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Abstract

Background: Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic
inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until
recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number
of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence
(systematic map) and influence (bibliometric analyses).

Results: We find that motivations for studies into paternal effects are diverse. For example, from the ecological and
evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and
mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such
as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these
three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We
highlight examples of research gaps, which, in turn, lead to future avenues of research.

Conclusions: The literature on paternal effects is large and disparate. Our study helps in fostering connections
between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of
concepts and methods.

Keywords: Research weaving, Systematic review, Meta-analysis, Parental effects, Transgenerational effects,
Transgenerational plasticity

Background
What does ocean acidification have in common with the

Dutch famine? They both exert effects that can be non-

genetically transmitted from the fathers to their offspring.

Publications on such paternal effects (for definitions and

nuances, see Table 1) are increasing in number and diver-

sity, with research coming from evolutionary biology [22,

23], medicine [5, 11, 24] and toxicology [25]. Research on

paternal effects carried out within those disciplines pursues

different goals. For example, evolutionary ecologists seek to

understand how paternal effects contribute to heritable

variation, how they are influenced by the ambient environ-

ment and what role they play in evolution. By contrast,

medical and health researchers seek to understand how

male health and lifestyle can influence the health of descen-

dants. In each of these disciplines, research is carried out

using somewhat different tools and approaches. Cross-

fertilization between these disciplines could be very valuable

but has been hampered by the use of distinct terminologies

and publication outlets.

While several thorough and influential reviews of pater-

nal effect research have been published (e.g. [6, 25]), they

are focused on a specific type of manipulation eliciting the

non-genetic inheritance, or the proximate mechanisms

mediating the phenomenon, rarely covering the entire field

of paternal effects research. Meta-research (i.e. research on
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research) could therefore help to identify gaps, biases and

clusters in order to facilitate future investigation of paternal

effects [26, 27]. Our aim is to construct a systematic and

meta-scientific overview of paternal effects research across

all relevant fields. Our methodology (Fig. 1) is informed by

‘research weaving’ [29] encompassing synthesis of evidence

(systematic map) and influence (bibliometric analyses). A

systematic map uses a methodology of literature search

similar to that of a systematic review [30, 31]. A systematic

map can have a broad scope, allowing for heterogeneity of

taxonomic groups and experimental methods, which are

usually not consistent across fields. Such a map could in-

clude both empirical and non-empirical studies. Adding

bibliometric analyses to a systematic map allows assessing

networks of ideas and scientists. We use this map to iden-

tify research clusters, as well as collaborations that could

benefit from cross-disciplinary fertilization of ideas and ap-

proaches, particularly between medical and evolutionary-

ecological research.

To achieve this goal, we map the past, present and fu-

ture of the parental effect research. First, we examine

temporal and topical trends in the literature and also,

via bibliometric analysis, identify three ‘guilds’ (clusters

of studies from different research domains). Second, we

take a tour of the rather complex experimental land-

scape, by seeing how the three different guilds design ex-

periments in relation to three family members: fathers,

mothers and their children. Third, we highlight three

examples of research gaps, which, in turn, lead to future

avenues of research. Finally, we offer six considerations

for improving future experimental work by integrating

insights from our map.

Results and discussion
Characterizing temporal, topical and bibliometric patterns

An emerging field of meta-research has recently taught

us that, to improve our research practice, we should

learn from ‘history’ [29]. To learn the history of a field,

our first step is to examine and characterize the trends

and patterns in the literature.

Temporal trends in paternal effect research

Research publications in this field have doubled in num-

ber in the last 5 years (Fig. 2). An increasing volume of

empirical literature represents the diversity of paternal

exposures, with the most pronounced growth in studies

Table 1 Definitions

a) Disambiguation

Paternal effect is a broad term encompassing (i) transgenerational plasticity where the phenotypic change in offspring occurs in response to the
paternal environment or phenotype [1], (ii) indirect genetic effects IGEs where alleles expressed in the father affect the development of his
offspring [2] and (iii) effects of spontaneous or stochastic variation in non-genetic factors such as epigenetic marks (i.e. variation that is not induced
consistently by particular environmental factor). In the current review, we focus on transgenerational plasticity.

