
Mapping the Structural Core
of Human Cerebral Cortex
Patric Hagmann

1,2
, Leila Cammoun

2
, Xavier Gigandet

2
, Reto Meuli

1
, Christopher J. Honey

3
, Van J. Wedeen

4
,

Olaf Sporns
3*

1 Department of Radiology, University Hospital Center and University of Lausanne (CHUV), Lausanne, Switzerland, 2 Signal Processing Laboratory (LTS5), Ecole Polytechnique

Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 3 Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America, 4

Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America

Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a
dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped
these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting
large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as
well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree,
strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The
structural core contains brain regions that form the posterior components of the human default network. Looking both
within and outside of core regions, we observed a substantial correspondence between structural connectivity and
resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the
core within cortex suggests an important role in functional integration.
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Introduction

Human cerebral cortex consists of approximately 1010

neurons that are organized into a complex network of local
circuits and long-range fiber pathways. This complex network
forms the structural substrate for distributed interactions
among specialized brain systems [1–3]. Computational net-
work analysis [4] has provided insight into the organization of
large-scale cortical connectivity in several species, including
rat, cat, and macaque monkey [4–7]. In human cortex, the
topology of functional connectivity patterns has recently
been investigated [8–11], and key attributes of these patterns
have been characterized across different conditions of rest or
cognitive load. A major feature of cortical functional
connectivity is the default network [12–18], a set of
dynamically coupled brain regions that are found to be more
highly activated at rest than during the performance of
cognitively demanding tasks. Spontaneous functional con-
nectivity resembling that of the human default network was
reported in the anaesthetized macaque monkey, and func-
tional connectivity patterns in the oculomotor system were
found to correspond to known structural connectivity [19].
Computational modeling of spontaneous neural activity in
large-scale cortical networks of the macaque monkey has
indicated that anti-correlated activity of regional clusters
may reflect structural modules present within the network
[20]. These studies suggest that, within cerebral cortex,
structural modules shape large-scale functional connectivity.

Understanding the structural basis of functional connectiv-
ity patterns requires a comprehensive map of structural
connection patterns of the human brain (the human con-
nectome [1]). Recent advances in diffusion imaging and
tractography methods permit the noninvasive mapping of
white matter cortico-cortical projections at high spatial
resolution [21–25], yielding a connection matrix of inter-

regional cortical connectivity [26–29]. Previous studies have

demonstrated small-world attributes and exponential degree

distributions within such structural human brain networks

[26,27]. In the present study, using diffusion spectrum imaging

(DSI) we derived high-resolution cortical connection matrices

and applied network analysis techniques to identify structural

modules. Several techniques reveal the existence of a set of

posterior medial and parietal cortical regions that form a

densely interconnected and topologically central core. The

structural core contains numerous connector hubs, and these

areas link the core with modules in temporal and frontal

cortex. A comparison of diffusion imaging and resting state

functional MRI (fMRI) data reveals a close relationship between

structural and functional connections, including for regions

that form the structural core. We finally discuss anatomical and

functional imaging data, suggesting an important role for the

core in cerebral information integration.

Results

Datasets and Network Measures
Network analyses were carried out for high-resolution

connection matrices (n ¼ 998 regions of interest [ROIs] with

an average size of 1.5 cm2), as well as for regional connection
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matrices (n ¼ 66 anatomical subregions) (see Methods and
Figure 1). All networks covered the entire cortices of both
hemispheres but excluded subcortical nodes and connec-
tions. When not indicated otherwise, the data shown in this
paper are based on the analysis of individual high-resolution
connection matrices, followed by averaging across five human
participants.

Network measures included degree, strength, betweenness
centrality, and efficiency (see Methods). Briefly, degree and
strength of a given node measure the extent to which the
node is connected to the rest of the network, while centrality
and efficiency capture how many short paths between other
parts of the network pass through the node. A node with high
degree makes many connections (where each connection is
counted once), while a node with high strength makes strong
connections (where strength is equal to the sum of
connection density or weight). A node with high betweenness
centrality lies on many of the shortest paths that link other
nodes in the network to one another. A node with high
efficiency is itself found to be, on average, at a short distance
from other nodes in the network.

Degree and Strength Distribution
We found binary, high-resolution brain networks to be

sparsely connected, with connection densities varying be-
tween 2.8% and 3.0%. Between 9% and 14% of all binary
connections were interhemispheric. 54% of the total edge
mass (the sum of all fiber densities) was accounted for by
connections linking ROIs belonging to the same anatomical
subregion, 42% was made between ROIs belonging to
different anatomical subregions located in the same cortical
hemisphere, and 4% was interhemispheric (homotopic or
heterotopic). Confirming earlier reports [25], we found that
cumulative distributions of node degree and node strength
(Figure S1) were exponential rather than scale-free. While not
scale-free, node degrees and node strengths for single ROIs
can vary over a significant range (approximately 10-fold),
indicating that fiber densities are not uniformly distributed
across the cortical surface. Figure 2A and 2B shows the
distribution of average node degree and node strength rank-
ordered by anatomical subregion. A large number of ROIs

with high degree and high strength are localized within
subregions of medial cortex (e.g., cuneus and precuneus,
posterior and anterior cingulate cortex) and temporal cortex
(e.g., bank of the superior temporal sulcus). A plot of the
distribution of node strengths on the cortical surface across
all participants (Figure 2C) shows consistently high values in
posterior medial cortex, in medial frontal cortex, and in
superior temporal cortex. In addition, we found evidence for
positive assortativity (Text S1) and small-world attributes
(Text S2).

Network Visualizations
A representative example of a high-resolution structural

connection matrix of an individual human brain is shown in
Figure 3A. Entries of the matrix represent fiber densities
between pairs of single ROIs. The matrix shown in the
example displays a total of 14,865 symmetric connections
(connection density 3.0%). To visualize structural patterns
within this connection matrix, we extracted the connectivity
backbone ([30], see Methods), which is displayed in Figure 3B
with a layout derived from the Kamada-Kawai force-spring
algorithm [31] implemented in Pajek [32]. The algorithm
generates a spatial arrangement of ROIs along clearly defined
anterior-posterior and medial-lateral axes and reveals clus-
ters of dense connectivity within posterior, temporal, and
frontal cortex. Figure 3C shows the connectivity backbone
plotted in anatomical coordinates. The dorsal view shows
groupings of highly interconnected clusters of ROIs arranged
along the medial cortical surface, extending from the
precuneus via posterior and anterior cingulate cortex to
the medial orbitofrontal cortex. Dorsal and lateral views
additionally show clusters of temporal and frontal ROIs in
both hemispheres.
Major structural patterns become more evident when

considering the average regional connection matrix (Figure
4A). The matrix is constructed by calculating mean fiber
densities over individual pairs of ROIs comprising each
subregion, followed by the averaging of densities over all five
participants. Regional connection matrices for each individ-
ual participant are shown in Figure S2. Figure 4B displays the
connectivity backbone constructed from the average regional
connection matrix, revealing groupings of anatomical regions
largely corresponding to those shown for the high-resolution
backbone in Figure 3B. A dominant feature of the regional
connection matrix is a single, callosally interconnected
cluster of regions extending from the cuneus and precuneus
via cingulate cortex to medial frontal cortex. In addition,
each hemisphere contains a single, relatively distinct cluster
of temporal cortical regions, as well as a less-densely
interconnected frontal cluster comprising periorbital cortex,
pars opercularis, pars triangularis, and other regions.

