observation

(e.g. two interaction patches, allosterism, etc.).

Catalytic MI3D Clusters
We next identified those MI3D clusters which either contain

a catalytic residue or are close to one (,5 Å). We called those

clusters catalytic MI3D clusters. Figures S5 and S6 show that, on

average, non-catalytic MI3D clusters are more than twice as

frequent as catalytic MI3D clusters. This can be explained given

the singularity of the catalytic site. Other noticeably feature is that,

within a Pfam domain, the catalytic MI3D clusters are, on

average, 4-fold larger than the non-catalytic ones (see figure S7).

Although the majority of MI clusters (72.9%) do not produce

catalytic MI3D clusters (but produce non-catalytic MI3D clusters),

it is worth noting that, when they do, they mostly produce only

one (Figure 3). As expected, considering that they originate from

different MI clusters, catalytic MI3D clusters within the same

Pfam are less likely to co-evolve than random expectation (figure

S8).

Taking into account that there are, on average, more than 3

catalytic MI3D clusters per Pfam, this implies that catalytic MI3D

clusters usually evolve independently despite their physical

proximity. This is suggestive of either an integrative process

(which ‘‘connects’’ different parts of the protein to the catalytic

site) or a fail-safe mechanism where mutual information connects

functional residues, for instance, in the event of losing a catalytic

MI3D cluster (e.g. due to a mutation).

Furthermore, we observed that a catalytic and a non-catalytic

MI3D cluster can actually co-evolve, as 23% of the Pfams with

catalytic and non-catalytic MI3D clusters, at least one catalytic

and one non-catalytic MI3D cluster are derived from the same MI

cluster (figure S9).This suggests the presence of catalytic subsites,

e.g. positions that determine specificity or other necessary residues

for the accomplishment of the catalysis (e. g. allosteric sites).

Mapping the MI Network in the Protein Structure
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Prediction of Functional Sites Using MI Information
It is reasonable to expect important residues to be subject to co-

evolutionary pressures. In agreement with the idea of using

communities of correlated amino acids to uncover sets of residues

defining functional characteristics in a protein family [29], we

investigated whether MI clusters were enriched in residues

relevant for the enzymatic activity, such as metal-binding residues

and residues forming the active site. Our results indicate that the

UniProt features ACT_SITE, BINDING, MUTAGEN and

METAL are significantly over-represented in MI clusters

(Table 1). We also investigated if each residue’s degree in MI

clusters (i.e. the number of residues to which it is linked by co-

evolution) has any influence on its functional relevance. We

grouped the residues of each Pfam’s MI clusters into three ranges

according to their degree (see Methods). As shown in Table 2,

ACT_SITE, BINDING and METAL features are significantly

more frequent in residues with large degrees than in those with

medium and low degree. Similarly, we calculated that METAL

and ACT_SITE features are significantly more frequent in

residues with a large clustering coefficient.

Prediction of Functional Sites Using MI and 3D
Information

We next investigated whether MI3D clusters are also enriched

in residues important for the enzymatic activity. As shown in

Table 1, MI3D clusters were significantly enriched in residues with

UniProt features ACT_SITE, BINDING, METAL and MUTA-

GEN as compared to MI clusters. For instance, the enrichment in

metal-binding residues increases more than 2-fold as compared to

random expectation. This shows the advantage of combining

mutual information with structural information.

We also found that features such as ACT_SITE and BINDING

are associated with residues with larger degrees (Table 3). Also, the

ACT_SITE feature was slightly (but significantly) more frequent in

residues of MI3D clusters with a low clustering coefficient. It is

probable that they act by functionally influencing many other

residues, which are not close to one another. Consequently, an

alteration of these low-clustering-coefficient residues might greatly

disrupt their surroundings.

Next, we focused on the functional enrichment in catalytic

MI3D clusters, finding that UniProt features ACT_SITE,

BINDING, METAL and MUTAGEN are significantly enhanced

in such clusters (Table 1). This result is expected for the

ACT_SITE feature, but it might be potentially predictive for the

other features. ACT_SITE and BINDING are also associated to

lower clustering coefficients (Table 4). The ACT_SITE feature is

significantly under-represented in non-catalytic MI3D clusters (ten

times less likely to occur than random chance on average). No

statistical association was found between functional residues and

topological parameters for non-catalytic MI3D clusters (Table 5).