b) Meaning of paternal effect across the research fields

Evolutionary biologists delineate paternal effects most broadly [3]. In this field, a paternal effect reflects the influence of paternal environment or
age on offspring traits and can be mediated by paternal care or by factors (such as RNA or proteins) in sperm of seminal fluid. The medical
definition usually does not encompass effects transmitted via paternal care [4]. Researchers interested in inheritance of metabolic diseases narrow
the definition further into ‘epigenetic programming’ [5] and do not consider age as a part of paternal effects. In terms of the proximate
mechanisms, the definitions encompass sperm-borne mechanisms, such as DNA methylation, chromatin alterations and non-coding RNAs [3–6]. In
addition, evolutionary perspective is likely to consider mechanisms acting via ejaculate-borne agents, e.g. RNA and proteins, reviewed by [7].

c) The term ‘paternal effect’ in other contexts

Identity: the term is sometimes used to account for paternal identity in statistical models, either in a full-factorial experiment [8] or in studies
designed to estimate genetic parameters of sires in animal breeding [9].

Genetics: the term could mean an effect that arises due to the male-specific sex chromosome [10]. The term can denote inheritance of genes
through the patriline which exhibits parent-of-origin expression [4], called also ‘epivariation’ [11]. ‘Paternal effect locus’ is a locus whose expression
in a male influences the development of his offspring (i.e. an IGE). Recently, it is also referred to as ‘male genetic quality’, related to inbreeding [12].

Symbionts/parasites: although not commonplace, there is evidence that males may transmit symbionts [13] and parasites to their offspring. For
instance, males with Wolbachia cause embryonic lethality [14]. There is also evidence for paternal mitochondria leakage in animals and humans
[15]; these phenomena would be classified as male-specific genetic inheritance, yet to our knowledge have so far not been named ‘paternal
effect’.

Assisted reproduction: in assisted reproduction treatment, the term ‘early paternal effect’ refers to failure at the initial stages of the procedure,
resulting in zygote malformation, while ‘late paternal effect’ refers to the failure at the stage of implantation [16].

d) Interface of epigenetics and genetics

Research into paternal effects sheds light on interrelations between different forms of inheritance and their interactions with the environment.
First, epigenotype controls the expression of the genotype, while both the genotype and the environment shape the epigenotype [17]. Second,
environmentally induced epigenetic processes can promote genetic mutations [18]. Third, factors with mutagenic or cancerogenic effects can also
exert epigenetic effects. Exposure to such factors (e.g. smoking) does not allow disentangling the epigenetic effect per se. Finally, classification of
effects due to male age is ambiguous. Older males might accumulate effects of lifetime exposure to various environmental [19] and other factors
(e.g. exercise). However, older males also have higher numbers of de novo mutations in germline DNA (reviewed, e.g. by [20]) and altered DNA
methylation patterns, known as ‘epigenetic clock’ [21], which places age at the interface of genetic and non-genetic factors.
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investigating trans-generational effects of diet and of

psychological factors (Fig. 2a). The growth of empirical

evidence is accompanied by the parallel growth of non-

empirical papers (Fig. 2b), mostly narrative reviews, with

notable scarcity of theoretical papers and systematic

reviews (and derivatives [40]). From the secondary litera-

ture, we can conclude that the most attention in the

field is currently directed towards common health

outcomes of paternal exposures: metabolic disorders and

detrimental effects of drugs and toxins. Existing reviews

often present relatively narrow focus perspective: (1)

researchers consider proximate mechanisms of paternal

effects to a specific type of exposure, or (2) they associ-

ate specific exposure with particular offspring outcomes

(Fig. 2c).

Three guilds in the paternal effect literature

As bibliometric clustering algorithm indicated, empirical

research in the field of paternal effects has been carried

out by three separate guilds, which we call toxicologists,

medical scientists and ecology and evolution (eco-evo)

researchers (Fig. 3a). Toxicologists maintain the most

distinct research guild (Fig. 3b). They typically de-

scribe the effects of environmental factors that have

negative effects both on the paternal and offspring

generations. In this research cluster, there is a sub-

stantial share of observational (with a matched con-

trol group) studies on humans, while rodents are

used as model species in experimental studies (Fig. 4a).