k-Core Decomposition, Modularity, and Hubs
While network visualization provides strong hints of

connectional relationships, objective methods are needed to
map structural cores, to delineate network modules, and to
identify hub regions that link distinct clusters. We quantified
these phenomena using k-core decomposition [33], spectral
community detection [34], and nodal participation indices
[35], respectively.
Intuitively, a network core is a set of nodes that are highly

and mutually interconnected. For a binary network, the k-
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Author Summary

In the human brain, neural activation patterns are shaped by the
underlying structural connections that form a dense network of fiber
pathways linking all regions of the cerebral cortex. Using diffusion
imaging techniques, which allow the noninvasive mapping of fiber
pathways, we constructed connection maps covering the entire
cortical surface. Computational analyses of the resulting complex
brain network reveal regions of cortex that are highly connected
and highly central, forming a structural core of the human brain. Key
components of the core are portions of posterior medial cortex that
are known to be highly activated at rest, when the brain is not
engaged in a cognitively demanding task. Because we were
interested in how brain structure relates to brain function, we also
recorded brain activation patterns from the same participant group.
We found that structural connection patterns and functional
interactions between regions of cortex were significantly correlated.
Based on our findings, we suggest that the structural core of the
brain may have a central role in integrating information across
functionally segregated brain regions.



core is the largest subgraph comprising nodes of degree at
least k, and is derived by recursively peeling off nodes with
degree lower than k until none remain [33]. Each node is then
assigned a core number, which is defined as the largest k such
that the node is still contained in the k-core. We performed k-
core decomposition on binary, high-resolution connection
matrices from all five participants and derived the core

number for each ROI, as well as the average core number for
each anatomical subregion (Figure 5). A large core number
indicates that an ROI or region is resistant to this erosive
procedure and participates in high-k structural cores of the
network. In all participants, full erosion occurs at a core
number of ;20. The most consistent members of the highest
degree k-core for each network (Figure 5A and 5B) were the

Figure 1. Extraction of a Whole Brain Structural Connectivity Network

(1) High-resolution T1 weighted and diffusion spectrum MRI (DSI) is acquired. DSI is represented with a zoom on the axial slice of the reconstructed
diffusion map, showing an orientation distribution function at each position represented by a deformed sphere whose radius codes for diffusion
intensity. Blue codes for the head-feet, red for left-right, and green for anterior-posterior orientations. (2) White and gray matter segmentation is
performed from the T1-weighted image. (3a) 66 cortical regions with clear anatomical landmarks are created and then (3b) individually subdivided into
small regions of interest (ROIs) resulting in 998 ROIs. (4) Whole brain tractography is performed providing an estimate of axonal trajectories across the
entire white matter. (5) ROIs identified in step (3b) are combined with result of step (4) in order to compute the connection weight between each pair of
ROIs. The result is a weighted network of structural connectivity across the entire brain. In the paper, the 66 cortical regions are labeled as follows: each
label consists of two parts, a prefix for the cortical hemisphere (r¼ right hemisphere, l¼ left hemisphere) and one of 33 designators: BSTS¼bank of the
superior temporal sulcus, CAC ¼ caudal anterior cingulate cortex, CMF ¼ caudal middle frontal cortex, CUN ¼ cuneus, ENT ¼ entorhinal cortex, FP ¼
frontal pole, FUS ¼ fusiform gyrus, IP ¼ inferior parietal cortex, IT ¼ inferior temporal cortex, ISTC ¼ isthmus of the cingulate cortex, LOCC ¼ lateral
occipital cortex, LOF ¼ lateral orbitofrontal cortex, LING ¼ lingual gyrus, MOF ¼ medial orbitofrontal cortex, MT ¼ middle temporal cortex, PARC ¼
paracentral lobule, PARH¼parahippocampal cortex, POPE¼pars opercularis, PORB¼pars orbitalis, PTRI¼pars triangularis, PCAL¼pericalcarine cortex,
PSTS¼ postcentral gyrus, PC¼ posterior cingulate cortex, PREC¼ precentral gyrus, PCUN¼ precuneus, RAC¼ rostral anterior cingulate cortex, RMF¼
rostral middle frontal cortex, SF¼ superior frontal cortex, SP¼ superior parietal cortex, ST¼ superior temporal cortex, SMAR¼ supramarginal gyrus, TP¼
temporal pole, and TT¼ transverse temporal cortex.
doi:10.1371/journal.pbio.0060159.g001
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precuneus, the posterior cingulate, the isthmus of the
cingulate, and the paracentral lobule in both hemispheres.
In all participants, the structural core was located within
posterior medial cortex, and often extended laterally into
parietal and temporal cortices, especially in the left hemi-
sphere. A rank-ordered distribution of average core numbers
per anatomical subregion (Figure 5C) identifies the posterior
cingulate cortex, the isthmus of the cingulate cortex, the
precuneus, the cuneus, and the paracentral lobule as regions
with a high core number. Several temporal and parietal
structures, including the superior and inferior parietal
cortex, the bank of the superior temporal gyrus, and
transverse temporal cortex all have high core rankings as
well. k-Core decomposition, as applied in our study, largely
discards edge weights. To test if the inclusion of edge weight
information would alter our conclusions, we designed a
procedure that operates on the weighted fiber density matrix
and erodes vertices according to their strength (‘‘s-core
decomposition’’). s-Core decomposition (Figure S3) identified
the posterior cingulate cortex, the precuneus, the cuneus, the

paracentral lobule, as well as the superior and inferior
parietal cortex, all in both hemispheres, as members of the
structural core.
We used spectral graph partitioning [34] to identify

modules within the weighted high-resolution (n ¼ 998)
network as well as within the weighted average regional (n ¼
66) network. The spectral algorithm provides a means of
grouping regions in a way that optimally matches the
intrinsic modularity of the network. Optimal modularity for
the average regional connectivity matrix was achieved with
six clusters (Figure 6A and Table S1). Four contralaterally
matched modules were localized to frontal and temporo-
parietal areas of a single hemisphere. The two remaining
modules comprised regions of bilateral medial cortex, one
centered on the posterior cingulate cortex and another
centered on the precuneus and pericalcarine cortex. Recov-
ering the modularity structure using high-resolution con-
nection matrices produced similar results (unpublished data).