Figure 1. Degree distribution of the MIN and DN. Fraction of amino acids versus the normalized degree in the MINs (blue dots) and DNs
(orange dots). Degrees were normalized with respect to the average degree. All DNs followed a Poisson distribution (a= 0.01, KS test). 43.8% of MINs
followed a power-law distribution and 29.9% followed a Poisson distribution (a= 0.01). Red dots: normalized degree distribution in the MIN for Pfam
family PF01432, showing a truncated power-law distribution. Green dots: normalized degree distribution in the MIN for Pfam family PF00118.
Logarithmic scale.
doi:10.1371/journal.pone.0041430.g001

Mapping the MI Network in the Protein Structure
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Prediction of Catalytic MI3D Clusters
For each Pfam, a network of MI3D clusters was defined as

follows: each MI3D cluster is a node, and edges between pairs of

nodes exist if at least two residues (each from a different node) are

closer than 5 Å. This network was named MI3D cluster Network

(3DCN; see Methods). A graphical representation of the 3DCN

and structural mapping for Pfam domain PF00884 is shown in

Figure 4. Other examples are shown in figures S10 (PF01979) and

S11 (PF00118).

We then sought distinctive topological characteristics in the

3DCNs which could be used to identify catalytic clusters in the

protein. Figure 5a shows the distribution of the normalized degrees

of catalytic and non-catalytic MI3D clusters in the 3DCN. Non-

catalytic MI3D clusters have significantly smaller degrees than

catalytic ones, without a noticeable correlation between the degree

and the size of the 3DCN (r = 0.187). Furthermore, non-catalytic

MI3D clusters have, on average, significantly lower values of

betweenness centrality in the 3DCN than catalytic MI3D clusters

(Figure 5b). Those values are largely independent from the size of

the 3DCN (r = 0.159). Also, the ratio of the betweenness centrality

values of a Pfam’s catalytic and non-catalytic MI3D clusters is

around 12 on average (figure S12). This suggests a central role of

catalytic MI3D clusters in the distribution of information from the

catalytic site to the rest of MI3D clusters.

The size, betweenness centrality and degree of MI3D clusters in

the 3DCN could be used to predict catalytic MI3D clusters. We

measured the performance of our method by means of an F-

measure (see Methods). With optimal thresholds for the three

predictors (relative size = 0.67, betweenness = 0.06, relative de-

gree = 0.85), we achieved a 73.2 F-measure. A comparison of our

results with the results if we used only spatial clusters (i.e. clusters

of residues close in space) highlights the benefits of using co-

evolutionary information (text S2).

Mining OMIM Mutations in 3DCNs
We mined OMIM database searching for enzymes with specific

functional words, such as increasing and decreasing, related with action

or activity. For all Pfams under study, we identified 11 mutations

falling within a MI3D cluster, 10 located in catalytic clusters and

one in a non-catalytic MI3D cluster (table S1). We chose to

analyse the mutations of the Pfam families PF00884 and PF02779,

since their reference sequence is human and their 3D structure is

known. The reference sequence of PF00884 is ARSA_HUMAN

(UniProt accession: P15289). This Pfam family contains a N-

acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB_HUMAN;

UniProt accession: P15848) and a N-acetylgalactosamine-6-

sulfatase (GALNS_HUMAN; UniProt accession: P34059). The

catalytic residues of ARSA_HUMAN are 69C, 123 K, 125 H,

150 S, 229 H, 281 D and 302 K. The mutation LEU72GLN in

ARSB_HUMAN (OMIM code 611542) is known to cause type VI

mucopolysaccharidosis, as is the mutation THR312SER in

GALNS_HUMAN (OMIM code 612222). These mutations are

located at 31 L and 286 T in the reference protein, respectively,

both in the same catalytic MI3D cluster. Figure 4 shows the

Figure 2. Distribution of the mean clustering coefficient for MINs, DNs, MI clusters. Thick blue line: MINs. Thick orange line: DNs. Thin blue
line: MI clusters. The average clustering coefficient is 0.365 for MINs and 0.514 for DNs. Both values are statistically larger than random expectation
with p-value ,2.2*10216. Inset: dispersion of the data measured as Inter-Quantile Range (IQR). Only the giant components of the MINs and DNs are
considered.
doi:10.1371/journal.pone.0041430.g002

Mapping the MI Network in the Protein Structure
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positions of both mutations, relatively close to two catalytic

residues (31 L is close to 281 D and 286 T is close to 302 K).

