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Abstract: As energy policies mandate increases in bioenergy production, new research 

supports growing bioenergy feedstocks on marginal lands. Subsequently there has been an 

increase in published work that uses Geographic Information Systems (GIS) to map the 

availability of marginal land as a proxy for bioenergy crop potential. However, despite the 

similarity in stated intent among these works a number of inconsistencies remain across 

studies that make comparisons and standardization difficult. We reviewed a collection of 

recent literature that mapped bioenergy potential on marginal lands at varying scales, and 

found that there is no common working definition of marginal land across all of these 

works. Specifically, we found considerable differences in mapped results that are driven by 

dissimilarities in definitions, model framework, data inputs, scale and treatment of 

uncertainty. Most papers reviewed here employed relatively simple GIS overlays of input 

criteria, distinct thresholds identifying marginal land, and few details describing accuracy 

and uncertainty. These differences are likely to be major impediments to integration of 

studies mapping marginal lands for bioenergy production. We suggest that there is future 

need for spatial modeling of bioenergy, yet further scholarship is needed to compare across 

countries and scales to understand the global potential for bioenergy crops. 

Keywords: marginal land; degraded/abandoned land; GIS; bioenergy; biofuels;  

spatial analysis 
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1. Introduction 

As energy demands increase globally, there is a growing pressure for renewable energy sources to 

help meet requirements and simultaneously mitigate for climate change. While no single type of 

renewable energy will fulfill all of our needs, bioenergy promises to become a growing portion of the 

energy market [1–3]. Energy policies around the world are progressively mandating increases in 

bioenergy production, and most are targeting second generation non-food biofuels that promise to be 

more environmentally sustainable than first generation crop-based biofuels (e.g., corn and soy) if they 

can be designed and managed appropriately [4–7]. In 2007 the United States Congress passed the 

Energy Independence and Security Act (EISA), which creates a more aggressive Renewable Fuel 

Standard (RFS2)—mandating at least 16 billion gallons of cellulosic ethanol by 2022 [8]. The United 

Kingdom has also passed government incentives, such as the 2008 Energy Crop Scheme (ECS), to 

encourage the establishment of bioenergy crops. Further, in 2007 China’s policies proclaimed a shift to 

non-food biofuels, which are expected to exceed 12 million tons by 2020 [9]. However, as these 

ambitious policies mandating biofuel production are implemented, they often come ahead of the 

provision of reliable and accountable information on the extent of lands available for such a  

purpose [10]. For example, in the United States alone, somewhere between 16 million and 21 million 

hectares (Mha) of non-crop land would be needed to meet the EISA target for cellulosic ethanol by 

2022 [11–13]. There are additional concerns that bioenergy production might come at the cost of food 

crops if croplands are converted to growing fuel, or at the expense of wildlife habitat or cultural 

amenities if protected areas are used for bioenergy planting [6]. This bioenergy land use dilemma is 

challenging scientists to determine where exactly to plant bioenergy feedstocks to meet mandates, but 

also to ensure sustainable food production and environmental protection [14–16]. 

Many have proposed the use of marginal lands as a possible sustainable solution to the bioenergy 

land use dilemma, as one of the primary sustainable qualities of second-generation biofuels is their 

documented ability to grow on non-prime agricultural land [7,17]. Much of the larger discussion in 

support of bioenergy as a viable energy resource makes reference to the global abundance of  

―marginal lands‖ as a practical solution to growing bioenergy while at the same time avoiding 

competition with productive agricultural lands and sensitive habitats, and maximizing net carbon 

benefits [17]. While there is also skepticism that large-scale bioenergy production on marginal land is 

feasible [18], indeed, ―marginal lands‖ have become commonly used shorthand for more complex 

solutions to the land use dilemma surrounding bioenergy dialogues.  

This optimism is widespread globally, as several countries, including The United States, Canada, 

United Kingdom, Australia, India, Indonesia and China have adopted policies mandating expansion of 

non-food biofuel crops on degraded or marginal land [19]. China’s policies are especially adamant that 

bioenergy production not interfere with food security. Along with setting minimum limits on arable 

land, recent Chinese policies quintupled the tax on the use of arable land for other purposes, and in 

2007 mandated a shift to exclude the use of grains in bioenergy production [9].  

The quantification of land available for bioenergy crops initially began with broad-based estimates 

where studies used reported data from existing land cover inventories, while adding new assumptions 

or imposing limits in the context of bioenergy [20]. For example, Hall et al. [21] assumed that 10% of 

the reported global crop, forest and woodland area may be available for bioenergy production. Other 
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studies based their estimates on a compilation of existing literature. Hoogwijk et al. [22] combined the 

estimates reported in literature published by Hall et al. [21] and Houghton et al. [23] for a total 

estimate of 430 to 580 Mha of degraded lands available for biomass production globally. More 

recently, in China two studies provided estimates of available land for biofuels based on the existing 

literature and government reports [9,24]. What these studies lack, however, is spatially explicit 

information on exactly where these lands can be found.  

To visualize the potential spatial patterns of bioenergy production on marginal land there has been 

an increase in published work that uses quantitative and spatially explicit models within Geographic 

Information Systems (GIS) to map the availability of marginal land for bioenergy crops. However, 

despite the similarity in stated goals among these works—mapping marginal land for bioenergy 

production—there remain a number of inconsistencies across studies that make comparisons and 

standardization difficult, and to date none of the current methods are widely accepted [25].  

In this paper we shed light on the practical challenge of mapping bioenergy potential across scales 

by reviewing recent literature that uses geospatial technology to explicitly map marginal, abandoned or 

degraded lands specifically for the purpose of planting bioenergy crops. We reviewed papers that use 

geospatial techniques to spatially link placement of bioenergy production on marginal land. We used 

the Google Scholar Database and citation tracing to identify papers on bioenergy and marginal lands 

published over a 20-year period from 1993 to 2013. Our search words included: bioenergy, biofuel, 

biomass, biodiesel, marginal land, abandoned land, degraded land, land, GIS, spatial, and scale. 

Articles were removed if they did not meet all of the following criteria: (1) target second  

generation bioenergy feedstocks; (2) focus on land that may be categorized as marginal; and (3) use 

spatially-explicit (GIS) techniques. Papers that used mapped results from other studies were removed 

from the list (for example, Zhuang et al. [26] use the work published by Cai et al. [27] in their analysis 

of marginal land for algae production). Our search criteria narrowed our review to 21 papers from 

years 2008 to 2013. Of the studies reviewed here, five were conducted at a global scale, seven were 

national, eight were regional, and one was conducted at the local (city) scale (Table 1). The specific 

bioenergy crops targeted by the studies also varied. Some addressed bioenergy generally, others 

focused on single crops, and others concentrated on a suite of crops specific to the region. To highlight 

the diversity of methods for even one geographic region, we examined China as a comparative case 

study in part because of the relatively large number of studies in this region meeting the criteria listed 

above. Through this lens we developed a framework to evaluate the other work based on several 

factors: we first examined the various definitions of marginal land given, then investigated how each 

working definition is implemented in spatial models through model choice, data selection, scale, and 

treatment of uncertainty. Our goal was to provide a framework to help researchers evaluate existing 

marginal land scholarship, and to suggest possible changes that might be made to modeling protocols 

so that more realistic comparisons across projects can be made. 
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Table 1. Summary of papers reviewed. 

 Year Author Scale Term Used General Definition Crop Soil a Land Cover a Slope a Climate a 

G
lo

b
a

l 

2008 
Campbell  

et al. [28] 
Global 

Abandoned 

agriculture 

lands 

―areas that have been abandoned to crop and pasture due to the 

relocation of agriculture and due to degradation from intensive 

use‖ 

bioenergy crops none (1) (2) none none 

2008 
Field  

et al.[29] 
Global 

Abandoned 

cropland, 

abandoned 

pastureland 

―land that was previously used for agriculture or pasture but 

that has been abandoned and not converted to forest or urban 

areas‖ 

biomass energy none (1) (2) none none 

2011 
Cai et 

al.[27] 
Semi-Global 

Marginal 

agricultural 

land 

―has low inherent productivity for agriculture, is susceptible to 

degradation, and is high-risk for agricultural production‖ 

2nd generation biofuel 

feedstocks and LIHD 

(low input high 

diversity) perennial 

grasses 

(1) (2) (1) (1) (1) 

2012 
Nijsen et 

al.[30] 
Global Degraded land 

degraded lands not in use as forest, cropland, pastoral land, or 

urban 

perennial woody and 

grassy energy crops 
(3) (4) (3) none none 

2009 

Milbrandt 

& Overend 

[31] 

Semi-Global 

(APEC 

countries) 

Marginal land 
―characterized by poor climate, poor physical characteristics, 

or difficult cultivation‖ 
general lignocellulosic (5) (4) (2) none 

N
a

ti
o

n
a

l 

2009 
Lovett et al 

[32]. 

National 

(UK) 

Marginal and 

idle land 
classes 3 & 4 agricultural lands, minus constraints Miscanthus (12) (10) (3) none 

2011 
Odeh  

et al.[33] 

National 

(Australia) 

Marginal 

agricultural 

lands 

here the definition ―is based on precipitation since the most 

limiting factor for dryland agricultural intensification is low 

water availability caused by low amount of precipitation. 

However, the marginal agricultural lands may be characterized 

by degraded soils, particularly the saline soils‖ 

Pongam-perennial tree 

and Indian mustard-

oilseed crop 

(14) none none (2) 

2011 
Schweers  

et al.[34] 

National 

(China) 

Degraded and 

abandoned 

land 

―land degradation is a long-term loss of ecosystem function 

and services, not least production, caused by disturbances from 

which the system cannot recover unaided‖ 

generic bioenergy 

crops 
(6) (6) (5) (4) none 

2011 
Swinton  

et al.[13] 

National 

(USA) 
Marginal land 

non-crop land at ―the extensive margin, where land quality is 

low enough that the value of biomass produced just covers its 

cost of production‖ 

cellulosic biofuels none (2) none none 

2011 
Zhuang  

et al.[26] 

National 

(China) 
Marginal land 

―land that has relatively poor natural condition but is able 

grow energy plants, or land that currently is not used for 

agricultural production but can grow certain plants‖ 

5 spp. bioenergy crops (13) (13) (5) (3) 

2012 
Lu  

et al.[35] 

National 

(China) 
Marginal land 

―land unsuitable for crop production, but ideal for the growth 

of energy plants with high stress resistance. These lands 

include barren mountains, barren lands and alkaline lands‖ 

Pistacia chinensis (13) (12) (6) (4) 

2012 
Liu 

et al.[36] 

National 

(Canada) 
Marginal land 

―lands which are not profitable for food crops due to  

low productivity‖ 
hybrid poplar (9) (9) none none 



ISPRS Int. J. Geo-Inf. 2014, 3 434 

 

Table 1. Cont. 

 Year Author Scale Term Used General Definition Crop Soil a Land Cover a Slope a Climate a 

R
eg

io
n

a
l 

2011 Fahd et al. [37] 

Regional 

(Campania, 

Italy) 

Marginal land 

―characterized by several negative features (no water 

easily available, poor organic matter in soil, distance from 

transportation routes, excess slope and sometimes 

pollution due to previous use by industrial activities, etc.) 

that make them unsuitable for food cropping.‖ 

Brassica carinata none (7) (7) none 

2010 
Fiorese & 

Guariso [38] 

Regional (N. 