Knowledge of the distribution of connections within and
between modules enabled us to identify provincial hubs (hub

Figure 2. Node Degree and Node Strength Distributions

(A) Ranked distribution of node degree for left and right cerebral hemispheres. Shaded bars represent means across five participants and symbols
indicate data for individual participants.
(B) Ranked distribution of node strength for left and right cerebral hemispheres.
(C) ROI strength obtained from high-resolution connection matrices. The plot shows how consistently ROI strength ranked in the top 20% across
participants.
doi:10.1371/journal.pbio.0060159.g002
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regions that are highly connected within one module) and

connector hubs (hub regions that link multiple modules) [35].

Without exception, connector hubs are located within the

anterior-posterior medial axis of the cortex (Figure 6A),

including bilaterally the rostral and caudal anterior cingulate,

the paracentral lobule, and the precuneus. Examination of

high-resolution connection matrices shows that the majority

of connector hub ROIs is consistently found in posterior

medial and parietal cortex (Figure 6B). Provincial hubs are

members of the frontal (e.g., medioorbitofrontal cortex),

temporoparietal (e.g., bank of the superior temporal sulcus,

superior temporal cortex) or occipital modules (e.g., peri-

calcarine cortex). Most core regions, as identified by k-core or

s-core decomposition, are members of the two medial

modules. When combined into a single ‘‘core module,’’ over

70% of the between-module edge mass is attached to the

core.

When modularity detection was applied to more restricted

portions of the high-resolution connection datasets, for

example the visual and frontal cortex, we were able to
recover clusters that were consistent with those found in
previous studies based on classical anatomical techniques, or
orderings that were suggested based on functional subdivi-
sions. For example, we found, in all five participants, a
segregated dorsal and ventral cluster of visual ROIs,
corresponding in location and extent to the dorsal and
ventral stream of visual cortex [36]. Clustering of frontal
cortical ROIs yielded distinct clusters centered on orbital,
medial, and lateral frontal cortex (Figure S4).

Centrality and Efficiency
Regions with elevated betweenness centrality are posi-

tioned on a high proportion of short paths within the
network [37]. The spatial distribution of ROIs with high
betweenness centrality (Figure 7A and 7B) shows high
centrality for regions of medial cortex such as the precuneus
and posterior cingulate cortex, as well as for portions of
medial orbitofrontal cortex, inferior and superior parietal
cortex, as well as portions of frontal cortex. Figure 7B

Figure 3. High-Resolution Connection Matrix, Network Layout and Connectivity Backbone (Participant A, scan 2)

(A) Matrix of fiber densities (connection weights) between all pairs of n¼ 998 ROIs. ROIs are plotted by cerebral hemispheres, with right-hemispheric
ROIs in the upper left quadrant, left-hemispheric ROIs in the lower right quadrant, and interhemispheric connections in the upper right and lower left
quadrants. The color bars at the left and bottom of the matrix correspond to the colors of the 66 anatomical subregions shown in Figure 1. All
connections are symmetric and displayed with a logarithmic color map.
(B) Kamada-Kawai force-spring layout of the connectivity backbone. Labels indicating anatomical subregions are placed at their respective centers of
mass. Nodes (individual ROIs) are coded according to strength and edges are coded according to connection weight (see legend).
(C) Dorsal and lateral views of the connectivity backbone. Node and edge coding as in (B).
doi:10.1371/journal.pbio.0060159.g003
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provides lateral views of the distribution of centrality across

the two cerebral hemispheres showing that ROIs with high

centrality are widely distributed. For example, ROIs with high

centrality are found in the superior and middle frontal gyrus,

in the inferior and superior parietal cortex, in addition to in

regions of cingulate and medial posterior cortex (Table S2).

Averaged over all ROIs belonging to the same anatomical

subdivision and over all participants (Figure 7C), centrality

appears highest in the right and left posterior cingulate

cortex, as well as other subdivisions of cingulate cortex, and

the precuneus and cuneus. Efficiency is related to closeness

centrality, in that regions with high efficiency maintain short

average path lengths with other regions in the network. We

find that the posterior cingulate cortex, the precuneus, and

the paracentral lobule are most highly ranked in both

cerebral hemispheres (Figure 7D).

Validation of Structural Imaging
Five lines of evidence support the robustness and validity

of the diffusion imaging and tractography methodology

applied in this paper (see also Text S3). First, within-

participant interhemispheric differences in structural con-

nections were modest, since the connection patterns between
left and right cortical hemispheres were highly correlated (r2

¼ 0.94, p , 10�10, Figure S2). This indicates methodological
consistency within individual scanning sessions. Second, two
scans of participant A performed several days apart yielded
highly consistent regional connection matrices (r2¼ 0.78, p ,

10�10, Figure S2). Third, we found that after introducing
random perturbations of the structural connection matrix
that fractionally degraded the connection pattern, our
network measures were consistent with those reported for
the intact connectivity, indicating that our main conclusions
were insensitive to low levels of homogeneous noise poten-
tially introduced in either scanning or tractography (Figure
S6).
Fourth, we collected diffusion imaging data from a single

hemisphere of macaque cortex to compare connection data
obtained by diffusion spectrum imaging to connection data
obtained by anatomical tract tracing (see Text S4). An overlay
of structural connectivity derived by DSI and a macaque
anatomical connection matrix derived from Cocomac data
[20] is shown in Figure S9. We found that 78.9% of all DSI
fibers were identified in positions where connections had

Figure 4. Average Regional Connection Matrix, Network Layout, and Connectivity Backbone

(A) Matrix of inter-regional fiber densities between pairs of anatomical subregions, obtained by averaging over fiber densities for all pairs of ROIs within
the regions, and averaging across all five participants. Connection weights are symmetric and are plotted on a logarithmic scale. For corresponding
plots for all individual participants, see Figure S2.
(B) Network layout.
(C) Dorsal and medial views of the connectivity backbone in anatomical coordinates.
doi:10.1371/journal.pbio.0060159.g004
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been identified by tract tracing methods and recorded in
Cocomac. A further 15.0% were placed in positions where the
presence or absence of a pathway is currently unknown. The
remaining 6.1% were placed in positions where connections
had been reported to be absent.