We also found the mutation ARG183PRO of human piruvate

dehydrogenase (ODPB_HUMAN; UniProt accession: P11177;

OMIM code 248611) in the Pfam family PF02779. Arginine 183

corresponds to 115 R in the Pfam reference protein with known

structure (PDB code 1NI4). This position was found in a catalytic

MI3D cluster, therefore co-evolving with other residues close to

the catalytic residues. According to OMIM, this mutation induces

a structural change in the protein and impairs proper folding.

According to our result, even if the protein could fold, the

mutation would impair the catalytic cluster, thus impairing the

activity of the enzyme. In both cases, its result would be the loss of

or a deficiency in dehydrogenation of piruvate.

Concluding Remarks
In conclusion, we have presented a study on the topology of the

mutual information network and how it can be exploited to predict

the location of different functional residues of enzymatic protein

families. We observed that combination co-evolutionary with

Figure 3. Distribution of the number of 3D clusters generated by mapping the MI cluster onto the 3D structure. Blue line: all MI3D
clusters. Orange line: only catalytic MI3D clusters. 74.1% of MI clusters are preserved as a single MI3D cluster after mapping (93.1% according to
random expectation). 25.9% of MI clusters produce one catalytic MI3D cluster after mapping (92.0% according to random expectation).
doi:10.1371/journal.pone.0041430.g003

Table 1. Enrichment of functional features in MI clusters and MI3D clusters.

MI clusters MI3D clusters catalytic MI3D clusters non-catalytic MI3D clusters

Odds ratio Odds ratio Odds ratio Odds ratio

ACT_SITE 1.345* 1.341* 2.457* 0.141*

BINDING 1.312* 1.428* 2.431* 0.446

METAL 1.333* 2.210* 3.292* 0.166

SITE 1.237 1.264 3.011 0.403

MUTAGEN 1.652* 1.931* 2.754* –

MOD_RES 1.200 0.982 1.527 0.032

Enrichment (average odds-ratio) of functional features in MI clusters, MI3D clusters, catalytic MI3D clusters and non-catalytic MI3D clusters. Stars indicate statistical
significance at a= 0.01 (Fisher’s exact test).
doi:10.1371/journal.pone.0041430.t001

Mapping the MI Network in the Protein Structure
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spatial information unveils a dense network of physically close co-

evolving residues within the protein structure, which can be

identified by clustering methods. The topological properties of

these clustered structures suggest a role in increasing the tolerance

to functional disruption and to enhance the adaptativeness of the

protein. Also, these properties can be used to functionally

characterize the clusters. In addition, we measured the enrichment

of the clusters in functional residues, a feature that can be

exploited as a prediction tool by reducing the search space when

looking for functional sites. We applied the analysis in two relevant

biological examples.

Materials and Methods

Dataset
The dataset was constructed based on the CSA database

(version 2.2.11, released August 2009) [30]. CSA provides catalytic

site annotation for enzymes in the PDB. Catalytic residues were

defined as those residues thought to be directly involved in some

aspect of the reaction catalysed by an enzyme (for a detailed

description of the classification see [31]. CSA contains 968 original

literature entries, which belong to 455 PFAM families [32]. We

selected those families containing more than 400 unique

sequences/clusters (sequences with less than 62% identity). This

condition was necessary to provide a reliable estimation of MI as

shown by Buslje et al. 2009 [13], so that we ended up with a dataset

of 172 protein families, each one containing at least one PDB

entry. When more than one PDB entry with catalytic site

annotation was available for a given family, one reference PDB

entry was selected according to the following criteria: highest

sequence coverage of the Pfam MSA, the year of structure

determination (preferably later than 2000) and resolution. In all

cases, MSAs were gap trimmed to remove positions with gaps in

the reference sequence. In addition, all positions with .50% gaps,

as well as sequences covering ,50% of the reference sequence

length were removed, as described in [13].