We have found that this cluster is the oldest among

the three (see Additional File: Fig. S1) and that

Fig. 1 Methods used to create the systematic evidence map of paternal effects research field. a The map is based on the published papers on
environmentally induced non-genetic paternal germline and semen effects. b Keywords used to search the Scopus and Web of Science
databases. c PRISMA diagram [28] outlining the procedure applied after the literature search
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Fig. 2 Temporal trends in the map. a Timeline of numbers of published empirical papers split by different categories of paternal exposures (the
same colour scheme is maintained in Fig. 4). b Timeline of numbers of published non-empirical papers split by type of publication. Among non-
empirical records, ca. 80% are written as narrative reviews, followed by a smaller number of commentary/perspective works. Very few papers
belong to systematic review family, and they are all from a medical cluster (e.g. [32–34]). Theoretical papers, presenting formal models, are even
less frequent. The existing ones usually take evolutionary and/or ecological perspective [35–38], with the exception of one focused on the
mechanisms of transgenerational inheritance of paternal stress [39]. c Primary (inner circle) and secondary (outer circle) topics of non-empirical
studies broken down according to major taxonomic groups of considered organisms
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individual publications are poorly connected even

within the cluster (Fig. 3b).

The largest cluster belongs to medical scientists. In

principle, we would expect that their studies are similar

to those of toxicologists, because paternal exposures are

also associated with negative effects on human health.

However, a much broader scope of medical research

makes their studies markedly different. Rodent studies

dominate this cluster with relatively few studies on

humans and other taxa (Fig. 4a). Medical scientists differ

from toxicologists in their higher propensity for experi-

mental, rather than observational, work. The medical

cluster is the youngest and has the highest growth rate

(Fig. S1).

The third cluster represents the work of eco-evo

researchers. They differ from the other two research

groups in also considering paternal effects that might be

adaptive for the offspring. Eco-evo researchers have

studied various taxonomic groups, including plants,

arthropods and other invertebrates, fish, birds and, occa-

sionally, rodents, but they have not studied humans, at

least in our map (Fig. 4a). Eco-evo researchers frequently

work with organisms in the wild or bring wild animals

into captivity (Fig. 4a). The eco-evo cluster has an inter-

mediate temporal distribution and rate of growth of

publications (Fig. S1).

Influence of and interest in paternal effect research

Analyses of bibliometric influence (expressed as the num-

ber of citations per paper, Fig. 3c) show that, in each clus-

ter, there are highly influential studies, both empirical and

non-empirical. To exemplify where the attention of the re-

search field is directed, we consider the three papers, ones

with the highest number of citations in each cluster

(Fig. 3d). Two of those papers present empirical work: one

examines the inheritance of metabolic syndrome [42],

while the other study examines how dioxin exposure

affects offspring sex ratio [43]. The third highly influential

paper is a classic review written from the evolutionary per-

spective [23]. Surprisingly, no articles in our map cite the

paper by Ng and colleagues [42], which has the highest

total number of citations (mostly by articles belonging to

the subject area of “biochemistry, genetics and molecular

biology”, as categorized by Scopus). The paper [42] dem-

onstrates that paternal high-fat diet consumption leads to

the intergenerational transmission of impaired glucose-

insulin homeostasis. As such, it would be relevant for

researchers studying dietary effects in eco-evo context and

those investigating toxicants that alter glucose-insulin

homeostasis.

Landscape of experimental approaches

Experiments on paternal effects pose substantial chal-

lenges and complexities. Such experiments should

include three parties (fathers, mothers and offspring) in

two states (experiment and control), resulting in up to

six groups. Notable differences to the most basic experi-

mental design, which involves only one party of subjects

divided into experimental and control groups, are two-

fold. First, researchers apply a treatment to one party of

subjects (fathers), but they measure outcomes in differ-

ent parties (offspring). Second, experiments addressing

paternal effects require extra players (mothers), although

the researchers usually pay little attention to this extra

group. These complications have shaped the current

experimental landscape in the paternal effect literature.

In this section, we take a tour of this landscape (Fig. 4)

through the lens of the three guilds of scientists which

we identified in the last section and by following the

three ‘main characters’ of the family story: father, mother

and offspring.

Father

Obviously, fathers (or males) are the heroes of this

experimental land. In the description of clusters, we have

already uncovered who they are and where they are

from. Here, we explore what kinds of challenges (expo-

sures) they experience, and how they experience them.