Italy) 

Agricultural 

marginal land 

and set-aside 

land 

agricultural marginal land (i.e. abandoned agricultural 

land) would be targeted for short-term forestry; set-aside 

land would be targeted for sorghum crop; available land = 

parcel area * (marginal agricultural land/ total agricultural 

land) 

arborous and 

herbaceous species 
(11) none unknown (6) 

2010 Wu et al.[39] 
Regional 

(SW China) 
Marginal land land with social and economic constraints Jatropha curcas (10) (11) (6) (7) 

2011 
Gopalakrishnan 

et al.[40] 

Regional 

(NE, USA) 
Marginal land 

―land that is marginal for conventional crops but not 

marginal for biofuel crops or other functions, based on 

economic, soil health, and environmental criteria‖ 

cellulosic biofuels (16) (8) (8) none 

2012 Kukk et al.[41] 

Regional 

(Tartu Co., 

Estonia) 

Abandoned 

agricultural land 

―soils of abandoned areas are generally of low quality and 

thereby limited suitability for crop production‖ 

5 spp. bioenergy 

crops 
(8) none none none 

2012 Liu et al. [42] 
Regional 

(SW China) 
Marginal land 

―land that has relatively poor natural condition but is able 

grow energy plants, or land that currently is not used for 

agricultural production but can grow certain plants‖ 

Manihot esculenta 

(cassava) 
(13) (13) (5) (5) 

2012 
Tenerelli and 

Carver [43] 

Regional 

(Apulia 

Region, S. 

Italy) 

Marginal land 

or less 

productive land 

―less productive land (grade three, four and five in the 

Agricultural Land Capability Map)‖ 

perennial energy 

crops 
(7) (10) (9) (8) 

2013 Kang et al.[44] 
Regional 

(MN, USA) 
Marginal land 

―characterized by low productivity and reduced economic 

return or by severe constraints for agricultural cultivation. 

They are generally fragile and their use is environmentally 

risky. Land can be marginal physically, biologically, 

environmentally-ecologically, economically‖ 

general (15) none (10) none 

2013 
Gelfand  

et al.[17] 

Regional 

(USA 

Midwest) 

Marginal land 

―those poorly suited for food crops because of low 

productivity due to inherent edaphic or climatic limitations 

or because they are located in areas that are vulnerable to 

erosion or other environmental risks when cultivated‖ 

cellulosic biofuels (15) (8) (11) none 

L
o

ca
l 

2012 
Niblick  

et al.[45] 

Local 

(Pittsburgh, 

USA) 

Urban marginal 

lands 

―lots with poor agricultural potential and unfit for  

residential purposes‖ 
sunflower (15) (14) (10) none 

a See table in Section 4 for soil and land cover references..
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2. Defining Marginal Land 

The term ―marginal land‖ is currently so intertwined with discussions surrounding bioenergy that its 

definition might be assumed to be specific and certain. Yet the definition of marginal land has varied 

across time, space and discipline to meet multiple management goals [25,46]. The concept of marginal 

land made an appearance in the literature in the 19th century when David Ricardo identified variations 

in the desirability of land based on its proximity to essential resources, such as water supply or food 

markets [47]. Ricardo’s land rent theory posited the logical view that certain land units have a 

comparably higher value if located in proximity to essential resources. Following Ricardo, economist 

Ricardo Johann Heinrich von Thünen elaborated on the theory of location value and by the early 

1900’s an economic concept of marginal land had emerged [48]. Peterson and Galbraith [49]  

discussed marginal land in a theoretical framework, wherein rational land use decisions stem from  

and respond to changes on the ―extensive margin,‖ where revenue is equal to the costs of production. 

They also highlighted the importance of socio-economic factors, including cost of living, landholding 

size, accessibility to credit, and land tenure policies. This concept of the extensive margin has been 

well studied since [50–53] and is still recognized by the USDA as playing a role in land use  

change today [54]. 

More recently the definition of marginal land began to take on an explicit spatial characteristic. 

Beginning as early as the late 60’s, researchers used non-GIS forms of spatial overlay to map land 

capability [55]. By the 1980’s several studies began to map physically marginal lands for the purpose 

of inventorying underproductive agricultural land, often with the goal of taking vulnerable and risky 

lands out of production [56]. These studies were largely based on locating soils with physical 

restrictions and production constraints. In 1988, a regional study in Minnesota was conducted to find 

―marginal agricultural land‖ to be targeted for a cropland set-aside program based on erodible soils and 

poor land productivity [57]. In 1990, Breuning-Madsen performed an overlay mapping assessment of 

wet and droughty soils and those on steep slopes marginal for agricultural use in Denmark to isolate 

areas of the country most economically vulnerable to low yields [58]. A decade later, researchers in 

Poland set out to map ―marginal agricultural lands‖ and ―less favored farming areas‖, respectively, 

based on biophysical characteristics, the later as part of a mandatory inventory requirement before 

joining the European Union [59,60]. Such studies relied solely on biophysical definitions of marginal 

land, including poor soils, poor drainage, and steep slopes. 

Currently, the term marginal land is often referenced within bioenergy research. This emergent 

conversation is evidenced by GoogleScholar search statistics, which show that since 1993 there have 

been an increasing number of papers addressing marginal lands, biofuels, GIS and any combination of 

these. Within the literature, the initial jump may arguably be credited to Hall et al. (1993), who 

highlighted the potential benefits of biomass production to restore degraded lands. Since then, interest 

in the topic further expanded after publication of a paper by Tilman et al. [7], and especially in 2008 

with both the emergence of the food versus fuel debate [61–63] and finally with the publication of the 

first studies to map the global extent of abandoned or degraded agricultural lands for bioenergy 

production [28,29]. However, as the subject becomes an increasing focus in the literature, the working 

definitions of marginal land become increasingly diverse, making comparisons between studies, and 

standardization of estimates difficult. 
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Each of the papers reviewed here offer definitions of marginal land as they relate to bioenergy. 

However, there is a common distinction between the general definition of marginal land referred to in 

the introduction of each paper, and the working definition of marginal land as implemented in the 

methods by way of crop choice, input criteria and modeling framework. General definitions of 

marginal land are fairly generic by nature and are therefore relatively consistent across studies. The 

definition offered by Gelfand et al. [17] is a typical example, where they describe marginal  

lands as ―those poorly suited for food crops because of low productivity due to inherent edaphic or 

climatic limitations or because they are located in areas that are vulnerable to erosion or other  

environmental risks when cultivated‖. The general agreement is that although these  

lands are unsuited for conventional agricultural crops, they are conversely well suited for bioenergy 

crops (withstanding major limitations like steep slopes that prevent mechanized farming). For example, 

Gopalakrishnan et al. [40] define marginal land as ―marginal for conventional crops but not marginal 

for biofuel crops or other functions, based on economic, soil health, and environmental criteria”. 

General definitions overwhelmingly describe lands that are not prime for conventional crops because 

they are high risk for economic payoff owing to low productivity resulting from climate or soil limitations. 

In contrast, the working definitions of marginal land implemented in the papers differ considerably 

between studies. Working definitions of marginal land vary by nation and target crop, which in turn 

drive input criteria and modeling framework. Thus direct comparisons between published outputs are 

difficult. Moreover, there are few areas in the world that have been mapped with multiple methods 

making comparisons practical. One exception is China, which is currently under enormous pressure by 

energy and food security policies not to grow bioenergy crops on agricultural land. For this reason, 

bioenergy potential in China has been mapped several times and in different ways. As a precursor to 

developing a framework for evaluating the larger body of work, it is useful and illustrative to examine 

how different studies map bioenergy potential on marginal land in China. 

3. A Comparative Case Study: Mapping Marginal Lands for Bioenergy in China 

Of the studies reviewed here, five reported results for the People’s Republic of China (three at the 

national scale and two at the global scale). Each used different working definitions of marginal land: 

they focused on different crops, used different input criteria, models and assumptions, and all had 

different mapped results. 

Lu et al. [35] mapped the national potential for growing Chinese Pistache (Pistacia chinensis) on 

marginal lands in China. Their general definition of marginal land is land ―unsuitable for crop 

production, but ideal for the growth of energy plants with high stress resistance. These lands include 

barren mountains, barren lands and alkaline lands”. They used a GIS overlay analysis to first target 

marginal land uses suitable for planting bioenergy crops, including sparse forest, natural grassland, and 

unused land (alkaline, bare, shoal/bottom lands). Then they characterized three levels of suitability for 

Chinese Pistache production based on eco-environmental requirements (temperature, precipitation, soil 

and slope), and modified their results with social, economic and environmental constraints, including 

sensitive and protected areas, national reserves, and cultivated lands. Before producing their final 

mapped results, they employed a minimum mapping unit of 200 ha. All data are referenced in Table 2. 

This method yielded 19.9 Mha of available land (2.08% of China’s total land area). 
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Table 2. Summary of nationwide studies calculating marginal land area in China. 

A
u

th
o

r 

S
ca

le
 

Term Used Target Species General Definition Method 
Marginal 

Area (Mha) 

China’s 

Land Area 

(%) 

Soil 
Topo-

graphy 

Current 

Land Use 

Historical 

Land Use 

Climate 

Data 

C
ai

 e
t 

a
l.

, 
 

2
0

1
1

 [
2

7
] 

G
lo

b
al

 Marginal 

Agricultural 

Land 

low input high 

diversity (LIHD) 

mixtures of native 

perennials 

lands with ―low inherent 

productivity for agriculture, is 

susceptible to degradation, 

and is high risk for 

agricultural production‖ 

fuzzy logic 

modeling & 

boolean 

knockout 

52–213 
5.43%–

22.26% 

HWSD 

(30''); 

USDA-

NRCS 

STR (2') 

GTS (30'') IGBP (30'') none 

Climatic 

Research 

Unit (2') 

M
il

b
ra

n
d

t 
&

  

O
v

er
en

d
, 
2

0
0

9
 [

3
1

] 

S
em

i-
G

lo
b

al
 (

A
P

E
C

 c
o

u
n

tr
ie

s)
 

Marginal 

Land 

lignocellulosic 

biomass 

lands ―characterized by poor 

climate, poor physical 

characteristics, or difficult 

cultivation. They include 

areas with limited rainfall, 

extreme temperatures, low 

quality soil, steep terrain, or 

other problems for 

agriculture‖ 

GIS 

overlay 

analysis 

with binary 

thresholds 

51 5.33% 
GAEZ 

(5') 
GAEZ (5') FAO (5') none none 

S
ch

w
ee

rs
 e

t 
a

l.
, 
 

2
0

1
1

 [
3

4
] 

N
at

io
n

al
 (

C
h
in

a)
 

Degrading 

and 

Abandoned 

Land 

generic bioenergy 

spp. 

―land degradation is a long-

term loss of ecosystem 

function and services, not 

least production, caused by 

disturbances from which the 

system cannot recover 

unaided‖ 

GIS 

overlay 

analysis 

with binary 

thresholds 

20.2–39.1 
2.11%–

4.09% 
na 

USGS 

GTOPO30 

(30'') 

GlobCover 

LCD  

(300 m) 

HYDE (5’) none 
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Table 2. Cont. 