MI Calculation
Mutual Information (MI) was calculated between pairs of

columns in the MSA as described in [13]. Briefly, the frequency

for each amino acid pair was calculated using sequence weighting

techniques and low count corrections and was compared to the

expected frequency assuming that mutations between amino acids

were uncorrelated. Next, the MI was calculated as a weighted sum

of the log-ratios between the observed and expected amino acid

pair frequencies. The APC method of Dunn et al. 2008 [17] was

applied to reduce the background mutual information signal for

each pair of residues and the MI scores were finally translated into

MI z-scores by comparing the MI values for each pair of position

with a distribution of prediction scores obtained from a large set of

randomized MSAs. The z-score is then calculated as the number

of standard deviations that the observed MI value falls above the

mean value obtained from the randomized MSAs. Although the

concept of z-score normalization was introduced by [17,33–35],

we use our particular score that gave better performance in both

biological and in silico-generated benchmarks by applying APC,

sequence weighting, low-count corrections and sequence permuta-

tions to calculate a sequence based z-score for MI distribution

[13]. This combination gave the best performance, significantly

improved the prediction accuracy and allows for direct compar-

ison of information values across protein families. We found that

an average sequence-based z-score threshold of 6.562.5 for

a Pfam-tested benchmark (and of 6.161.1 for another set of

biologically meaningful proteins) defined a sensitivity of 0.4 and

Table 2. Enrichment of functional features in MI clusters associated to degree and clustering coefficient.

Small k Medium k Large k Signif. Small C Medium C Large C Signif.

MOD_RES 0.521 0.700 1.383 – 0.629 0.911 1.085 –

MUTAGEN 0.136 1.397 1.582 – 1.201 0.189 1.116 –

METAL 0.600 0.904 1.605 * 0.574 0.920 1.236 *

ACT_SITE 0.330 0.735 1.574 * 0.762 0.884 1.055 *

BINDING 0.311 0.513 1.843 * 0.666 1.303 0.949 –

SITE 0.433 1.196 1.424 – 0.664 0.929 0.980 –

Enrichment (average odds-ratio) of functional features in MI clusters associated to degree (k) and clustering coefficient (C). Stars indicate statistical significance at
a= 0.01 (Kruskal-Wallis test).
doi:10.1371/journal.pone.0041430.t002

Table 3. Enrichment of functional features in MI3D clusters associated to degree and clustering coefficient.

Small k Medium k Large k Signif. Small C Medium C Large C Signif.

MOD_RES 0.665 1.172 1.617 – 0.940 1.101 0.708 –

MUTAGEN 0.248 1.317 0.307 – 0.371 0.932 1.182 –

METAL 0.956 0.949 1.054 – 1.498 1.264 0.796 –

ACT_SITE 0.441 0.948 1.202 * 1.349 1.091 0.508 *

BINDING 0.714 0.930 1.381 * 1.304 1.198 0.651 –

SITE 0.112 0.723 1.428 – 1.349 0.969 0.294 –

Enrichment (average odds-ratio) of functional features in MI3D clusters associated to degree (k) and clustering coefficient (C). Stars indicate statistical significance at
a= 0.01 (Kruskal-Wallis test).
doi:10.1371/journal.pone.0041430.t003

Mapping the MI Network in the Protein Structure
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a specificity of 0.95 [13]. Based on these results, in this work we

chose a MI score threshold of 6.0.

MI and DN Network Creation
MI networks were defined for each Pfam family as graphs

G(N,E), where nodes (set N) were defined as positions in the MSA

of a family (i.e. the columns of the MSA) and edges (set E) were

defined between any pair of nodes with MI.6 (figure S13a). These

networks were called MI Networks (MINs). MINs might be made of

several components (disconnected subnetworks) of varying size.

We focused our topological analysis on the largest component (also

called giant component).

Distance networks (DN) were defined for the reference protein

of every Pfam family of the dataset as graphs G9(N9,E9), where

nodes (set N9) are the residues (i.e. residue numbering) of the

reference protein, and edges (set E9) were defined between pairs of

residues at a distance shorter than 5 Å (figure S13a). The distance

between pairs of residues was defined as the smallest distance

between any two heavy atoms of each residue. The value of 5 Å

approximates the upper limit for attractive London-van der Waals

forces [16]. Although interactions of charged atoms can occur at

distances of about 8 Å (being the electrostatic energy linearly

proportional to the inverse of the distance) they are not considered

here. All DNs but one were composed of a single component, the

exception being the result of loss of structural data in the PDB

database.