Fifth, we performed resting state fMRI in all five
participants to derive networks of functional connections
and to investigate the degree to which structural connections
and functional connections are correlated. Figure 8A shows a
map of the functional connections averaged over all five
participants plotted for a group of five seed ROIs, all of which
were within 10 mm of the Talairach coordinate [–5 �49 40],
which is located within the precuneus and posterior cingulate
and was used in a previous study [17] to map the brain’s
default network (see also the seed region ‘PCC’ in Figure 1 of
[17]). Consistent with earlier observations (e.g., [15,17,18]), we
find that this seed region maintains positive functional
connections with portions of posterior medial cortex, medial
orbitofrontal cortex, and lateral parietal cortex. Figure 8B
shows a scatter plot of structural connections and functional
connections for the precuneus and the posterior cingulate
cortex (both hemispheres, all participants). The plot indicates

that the strengths of structural connections as estimated from

diffusion imaging are highly predictive of the strengths of

functional connections (r2 ¼ 0.53, p , 10�10). Scatter plots of

structural connections and functional connections for all

anatomical subregions averaged over all five participants

(Figure 8C) also reveal significant correlations between their

strengths (r2¼ 0.62, p , 10�10). Figure 8B and 8C demonstrate

that stronger DSI connections are quantitatively predictive of

stronger functional connectivity. The results from this

comparison of structural and functional connections support

the validity of the DSI-derived structural connection patterns

and suggest that structural connections identified by DSI do,

in fact, participate in shaping the functional topology of the

default network.

Discussion

Cortical connectivity plays a crucial role in shaping

spontaneous and evoked neural dynamics. We mapped

structural cortico-cortical pathways in the human cerebral

cortex at high spatial resolution and found evidence for the

existence of a structural core composed of posterior medial

Figure 5. Structural Network Cores

(A) Network cores for each individual participant derived by k-core decomposition of a binary connection matrix obtained by thresholding the high-
resolution fiber densities such that a total of 10,000 connections remain in each participant. Nodes are plotted according to their core number, counted
backwards from the last remaining core.
(B) Average network core across all five participants.
(C) Ranked distribution of core numbers for left and right cerebral hemispheres. Shaded bars represent means across five participants and symbols
indicate data for individual participants
doi:10.1371/journal.pbio.0060159.g005
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and parietal cortical regions that are densely interconnected

and topologically central.

We characterize the structural core by mapping network

indices, such as node degree, strength, and centrality, and by

applying several network analysis methods: extracting a

structural backbone, performing core decomposition, re-

trieving network modules, and classifying hub nodes . While

several of these measures are known to be interrelated, each

provides a different viewpoint from which to discern major

features of the large-scale architecture. Based on their

aggregated ranking scores across six network measures (Table

1), we identified eight anatomical subregions as members of

the structural core. These are the posterior cingulate cortex,

the precuneus, the cuneus, the paracentral lobule, the

isthmus of the cingulate, the banks of the superior temporal

sulcus, and the inferior and superior parietal cortex, all of

them in both hemispheres. These regions are chosen because

they exhibit elevated fiber counts and densities (node degree

and strength), they are most resistant to the erosive

procedures of k-core and s-core decomposition and they

have high topological centrality. The high degree of inter-

hemispheric coupling within the core further suggests that it

acts as a single integrated system from which processes in

both cortical hemispheres are coordinated.

The central structural embedding of posterior medial

cortex in the human brain is consistent with a series of

physiological findings including high levels of energy con-

sumption and activation at rest [14] and significant deactiva-

tion during goal-directed tasks [13,14,17]. We found a

significant positive correlation (r2 ¼ 0.49, p , 0.01, Figure

S5) between centrality as reported in this paper and regional

cerebral blood flow (rCBF) data from an earlier imaging study

[14]. Studies of resting state functional networks have

reported a high density of strong functional connections in

posterior cortex [8]. In such networks, the precuneus was

found to exhibit short path length, low clustering, and high

centrality [8,11]. Activation of the precuneus [38] and of other

cortical midline structures [39] has been linked to self-

referential processing and consciousness. Reduced metabolic

activation in the posterior cingulate cortex [40], amyloid

deposition, and atrophy [41], as well as impaired task-

dependent deactivation in posterior medial cortex, is

associated with the onset of Alzheimer-type dementia [42,43].

Figure 6. Modularity and Hub Classification

The modularity was derived from the average regional connection matrix. Modules are listed in Table S1.
(A) The plot shows a dorsal view, with nodes representing anatomical subregions. The spatial position of each region corresponds to the center of mass
coordinates calculated from participant A, scan 2 (as seen in Figure 4C). Six modules are shown as gray circles centered on their center of mass and sized
according to their number of members. Edges correspond to the average connection densities of each region with the member regions of each of the
six modules, plotted between that region’s spatial coordinates and the center of mass of each module Connector hubs are defined as regions with
above average strength and a participation index p � 0.3, indicating a high proportion of cross-module connectivity. These regions are marked as filled
yellow circles. Provincial hubs have above-average strength and P , 0.3; they are marked as unfilled yellow circles.
(B) Connector hubs obtained from analyses of high-resolution connection matrices. ROIs are displayed according to how consistently a given ROI was
identified as a connector hub across participants.
doi:10.1371/journal.pbio.0060159.g006
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The human default network comprises a set of interacting

subsystems linked by hubs [44]. Key components of the

default network are the posterior cingulate cortex, the

precuneus, the lateral and medial parietal cortex, and the

medial prefrontal cortex [12,13,15,17]. Of these areas, medial

prefrontal cortex is the only component entirely excluded

from the structural core. Our structural results suggest the

hypothesis that default network activity may be driven from

highly coupled areas of the posterior medial and parietal

cortex, which in turn link to other highly connected and

central regions, such as the medial orbitofrontal cortex.

Consistent with this hypothesis, we found a close corre-

spondence between the strengths of structural connections

derived from DSI and functional connections derived from

resting state fMRI in the same participants. Additional studies

are needed to fully address the relationship between

structural and functional connection patterns (Honey CJ,

Sporns O, Cammoun L, Gigandet X, Meuli R, Hagmann P;

unpublished data).

An important issue relates to the comparison of our

present network analysis in human cortex to previous

analyses carried out on anatomical connection matrices

derived from tract-tracing studies in the macaque monkey.

Direct comparison is made difficult by differences in spatial

resolution (998 ROIs in human, 30–70 regions in macaque),

the incomplete coverage of macaque cortex in most extant

datasets, the lack of interhemispheric connections in the

macaque, the lack of connection density data in the macaque,

and the uncertainty of cross-species homologies between

functionally defined brain regions [45]. A previous study

focusing on the distribution of highly central hubs in

macaque cortex had revealed the existence of connector

hubs in some areas of prefrontal and parietal cortex [46], but

was lacking connectional data on significant portions of

posterior medial and frontal cortex (Figure S9). Here, we

Figure 7. Centrality and Efficiency

(A) ROI centrality obtained from analyses of high-resolution connection matrices. The plot shows how consistently ROI centrality ranked in the top 20%
across participants.
(B) Lateral views of the right and left cerebral hemispheres showing ROI centrality, averaged across all five participants and projected onto the cortical
surface of participant A.
(C) Ranked distribution of betweenness centrality for left and right cerebral hemispheres. Shaded bars represent means across five participants and
symbols indicate data for individual participants.
(D) Ranked distribution of efficiency for left and right cerebral hemispheres.
doi:10.1371/journal.pbio.0060159.g007
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report ROIs with high centrality in several human cortical

subregions, including medial and superior frontal cortex,

inferior and superior parietal cortex, as well as cingulate and

posterior medial cortex. The structural embedding of core

regions within the human brain is consistent with anatomical

studies of the connections of the macaque posteromedial

cortex, which includes posterior cingulate and medial

parietal regions. These regions are reported to have high

interconnectivity as well as widespread connection patterns

with other parts of the brain [47].