A
u

th
o

r 

S
ca

le
 

Term 

Used 
Target Species General Definition Method 

Marginal 

Area 

(Mha) 

China’s 

Land 

Area (%) 

Soil 
Topo-

graphy 

Current 

Land Use 

Historical 

Land Use 
 

Z
h

u
an

g
 e

t 
a

l.
, 
 

2
0

1
1

 [
2

6
] 

N
at

io
n

al
 (

C
h
in

a)
 

Marginal 

Land 

5 spp.: 1. Helianthus 

tuberoush L., 2. Pistania 

chinensis, 3. Jatropha 

curcas L., 4. Manihot 

esculenta, 5. Vernicia 

fordii 

―land that has relatively poor 

natural condition but is able to 

grow energy plants, or land that 

currently is not used for 

agricultural production but can 

grow certain plants‖ 

GIS overlay 

analysis with 

binary 

thresholds 

43.75 4.57% 
RESDC 

(1:100 k) 

SBSC 

(1:100 

k) 

RESDC 

(1:100 k) 

2008 

none 

(CMA) 

(1:100 

k) 

L
u

 e
t 

a
l.

, 
 

2
0

1
2

 [
3

5
] 

N
at

io
n

al
 (

C
h
in

a)
 

Marginal 

Land 

specific spp. (Pistachia 

chinensis) 

lands ―unsuitable for crop 

production, but ideal for the 

growth of energy plants with high 

stress resistance. These lands 

include barren mountains, barren 

lands and alkaline lands‖ 

GIS overlay 

analysis with 

multiple 

thresholds 

19.9 2.08% 
RESDC 

(1 km) 

SBSC 

(1:250 

k) 

RESDC 

(1:100 k) 

2000 

none 
(CMA)  

(1 km) 

na = not applied. Acronyms: CMA: China Meteorological Administration; GAEZ: Global Agro-Ecological Zones (GAEZ) system; GTS: Global Terrain Slope; HWSD: 

Harmonized World Soil Database; HYDE: History Database of the Global Environment; RESDC: Data Center for Resources and Environmental Sciences; SBSC: State 

Bureau of Surveying and Cartography; STR: Soil Temperature Regime; USGS: United States Geological Survey; WDPA: World Database of Protected Areas.
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Zhuang et al. [26] mapped the national potential for five bioenergy species, including Jerusalem 

artichoke (Helianthus tuberous L.), Chinese Pistache, Chinese castor oil (Jatropha curcas L.), Cassava 

(Manihot esculenta), and Tung Tree (Vernicia fordii). They generally defined marginal land as ―land 

that has relatively poor natural condition but is able to grow energy plants, or land that currently is 

not used for agricultural production but can grow certain plants”. They used a GIS overlay analysis 

with binary thresholds that first identified marginal lands based on land use, terrain (slope < 25% and 

elevation specific to species), climate (specific to species) and soil (they excluded sand, sandy gravely, 

saline and alkalized soil, and soil depth). Then they modeled the optimum location on the identified 

marginal lands for each species based on the eco-environmental requirements. Land uses considered 

suitable for bioenergy included woodlands (shrub land, sparse forest land), grasslands and barren lands 

(including shoal/bottomland, saline and alkaline land, and bare land) (Table 2). The results suggested 

that 43.75 Mha were available for these five species (4.57% China’s total land area). 

Schweers et al. [34] performed a national study in China examining the potential for general bioenergy 

production on degraded and abandoned land. They qualified that, ―land degradation is a long-term loss of 

ecosystem function and services, not least production, caused by disturbances from which the system 

cannot recover unaided”. They used a GIS overlay analysis with multiple input criteria that defined 

degraded land as the loss of net primary productivity (NPP) between 1981 and 2003. They calculated 

abandoned land by subtracting the maximum value from the percentage grassland and cultivated land 

between 1700 and 2000 from those values in 2005, where negative change values indicated abandoned 

land. Lands suitable for bioenergy crops included land cover with mixed vegetation and cropland, land 

cover with mixed grassland, forest or shrub land, lands with closed to open shrub land, lands with closed to 

open herbaceous vegetation, and lands with sparse vegetation. Land covers unsuitable for bioenergy crops 

included croplands, forested areas, wetlands, urban areas, water, snow and ice, bare and un-defined lands. 

They also excluded conservation areas, including protected areas identified by the World Database on 

Protected Areas (WDPA), areas of high biodiversity, areas with high percent organic carbon content, and 

steep slopes (Table 2). The authors also conducted ground verification in two regions including GPS, 

photos, and interviews—with 60% of the verification points confirming the remote suitability assessment. 

This method yielded 39.1 Mha for bioenergy crops when conservation areas were not excluded, or 20.2 

Mha when conservation areas were excluded (2.11% or 4.09% China’s total land area, respectively).  

Milbrandt and Overend [31] mapped the potential for lignocellulosic biomass plants on marginal 

land in APEC countries, including China, defined as land ―characterized by poor climate, poor 

physical characteristics, or difficult cultivation. They include areas with limited rainfall, extreme 

temperatures, low quality soil, steep terrain, or other problems for agriculture‖. They employed a GIS 

overlay analysis that used linear combination with multiple input criteria using binary thresholds. The 

analysis focused primarily on land cover, soils and slope (Table 2). Bare and herbaceous areas (not in 

use or with only moderately intensive pastoralism) were targeted, and lands with intensive and 

extensive pastoralism were excluded. Lands with moderate and steep slopes and lands with soil 

problems (e.g., course, sandy, acidic) or shallow soils were considered marginal lands suitable for 

planting bioenergy crops. After marginal land was mapped based on the above criteria, they excluded 

protected lands as well as deserts, cold regions, ice/glacier areas, water features, forests, agricultural 

lands, urban areas, as well as herbaceous and bare lands under intensive and extensive pastoralism. The 

analysis predicted 51 Mha (5.34% China’s total land area) should be available for bioenergy production.  
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Finally, Cai et al. [27] modeled the potential for second-generation biofuel feedstocks and low-input 

high-diversity (LIHD) mixtures of native perennials for most of the globe on marginal agricultural land that 

has, ―low inherent productivity for agriculture, is susceptible to degradation, and is high risk for 

agricultural production”. As compared to the four studies previously mentioned, the authors used a more 

complex model that employed Fuzzy Logic Modeling (FLM) and land cover exclusion. Their model 

identified marginally productive lands based on soil productivity, slope, and climate (soil temperature 

regime and humidity index) (Table 2). Input criteria were evaluated by applying a membership function to 

each criterion based on empirical knowledge, thereby converting quantitative values to qualitative ratings 

on the level of land productivity (low, marginal, or regular). Criteria were then aggregated into probabilities 

of land belonging to a category of land productivity, which yielded a final land productivity score. After the 

marginal lands were mapped, the authors developed four scenarios of marginal lands available for 

bioenergy crops that progressively included: (1) mixed crop and marginally productive natural vegetation; 

(2) marginally productive cropland; (3) marginally productive grasslands, savanna, and shrub lands 

(assumes regularly productive regions of these areas excluded for pasture or for future crops); and  

(4) regular land that used for mixed crop and vegetation and grassland, savannah, and shrub land with 

either regular or marginal productivity, and removed marginally productive pastureland possibly accounted 

for in the grassland class in scenario 3. For China specifically, mapped results yielded 52–213 Mha of 

marginal agricultural land, depending on scenario (5.43% to 22.26% of China’s total land area). 

In summary, despite similarity of intent, these five examples from China illustrate considerable 

differences in working definition, including input criteria, modeling framework, and mapped results. 

Mapped results ranged from 2.08 to 22.26% of China’s total land area. Of the five projects, all five 

used some representation of land cover, but each model used a different land cover dataset (Table 2). 

In addition, studies using nearly the same dataset (only with different publication dates, but identical 

thematic classes) differ in which thematic classes they considered marginal. For example, while both 

Zhuang et al. [26] and Lu et al. [35] initially targeted shrub land as a marginal land class, Lu et al. [35] 

later ultimately excluded the shrub land category in their study, citing China’s policies on forestry  

that state shrub land should not be modified for other purposes. Another differentiating factor  

regarding land cover is the inclusion or exclusion of existing cropland. Both Schweers et al. [34] and 

Cai et al. [27] included cropland in their analysis, while the others did not. 

Even among studies mapping within the same country and using the same national data sources, there 

are both subtle and large differences between input criteria and parameters that impact mapped land area. 

In the present analysis, both Zhuang et al. [26] and Lu et al. [35] used nearly identical datasets (they 

provide one of the closest comparisons of the papers reviewed here), but have different mapped results: 

43.75 and 19.9 Mha, respectively. This is in large part due to the fact that the former mapped marginal land 

for five bioenergy species and the latter only mapped for one species. However, differences may also be 

attributed to variances in both input data and parameters applied. For example, Lu et al. [35] used 2000 

land use data from the RESDC, while Zhuang et al. [26] use land used data from the same source and at the 

same scale, but for a different year—2008. In addition, Lu et al. [35] ultimately excluded shrub lands from 

their analysis, while Zhuang et al. [26] included shrubs in their analysis. The two studies also got their soil 

and terrain data from the same sources (RESDC for soil and SBSC for terrain), but reported two different 

mapping scales, 1 km and 1:100 k, respectively for soil, and 1:250 k and 1:100 k, respectively for terrain. 

When targeting marginal lands, Lu et al. [35] and Zhuang et al. [26] both included alkaline lands as 
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mapped in the RESDC land use database. However, Zhuang et al. [26] then went on to exclude ―seriously 

alkalized soil and saline soil‖ as reported in the RESDC soils database. Because the two studies mapped for 

different species, it is hard to say how influential these additional differences in input criteria are, however 

it may be assumed that the mapped results would still not be identical. 

4. Mapping Potential for Bioenergy 

These examples from China illustrate considerable differences in mapped results that were driven 

by differences in definitions, model framework, and data input. Next we evaluated the broader 

literature and further evaluated possibilities for commonalities. Our review included 21 papers from 

years 2008 to 2013; five were conducted at a global scale, seven were national, eight were regional, 

and one was conducted at the local (city) scale (Table 1). 

4.1. Model Selection 

Geographical Information Systems (GIS) are a powerful set of tools for site suitability models that 

incorporate numerous input datasets [64,65]. GIS-based site suitability analyses are increasingly used 

to identify potential locations for integrating renewable energies into the landscape [66,67]. The 

majority of these analyses are based in Multi-Criteria Evaluation (MCE), the underlying principal of 

which is to synthesize complex problems by examining the coincidence of factors among multiple 

spatially co-registered variables [68].  

GIS suitability analyses can range from very simple GIS linear overlays with binary thresholds, to 

very complex models that incorporate binned thresholds, weights, standardization, fuzzy logic, or all of 

the above. The oldest and most commonly used form of GIS-based land suitability analysis relies on 

linear combinations of spatially referenced input criteria, also known as ―Boolean‖ overlays. This 

methodology has a long history [69] and has the benefit of being transparent and easy to follow. These 

models typically result in distinct thresholds of suitability, i.e., a parcel of land is either suitable for 

planting bioenergy crops or is not. The resulting suitability maps are often further restricted by the 

application of constraints. For example, marginal lands otherwise potentially suitable for bioenergy crops 

are modified by the elimination of unsuitable land (e.g., urban areas or water). Another category of 

geospatial land suitability models are those that incorporate Weighted Linear Combination (WLC) [68]. 