Network Clustering
Several graph-clustering methods have been devised to partition

a network into clusters based on connectivity parameters. We used

the MCL algorithm [36], which has been extensively used for

biological network clustering and has been proved to outperform

other methods [37]. Briefly, the MCL algorithm simulates random

flows through a network by calculating successive powers of the

associated adjacency matrix. Upon each iteration, high-flow and

low-flow regions are enhanced until the process converges,

partitioning the network into a set of high-flow regions surrounded

by regions without any flow. The value of the inflation parameter

strongly influences the number of resulting clusters. In order to

calculate the optimal inflation for our networks, we used the cml

info utility provided by the MCL software, which computes

performance measures for different clusterings. For each one of

our 187 MINs, we calculated the inflation value which yielded

a better partition and we used it to cluster the MIN (figure S13b).

The resulting clusters were termed MI clusters. All MI clusters with

less than 4 residues were discarded.

The quality of the division was tested by calculating the

modularity of the partition [38], a global parameter which can be

used to test such a clustering process. Ranging between 21 and

+1, positive modularity values mean that the partition of the

network yielded denser subnetworks than random expectation,

while negative values mean that the resulting subnetworks are not

as dense as random expectation. Modularity was calculated with

the community.modularity function of the networkx package in Python

programming language [39].

Network Mapping
Each MI cluster was mapped onto the DN of the reference

protein. An edge between two residues was defined if they were

also connected in the DN (less than 5 Å apart). The resulting

subnetworks within the DNs are hereinafter defined as MI3D

clusters. This sometimes brakes up the MI clusters into separate

subnetworks (figure S13c). The MI3D clusters containing catalytic

residues (or residues in close contact with any of the catalytic

Table 4. Enrichment of functional features in catalytic MI3D clusters associated to degree and clustering coefficient.

Small k Medium k Large k Signif. Small C Medium C Large C Signif.

MOD_RES 0.580 1.223 1.322 – 0.894 1.218 0.828 –

MUTAGEN 0.677 1.437 0.229 – 0.461 0.767 1.368 –

METAL 0.997 0.961 1.021 – 1.205 1.164 1.023 –

ACT_SITE 0.721 0.856 1.137 – 1.229 0.862 0.620 *

BINDING 0.930 1.024 1.253 – 1.343 1.016 0.636 *

SITE 0.487 1.249 0.773 – 1.137 0.980 0.405 –

Enrichment (average odds-ratio) of functional features in MI3D clusters associated to degree (k) and clustering coefficient (C). Stars indicate statistical significance at
a= 0.01 (Kruskal-Wallis test).
doi:10.1371/journal.pone.0041430.t004

Table 5. Enrichment of functional features in non-catalytic MI3D clusters associated to degree and clustering coefficient.

Small k Medium k Large k Signif. Small C Medium C Large C Signif.

MOD_RES 1.308 2.492 0.744 – 1.417 0.000 1.288 –

MUTAGEN – – – – – – – –

METAL 1.972 0.279 0.190 – 1.545 0.413 0.928 –

ACT_SITE 0.000 2.084 1.500 – 0.667 4.212 0.000 –

BINDING 1.032 1.047 0.523 – 0.659 1.130 1.156 –

SITE 0.000 0.000 2.116 1.961 0.801 0.000 –

Enrichment (average odds-ratio) of functional features in MI3D clusters associated to degree (k) and clustering coefficient (C). Stars indicate statistical significance at
a= 0.01 (Kruskal-Wallis test).
doi:10.1371/journal.pone.0041430.t005
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residues) were labelled as catalytic MI3D clusters. The rest of the

MI3D clusters were named non-catalytic MI3D clusters.

Network of MI3D Clusters
A network of MI3D clusters of a reference protein (and the

corresponding Pfam) was defined as a graph G(N’’,E’’), where

nodes were the MI3D clusters (set N’’) and edges (set E’’) were

defined between MI3D clusters if at least one pair of residues of

each cluster was in contact (distance ,5 Å; figure S13d). These

networks were named MI3D cluster Networks (3DCN).