Previous attempts to provide a map of structural con-

nections of the human brain have utilized correlations in

cortical gray-matter thickness [48], as well as diffusion tensor

imaging (DTI) [28,29]. Our approach to mapping human

cortical structural connections was DSI followed by computa-

tional tractography [26,27]. DSI has been shown to be

especially sensitive with regard to detecting fiber crossings.

In macaque monkey [24], this method has been shown to

produce connection patterns that substantially agree with

traditional anatomical tract tracing studies. By extending

these results, we found significant overlap between macaque

connectivity data derived from DSI and from tract tracing

(Text S4 and Figure S9). A more detailed mapping of the

structural core in macaque will require the analysis of high-

resolution DSI data from macaque cortex (Hagmann P,

Gigandet X, Meuli R, Kötter R, Sporns O, Wedeen V;

unpublished data). In human visual cortex, DSI connection

patterns are in significant agreement with anatomical reports

[27]. Furthermore, the high correlation of structural and

functional connections patterns reported in this study, which

holds for brain regions that are members of the structural

core (e.g., the precuneus and posterior cingulate cortex,

Figure 8B) as well as across the entire brain (Figure 8C),

supports the validity of the DSI connectivity pattern. While

these comparisons suggest that diffusion imaging can yield

accurate connection maps, it must be noted that the method

may be participant to scanning noise, errors in fiber

reconstruction, and systematic detection biases. In particular,

smaller fiber tracts and interhemispheric connections toward

lateral cortices may be underrepresented given the limited

resolution and complexity of the anatomy in the centrum

semiovale. We note that our study focuses on a large-scale

anatomical feature, the structural core, and that our main

conclusions are insensitive to various degradations and

manipulations of the original fiber density matrix (Text S3,

Figure S6–S8).

Future improvements in diffusion imaging and tractog-

raphy, as well as computational network analysis, will no

doubt reveal additional features of the connectional anatomy

of the human brain. It will be important to include major

Figure 8. Comparison of Structural and Functional Connectivity

(A) Map of functional correlations from resting state fMRI for a cluster of five seed ROIs located within 10 mm of the Talairach coordinate [–5�49 40]
(marked by a white circle). Correlations are averaged over the five ROIs and over scanning sessions for all five participants. The plot shows a lateral and
medial view of the left cerebral hemisphere.
(B) Scatter plot of structural and functional connections of the precuneus and posterior cingulate cortex (PCUN and PC, left and right hemisphere), for
all five participants.
(C) Scatter plots for structural and functional connections averaged over all five participants, for all anatomical subregions in both hemispheres.
doi:10.1371/journal.pbio.0060159.g008
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subcortical regions, such as the thalamus, into future network
analyses. Another advance would be to parcellate cortex not
on the basis of sulcal and gyral landmarks, but rather on the
basis of regularities in functional connections that are
observed in individual participants [49,50].

Our data provide evidence for the existence of a structural
core in human cerebral cortex. This complex of densely
connected regions in posterior medial cortex is both spatially
and topologically central within the brain. Its anatomical
correspondence with regions of high metabolic activity and
with some elements of the human default network suggests
that the core may be an important structural basis for
shaping large-scale brain dynamics. The availability of single-
participant structural and functional connection maps now
provides the opportunity to investigate interparticipant
connectional variability and to relate it to differences in
individual functional connectivity and behavior.

Methods

Diffusion imaging and tractography. The path from diffusion MRI
to a high-resolution structural connection matrix of the entire brain
consists of a five-step process (Figure 1): (1) diffusion spectrum and

high resolution T1-weighted MRI acquisition of the brain, (2)
segmentation of white and gray matter, (3) white matter tractography,
(4) segmentation of the cortex into anatomical regions and
subdivision into small ROIs, and (5) network construction.

Step 1: MRI acquisition. After obtaining informed consent in
accordance with our institutional guidelines, we scanned five healthy
right-handed male volunteers aged between 24 and 32 y (mean¼29.4,
S.D.¼ 3.4). Imaging was performed on an Achieva 3T Philips scanner
using a diffusion weighted single-shot EPI sequence with a TR of
4,200 ms and a TE of 89 ms. The maximum diffusion gradient
intensity was 80 mT/m, the gradient duration d was 32.5 ms and the
diffusion time D was 43.5, yielding a maximal b-value of 9,000 s/mm2.
Q-space was sampled over 129 points located inside a hemispherical
area of a cubic lattice, by varying the diffusion gradient intensity and
direction such that q¼ aqxþ bqyþ cqz, (where a, b, and c are integers

such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ c2
p

� 4; qx, qy, and qz denote the unit diffusion
sensitizing gradient vectors in the three respective coordinate
directions; and q ¼ cdg, where c is the gyromagnetic ratio and g is
the gradient strength (mT/m). The axial field of view was set to 224 by
224 mm and the acquisition matrix was 112 by 112, yielding an in-
plane resolution of 2 3 2 mm. Parallel imaging was used with our
eight-channel head coil with a reduction factor of 3. 36 contiguous
slices of 3-mm thickness were acquired in two blocks resulting in an
acquisition time of 18 minutes. In addition, a high resolution T1-
weighted gradient echo sequence was acquired in a matrix of 5123

5123 128 voxels of isotropic 1-mm resolution.
Data reconstruction was performed according to a DSI protocol

[26,27,51]. In every brain position, the diffusion probability density

Table 1. Summary of Data on Network Measures

Anatomical Region Degree Strength k-Core s-Core Centrality Efficiency

LH RH LH RH LH RH LH RH LH RH LH RH

BSTS * * * * * * * *

CAC * * * * * *

CMF

CUN * * * * * * * * * *

ENT

FP

FUS

IP * * * * * * * *

IT

ISTC * * * * * * * * * * *

LOCC

LOF

LING

MOF

MT

PARC * * * * * * * * * * *

PARH

POPE

PORB

PTRI

PCAL * * * * * *

PSTC

PC * * * * * * * * * * * *

PREC

PCUN * * * * * * * * * * * *

RAC * *

RMF

SF

SP * * * * * * * *

ST *

SMAR

TP

TT

An asterisk (*) indicates that the respective anatomical region ranks 8th or higher (top 25th percentile, within its respective cortical hemisphere) on a given network measure (for degree
and strength, see Figure 2; for k-core, see Figure 5; for s-core, see Figure S3; for centrality and efficiency, see Figure 7). Separate columns show data for left and right cerebral hemispheres
(LH and RH, respectively).
doi:10.1371/journal.pbio.0060159.t001
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function (PDF) was reconstructed by taking the discrete 3D Fourier
transform of the signal modulus symmetric around the center of q-
space. The signal was pre-multiplied by a Hanning window before
Fourier transformation in order to ensure smooth attenuation of the
signal at high jqj values. The 3D PDF was normalized by dividing by its
integral at every voxel. The orientation distribution function (ODF) /
was derived directly from the PDF by taking a radial summation of
the 3D PDF p(r):