Models that use WLC standardize each criterion layer, which can then be weighted based on their 

importance as decided by selected stakeholders and or experts in the field. Therefore when combined, 

one criterion with relative low suitability can be recompensed by the high score of another. In contrast 

to Boolean and WLC models, which often employ distinct thresholds of suitability, models that 

incorporate fuzzy set theory assign continuous grades of suitability [70,71]. In a fuzzy set, the concept 

of suitability, or ―membership‖, is not definitive because all objects belong to the suitability set in 

varying degrees. Using membership transformation functions, input criteria are given standardized 

―fuzzy‖ membership values, which vary continuously between 1 and 0. Values approaching 1 are 

considered more suitable and values approaching 0 are considered less suitable; Sites with a value of 0 

are definitely not suitable and sites with a value of 1 definitely are suitable. While set thresholds can 

also be employed in fuzzy models for where 0 and 1 values begin, this approach incorporates more 
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realistically the continuous nature of biophysical and economic variables [68]. For both WLC and 

fuzzy models, Boolean exclusion criteria can also be employed to further limit the results to feasible areas.  

The majority of the studies reviewed here used relatively simple GIS suitability models that relied on 

linear combinations of spatially referenced input criteria with distinct thresholds, i.e., ―Boolean‖ 

overlays. The one primary difference between the studies that used the linear combination overlay 

method is simply the succession in which input criteria were added to the model. For example, five of the  

twenty-one studies reviewed here first mapped for species suitability based on biophysical crop 

requirements, then mapped for land availability based on marginality [32,35,38,39]. Three other studies 

first mapped marginal land, and then mapped the potential suitability of that land for specific bioenergy 

species [26,33,37]. The eight studies that mapped for generic bioenergy species first mapped marginal 

lands, then employed land use constraints, or masks, where bioenergy crops should not be  

planted [27–31,34,36,45]. Finally, three studies first targeted marginal lands for generic bioenergy 

species based on multiple input criteria, but employed no land cover constraints [13,40,44]. For example, 

Kang et al. (2013) performed a ―hierarchical‖ GIS overlay in succession mapping lands that were 

considered physically marginal (using slope, rock fragment, bedrock depth, flooding, and ponding), 

biologically marginal (using temperature, moisture, soil erosion, soil depth, sand content, production, 

CEC, EC, sodicity, pH, drainage, water table, and soil restriction), environmentally-ecologically 

marginal (using soil organic carbon trend, slope, erosion, wetland), and finally lands that were 

economically marginal (from breakeven price or yield). In this way they targeted marginal lands by 

defining what they are considered to be, but no specific land cover constraints were employed.  

The remaining three studies reviewed here used more complex methods for mapping marginal land. 

Tenerelli and Carver [43] combined a suite of GIS suitability methods. After identifying bioenergy 

crop types (perennial grasses, short rotation coppice and short rotation forestry) and ecological 

requirements based on crop typology, they both standardized and weighted input criteria. At the same 

time they excluded constraints (e.g., built-up areas, natural habitats, land with high ecological value, 

and highly productive agricultural land) based on a binary evaluation. These variables (the 

standardized and weighted criteria, the binary constraints, and the uncertainty and sensitivity analyses) 

were then used to generate the land capability index specifically for the bioenergy crops being studied. 

This tailored land capability index was then combined with an existing land capability classification to 

derive the final land allocation for bioenergy crops.  

Only two methods reviewed here incorporated fuzzy set theory into their suitability models.  

Wu et al. [39] used the FAO’s Agro-Ecological Zone (AEZ) method to map marginal land for Jatropha, 

and for this the authors employed a fuzzy membership approach. First they sorted three soil quality 

indicators into five sequential bins. Then based on the crop’s soil quality requirements, they identified the 

best suitable range of each of soil quality factors with a fuzzy membership equaling 1.0 and transition zone 

with membership values between 0.5 and 1.0. They then aggregated the degree of membership over three 

soil quality factors into one index with three categories of land (suitable, moderately suitable, and 

unsuitable for Jatropha plantation). Cai et al. [27] delved much deeper into fuzzy set theory for their 

analysis. As described above, the authors first identified marginally productive land using a fuzzy logic 

model based on the soil rating for plant growth (SRPG) index. The model applied a fuzzy membership to 

input criteria based on empirical or expert knowledge, thereby converting quantitative land productivity 

values into qualitative ratings. Criteria were then aggregated by fuzzy rule inference to determine the 
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probabilities of land belonging to a category of land productivity, and a final land productivity index was 

generated. Steps which were based on empirical or expert knowledge were then iteratively calibrated 

through a learning process that incorporated existing land use. Finally they overlaid mapped marginally 

productive land with existing land cover and designed four land availability scenarios for bioenergy crops.  

One modeling step commonly employed among the studies reviewed here, and in GIS-based land 

suitability analyses in general, was the implementation of land cover constraints, or restrictions—however, 

not all restriction criteria are alike. Restrictions that eliminate an area from the analysis can be classified as 

either ―hard‖ or ―soft‖ [67,72]. Hard restrictions are land covers like urban areas and ice/snow—lands 

where it can generally be agreed that large bioenergy plantations cannot be planted. For this reason, hard 

restrictions were generally consistent among the studies reviewed here. This is in contrast to soft 

restrictions, which may include croplands, pasturelands, and shrub lands—lands where there may be 

legitimate reasons that bioenergy crops should not be planted, but it is feasible that they may be. For 

example, Lovett et al. [32] first mapped nine absolute factors that precluded any opportunity for energy 

crop planting, then they mapped two secondary factors, where planting perennial biomass crops would not 

be encouraged, but also not necessarily excluded. Soft restrictions may be modified over time and can also 

vary regionally (for example shrub lands may be considered a hard restraint in China, but a soft restraint 

elsewhere), which makes them harder to standardize, especially at international and global scales [67]. 

4.2. Input Data 

4.2.1. Biophysical Data Inputs 

Of the studies reviewed here, soil, land cover and topography (i.e., slope) were the most common 

input criteria used. Of these, land cover was the most frequently used input criteria (used by 18 out of 

21 studies), and was most often employed as a masking or elimination factor in the analysis. For 

example, it was generally assumed that bioenergy crops will not be grown on lands classified as water, 

ice or snow. Soil variables were also a common input factor, with 17 out of 21 of the studies reviewed 

here using at least one soil variable as an input criterion. For instance, Milbrandt and Overend [31] 

used 10 soil variables to target marginal lands potentially suitable for bioenergy crops, including soil 

texture, fertility, pH, etc. Topography (particularly slope) was the third most considered factor, with 

more than half (14 of 21), of the studies using slope as an input criterion defining land marginality. 

Primarily slopes too steep for planting bioenergy crops were excluded, for example three studies 

mapping marginal land in China excluded slopes > 25% [26,34,35]. 

Among the 18 studies that used land cover as an input criterion, 13 different land cover datasets 

were used, and among the 17 studies to use soil, 16 different soil datasets were used (Table 3). 

Moreover, for ―current‖ land cover datasets, publication dates span over a decade, ranging from the 

―end of last millennium‖ (released 1997) (IGBP DisCover) to 2008 (CDL). 

4.2.2. Socio-Economic Data Inputs 

Several studies include what they term ―socio-economic‖ factors—usually used as constraints in the 

model—however these data were often inconsistently utilized. In general ―socio-economic‖ criteria 

consisted of varying aspects of land use/land cover, as decided by the scope and region of the study. 
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For example, Lovett et al. [32] incorporated the following ―socio-economic‖ factors into their  

multi-criteria suitability analysis: urban boundaries and cultural heritage sites comprising doorstep 

greens, millennium greens, historic parks and gardens, monuments, registered battlefields, and world 

heritage sites. Wu et al. [39] also incorporated ―social-economic constraints‖ by excluding all but 2% 

of land used for food production and all but 50% of barren, grass and open forestlands from their 

mapped results. The only socio-economic constraint used by Lu et al. [35] was shrub land, citing that 

this land use cannot be used for other purposes based on Chinese policy. In short, the socio-economic  

criteria employed were subjective and non-standardized. Despite the common use of the term  

―socio-economic‖, these factors may be better categorized as land cover/ land use criteria.  

4.2.3. Other Data 

A small number of papers used other input criteria less common between studies. For example, 

polluted areas were considered in two of the papers reviewed here. Fahd et al. [37] point out that some 

lands become marginal when excess pollution is generated by human-dominated processes (including 

illegal disposal of liquid and solid waste), therefore they used polluted areas as a primary input into 

their overlay model (Fahd et al., 2011). In the United States Gopalakrishnan et al. [40] included in 

their map of marginal land what they termed ―environmentally degraded land‖, including land with 

brownfield sites, areas with water contamination, and areas with excessive irrigation. 

Other less common input layers included highly localized datasets, such as roadways and riparian 

corridors, which were mapped by Gopalakrishnan et al. [40], but only qualitatively mentioned 

elsewhere [44]. Projected changes in climate were infrequently used. Odeh et al. [33] mapped 

marginal land in Australia at first by isolating annual precipitation to 300–600 mm/yr, and then made 

adjustments for climate change based on six emissions scenarios.  

4.2.4. Choice of Data Threshold 

Even amongst studies that used the same datasets for input criteria and exact same thematic classes, 

differences can be made when determining exact thresholds of delineation determining marginality. 

Topography (slope) is a prime example of how a threshold decided on by the authors or a ―panel of 

experts‖ can vary widely between studies and influence mapped results. In the studies reviewed here, 

primarily slopes too steep for planting were excluded from the analysis; however, exact thresholds can 

be subjective and therefore results differ considerably. For example, in their working definition of 

marginal lands, Lovett et al. [32] excluded slopes > 15%, while Gopalakrishnan et al. [40] included 

slopes > 15%. Milbrandt and Overend [31] included slopes between 8% and 30%. Fiorese and  

Guariso [38] and Gelfand et al. [17] excluded slopes > 20%, and three studies in China, including 

Schweers et al. [34], Zhuang et al. [26] and Lu et al. [35] excluded slopes > 25%. Studies with numerous 

levels of marginality had multiple thresholds for slopes, including Kang et al. [44] who used a physical 

definition of marginal lands that excluded slopes > 30%, and an environmental-ecological definition 

that excluded slopes < 8%. Cai et al. [27] identified eight slope classes for their fuzzy analysis. 
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Table 3. Summary of primary datasets used. 

Soil Datasets Source Geography Date Resolution Used By    

(1) HWSD FAO/IIASA Global 2009 30 arc sec Cai et al.[27]    

(2) STR USDA-NRCS Global 1997 2' (1:5 × 106) Cai et al.[27]    

(3) GLASOD ISRIC Global 
1945–

1990 

mmu 5652 km2 

(1:106) 
Nijsen et al.[30]    

(4) FAO World soil map FAO-UN Global 1991 32km2 (1:5 × 106) Nijsen et al.[30]    

(5) GAEZ FAO/IIASA Global ? 5' (~100 km2) Milbrandt and Overend [31]   

(6) WDPA 
UNEP-

WCMC 
Global 2008? ? Schweers et al.[34]    

(7) Soil Associations in England NSRI National (England) 2008 1:250 k Tenerelli and Carver [43]   

(8) Estonian Board digital soil map ELB National (Estonia) ? 1:10 k Kukk et al.[41]    

(9) Land Suitability Rating System SDSC National (Canada) 1995 ? Liu et al.[36]    

(10) Multi-source ? National (China) ? ~1:250 k Wu et al.[39]    

(11) Unknown source ? National (Italy) ? 1:250 k Fiorese & Guariso [38]    

(12) NatMap 1000 database NSRI LandIS 
National (Whales & 

England) 
2001 1 km2 Lovett et al. [32]    

(13) Soil Map of China RESDC National (China) 2005 ~1 km2 (1:100 k) Lu et al. [35]; Zhuang et al.[26]   

(14) CISIRO AGO National (Australia) 2000 ? Odeh et al. [33]    

(15) SSURGO USDA-NRCS Regional (USA) '08, '10 1:24 k Kang et al. [44]; Niblick et al. [45]; Gelfand et al.[17]   

(16) STATSGO USDA-NRCS State (USA) 1991 mmu 617ha; 1:250 k Gopalakrishnan et al.[40]   

Land Cover Datasets Source Geography Date Resolution Used By Accuracy   

(1) IGBP DISCover Biradar et al. Global 1997 30'' (~1km2) 
Cai et al.[27]; Campbell et al. [28]; Nijsen et 

al.[30] 
59.4%–78.7%   

(2) MODIS NASA Global 
'04, '06, 

''08 
500 m 

Campbell et al. [28]; Field et al. [29]; Swinton 

et al.[13] 
?   