Topological Parameters
In order to characterize the topology of the different kinds of

networks that we generated, we calculated a number of parameters

(defined in table S2). Local parameters: degree, clustering

coefficient. Global parameters: modularity and characteristic path

length. Betweenness centrality was also used for the characteriza-

tion of the MI3D cluster networks. Power-law and Poisson degree

distributions were fitted to the MINs and DNs by means of the

fitdistr function in R using a maximum likelihood estimation [40],

and then compared by means of a Kolmogorov-Smirnov test. All

topological parameters were calculated using the networkx package.

Spearman’s rank correlation coefficient was used to calculate

correlations between parameters since their relationship was

monotonical but not necessarily linear [41]. Also, Spearman’s

rank correlation coefficient is less affected by the presence of

outliers than Pearson’s correlation coefficient. To assess the

statistical significance of the topological parameters, for each type

of network in our study (MINs, DNs, MI clusters and MI3D

clusters), a rewired model consisting of 1000 networks was built,

where edges were randomly exchanged and the degree of each

node was unchanged. All statistical calculations were performed

using the R statistical programming language [40].

Prediction of Functional Sites
We extracted the information on relevant single-residue

positions of the sequence from UniProt, as it appears in the feature

(FT) section [42]. Since the positions of UniProt entries are relative

to unique protein sequences (and not to Pfam domains), we

associated those functional features identified in .10% of the

sequences used to build the MSA to a Pfam. The UniProt

sequence features are defined as: MUTAGEN (site which has been

experimentally altered, usually affecting protein activity); MOD_-

RES (site undergoing post-translational modification); METAL

(binding site for a metal ion); BINDING (binding site for any

chemical group, such as co-enzymes, prosthetic groups, etc.);

ACT_SITE (site involved in the catalytic activity of the enzyme);

SITE (any interesting single amino acid site on the sequence that is

Figure 4. Network of MI3D clusters and mapping onto the protein structure. (A) 3DCN of the arilsulfatase A (pdb code: 1AUK chain A,
PF00884). Catalytic MI3D clusters: yellow, orange and green. Non-catalytic MI3D clusters: magenta, brown, blue, cyan and pink. The size of a node in
the 3DCN is proportional to the number of residues in the MI3D cluster. Clusters with less than 10 residues were coloured grey. (B) Ribbon
representation of the MI3D clusters of a representative structure of PF00884. Colours are as in panel A. Catalytic residues are highlighted as red balls
and sticks in the ribbon plot. Disease-related mutations are represented as violet balls and sticks. (C) Surface representation of the view in panel B. (D)
Same as panel B rotated 180 degrees. (E) Surface representation of the view in panel D.
doi:10.1371/journal.pone.0041430.g004

Figure 5. Topological parameters in the MI3D cluster network. (A) Frequency of MI3D clusters vs the normalized degree in the 3DCN. We
define the normalized degree of a node as the degree divided by the average degree in the 3DCN. Orange line: catalytic MI3D clusters. Blue line: non-
catalytic MI3D clusters. Mean for catalytic MI3D clusters = 1.315 (median = 1.2). Mean for non-catalytic MI3D clusters = 0.847 (median = 0.8). Both
distributions are significantly different (KS test, p-value,2.2*10216). (B) Frequency of MI3D clusters vs betweenness centrality in the 3DCN. Orange
line: catalytic MI3D clusters. Blue line: non-catalytic MI3D clusters. Mean betweenness centrality for catalytic MI3D clusters = 0.159 (median = 0.059).
Mean betweenness centrality for non-catalytic MI3D clusters = 0.034 (median = 0.0064). Both distributions are significantly different (KS test, p-
value,2.2*10216).
doi:10.1371/journal.pone.0041430.g005
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not defined by another feature key). We obtained features for 168

Pfams, averaging 1.7 features per Pfam.