uðuÞ ¼
Z

pðquÞq2dq ð1Þ

where q is the radius and u is a unit direction vector. The integral was
evaluated as a discrete sum over the range q 2 [0,5]. The ODF is
defined on a discrete sphere and captures the diffusion ‘‘intensity’’ in
every direction. It was evaluated for a set of vectors ui that are the
vertices of a tessellated sphere with mean nearest-neighbor separa-
tion approximately 108. The result was a diffusion map composed of
ODFs at every location in the brain. The ODFs were represented as
deformed spheres with the radius proportional to /(u).

Step 2: White and gray matter segmentation. The goal of the
second step was two-fold as we wanted to obtain high-quality white
matter segmentation for use in the tractography (step 4) as well as a
high-quality segmentation of the cortex for use in the creation of the
ROIs (step 3). Based of the high resolution T1w image, this step was
performed in Freesurfer (http://surfer.nmr.mgh.harvard.edu) [52,53].
The output was an image with labels corresponding to the white
matter, the cortex, and the deep cerebral nuclei.

Step 3: Creation of normalized cortical regions of interest. One of
the critical steps of the whole procedure was to partition the
participants’ cortex into ROIs located in an identical topographic
position for each participant despite interindividual anatomical
variation. We used Freesurfer to register a labeled mesh from an
average brain onto the brain of each individual participant, where
each label corresponded to one of 66 anatomical cortical regions [54].
This output provided for every participant a standardized partition
of the cortex into 66 regional areas. In a second step, each of these
regional areas were subdivided on the Freesurfer average brain into a
set of small and compact regions of about 1.5 cm2, resulting in 998
ROIs covering the entire cortex. This subdivision was then registered
on the individual brain using the same transformation as for the 66
regional areas thus maintaining the topological constraints of
mapping. Consequently, the resulting partitions of the cortex into
66 and 998 ROIs were in anatomically closely matched positions for
all participants (Cammoun L, Gigandet X, Thiran JP, Do KQ, Maeder
P, et al., unpublished data).

Step 4: White matter tractography. Tractography is a post-
processing method that uses the diffusion map to construct 3D
curves of maximal diffusion coherence. These curves, called fibers, are
estimates of the real white matter axonal bundle trajectories [24,27].
Since DSI, in contrast to DTI, provides several directions of diffusion
maximum per voxel, we modified the usual path integration method
(deterministic streamline algorithm, [21,25]) to account for fiber
crossings and to create a set of such fibers for the whole brain [24,27].
The methodology is summarized below:

Detection of the Directions of Maximum Diffusion. At each voxel, we
defined a set of directions of maximum diffusion as local maxima of
/(u) (i.e., vectors Ui such that /(uj) , / (Ui) for all uj adjacent to Ui in
the sampled tessellated sphere. This step is equivalent to computing
the principal eigenvector field in DTI.

Fiber Computation.We initiated the same number of fibers for every
direction of maximum diffusion in every voxel of the segmented
white matter. For example, in a voxel with two directions, we
initiated 30 fibers along each direction, for a total of 60 fibers. The
starting points were chosen spatially at random within the voxel.
From each initialization point, a fiber trajectory is computed in a
way similar to forming a streamline in a vector field with the
additional constraint that in some locations, multiple orientations
may occur. This is handled in the following way. From each
initialization point, we began growing a fiber in two opposite
directions with a fixed step of 1 mm. Upon entering a new voxel, the
fiber growth continued along the direction of the vector Uj (in the
new voxel) whose orientation was the closest to the current direction
of the fiber. If this resulted in a change of direction sharper than 308/
mm, the fiber was stopped. The growth process of a valid fiber
finished when both its ends left the white matter mask. In this article
we used about 3 million initialization points, of which between one-
half and two-thirds connected cortical areas and were therefore
retained.

Step 5: Network construction. Finally, we combined the output of
steps 3 and 4 and created the graph of brain structural connectivity.
Every ROI constructed in step 3 became a node in the graph. We
denoted by ROI(v) the ROI associated with node v. Its cortical surface
was Sv. Two nodes v and u were connected with an edge e ¼ (v, u) if
there was at least one fiber f with end-points in ROI(v) and ROI(u).
For each edge e, we defined its length l(e) and weight w(e), as follows.
Denoted by Fe was the set of all fibers connecting ROI(v) and ROI(u)
and hence contributing to the edge e. The length l(e) of the edge e was
the average over the lengths of all fibers in Fe, i.e., l(e) ¼ 1/

jFej �
P

f2Fe lð f Þ, where l( f ) is the length of fiber f along its
trajectory. The weight w(e) captured the connection density (number
of connections per unit surface) between the end-nodes of the edge e,
and is defined as w(e)¼ 2

SvþSu

P

f2Ef
1=lð f Þ. The correction term l( f ) in

the denominator was needed to eliminate the linear bias towards
longer fibers introduced by the tractography algorithm. The sum Svþ
Sv corrects for the slightly variable size of cortical ROIs.

The end result of this procedure was a weighted network of 998
ROIs of surface area approximately 1.5 cm2, covering the entire
cortex and grouped into 66 anatomical subregions (for a list of
abbreviations, see Figure 1). The anatomical positions of the ROIs
were in register across participants, allowing for averaging across
individual networks.

Functional neuroimaging. We conducted two independent resting
state fMRI imaging runs for each of the five participants for which
structural imaging datasets were also acquired. The scans were
performed on a Siemens Trio 3T system using a standard gradient
echo sequence. We used an axial plane with a field of view of 2113

211 mm and a matrix of 64 3 64 voxels, yielding an in-plane
resolution of 3.33 3.3 mm2. 35 slices of 3-mm thickness and 10% gap
where acquired. In order to reach a sampling rate of 0.5 Hz, we used a
TR of 2,000 ms and a TE of 30 ms. The PAT factor was 3 and
participants were scanned for 20 min in the first session and 15 min
in the second session. Participants were instructed to remain alert
and keep their eyes closed.

The fMRI raw data were registered and resampled onto the b0
image of the diffusion scan using the rigid body registration tool of
SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). Time series were computed
for each of the 998 ROIs previously defined in step 3 of the diffusion
imaging methods (see above). This was achieved by dilating each ROI
with an isotropic structuring element of 19 voxels and computing the
average signal intensity in the dilated ROI for every time point. The
resulting time series were detrended, and the global brain signal was
regressed out before computing cross-correlation maps. High-
resolution (998 ROI) correlation maps were downsampled by
averaging to yield correlation maps for 66 anatomical subregions.