Types of paternal exposure Eco-evo researchers have a

long tradition of studying the paternal effects of diet

(Fig. 4a). Also, medical researchers have become increas-

ingly interested in the transgenerational inheritance of

the metabolic syndrome due to diet. Naturally, toxicolo-

gists have assessed chemical exposure (e.g. pesticides

and solvents), mainly in humans, while ecologists meas-

ure effects of chemicals (environmental pollutants) on

wildlife and non-model species. Somewhat surprisingly,

toxicologists have studied the inter/trans-generational

effects of medical drugs more than medical scientists.

Yet, medical scientists seem to be the only group looking

into the effect of paternal alcohol exposure. Both med-

ical researchers and eco-evo researchers have shared

their interest in studying (1) physiological exposures via

experimental infection and (2) psychological exposures

including various social (e.g. isolation or crowding) and

physical (e.g. restraint, scent of predator) stressors.

Finally, all types of scientists have studied paternal ef-

fects in relation to some abiotic aspects, such as water

salinity, ambient temperature, electromagnetic field and

light exposure.

Interactions, dosage and timing of paternal exposures

Most of the time, in a given study, fathers are exposed

to only one challenge (94% of all studies). Yet, some

researchers in each of the three fields have examined the

effects of interaction of different categories of factors
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Fig. 3 (See legend on next page.)
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acting on the father (for interacting effects between

dietary components, see below). For instance, medical

researchers have shown that paternal exercise alleviates

the negative effect of obesogenic diet in mice [44, 45].

Eco-evo researchers have uncovered complex interac-

tions between paternal age and immune challenge in

insects [46].

It is more common to study dose-related responses to a

single factor than interactions (approx. 20% of all studies).

Toxicologists have always conducted dose-dependency

studies [47]. Medical researchers also differentiate dosage

in their studies of the effects of paternal alcohol exposure

[48, 49]. Similarly, to reveal the effects of paternal age,

researchers compare several groups of males of different

age [50]. Eco-evo researchers have used gradients of

exposures in plant studies [51]. They have also imple-

mented nutritional geometry experiments in animal studies

[52, 53], which allow them to reveal non-linear and fine-

scale interactive effects of different dietary compounds.

Majority of studies (92% in toxicological, 79% in

medical, 66% in eco-evo clusters) manipulate fathers at

the adult stage, usually by subjecting them to exposure

for one or two cycles of spermatogenesis. Researchers

typically use patterns of exposure which mimic what

fathers may encounter in real life (e.g. a heat wave [54],

different sleep deprivation schedules [55], cocaine intake

between weekdays and weekend [56]). Notably, some

researchers have manipulated the time passed between

exposure and mating. In case of medical drugs, this ex-

perimental design allows comparing acute and persistent

effects of the exposure [57]. Further, such a design has

shown that exposing fathers to chronic stress either at

puberty or at adulthood had similar effects on offspring

stress axis regulation [58].

Mother

As in old fairytales, this heroine has been a rather pas-

sive participant in the story. However, she has much to

offer and can become a true heroine, as in newer stories.

We believe that exciting unexplored possibilities exist

when both the hero and the heroine face a challenge

(exposure) together.

Mate choice and differential allocation The female

can mediate the effects of male experiences in two po-

tential, interrelated ways, one direct and one indirect.

Her assessment of male quality can directly affect her

prenatal and postnatal maternal investment in offspring

[59]. Similarly, yet more indirectly, females could invest

in offspring differentially if males induce such response

via substances in their ejaculates [3, 4]. Both of these

phenomena—via female perception and male sub-

stances—are referred to as maternal ‘differential allocation’

and have gained much attention, especially in evolutionary

literature [60]. Although female differential allocation is

interesting in its own right, to understand the magnitude,

function and mechanism of paternal effects, we should

limit the opportunity for maternally mediated effects.

Indeed, 77% of researchers across the field have

blocked female mate choice by paring up a single male

and female (with the exception of human studies). In

addition, the researchers predominantly use virgin fe-

males (but see [56]). While these two approaches reduce

maternal effects due to female perception of male qual-

ity, they cannot eliminate them. Eco-evo researchers are

most likely to control for differential allocation due to

female perception (30%), usually by capitalizing on

species with external fertilization [61] or by the means

of artificial fertilization in plants, fish and birds [62].

Researchers in medicine control for maternal effects

rarely (12%), yet using the greatest variety of methods,

including in vitro fertilization [63], embryo transfer [64]

and offspring cross-fostering [65]. Toxicologists have

rarely dealt with this issue (5%).