We defined the baseline probability (PPfam) of picking one

residue of interest (e.g. a catalytic residue) in a Pfam domain by

chance as the number of catalytic residues divided by the total

number of residues of the domain. The probability of picking one

catalytic residue within any of the MI clusters (PMI) was defined as

the number of catalytic residues divided by the total number of

residues in the MI clusters of the Pfam domain. Thus, the odds

ratio (odds ratio = PMI/PPfam) shows the increase in the likelihood

of finding a catalytic residue in a MI cluster as compared to

random chance. Likewise, the probability of picking one residue of

interest (e.g. a catalytic residue) within any of the MI3D clusters of

a Pfam (P3D) was defined as the number of catalytic residues

divided by the total number residues on the MI3D clusters of that

Pfam. Thus, the odds ratio (odds ratio = P3D/PPfam; PPfam defined

as above) shows the increase in the likelihood of finding a catalytic

residue in a MI3D cluster as compared to random chance. The

statistical association between a feature and a cluster of residues

was quantified by means of a Fisher’s exact test, using 1000

sequences where the features had been randomly placed as

a random model.

In order to associate features to topological parameters of the

residues (namely, degree and clustering coefficient), we binned the

values into three groups: SMALL, MEDIUM and LARGE, using

the 33th and 66th percentile of the distribution of the degree and

clustering coefficient values for each Pfam as thresholds. For MI

clusters, we obtained the odd-ratio of the ranges by calculating the

frequency of each feature over the all residues in the MI clusters as

baseline (PMI) and the frequency of featured residues amongst

those within a particular degree range (PMI
K). The odds ratio was

PMI
K/PMI. A similar procedure was applied for the binned

clustering coefficient (odds-ratio = PMI
c/PMI). For MI3D clusters,

the odds ratio was calculated as P3D
K/P3D and P3D

C/P3D.

Performance Analysis
We evaluated the performance of all different combinations of

betweenness, relative degree and relative cluster size values as

predictors of catalytic MI3D clusters in the 3DCN. For each

3DCN, we calculated relative degree of each cluster as the degree

divided by the average degree of the 3DCN. Relative cluster size

was calculated as the size of the cluster (number of residues)

divided by the average cluster size of the 3DCN. We did so in

order to make the parameters comparable across all Pfams. We

used the F-measure as a measure of performance. It was defined as

the harmonic mean of sensitivity and specificity: (26sensitivity6
specificity)/(sensitivity + specificity), where sensitivity is the ratio of

correctly predicted catalytic MI3D clusters vs all predicted

catalytic MI3D clusters and specificity is the ratio of correctly

predicted non-catalytic MI3D clusters vs all predicted non-

catalytic MI3D clusters.

Supporting Information

Figure S1 MIN and DN for the Pfam family PF00884. (A)

Representation of the MI network of the PF00884 family. Colours

other than grey indicate the eight largest MI clusters. (B)

Representation of the distance network calculated from the PDB

structure 1AUK chain A, representative of the PF00884 family.

Residues are coloured as in A.

(PNG)

Figure S2 Distribution of modularity of MI clusters and
MI3D clusters. Fraction of Pfam families versus the modularity

of the partition. Blue: partition of MI clusters (mean = 0.461).

Orange: partition of MI3D clusters (mean = 0.359). Modularity

values larger than 0 indicate a partition of the network resulting in

denser clusters than random expectation.

(TIFF)

Figure S3 Distribution of the number of MI clusters and
MI3D clusters. Thick line: distribution of the number of MI

clusters (mean = 11.97). Thin line: distribution of the number of

MI3D clusters (mean = 10.47).

(TIFF)

Figure S4 Size distribution of MI and MI3D clusters.
Blue dots: size distribution of MI clusters (mean = 13.53;

median = 6). Orange dots: size distribution of MI3D clusters

(mean = 13.25; median = 6).

(TIFF)

Figure S5 Distribution of the number of MI3D clusters.
Orange line: distribution of the number of catalytic MI3D clusters

(mean = 3.40, median = 3). Blue line: distribution of the number of

non-catalytic MI3D clusters (mean = 7.28, median = 7.28).

(TIFF)

Figure S6 Ratio of the number of non-catalytic MI3D
clusters vs catalytic MI3D clusters. Ratio of the number of

non-catalytic MI3D clusters vs catalytic MI3D clusters per Pfam

(mean = 2.65, median = 2).

(TIFF)

Figure S7 Size ratio of catalytic MI3D clusters vs non-
catalytic MI3D clusters. Size ratio of catalytic MI3D clusters

vs non-catalytic MI3D clusters of the same Pfam (mean

ratio = 4.12, median = 2.97).