(3) GLC2000 GVM, JRC Global 2000 1 km2 Nijsen et al.[30] 68.60%   

(4) 
Global Agro-Ecological Zones 

(GAEZ) 
FAO & IIASA Global 2000 5' Milbrandt & Overend [31] ? Can’t find   

(5) GlobCover ESA Global 2005 300 m Schweers et al.[34] 67.10%   

(6) HYDE 3.0 MNP Global 
1700–

2000 
5' 

Field et al. [29]; Campbell et al. [28]; 

Schweers et al.[34] 

uncertainty 5% (2000) to 

25% (1800) & > 
  

(7) CORINE EEA Europe 2006 100 m Fahd et al.[37] 87% ± 0.8   

(8) Cropland Data Layer (CDL) USDA National (USA) 2007 56 m Gopalakrishnan et al. [40]; Gelfand et al. [17] mid 80% to mid 90%   

(9) Canadian Land Cover Map AGR National (Canada) 2000 30 m Liu et al. [36] overall class accuracy ~82%   

(10) Land Cover Map 2000 CEH UK 
National (United 

Kingdom) 
2000 mmu 0.5ha; 25m2 Lovett et al.; Tenerelli and Carver [43] 80%–85%   
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Table 3. Cont. 

 Land Cover Datasets Source Geography Date Resolution Used By Accuracy   

(11) China land use CAS National (China)  1:100 k Wu et al. [39] ?   

(12) China land use RSEDC National (China) 2000 1:100 k Lu et al.[35] ?   

(13) China land use RSEDC National (China) 2008 1:100 k 
Zhuang et al. [26].; Liu et al. 

[42] 
?   

(14) Allegheny County greenways PASDA Local 2000 variable, ~50ft Niblick et al. [45] ?   

Topography Datasets Source Geography Date Resolution Used By Threshold Used   

(1) Global Terrain Slope (GTS) FAO & IIASA Global  30'' Cai et al. [27] 

eight slope classes: 0–0.5%, 0.5%–2%,  

2%–5%, 5%–10%, 10%–15%,  

15%–30%, 30%–45%, and >45%. 

 

(2) GAEZ FAO & IIASA Global  5' Milbrandt & Overend [31] includes slopes <8% and >30%   

(3) Digimap EDINA 
National (United 

Kingdom) 
 50m Lovett et al. [32] excludes >15%   

(4) USGS GTopo30 USGS Global  30'' Schweers et al. [34] excludes >25%   

(5) SBSC SBSC National (China) 2008 1:100 k 
Liu et al. [42]; Zhuang et al. 

[26] 
excludes >25%   

(6) SBSC SBSC National (China)  1:250 k Lu et al. [35]; Wu et al. [39] 

Lu: excludes >25%; Wu: slopes >15% suitable, 

slopes 15% to 25% moderately suitable, exlcudes 

slopes >25% 

(7) Unknown source ? ?  1:250 k Fiorese & Guariso [38] excludes >20%   

(8) STATSGO USDA-NRCS National (USA)  1:250 k Gopalakrishnan et al. [40] includes >15%   

(9) Digital Terrain Model (DTM) EDINA 
National (United 

Kingdom) 
 1:50 k Tenerelli & Carver [43] unclear   

(10) SSURGO USDA-NRCS National (USA)  1:24 k 
Kang et al. [25]; Niblick et al. 

[45] 

Kang: <8% envi-eco marginal, >30% phys. 

narginal; Niblick: excludes slopes >15% 
 

(11) SRTM NASA National (USA)  30 m Gelfand et al. [17] excludes >20%   

Climate Datasets Source Geography Date Resolution Used By Used By   

(1) Temperature and precipitation 
Climatic 

Research Unit 
Global 1961–1990 2' Cai et al. [26]    

(2) Temperature and precipitation 

Australian 

Bureau of 

Meteorology 

National 

(Australia) 
? ? Odeh et al. [33]    

(3) Temperature and precipitation CMA National (China) ? ? Zhuang et al. [26]    

(4) Temperature and precipitation CMA National (China) 1971–2000 1 km Lu et al. [35]    

(5) Temperature and precipitation CMA 
Regional  

(SW China) 
1981–2010 ? Liu et al. [42]    
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Table 3. Cont. 

 Climate Datasets Source Geography Date Resolution Used By    

(6) Temperature and precipitation ? Regional (N. Italy) ? 1:500 k Fiorese & Guariso [38]    

(7) Temperature and humidity index CMA National (China) 1950–2000 ? Wu et al. [39]    

(8) 
UKCIP02 National Climate Scenarios: Growing 

degree days and precipitation 
UKCIP 

National (United 

Kingdom) 
1961–2000 5 km Tenerelli and Carver [43]    

Land Capability Datasets Source Geography Date Resolution Used By 
Levels 

Employed 
  

 Agricultural Land Classification DEFRA 
National (United 

Kingdom) 
? ? Lovett et al. [32] 3 and 4   

 Land Suitability Rating System 
Agronomic Interpretations 

Working Group 
National (Canada) 1995 ? Liu et al. [36] 4 through 6   

 Agricultural Land Capability Natural England 
National (United 

Kingdom) 
? ? Tenerelli and Carver [43] 3 through 5   

 SSURGO Land Capability Class USDA-NRCS National (USA) ? 1:24 k 
Gelfand et al. [17];  

Kang et al. [44] 

5 through 

7; >4 
  

          

Protected Areas Datasets Source Geography Date Resolution Used By    

 Nature reserve RESDC National (China) 2000 1:100 k Lu et al. [35]    

 World Database of Protected Areas UNEP-WCMC Global 2009 ? 
Schweers et al. [34]; Milbrandt 

& Overend [31] 
   

 Protected areas MAGIC 
National (United 

Kingdom) 
2008 ? 

Lovett et al. [32]; Tenerelli and 

Carver [43] 
   

Other Datasets Source Geography Date Resolution Used By    

 Polluted areas ARPAC Italy ? ? Fahd et al. [37]    

 Riparian and roadway buffers ESRI National (USA) ? 10 to 50 m Gopalakrishnan et al. [40]    

 Brownfield sites NDEQ 
Regional 

(Nebraska) 
2007 ? Gopalakrishnan et al. [40]    

 Contaminated water resources USEPA, USGS National (USA) 2002 ? Gopalakrishnan et al. [40]    

 Significantly irrigated lands USDA National (USA) 2002 
county-

level 
Gopalakrishnan et al. [40]    

 Climate change data OzCLim, CSIRO National (Australia) 
2020, '30, '40, 

'50, '60, '70 
25 km Odeh et al. [33]    
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4.2.5. Choice of Thematic Class 

Considering data layers of the same subject and scale, there were often differences across studies in 

the thematic classes used in the analysis. The majority of studies used soil (17 out of 21) and land 

cover (18 out of 21) as input criteria to determine marginal land, but in non-standardized ways. For 

instance, certain land cover datasets sometimes included other less-common classifications specific 

only to those datasets, which make comparisons problematic. For instance, both Tenerelli and  

Carver [43] and Lovett et al. [32] used the Land Cover Map (LCM) 2000 (Table 3), but  

Lovett et al. [32] only used the LCM2000 grassland classification yet Tenerelli and Carver [43] used 

unique land cover classes including arable cereals, horticulture, improved grassland, and set-aside 

grassland that were exclusive to the LCM2000 [73]. An Italian study by Fahd et al. [37] used the 

CORINE (Table 3) land cover dataset to isolate non-irrigated arable lands. In the United States, 

Gopalakrishnan et al. [40] used the 56m resolution 2007 USDA Cropland Data Layer (CDL) (Table 3) 

and targeted the thematic category ―idle and fallow cropland‖ for their model, which they assumed 

includes Cropland Reserve Program (CRP) lands (i.e. set-aside lands). In sum, the categories listed 

above were not commonly available in all land cover datasets, therefore making cross comparison 

between studies difficult. 

One of the most common soil-related input criteria in the studies reviewed here was land capability 

class (LCC). In the U.S., the Natural Resources Conservation Service (NRCS) describes LCC as,  

―a system of grouping soils primarily on the basis of their capability to produce common cultivated 

crops and pasture plants without deteriorating over a long period of time‖ [74]. Several adaptations of 

this system have been used worldwide [55,75]. Across datasets, LCC is derived from a combination of 

criteria, including erosion risk, soil depth, wetness, slope and climate [76]. Low LCC values designate 

prime agricultural land with few restrictions and higher values represent lands with increasing 

restrictions for agricultural production. In the studies reviewed here, LCC was most often used as a 

restrictive layer to exclude prime agricultural land from the analysis; however varying numeric classes 

were implemented. For example, in the U.K. Lovett et al. [32] restricted marginal land to LCC  

levels 3 and 4 from the Agricultural Land Classification (ALC), in Canada Liu et al. [36]  

restricted their analysis to Land Suitability Rating System (LSRS) classes 4 through 6, and in the U.S. 

Gelfand et al. [17] restricted marginal lands to NRCS LCC levels 5 through 7, and in Italy, Tenerelli 

and Carver [43] restricted their final mapped result to predetermined Agricultural Land Capability Map 

classes 3 through 5. In sum, none of the studies that implemented LCC into their model used the same 

thematic classes. 

4.2.6. Issues of Data Representation 

Finally, many of the GIS suitability models reviewed here assumed that input criteria exhibit crisp 

boundaries between what is marginal land what is not. However, as in the case of physical variables, 

like slope, the reality is often more continuous. Sometimes uncertainty in thresholds delineating 

marginal lands can be addressed in methods of analysis as a way to map input criteria in a continuous 

manner. For example, Tenerelli and Carver [43] standardized their input criteria according to their 

compatibility with the ecological requirement of the crops. Based on expert knowledge, numeric input 
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criteria (e.g., degree days, pH, rainfall and slope) were standardized using continuous benefit or cost 

functions, and nominal input criteria (e.g., qualitative values of soil depth and soil texture) were 

standardized using a ranking approach. Instead of binary thresholds, these methods employed  

more continuous grades of marginality that more accurately resemble the continuous nature of the 

input data.  

4.3. Issues of Scale 

The papers reviewed here present work from global, national, regional and local scales. As is 

common with most GIS models, it is clear that the scale of analysis impacts the way in which the 

working definition of marginal land is structured, as it impacts model choice, data availability and 

selection, and resolution. For example, available datasets for national studies ranged in spatial 

resolution from 56 m to 1 km, while global datasets varied in resolution from 300 m to 5 arc-minutes. 