Differential allocation induced by male substances is

even more challenging to control for, and therefore, only a

few have done so to date (e.g. [66]). Nonetheless, re-

searchers could quantify those effects by combining

artificial insemination with the use of vasectomized males,

which allows assessing the effects of seminal fluid sub-

stances. Medical researchers have carried out such studies

occasionally [67]. In a similar vein, eco-evo researches have

used the so-called telegony approach. Under this approach,

a female is mated with two males, both of whom contrib-

ute to her offspring phenotypes: the one as a genetic father

and the other via semen-mediated effects (only two studies

in our collection used this approach [68, 69], see also [70]).

Maternal exposure: comparison and synergy Researchers

can expose mothers to the same challenges as fathers

(Fig. 4b). Such a venture opens up possibilities of an-

swering additional questions, but a careful experimental

(See figure on previous page.)
Fig. 3 Bibliometric insights into the fragmentation of paternal effect literature. a Clustering of paternal effects literature based on bibliometric
coupling analysis performed in VOSviewer [41]. We named the clusters based on their dominant research discipline and assigned them different
colours, i.e. medical (Med) = yellow, toxicological (Tox) = green and eco-evolutionary (EcoEvo) = blue. b Indices of bibliographic connection
between papers in the three clusters. c Number of citations of papers included in the map. Grey indicates papers not assigned to any cluster.
Numbers mark the top cited paper in each cluster. d Bibliometric data for the three papers with the highest citation count, one in each cluster;
Altmetric Attention Score is a weighted count of all of the online attention

Rutkowska et al. BMC Biology          (2020) 18:183 Page 7 of 24



Fig. 4 (See legend on next page.)
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design is warranted. Toxicologists commonly use a de-

sign comparing two groups of offspring from biparental

exposure vs. non-exposure groups (e.g. [71]). Unfortu-

nately, such a simplistic design precludes assessment of

paternal (or maternal) effect alone; accordingly, these

studies are not included in our map. Assessing the rela-

tive strength of paternal compared to maternal effects is

possible when we expose fathers and mothers independ-

ently and then pair them up with control individuals

(see also Fig. 5f). Sometimes, it is inevitable that exposed

partners reproduce only with control (e.g. human med-

ical studies [72, 73];), precluding analyses of the effect of

combined exposure.

The most informative is a two-by-two factorial design

(also known as North Carolina II). This design enables

not only comparing the effect of each parent separately,

but also estimating the synergistic (interactive) effect of

both [74]. Using the factorial design (55%, Fig. 4b), many

of eco-evo researchers have found that the father and

mother can have a synergetic effect on offspring (e.g. [75]),

but their effects could also cancel each other (e.g. [76]).

Offspring

Finally, we turn to the children, who are an essential part

of the story, but often neglected. Scientists take many

different measurements from the children (offspring) at

different times, but they often forget that we have both

princes and princesses. Moreover, we find some scien-

tists have also challenged the children, enriching the

story plot, while others failed to do so.

Measurements: timing, sex-specific and multigenerational

effects Toxicologist, more than others, confine their

studies to effects on offspring development; only 30% of

their studies track offspring to adulthood. Many medical

scientists, in contrast, investigate offspring performance

up to adulthood (i.e. 70%, facilitated by the use of rela-

tively fast-maturing lab rodents). Eco-evo researchers

also often monitor offspring through development until

adulthood (62%), although their monitoring could stop

at the juvenile (or larval) stage. Therefore, data on off-

spring phenotype in the three clusters complement each

other, highlighting possibilities of knowledge transfer

across the disciplines in this respect.

Researchers who cease the study at early stages of

offspring development usually lack information on off-

spring sex. This, however, only partly explains why over

half of the studies of paternal effects do not take into

account offspring sex. Although toxicologists have been

interested in whether paternal exposure affects sex ratio

[77], surprisingly, they are also the least likely to account

for offspring sex (34%) in assessing offspring traits. In

contrast, medical scientists are the keenest to report ef-

fects for the two sexes separately, but also to study only

one sex (65% for those two approaches combined).

Given the interest in parent-of-origin epigenetic inherit-

ance (Table 1), researchers should routinely examine sex

specificity of paternal effects in the offspring [78, 79].

Unfortunately, this is not the case. Instead, the large

body of existing literature (63%) has not taken opportun-

ities to detect such sex-specific patterns.