(TIFF)

Figure S8 Fraction of co-evolving residues between
catalytic MI3D clusters. The fraction of co-evolving residues

between catalytic MI3D clusters is compared to random

expectation by means of a z-score. The higher frequency of

negative z-scores means that, for most Pfams, co-evolution

between catalytic MI3D clusters is smaller than expected by

chance.

(TIFF)

Figure S9 Origin of catalytic and non-catalytic MI3D
clusters. Blue line: fraction of all MI clusters in a Pfam which

produce non-catalytic MI3D clusters when mapped onto space

(only Pfams with at least one non-catalytic MI3D cluster

considered). Orange line: fraction of all MI clusters in a Pfam

which produce catalytic MI3D clusters (only Pfams with at least

one catalytic MI3D cluster considered). Black line: fraction of all

MI clusters in a Pfam which produce both catalytic and non-

catalytic MI3D clusters (only Pfams with catalytic and non-

catalytic MI3D clusters considered). For 76.8% of the Pfams with

catalytic and non-catalytic MI3D clusters, no MI clusters produce

both catalytic and non-catalytic MI3D clusters when mapped onto

space, with significantly less than random expectation (97.6%), KS

test p-value = 9.67*10211 (consequently, for 23.2% of Pfams there

is at least one MI cluster which produces both catalytic and non-

catalytic MI3D clusters). 10% of MI clusters out of 17.6% of Pfams

produce catalytic and non-catalytic MI3D clusters.

(TIFF)

Figure S10 Network of MI3D clusters and mapping onto
the protein structure of PF01979. (A) 3DCN of the Pfam

family PF01979 (pdb code: 1KRA). Catalytic MI3D clusters were

coloured yellow, orange and cyan. Clusters with less than 10

residues were coloured grey. The size of a node is proportional to
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the number of residues in the MI3D cluster. (B) Ribbon

representation of the MI3D clusters of the representative structure

of PF1979. Catalytic residues represented as red balls and sticks.

(C) Surface representation of the view in B. (D) Same as A rotated

180 degrees. (E) Surface representation of the view in D.

(PDF)

Figure S11 Network of MI3D clusters and mapping onto
the protein structure of PF00118. A) 3DCN of the Pfam

family PF00118 (pdb code: 1A6D). Catalytic MI3D clusters were

coloured yellow, orange, green and blue. Clusters with less than 10

residues were coloured grey. The size of a node is proportional to

the number of residues in the MI3D cluster. (B) Ribbon

representation of the MI3D clusters of the representative structure

of PF00118. Catalytic residues represented as red balls and sticks.

(C) Surface representation of the view in B. (D) Same as A rotated

180 degrees. (E) Surface representation of the view in D.

(PDF)

Figure S12 Ratio of betweenness centrality in the MI3D
cluster network. Ratio of the betweenness centrality of catalytic

MI3D clusters vs non-catalytic MI3D clusters within the same

Pfam (mean = 12.89; median = 6.5).

(TIFF)

Figure S13 Flowchart of the clustering process. (A) In the

MIN, residues are connected if they share a MI value .6 (black

lines); in the DN, residues are connected if they are closer than 5 Å

(red lines). (B) The MCL clustering algorithm identified MI clusters

according to their density of connections. (C) MI clusters are

mapped onto the 3D space of the protein, forming MI3D clusters

(note that their connectivity pattern is no longer based on their MI

values but on their physical distance). (D) MI3D clusters are

connected if any of their residues are close in space, forming

a MI3D cluster network.

(PDF)

Table S1 OMIM mutations within MI3D clusters.
Mutations described by OMIM database in human proteins and

their corresponding mutated position in the reference sequence.

All mutations but one fall within a catalytic MI3D cluster.

(XLS)

Table S2 Definition of topological parameters. A local

parameter characterizes a single node. A global parameter

characterizes the whole network.

(PDF)

Text S1 Small-world characteristics in MINs and DNs.
Calculation of clustering coefficient (C) and characteristic path

length (L) for random networks and regular networks. Comparison

of MINs and DNs to random and regular networks highlights their

small-world structure.

(PDF)

Text S2 Spatial clustering of Distance Networks. De-

scription of the clustering process of DNs to obtain spatial clusters.

Evaluation of the performance of the prediction of functional

residues using spatial clusters.

(PDF)
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