In addition, different modes of scale were reported, including ratio (1:100 k), pixel size (1 km), and 

spatial resolution (30 arc-seconds), making direct comparisons between studies even more difficult.  

In general, global datasets are available at a relatively coarse resolution and are also often  

outdated—sometimes produced over a decade before the study using the data was conducted. The 

largest differences in land cover datasets were apparent in the global studies examined, where four 

global land cover datasets were used among the five global studies reviewed here. The analysis by  

Cai et al. [27] used the International Geosphere-Biosphere Programme (IGBP) land cover dataset released 

in 1997 [77,78], which is available at 30 arc-seconds. Both Field et al. and Campbell et al. [28,29] 

used both past land use and current land use (1700 to 2000) from the HYDE database at  

5 arc-minutes [79] to map abandoned pasture and cropland, along with a 2004 MODIS land cover 

product to mask current unsuitable land covers. Nijsen et al. [30] used the Global Land Cover 2000 

dataset (GLC2000) with a 1-km resolution [80]. Milbrandt and Overend [31] used 2000 GAEZ land 

cover data available at 5 arc-minutes. In sum, of the ―current‖ global land cover datasets used in the 

studies reviewed here, one was released in 1997, two have a publication date of 2000, and studies that 

used MODIS datasets had varied dates including 2004, 2006 and 2008. These examples illustrate the 

challenge global modeling has in acquiring timely data.  

The other drawback of global studies is the coarse resolution of the datasets. Nijsen (2012) 

attempted to address this issue by downscaling the coarse GLASOD soils database (a database of 

human-induced soil degradation from 1945 to 1990) from a mmu 5652 km
2
 to 5 arc-minute scale, 

using several spatially explicit databases with finer resolution [30]. Other studies relied on currently 

available soil datasets, yet no two global studies reviewed here used datasets from the same source.  

Cai et al. [27] used two datasets, the Harmonized World Soil Database (HWSD) available at 30  

arc-seconds to get a soil productivity rating for each pixel and also 16 indices on soil temperature 

regime (STR) available from USDA-NRCS. Milbrandt and Overend [31] used the GAEZ soils dataset 

with a resolution of 5 arc-minutes. 

Global studies were not alone in these differences. There were also international differences 

between national datasets, as methodologies to generate national datasets vary by country. For 

instance, of the papers discussed here, many national studies used national-level soils datasets.  

Lovett et al. [32] used the NatMap 1000 database for their study in the United Kingdom;  
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Odeh et al. [33] used the CISIRZ dataset available for Australia, and both Lu et al. [35] and  

Zhuang et al. [26] used the Soil Map of China (RESDC) (Table 2).  

Only one study reviewed here was conducted at a local scale. For their city-level analysis in 

Pittsburgh, Niblick et al. [45] used very localized datasets, such as commercial zoning at the  

parcel-level [45]. Their analysis also employed a greenways feature class, which included agricultural 

easements, forested floodplains, designated greenways, land trust properties, rivers buffered by 100 ft., 

conservation streams buffered by 50 ft., sensitive slopes, wetlands 1 acre or more buffered by 50 ft., 

golf courses, parks and trails. This type of dataset better represents real world limitations to bioenergy 

plantations; however such data are not available for global-level analyses.  

4.4. Issues of Uncertainty 

A complete accounting of error in any GIS analysis is important, yet not often completed. Issues of 

accuracy, error propagation and sensitivity are especially important because proponents of bioenergy 

production often cite these studies, more often quoting the upper bound rather than the lower bound of 

the mapped results [81]. To best incorporate error and uncertainty in land suitability analysis, four 

components should be examined: (1) accuracy of input criteria; (2) validation of final results; (3) error 

propagation, or the compounding of errors in input datasets through the model; and (4) sensitivity of 

the model outputs to inputs [82–85]. The first two, accuracy and validation are more widely 

appreciated in the literature. The last two, uncertainty analysis and sensitivity analysis, are increasingly 

used to evaluate the effect of error propagation and model uncertainties, as well as the relative 

importance of sources of uncertainty [83,84,86,87]. These methods can help decision-makers evaluate 

the utility of input data, as well as the risk of assuming a particular modeled scenario [83]. We 

reviewed our target papers for their attention to these issues. At least eight studies reviewed here failed 

to mention accuracy or uncertainty at all [13,17,26,35,36,38,39,41]. As these studies mapped crops that 

have yet to be planted, this is not surprising. However, there are extensive protocols developed in the 

GIScience discipline that outline methods of evaluating the quality of input criteria and understanding 

possible error propagation and model sensitivity [82,84,88]. 

Though most studies reviewed here do not cite the accuracy of their input datasets, metadata reveals 

reported accuracy of land cover datasets ranged from 67.1% (GlobCover) to 87% (CORINE)  

(Table 2). The accuracy of land cover datasets can have profound impacts on mapped results. Fritz and 

See [89,90] highlighted thematic uncertainty as well as spatial uncertainty in global land cover maps. 

When comparing GlobCover to MODIS land cover data, both input criteria used in the studies 

reviewed here, they found the combined forest and cropland disagreement to be 893 Mha  

(Fritz et al., 2011). As Field et al. [29] pointed out, the MODIS land cover dataset does not distinguish 

between grassland and pasture—a potentially important distinction for planting bioenergy crops.  

Regarding final mapped results, uncertainties were often addressed only qualitatively in the paper’s 

discussion or conclusion. For example, Field et al. [29] qualified the uncertainty in their results,  

saying that while ―the regional distribution of agriculture and pastures is relatively certain, the  

uncertainty for this abandoned area estimate is substantial (probably ± 50% or more)‖. Likewise, 

Gopalakrishnan et al. [40] qualitatively acknowledged that uncertainty arises from classification of 

marginal land and from using data layers at varying scales (scales of input data used in their analysis 
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range from 10 m road and riparian buffers to soils data with a minimum mapping unit of 617 ha). 

Owing to the coarse resolution of inputs, some global-level analyses, including Field et al. [29] and 

Campbell et al. [28], added disclaimers to their mapped results, suggesting that general estimates of 

spatial distribution should not be prescribed at the local level. 

Cai et al. [27] assert that concerns of uncertainty are inherently addressed in their methods, saying 

―FLM (Fuzzy Logic Modeling) is used to treat the uncertainty of the global data sets and the fuzzy 

nature inherent in land classification according to multiple criteria. FLM has been proven to be a 

powerful tool to address data variability, imprecision, and uncertainty and to treat the ambiguity and 

uncertainty involved in generating realistic continuous classifications‖. However, global-level 

analyses such as this one still face a difficult obstacle when their results are compared to local-level 

analyses. In a recent study, mapped results from Cai et al. [27] were calibrated by Fritz et al. [81], who 

downgraded the 2011 estimates based on statistical adjustments derived from crowdsourcing Google 

Earth images. Their estimates reduced available land area between 264 and 376 Mha, depending on 

scenario, which might suggest that global studies overestimate land available for bioenergy production.  

One study reviewed here verified their results with existing datasets that may be proxies for 

marginal lands. Kang et al. (2013) compared their results to existing Conservation Reserve Program 

(CRP) lands, as well as Land Capability Classes 5 through 8, arguing that these designations have in 

the past been used to quantify marginal land. They argued that their hierarchical analysis was more 

comprehensive than just using LCC or CRP land alone, in part because their results showed more area 

being mapped. Another study by Schweers et al. [34] conducted ground surveys to verify their mapped 

results in two regions, using GPS data, photos, interviews, and government data. They found that only 

60% of the ground verification sites (out of 19 locations overall) totally agreed with the remotely 

sensed assessment. They also reported that using 2005 land cover data did not capture more  

recent land use changes as observed in their 2009 field survey, and that the resolution of the DEM  

(30 arc-seconds) used to derive slope was insufficient to reveal subtle nuances of the landscape.  

Only one study quantitatively addressed both uncertainty and sensitivity. Tenerelli and Carver [43] 

conducted an extensive sensitivity and uncertainty analysis, acknowledging that results can be affected 

by both input and model errors, and that uncertainty propagates from the input criteria and parameters 

to the final output. To assess error propagation, their uncertainty analysis employed Monte Carlo 

simulations based on data accuracy. Their sensitivity analysis, which assessed how each input affects 

the model, involved two methods. The first removed each of the input criteria one-by-one through a 

jack-knife approach. The other was a sensitivity simulation on the criteria weights based on a Monte 

Carlo approach. The results showed which criteria are more or less influential to the mapped results, 

and how sensitive each criterion is to the input parameters, including applied weights.  

5. Discussion  

We examined a collection of recent literature that describes the mapping of bioenergy potential 

across space and scale. Projects that targeted second generation bioenergy feedstocks, focused on land 

that may be categorized as marginal, and used spatially-explicit GIS models were evaluated for 

commonalities and differences in methodology. While most papers provided similar general 

definitions for marginal land, their working definitions—those which are implemented in a spatial 
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modeling framework—differed greatly. The concept of ―marginal land‖ is often assumed to be static, 

yet our review suggests that the concept is better understood as relative: considered in proportion or in 

relation to something else. For example, many papers reviewed examined lands that are marginal when 

compared to agricultural lands. These lands might not be marginal when compared to their ability to 

provide wildlife habitat or other ecosystem services. Alternatively, many papers reviewed here were 

defined in response to what data a researcher can acquire, suggesting that difficult-to-map, but 

nonetheless important landscapes might be absent from the discussion.  

We found no common working definition of marginal land across all of these studies,  

including considerable differences across models, input data, scales and validation methods. One 

country—China—provided a case study to examine potential comparisons. Despite the potential 

similarity of intent, the examples from China illustrated considerable differences in mapped results that 

were driven by differences in crop choice, model framework, data inputs, scale and treatment of 

uncertainty. These differences were echoed throughout the broader literature.  

5.1. Modeling Framework 

The Geographic Information System framework is a useful and flexible one in which to perform 

suitability modeling. Most papers reviewed here employed relatively straightforward GIS overlays 

using linear combination of input criteria with distinct thresholds identifying land as either marginal or 

not. Models specifying varying degrees of marginality were less common [27,35,39,43]. However, as 

this study shows, the thresholds determining marginality vary greatly between studies and are far from 

exact. Although simple GIS overlays have the benefit of being transparent and easy to replicate, they 

may not be the best measure of the dynamic concept of marginal land. Therefore, there is a need to 

incorporate the natural continuity of datasets—either by standardization of input criteria or 

incorporation of Fuzzy Set Theory—in ways that more effectively represent this fluid subject.  

5.2. Data Availability 

We found a large range in data choice for input criteria, therefore it was not surprising that data 

choices were rarely consistent across studies. For example, most studies across scales used some kind 

of land cover and soil dataset, yet we found 13 different land cover datasets and 16 different soil 

datasets were used. This fact alone is enough to significantly influence mapped results. Additionally, 

differences in data thresholds, thematic class selection, and ways in which data is represented mean 

that analysis with identical data can yield different results. We also found that lack of appropriate data 

was an additional driver of differences between studies. For example, Kang et al. [44] initially 

identified 30 key variables for their analysis, however only 21 were applied because data for the other 

nine desired variables (e.g., nutrient loss, biodiversity, resilience, resistance, buffer-zones or  

corridors, and placeholders for ―other restrictions‖) were not readily available or easily quantified.  