Network analysis. Connectivity Backbone. To visualize network layout
and clusters, we derived the network’s connectivity backbone [30].
First, a maximum spanning tree, which connects all nodes of the
network such that the sum of its weights is maximal, was extracted.
Additional edges were added in order of their weight until the
average node degree was 4. The resulting network constituted the
connectivity backbone of the connection matrix and was used for the
network visualizations in Figure 3 and 4.

k-Core Decomposition. This decomposition method [33] involves the
recursive pruning of those nodes with degree less than k. Applied to
large networks the method yields cores of vertices that are mutually
linked by at least k connections. We derived all k-cores for high-
resolution connection matrices, whose top 10,000 fiber densities were
converted to ones. We developed a related method, which we call s-
core decomposition, that recursively prunes weakest nodes up to a
strength s. The remaining core contains only nodes with strengths of
at least s. For a series of discrete degrees ki or strengths si we can then
derive the corresponding ki-th and si-th cores. Any of the 66
anatomical subregions was considered part of the ki-th or si-th core
if at least half of its ROIs were present in that core.

Modularity Detection. We applied a variant of a spectral community
detection algorithm [34] to identify modules (communities) within
each network. As inputs to the algorithm we used symmetric
connectivity matrices corresponding to individual (998 ROI) or
aggregated (66 anatomical region) fiber densities. The algorithm
generated a modularity matrix with an associated modularity score.
For regional connection matrices (n ¼ 66), we obtained 10,000
solutions which were ranked according to their modularity and we
selected the optimal solution for a range of 2–12 modules. For high-
resolution matrices we obtained 20,000 solutions for modularity
ranging from 3–8 modules.

Hub Classification. Cluster assignment from the optimal modularity
matrices provided the basis for the classification of network hubs into
two groups [35]. We calculated each node’s participation index P,
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which expresses its distribution of intra- versus extra-modular
connections. P of node i is defined as

Pi ¼ 1�
X

NM

s¼1

jis

ki

� �2

where NM is the number of identified modules, ki is the degree of
node i, and jis is the number of edges from the ith node to nodes
within module s. We classified nodes with above average degree and a
participation coefficient P , 0.3 as provincial hubs, and nodes with p
� 0.3 as connector hubs.

Graph Theory Methods. With the sole exception of k-core decom-
position and node degree, all graph theoretical analyses in this study
were carried out for weighted networks. Node degrees were
calculated as the column sums of the binarized connection matrix
(i.e., the number of all edges for each node, regardless of weight).
Node strengths were calculated as the column sum of the non-
binarized connection matrix (i.e., the sum of all edge weights for each
node).

Centrality of a node expresses its structural or functional
importance. Highly central nodes may serve as waystations for
network traffic or as centers of information integration. The
betweenness centrality of a node is defined as the fraction of shortest
paths between any pair of vertices that travel through the node [36].
The betweenness centrality of a node i is given as

CB
i ¼ 1

NðN � 1Þ
X

NM

s 6¼i6¼t

qstðiÞ
qst

where qst(i) is the total number of shortest paths between a source
node s and a target node t that pass through i, and qst is the total
number of all shortest paths linking s to t.

Efficiency of a node is defined as the arithmetic mean of the
inverses of the path lengths between the node and all other nodes in
the network [11,55], i.e.,

Ei ¼
1

N � 1

X

i6¼j

1

dij
:

Supporting Information

Figure S1. Degree and Strength Distributions

(A) Degree distribution, averaged across all five participants.
(B) Linear-log plot of the cumulative node degree and node strength
distributions, aggregated across all five participants. Red line
indicates best linear fit, consistent with an exponential decrease of
degree and strength towards higher values.

Found at doi:10.1371/journal.pbio.0060159.sg001 (409 KB TIF).

Figure S2. Individual Participant Variation

Regional connection matrices for all five individual participants,
plotted on a logarithmic scale. Note the high degree of correspond-
ence between scans 1 and 2 of participant A, and between all other
participants. Repeat scans for participant A are correlated with r2 ¼
0.78, while the average between-participant correlation is r2 ¼ 0.65.

Found at doi:10.1371/journal.pbio.0060159.sg002 (4.06 MB TIF).

Figure S3. s-Core Decomposition

s-Core decomposition was carried out as described in the Methods
section of the paper. Individual s-core plots are shown for all five
participants (A), as well as a plot showing the average s-core across all
five participants (B). (C) A rank-ordered distribution of s-core
numbers for all 66 anatomical subregions is shown.

Found at doi:10.1371/journal.pbio.0060159.sg003 (1.34 MB TIF).

Figure S4. Cluster Analysis of Visual and Frontal Cortex

(A) After selection of visual ROIs and their interconnections, we
searched for optimal modularity using the spectral community
detection algorithm described in [34]. The plot shows an overlay of
the cluster arrangement found for each of the five participants. Red,
green, and blue dots indicate the anatomical positions of ROIs
grouped into three distinct clusters, roughly corresponding to
occipital, ventral, and dorsal visual system, respectively. Pure colors
indicate that the ROI was grouped consistently (for all five

participants) into the corresponding cluster; intermediate clusters
indicate groupings that were inconsistent across participants.
(B) Clusters obtained after modularity analysis restricted to frontal
ROIs and their interconnections, roughly corresponding to medial,
lateral, and orbital frontal cortex.

Found at doi:10.1371/journal.pbio.0060159.sg004 (912 KB TIF).

Figure S5. Centrality and Regional Cerebral Blood Flow

Regional cerebral blood flow data were obtained from Table 1 of [14].
Regional designations refer to medial, right, or left cortices, and
Brodmann areas. Centrality data was computed as the average
centrality of the five ROIs located closest to the Talairach coordinate
provided in Table 1 of [14]. All ROIs were within 12 mm of the target
coordinate. The correlation between rCBF and centrality is r2¼ 0.49,
p , 0.01. ROIs for the three regions with highest rCBF (M31/7, M10,
M32) were located in these anatomical subregions: right precuneus,
right and left rostral anterior cingulate cortex, and right and left
medial orbitofrontal cortex. Very similar correlations were found
between centrality and data for the cerebral metabolic rate for
oxygen [14], as well as data from a second participant group (Table 2
of [14]).

Found at doi:10.1371/journal.pbio.0060159.sg005 (557 KB TIF).

Figure S6. Robustness of Centrality Estimates

Each panel shows a rank-ordered distribution of centrality for
anatomical subregions in left and right hemisphere, after the high-
resolution connection matrix was subject to a random perturbation.
All distributions are for n ¼ 10 separate perturbations for each
participant, followed by averaging over all five participants. (A) Ten
percent of all edges were randomly rewired. (B) Ten percent of edge
weight was either added or subtracted from all edges. (C) The edges
for 100 randomly selected pairs of ROIs were swapped.