Our map has shown that only ca. 10% of studies exam-

ined the transfer of paternal effects to the grand-

offspring generation or beyond. Yet, a multigenerational

study can provide insights into the nature and persist-

ence of paternal effects. The medical cluster has in-

cluded such multigenerational studies: the consequences

of F0 generation exposure to high-fat diet [80] and

heroin addiction [81], in both of which paternal effects

were followed up to F3 generation descendants.

Offspring exposure: matching, mismatching and beyond

As mentioned earlier, medical scientists and toxicolo-

gists have focused on the negative effects of paternal ex-

posures. Thus, it may not be surprising that toxicologists

never expose offspring to the same damaging factors

(chemicals and drugs, Fig. 4b), although medical scien-

tists have sometimes done so (12%). In contrast, nearly

half (47%) of the eco-evo researchers expose offspring to

the same factor as fathers. They compare offspring

under matched and mismatched conditions to those

experienced by their fathers to see if fathers prepare

offspring for the same environment via so-called antici-

patory paternal effects (sensu [82, 83]). However, to

properly investigate anticipatory paternal effects, the ex-

perimental design should be based on environmental

predictability over the space and time [84]. A proper

study should include evidence of the likelihood that the

offspring generation will face the same environment as

their fathers [84]. In practice, we are aware of no such

studies.

Gaps and opportunities: three examples

We have highlighted what researchers have done so far.

Yet, systematic mapping can also elucidate knowledge gaps

in the research field [29]. Here, among many potential gaps,

(See figure on previous page.)
Fig. 4 Objects and exposures in paternal effect studies broken down by bibliometric cluster. Plots are based on 302 empirical studies included in the
map and assigned to one of the three clusters (Med, Tox and EcoEvo). The size of the panels is proportional to the frequency of studies in a given
category. Colour represents the category of experimental exposure (for the legend, see Fig. 2a). a Source of studied species, taxonomic group and
category of paternal exposure. b Category of experimental exposure, information on maternal and offspring exposure to the same factor as the father
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we choose to discuss three examples and show how we can

turn these gaps into future research opportunities.

Oversight over paternal effects in livestock?

Our map, somewhat surprisingly, revealed that paternal

effects are neglected in the field of animal breeding

(Fig. 4a). In the livestock industry, the choice of sire that

produces hundreds of offspring is of paramount import-

ance, and thus, the sire should be of prime quality.

Selection schemes of sires usually employ quantitative

genetic tools. Thus, much of heritability (due to genet-

ics) is accounted for. However, simultaneous accounting

for the epigenome should improve the accuracy of

prediction of breeding values. Indeed, among researchers

studying farm animals/livestock breeding, there is already

an interest in non-genetic paternal inheritance due to sex-

specific gene expression patterns [85]; see also Table 1. In

terms of environmentally induced paternal effects, it re-

mains unknown what treatment to impose on fathers and

which traits to measure in their offspring [17, 86, 87]. Our

map could inspire potential research pathways in this field.

For example, one of the promising directions would be to

explore trans-generational effects related to immunity. So

far, research shows that paternal immunization enhances

embryonic growth in mice [88], and treating fathers with

Astragalus polysaccharides increase offspring immunity in

the chicken [62]. A recent paper has presented a mathem-

atical model incorporating non-genetic inheritance in live-

stock breeding [89]. This model could help in designing

breeding schemes suitable for investigating non-genetic

paternal effects. Last but not least, we could use data from

livestock to address the significance of relatedness among

males, which is our next topic.

Understanding relatedness among fathers for

generalisability

Relatedness of studied fathers is approached in a range of

ways. They span from use of lab animals without any

reference to their inter-relatedness or pedigree (e.g. [90]),

use of hybrids of two mouse strains [58], to use of outbred

animals [91]. So, what is best? To detect environmentally

induced paternal effects, males exposed to the experimen-

tal treatments should ideally have counterparts which dif-

fer from them as little as possible (Fig. 5f). This design is

possible in highly inbred strains. However, findings could

be too specific, for example, due to strain-specific reaction

norms [92], and thus not transferrable even to other

strains of the same species (see also [93]). One solution is

to use systematic heterogenization (i.e. controlled and sys-

tematic variation of animals and their environment within

a single experiment), which improves the representative-

ness of study individuals [94]. If this is not possible, we

recommend assigning full brothers to control and

experimental treatment, as in a paired design [95], which

results in higher statistical power than in an unpaired

design counterpart.