Socio-economic factors were the least consistent category of input criteria, highlighting that 

standardization was especially lacking in this category.  
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5.3. Scale of Analysis 

We reviewed projects that focused on global, national, regional and local scales. The scale of 

analysis clearly impacted the way in which a working definition of marginal land is structured, as it 

impacts model choice, data availability and selection, and resolution. In some projects data matched 

the scale of analysis, in the manner that global studies used global datasets, but in some projects, there 

was a miss-match. Schweers et al. [34] performed their analysis at a national scale, but because they 

were mapping abandoned lands they used global-level datasets. This makes results more comparable 

to global estimates, but less so to national ones. 

National studies excel at addressing national policies and bioenergy targets. They also have the 

flexibility of either mapping for specific bioenergy species, e.g., Miscanthus, or for a set of generic 

bioenergy crops, such as perennial grasses or short rotation forestry. Input criteria for national studies 

are necessarily available at a national or global scale; therefore the data is generally more coarse than 

that available for regional studies, but can be of higher resolution than global studies. Datasets are 

often country-specific and are not internationally standardized.  

Studies conducted at a regional scale are best suited for incorporating detailed datasets, including 

fine scale soils data (e.g., the Soil Survey Geographic Database (SSURGO), 1:24,000) as well as road 

and riparian boundaries [40]. Regional studies also have the advantage of being able to incorporate 

socio-economic inputs at a more realistic level of analysis [38]. This allows regional studies to better 

address specific management goals and mapping for a specific bioenergy species. Methodologies for 

studies at regional scales vary from standard binary GIS overlays [37] to very complex analyses [43]. 

However, regional studies can be limited in that the results are often crop-specific and it is therefore 

difficult to extrapolate models to larger areas.  

5.4. Uncertainty 

Most of the papers reviewed here provided few details describing accuracy and uncertainty, 

suggesting great scope in the future for this kind of work. A review of the metadata revealed that the 

accuracies of input land cover data ranged from 67.1% to 87%, yet these numbers were rarely reported 

in the works themselves and the impacts of propagation of error were seldom addressed. The results of 

accuracy and uncertainty analyses are especially important since the high end of the range of mapped 

estimates is often the most widely cited. Because these estimates have the potential to influence policy 

and real-world investments, it is especially important to ensure they are truly representative of the land 

resource availability. At the most basic level, studies can express these uncertainties by offering a 

range of mapped marginal land areas (as adjusted by soft constraints or accuracy analyses) that may be 

suitable for bioenergy crops instead of one exact number. However there is a still danger that only the 

highest value of the range estimate gets cited in future literature promoting bioenergy.  

6. Conclusions  

The challenges in planning for bioenergy mandates globally are large and numerous. Foremost 

among them is the need to determine where to plant bioenergy feedstocks to meet energy mandates 

while ensuring sustainable food production and environmental protection. The breadth of the projects 
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reviewed here underpin the benefits of spatial modeling and GIS—even when simply  

implemented—in projecting where bioenergy might be planted. However, the considerable differences 

in definitions, models and data revealed in this review allow limited potential for comparison across 

studies, as well as for synthesis work that quantifies global biofuel potential. Some of the differences 

highlighted in this work might be minimized with standardization, through the use of similar datasets 

and similar analyses, and some might be minimized with better application of existing protocols, such 

as common accuracy assessment practices. Thus, the mapping of bioenergy potential is ready for a 

meta-analysis or shared examinations that use common data and protocols.  

Challenges also remain in effectively addressing the bioenergy land use dilemma. The studies reviewed 

here individually and broadly reiterate the importance of refining theoretical estimates of bioenergy 

suitability with real world conditions that reflect explicit understanding the balance between fuel, food and 

conservation. Lands that may be identified as marginal and mapped as such based on solely physical 

conditions may not necessarily be available for bioenergy plantation when considering economic, social, or 

environmental factors [91]. However, incorporating these variables in a GIS environment is not always 

straightforward. Hard-to-depict land uses such as the presence of pastoralists, the use of land for cultural 

purposes, or for biodiversity protection are difficult to capture via remote sensing techniques (which excel 

in mapping land cover) and thus are not often included in broad-scale geospatial datasets. These mapping 

limitations make effective understanding of the tradeoffs between food, fuel and land elusive, but 

nonetheless tremendously important, and worthy of much more applied research.  

This study is the first to systematically review projects that map bioenergy potential on marginal 

lands. Our goal was to provide a framework to help researchers evaluate existing scholarship in mapping 

marginal land. We have identified areas where understandable differences in definitions, models, data 

and applications result in differences in mapped results. We suggest that there is tremendous future need 

for spatial modeling of bioenergy, yet further work should be done to allow for comparative work across 

countries and scales and understanding of cumulative global potential for bioenergy crops. 

Author Contributions 

Sarah M. Lewis and Maggi Kelly conceived and designed the paper together; Sarah M. Lewis 

reviewed the literature and framed the discussion together; Sarah M. Lewis led the drafting the article; 

Maggi Kelly helped revise the article. 

Conflicts of Interest 

The authors declare no conflict of interest. 

Reference 

1. Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; 

Grubler, A.; Jung, T.Y.; Kram, T. A Special Report of Working Group III of the 

Intergovernmental Panel on Climate Change. In Emissions Scenarios; Pacific Northwest National 

Laboratory: Richland, WA, USA; Environmental Molecular Sciences Laboratory: Richland, 

Washington USA, 2000; p. 570. 



ISPRS Int. J. Geo-Inf. 2014, 3 455 

 

 

2. Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for lignocellulosic 

biofuels. Science 2010, 329, 790–792. 

3. Youngs, H.; Somerville, C. Development of feedstocks for cellulosic biofuels. F1000 Biol. Rep. 

2012, 4, doi:10.3410/B4-10. 

4. Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and 

Biodiversity; Ecological Society of America: Washington, DC, USA, 2010. 

5. Kim, S.; Dale, B.E. Indirect land use change for biofuels: Testing predictions and improving 

analytical methodologies. Biomass Bioenergy 2011, 35, 3235–3240. 

6. Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; 

Searchinger, T.; Somerville, C.; et al. Beneficial biofuels—The food, energy, and environment 

trilemma. Science 2009, 325, 270–271. 

7. Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity 

grassland biomass. Science 2006, 314, 1598–1600. 

8. Sissine, F. Energy Independence and Security Act of 2007: A Summary of Major Provisions; 

Library of Congress—Congressional Research Service: Washington, DC, USA, 2007. 

9. Tian, Y.; Zhao, L.; Meng, H.; Sun, L.; Yan, J. Estimation of un-used land potential for biofuels 

development in (the) People’s Republic of China. Appl. Energy 2009, 86, S77–S85. 

10. Robertson, G.P.; Dale, V.H.; Doering, O.C.; Hamburg, S.P.; Melillo, J.M.; Wander, M.M.; 

Parton, W. Agriculture-sustainable biofuels redux. Science 2008, 322, 49–50. 

11. Perlack, R.D.; Wright, L.L.; Turhollow, A.F.; Graham, R.L.; Stokes, B.J.; Erbach, D.C. Biomass 

as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a  

Billion-Ton Annual Supply; Oak Ridge National Lab: Oak Ridge, TN, USA, 2005.  

12. Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.K. Net energy of cellulosic ethanol from 

switchgrass. Proc. Natl. Acad. Sci. 2008, 105, 464–469. 

13. Swinton, S.M.; Babcock, B.A.; James, L.K.; Bandaru, V. Higher US crop prices trigger little area 

expansion so marginal land for biofuel crops is limited. Energy Policy 2011, 39, 5254–5258. 

14. Elobeid, A.; Hart, C. Ethanol expansion in the food versus fuel debate: How will developing 

countries fare? J. Agric. Food Ind. Organ. 2007, 5, 1–23. 

15. Cassman, K.G.; Liska, A.J. Food and fuel for all: Realistic or foolish? Biofuel. Bioprod. 

Biorefining 2007, 1, 18–23. 

16. Lam, M.K.; Tan, K.T.; Lee, K.T.; Mohamed, A.R. Malaysian palm oil: Surviving the food versus 

fuel dispute for a sustainable future. Renew. Sustain. Energy Rev. 2009, 13, 1456–1464. 

17. Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable 

bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. 

18. Bryngelsson, D.K.; Lindgren, K. Why large-scale bioenergy production on marginal land is 

unfeasible: A conceptual partial equilibrium analysis. Energy Policy 2013, 55, 454–466. 

19. Organisation for Economic Co-operation and Development (OECD) and the United Nation’s 

Food and Agricultural Organization (FAO). OECD-FAO Agricultural Outlook 2012–2021; 

OECD Publishing and FAO: Rome, Italy, 2012. 

20. Berndes, G.; Hoogwijk, M.; van den Broek, R. The contribution of biomass in the future global 

energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. 



ISPRS Int. J. Geo-Inf. 2014, 3 456 

 

 

21. Hall, D.O.; Rosillo-Calle, F.; Williams, R.H.; Woods, J. Biomass for Energy: Supply Prospects. 

In Renewables for Fuels and Electricity; Island Press: Washington, DC, USA, 1993; pp. 593–651. 

22. Hoogwijk, M.; Faaij, A.; van den Broek, R.; Berndes, G.; Gielen, D.; Turkenburg, W. Exploration 

of the ranges of the global potential of biomass for energy. Biomass Bioenergy 2003, 25,  

119–133. 

23. Houghton, R.A.; Unruh, J.D.; Lefebvre, P.A. Current land cover in the tropics and its potential for 

sequestering carbon. Glob. Biogeochem.Cycles 1993, 7, 305–320. 

24. Tang, Y.; Xie, J.-S.; Geng, S. Marginal Land-based Biomass Energy Production in China. 

J. Integr. Plant Biol. 2010, 52, 112–121. 

25. Kang, S.; Post, W.M.; Nichols, J.A.; Wang, D.; West, T.O.; Bandaru, V.; Roberto C. Izaurralde 

marginal lands: Concept, assessment and management. J. Agric. Sci. 2013, 5,  

doi: 10.5539/jas.v5n5p129. 

26. Zhuang, D.; Jiang, D.; Liu, L.; Huang, Y. Assessment of bioenergy potential on marginal land in 

China. Renew. Sustain. Energy Rev. 2011, 15, 1050–1056. 

27. Cai, X.; Zhang, X.; Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 

Columb. 2011, 45, doi:10.1021/es103338e. 

28. Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The global potential of bioenergy on 

abandoned agriculture lands. Environ. Sci. Technol. 2008, 42, 5791–5794. 

29. Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. 

Trends Ecol. Evol. 2008, 23, 65–72. 

30. Nijsen, M.; Smeets, E.; Stehfest, E.; Vuuren, D.P. An evaluation of the global potential of 

bioenergy production on degraded lands. GCB Bioenergy 2012, 4, 130–147. 

31. Milbrandt, A.; Overend, R.P. Assessment of Biomass Resources from Marginal Lands in APEC 

Economies; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009. 

32. Lovett, A.A.; Sünnenberg, G.M.; Richter, G.M.; Dailey, A.G.; Riche, A.B.; Karp, A. Land use 

implications of increased biomass production identified by GIS-based suitability and yield 

mapping for Miscanthus in England. Bioenergy Res. 2009, 2, 17–28. 

33. Odeh, I.O.A.; Tan, D.K.Y.; Ancev, T. Potential suitability and viability of selected biodiesel 

crops in Australian marginal agricultural lands under current and future climates. Bioenergy Res. 

2011, 4, 165–179. 

34. Schweers, W.; Bai, Z.; Campbell, E.; Hennenberg, K.; Fritsche, U.; Mang, H.P.; Lucas, M.;  

Li, Z.; Scanlon, A.; Chen, H. Identification of potential areas for biomass production in China: 

Discussion of a recent approach and future challenges. Biomass Bioenergy 2011, 35, 2268–2279. 

35. Lu, L.; Jiang, D.; Zhuang, D.; Huang, Y. Evaluating the marginal land resources suitable for 

developing pistacia chinensis-based biodiesel in China. Energies 2012, 5, 2165–2177. 

36. Liu, T.; Ma, Z.; McConkey, B.; Kulshreshtha, S.; Huffman, T.; Green, M.; Liu, J.; Du, Y.;  

Shang, J. Bioenergy Production Potential on Marginal Land in Canada. In Proceedings of the 

2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, 

China, 2–4 August 2012; pp. 1–6. 

37. Fahd, S.; Fiorentino, G.; Mellino, S.; Ulgiati, S. Cropping bioenergy and biomaterials in marginal 

land: The added value of the biorefinery concept. Energy 2012, 37, 79–93. 



ISPRS Int. J. Geo-Inf. 2014, 3 457 

 

 

38. Fiorese, G.; Guariso, G. A GIS-based approach to evaluate biomass potential from energy crops 

at regional scale. Environ. Model. Softw. 2010, 25, 702–711. 

39. Wu, W.; Huang, J.; Deng, X. Potential land for plantation of Jatropha curcas as feedstocks for 

biodiesel in China. Sci. China Ser. 2010, 53, 120–127. 

40. Gopalakrishnan, G.; Cristina Negri, M.; Snyder, S.W. A novel framework to classify marginal 

land for sustainable biomass feedstock production. J. Environ. Qual. 2011, 40, 1593–1600. 

41. Kukk, L.; Astover, A.; Muiste, P.; Noormets, M.; Roostalu, H.; Sepp, K.; Suuster, E. Assessment 

of abandoned agricultural land resource for bio-energy production in Estonia. Acta Agric. Scand. 

Sect. B—Soil Plant Sci. 2010, 60, 166–173. 

42. Liu, L.; Zhuang, D.; Jiang, D.; Huang, Y. Assessing the potential of the cultivation area and 

greenhouse gas (GHG) emission reduction of cassava-based fuel ethanol on marginal land in 

Southwest China. Afr. J. Agric. Res. 2012, 7, 5594–5603. 

43. Tenerelli, P.; Carver, S. Multi-criteria, multi-objective and uncertainty analysis for agro-energy 

spatial modelling. Appl. Geogr. 2012, 32, 724–736. 

44. Kang, S.; Post, W.; Wang, D.; Nichols, J.; Bandaru, V.; West, T. Hierarchical marginal land 

assessment for land use planning. Land Use Policy 2013, 30, 106–113. 

45. Niblick, B.; Monnell, J.D.; Zhao, X.; Landis, A.E. Using geographic information systems to 

assess potential biofuel crop production on urban marginal lands. Appl. Energy 2012, 103,  

234–242. 

46. Shortall, O.K. ―Marginal land‖ for energy crops: Exploring definitions and embedded 

assumptions. Energy Policy 2013, 62, 19–27. 

47. Ricardo, D. On the Principles of Political Economy and Taxation; S.M. Dent & Sons Ltd.: 

London, UK, 1817. 

48. Von Thünen, J.H. Isolated State. Trans. Carla M. Wartenberg.; Pergamon Press: Oxford, 

UK, 1966. 

49. Peterson, G.M.; Galbraith, J.K. The concept of marginal land. J. Farm Econ. 1932, 14, 295–310. 

50. Barlowe, R. Land Resource Economics: The Economics of Real Estate; 4th ed.; Prentice Hall: 

Englewood Cliffs, NJ, USA, 1986. 

51. Hardie, I.W.; Parks, P.J.; van Kooten, G.C. Land use decisions and policy at the intensive and 

extensive margins. Int. Yearb. Environ. Resour. Econ. 2004, 3, 101–138. 

52. Taheripour, F.; Zhuang, Q.; Tyner, W.E.; Lu, X. Biofuels, cropland expansion, and the extensive 

margin. Energy Sustain. Soc. 2012, 2, 1–11. 

53. Von Thünen, J.H.; Heinrich, J. The Isolated State; Wartenberg. Oxford: Pergamon, Turkey, 1966. 

54. Lubowski, R.N.; Bucholtz, S.; Claassen, R.; Roberts, M.J.; Cooper, J.C.; Gueorguieva, A.; 

Johansson, R. Environmental Effects of Agricultural Land-Use Change. In US Department of 

Agriculture; Economic Research Service: Washington, DC, USA, 2006; pp. 1–75. 

55. Bibby, J.S.; Mackney, D. Land Use Capability Classification; Rothamsted Experimental Station:  

Harpenden, UK, 1969. 

56. Runge, C.F.; Larson, W.E.; Roloff, G. Using productivity measures to target conservation 

programs: A comparative analysis. J. Soil Water Conserv. 1986, 41, 45–49. 

57. Larson, G.A.; Roloff, G.; Larson, W.E. A new approach to marginal agricultural land 

classification. J. Soil Water Conserv. 1988, 43, 103–106. 



ISPRS Int. J. Geo-Inf. 2014, 3 458 

 

 

58. Breuning-Madsen, H.; Reenberg, A.; Holst, K. Mapping potentially marginal land in Denmark. 

Soil Use Manag. 1990, 6, 114–120. 

59. Bielecka, E. GIS approach for delimitation of Less-Favoured Farming Areas in Poland. J. Water 

Land Dev. 2002, 6, 73–89. 

60. Ostrowski, J. Identification of the occurrence of marginal agricultural lands with the GIS. J. 

Water Land Dev. 1999, 3, 7–20. 

61. Ignaciuk, A.; Vöhringer, F.; Ruijs, A.; van Ierland, E.C. Competition between biomass and food 

production in the presence of energy policies: A partial equilibrium analysis. Energy Policy 2006, 

34, 1127–1138. 

62. Johansson, D.J.; Azar, C.A scenario based analysis of land competition between food and 

bioenergy production in the US. Clim. Chang. 2007, 82, 267–291. 

63. Rathmann, R.; Szklo, A.; Schaeffer, R. Land use competition for production of food and liquid 

biofuels: An analysis of the arguments in the current debate. Renew. Energy 2010, 35, 14–22. 

64. Caver, S.J. Integrating multi-criteria evaluation with geographical information systems. Int. J. 

Geogr.Inf. Syst. 1991, 5, 321–339. 

65. Jankowski, P. Integrating geographical information systems and multiple criteria decision-making 

methods. Int. J. Geogr.Inf. Syst. 1995, 9, 251–273. 

66. Voivontas, D.; Assimacopoulos, D.; Mourelatos, A.; Corominas, J. Evaluation of renewable 

energy potential using a GIS decision support system. Renew. Energy 1998, 13, 333–344. 

67. Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; 

Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I. Methods and tools to evaluate the 

availability of renewable energy sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. 

68. Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 

3–65. 

69. McHarg, I.L.; Mumford, L. Design with Nature; American Museum of Natural History:  

New York, NY, USA, 1969. 

70. Jiang, H.; Eastman, J.R. Application of fuzzy measures in multi-criteria evaluation in GIS. Int. J. 

Geogr. Inf. Syst. 2000, 14, 173–184. 

71. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. 

72. Calvert, K.; Pearce, J.M.; Mabee, W.E. Toward renewable energy geo-information 

infrastructures: Applications of GIScience and remote sensing that build institutional capacity. 

Renew. Sustain. Energy Rev. 2013, 18, 416–429. 

73. Fuller, R.M.; Smith, G.M.; Sanderson, J.M.; Hill, R.A.; Thompson, A.G. Land Cover Map 2000: 

a general description of the UK’s new vector GIS based on classification of remotely sensed data. 

Cartogr. J. 2002, 39, 15–25. 

74. USDA’s Natural Resources Conservation Service. National Soil Survey Handbook—Title 430-VI; 

Available online at: http://soils.usda.gov/technical/handbook/ (accessed January 25, 2013). 

75. Munn, L.C. The Canada land inventory. Land Uses Actual Potential 1986, 10, 391–406. 

76. Klingebiel, A.A.; Montgomery, P.H. Land-Capability Classification; Soil Conservation Service, 

US Department of Agriculture: Washington, DC, USA, 1961. 

  



ISPRS Int. J. Geo-Inf. 2014, 3 459 

 

 

77. Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; 

Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L. A global map of rainfed cropland areas 

(GMRCA) at the end of last millennium using remote sensing. Int. J. Appl.Earth Obs. Geoinf. 

2009, 11, 114–129. 

78. Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. 

Development of a global land cover characteristics database and IGBP DISCover from 1 km 

AVHRR data. Int.J. Remote Sens. 2000, 21, 1303–1330. 

79. Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE database. 

Global Biogeochem. Cycle. 2001, 15, 417–433. 

80. Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from 

Earth observation data. Int.J. Remote Sens. 2005, 26, 1959–1977. 

81. Fritz, S.; See, L.M.; van der Velde, M.; Nalepa, R.; Perger, C.; Schill, C.; McCallum, I.; 

Schepaschenko, D.; Kraxner, F.; Cai, X. Downgrading recent estimates of land available for 

biofuel production. Environ. Sci. Technol. 2013, 47, 1688–1694. 

82. Congalton, R.G. Accuracy Assessment of Spatial Datatsets. In Manual of Geographic 

Information Systems; ASPRS: Bethesda, MD, USA, 2009; pp. 225–233. 

83. Foody, G.M. Uncertainty, knowledge discovery and data mining in GIS. Prog. Phys. Geogr. 

2003, 27, 113–121. 

84. Crosetto, M.; Tarantola, S.; Saltelli, A. Sensitivity and uncertainty analysis in spatial modelling 

based on GIS. Agric. Ecosyst. Environ. 2000, 81, 71–79. 

85. Crosetto, M.; Tarantola, S. Uncertainty and sensitivity analysis: Tools for GIS-based model 

implementation. Int. J. Geogr. Inf. Sci. 2001, 15, 415–437. 

86. Mowrer, H.T. Propagating uncertainty through spatial estimation processes for old-growth 

subalpine forests using sequential Gaussian simulation in GIS. Ecol. Model. 1997, 98, 73–86. 

87. Elith, J.; Burgman, M.A.; Regan, H.M. Mapping epistemic uncertainties and vague concepts in 

predictions of species distribution. Ecol. Model. 2002, 157, 313–329. 

88. Arbia, G.; Griffith, D.; Haining, R. Error propagation modelling in raster GIS: Overlay 

operations. Int. J. Geogr. Inf. Sci. 1998, 12, 145–167. 

89. Fritz, S.; See, L. Identifying and quantifying uncertainty and spatial disagreement in  

the comparison of global land cover for different applications. Glob. Chang. Biol. 2008, 14, 

1057–1075. 

90. Fritz, S.; See, L. Comparison of land cover maps using fuzzy agreement. Int. J. Geogr. Inf. Sci. 

2005, 19, 787–807. 

91. Howard, D.C.; Burgess, P.J.; Butler, S.J.; Carver, S.J.; Cockerill, T.; Coleby, A.M.; Gan, G.; 

Goodier, C.J.; Van der Horst, D.; Hubacek, K. Energyscapes: Linking the energy system and 

ecosystem services in real landscapes. Biomass Bioenergy 2013, 55, 17–26. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