In search of paternal bet-hedging

In the face of a stressful and unpredictable environment,

mothers should increase variance in offspring traits by

employing a so-called bet-hedging strategy [96]. Environ-

mentally stressed fathers should use a similar strategy, as

long as the fitness benefits to the male outweigh the costs

of investing in such a strategy. Yet, although maternal bet-

hedging has been a popular research topic, and the

outcomes of the existing studies are mixed [96], we are not

aware of any studies examining bet-hedging (via non-

genetic effects) by fathers. This gap could be addressed in a

number of ways. In terms of empirical studies, the most

intuitive approach would be to manipulate the variability of

paternal environment and analyse the difference in variance

in offspring between treatment groups (i.e. test for hetero-

scedasticity [97]). Such a study should differentiate between

an adaptive male strategy of producing offspring with in-

creased phenotypic variance and a non-adaptive effect of

stressful environment on male reproductive physiology. A

meta-analytical approach to study paternal bet-hedging is

also possible [98], providing that paternal exposures can be

(See figure on previous page.)
Fig. 5 Six useful considerations for paternal effect research. a To assess the adaptiveness of paternal effects, measure offspring traits relevant for
paternal exposure and, optimally, expose some offspring to the same factor as the father. If possible, study offspring fitness traits. For the best
outcomes, include cues that allow prediction of the offspring environment by the fathers. b To measure the relative strength of paternal vs.
maternal effects, expose female to the same factor as male. Do not mate the parents only within the experimental group (red indicates the
design to be avoided). Pair-up exposed parents with control partners to compare maternal and paternal effects. Use North Carolina II design to
assess the synergistic effects of both parents. c To estimate maternal-mediated effects due to females’ perception, assess female preference for
the male and/or maternal behaviour in relation to paternal treatment. Use embryo transfer and offspring cross-fostering. To eliminate effects due
to female perception, use in vitro fertilization and artificial insemination. Study species with external fertilization. d Allow mate choice, if interested
in ultimate aspects of paternal effects. Reduce mate choice, if searching for proximate mechanisms. Add experimental groups to understand the
consequences of a particular mating set-up. e To reduce maternal-mediated effects due to male semen-borne substances, use vasectomized
males, helping identify the proximate mechanism of paternal effects. One could also use telegony approach. To separate female-mediated effects
(via male substances and female perception), use species with external fertilization. f Use highly related males to reduce unexplained variation
and facilitate identification of proximate mechanisms of paternal effects. To obtain robust results, use heterogeneous, randomized sample of
males. Using males in a paired-sample design could often be a convenient and powerful option
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unambiguously classified as those that should promote

increased or reduced variation in offspring traits. Finally, a

recent theoretical model of genomic imprinting [99] pre-

dicts reduced variation in offspring phenotype due to pater-

nally (compared to maternally) expressed genes, if males

have higher reproductive variance. So far, there are no the-

oretical models predicting how environmentally induced

non-genetic paternal effects affect variation in offspring

traits. Thus, such a model is needed.

Improving paternal effect research for posterity

We have given you a guided tour of our map of the paren-

tal effect research through the lens of the three guilds

of researchers, three family members and three exam-

ples of research gaps. Based on our journey, we offer

six considerations for designing future experiments on

paternal effects:

a) Assessing whether paternal effects benefit offspring

health and fitness

b) Quantifying paternal, maternal and their interactive

effects

c) Lessening or eliminating maternally mediated

effects via female perception

d) Allowing opportunities for mate choice to study

maternal differential allocation

e) Isolating or eliminating maternally mediated effects

via male semen-borne substances

f) Considering male relatedness to reduce confounds

or enhance generalisability

The first three considerations are useful for singling out

paternal effects and clarifying their function, whereas the

latter three are concerned with designs suitable for under-

standing proximate or ultimate mechanisms (Fig. 5). All the

considerations provide options depending on researchers’

interest, their study organisms and other logistics. They also

provide opportunities for cross-fertilizations of approaches

and ideas from the three clusters of scientists. For example,

medical researchers often employ sophisticated techniques

to elucidate the proximate mechanisms mediating paternal

effects [63, 64], and some of these techniques could be uti-

lized by other researchers. Conversely, eco-evo researchers

test predictions derived from theory [22, 23] and focus their

experiments on ecologically relevant effects. Some of the in-

sights gained from evolutionary and ecological theory could

inform the design of medical and toxicological research [4].

Toxicologists typically investigate the effects of a range of

treatment levels [47], and such an approach can facilitate

the detection of subtle or non-linear effects of the paternal

environment on offspring. Such inter-disciplinary links

between the three clusters could enhance paternal effect

research overall.

Conclusions
Research into paternal effects is multidisciplinary. How-

ever, currently, three relatively insular clusters exist in this

research field. We call for more cross-disciplinary collabo-

rations among the three guilds. Further, we note that the

importance of paternal effects does not stop at the individ-

ual level and that paternally induced changes could propa-

gate into the population and meta-population scales [100].

Altogether, we have much to hope for in the future of the

paternal effect research. It will bridge disparate fields of

research and will continue to provide useful insights into

topics ranging from public health, environmental pollu-

tion and climate change to animal science. We can also

expect much interest from members of the public by

showing that there might be much more than genes to the

saying ‘like father, like son’.

Methods
Systematic map

The map is based on the published papers on environ-

mentally induced non-genetic paternal germline and

semen effects (i.e. when the male had been exposed to

some environmental factor before fertilization and the

effects were studied in the offspring anytime from the

fertilization onwards; Fig. 1a); importantly, it does not

include the effects of paternal care, which role is well

documented [101–103]. PECO (Population, Exposure,

Comparators and Outcomes) statement is available in

Additional File: Table S1.

Relevant records were identified via searches carried

out in Scopus and Web of Science databases on 11 April

2019. Sets of keywords are summarized in Fig. 1b, see

also Additional File for the exact search string.

The procedure applied after the literature search is

presented in a PRISMA diagram [28] (Fig. 3c). In short,

we uploaded unique records to Rayyan (https://rayyan.

qcri.org/) to perform the initial screening based on the

title, abstract and keywords. The screening was done in-

dependently by two researchers. We excluded records

that did not fulfil all the criteria outlined in the PECO

statement. We classified records that fulfilled the inclu-

sion criteria as empirical or non-empirical. We used the

Zotero reference manager (https://www.zotero.org/) to

retrieve full texts of the designated records. One person

coded full texts, with 42 cross-checked by the second

person. We uploaded separate datasets of empirical (ref-

erences [42–58, 61–65, 67–69, 72–77, 80, 81, 83, 88, 90,

91, 104–404]) and non-empirical (references [3–6, 11,

19, 20, 23–25, 32–39, 87, 103, 405–518]) layers into R

v.3.6.0 [519] and visualized their content using ggplot2

package [520]. We analysed the combined datasets w

using the bibliometrix package [41] and VOSviewer

(https://www.vosviewer.com/) [521]. Full details of the

methods are provided in the Additional File.
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Bibliometric analyses

We downloaded relevant bibliometric records from Sco-

pus database on 16 July 2019. We ran bibliometric coup-

ling analysis in VOSviewer [521] to find clusters in

paternal effect literature (Fig. 3a). The unit of analysis

was ‘document’ (i.e. each paper). We used a factorial

counting method, which equalizes the weight given to

each paper, regardless of whether it has been cited, and

fractionalization method to visualize the outcome. Clus-

tering resolution was set to 0.8 and minimal cluster size

to 60. The resulting number of three clusters was a

stable outcome when minimal cluster size parameter

was varied between 51 and 79. We named the clusters

based on their dominant research discipline, i.e. medical

(Med), toxicological (Tox) and eco-evolutionary (EcoEvo).

We calculated the index of bibliographic connection

between papers in the three clusters (Fig. 3b) following

[522]. The index parameter reflects how many connec-

tions are there given the number of all possible connec-

tions that could exist between two different clusters and

with the cluster itself. The mean connectivity index for

our clusters is 0.16 due to low connectivity between

clusters and also within clusters themselves. To put this

index value into perspective, life-history theory literature,

analysed using the same approach, was characterized by a

mean index of 0.56 for studies published before 2010 and

0.35 for those published after 2010 [522]. Low connectiv-

ity indices may be linked to a rapid increase of volume of

available research (although it is not a default relation-

ship), but it may also indicate that literature relevant to a

given topic goes unnoticed.
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