Found at doi:10.1371/journal.pbio.0060159.sg006 (1.25 MB TIF).

Figure S7. Node Strength and Centrality for Regional Connection
Matrices

Node strength (A) and centrality (B) for regional connection matrices
obtained from each of the five participants. Plots show rank-ordered
distributions.

Found at doi:10.1371/journal.pbio.0060159.sg007 (721 KB TIF).

Figure S8. Network Measures after Edge Weight Transformation

Node strength (A) and centrality (B) for high-resolution connection
matrices whose edge weights were transformed to a Gaussian
distribution (see Text S3 for details). (C) Community structure
(optimal modularity and hubs) for an average regional connection
matrix obtained after edge weights were resampled to a Gaussian
distribution. Plotting conventions are as in Figure 6.

Found at doi:10.1371/journal.pbio.0060159.sg008 (4.7 MB TIF).

Figure S9. Comparison of Macaque Cortex Structural Connections
Derived by Diffusion Imaging and Tractography

(A) Composite matrix of DSI-derived fiber densities (lower triangular)
and symmetrized anatomical connection matrix (upper triangular)
derived from Cocomac data (http://www.cocomac.org/). Fiber den-
sities in the lower triangular portion of the matrix are displayed on a
proportional gray scale (arbitrary units), while Cocomac pathways in
the upper triangular matrix are displayed as ‘‘known present’’ (black),
‘‘unknown’’ (gray), and ‘‘known absent’’ (white). Two main clusters of
brain regions, derived by cluster analysis of functional connectivity
(see [20]) are color-coded in blue (mostly containing occipitotempo-
ral areas) and green (mostly containing parietofrontal areas). Their
anatomical locations, as well as the extent to which the matrix covers
the surface of macaque cortex are shown in the panels at the top of
the figure (lateral and medial views, respectively). (B) Proportions of
the total DSI fiber mass that are coinciding with ‘‘known present,’’
‘‘unknown,’’ and ‘‘known absent’’ Cocomac pathways.

Found at doi:10.1371/journal.pbio.0060159.sg009 (1.83 MB TIF).

Table S1. Modularity

Found at doi:10.1371/journal.pbio.0060159.st001 (28 KB DOC).

Table S2. Talairach Coordinates of ROIs with High Centrality

Found at doi:10.1371/journal.pbio.0060159.st002 (66 KB DOC).

Text S1. Assortativity

Found at doi:10.1371/journal.pbio.0060159.sd001 (24 KB DOC).
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Text S2. Small-World Attributes and Structural Motifs

Found at doi:10.1371/journal.pbio.0060159.sd002 (66 KB DOC).

Text S3. Robustness of Graph Measures

Found at doi:10.1371/journal.pbio.0060159.sd003 (27 KB DOC).

Text S4. Macaque Diffusion Imaging

Found at doi:10.1371/journal.pbio.0060159.sd004 (36 KB DOC).

Acknowledgments

Author contributions. PH, VJW, and OS conceived and designed
the experiments. PH, LC, XG, RM, and VJW performed the experi-
ments. PH, LC, XG, RM, CJH, VJW, and OS analyzed the data. PH, LC,

XG, RM, CJH, and OS contributed reagents/materials/analysis tools.
PH, CJH, and OS wrote the paper.

Funding. PH, LC, XG, and RM were supported by a grant for
interdisciplinary biomedical research to the University of Lausanne,
the Department
of Radiology of University Hospital Center in Lausanne (CHUV), the
Center for Biomedical Imaging (CIBM) of the Geneva - Lausanne
Universities and the Ecole Polytechnique Fédérale de Lausanne
(EPFL), as well as grants from the foundations Leenaards and Louis-
Jeantet and Mr Yves Paternot. VJW was supported by the National
Institutes of Health grant 1R01-MH64–44. CJH and OS were
supported by the JS McDonnell Foundation.

Competing interests. The authors have declared that no competing
interests exist.

References

1. Sporns O, Tononi G, Kötter R (2005) The human connectome: A structural
description of the human brain. PLoS Comput Biol 1: 245–251. doi:10.1371/
journal.pcbi.0010042

2. Friston KJ (2002) Beyond phrenology: what can neuroimaging tell us about
distributed circuitry? Annu Rev Neurosci 25: 221–250.

3. Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of
functional localization in the cortex. Nature Rev Neurosci 3: 606–616

4. Sporns O, Chialvo D, Kaiser M, Hilgetag CC (2004) Organization,
development and function of complex brain networks. Trends Cogn Sci
8: 418–425.

5. Burns GA, Young MP (2000) Analysis of the connectional organization of
neural systems associated with the hippocampus in rats. Philos Trans R Soc
Lond B Biol Sci 355: 55–70.

6. Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1999) The
connectional organization of the cortico-thalamic system of the cat. Cereb
Cortex 9: 277–299.

7. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in
the primate cerebral cortex. Cereb Cortex 1: 1–47.

8. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient,
low-frequency, small-world human brain functional network with highly
connected association cortical hubs. J Neurosci 26: 63–72.

9. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world
networks and functional connectivity in Alzheimer’s disease. Cereb Cortex
17: 92–99.

10. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006)
Adaptive reconfiguration of fractal small-world human brain functional
networks. Proc Natl Acad Sci U S A 103: 19518–19523.

11. Achard S, Bullmore ET (2006) Efficiency and cost of economical func-
tional brain networks. PLoS Comp Biol 3: e17. doi:10.1371/journal.pcbi.
0030017

12. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nature Rev Neuro-
sci 8: 700–711.

13. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, et al. (1997)
Common blood flow changes across visual tasks: II. Decreases in cerebral
cortex. J Cogn Neurosci 9: 648–663

14. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al. (2001)
A default mode of brain function. Proc Natl Acad Sci U S A 98: 676–682.

15. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity
in the resting brain: A network analysis of the default mode hypothesis.
Proc Natl Acad Sci U S A 100: 253–258.

16. Fox MD, Snyder AZ, Zacks JM, Raichle ME (2005) Coherent spontaneous
activity accounts for trial-to-trial variability in human evoked brain
responses. Nat Neurosci 9,: 23–25.

17. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME
(2005) The human brain is intrinsically organized into dynamic, anti-
correlated functional networks. Proc Natl Acad Sci U S A 102: 9673–9678.

18. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006)
Spontaneous neuronal activity distinguishes human dorsal and ventral
attention systems. Proc Natl Acad Sci U S A 103: 10046–10051.

19. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, et al. (2007) Intrinsic
functional architecture in the anaesthetized monkey. Nature 447: 83–86.

20. Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of
cerebral cortex shapes functional connectivity on multiple time scales.
Proc Natl Acad Sci U S A 104: 10240–10245.

21. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, et al. (1999) Tracking
neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S
A 96: 10422–10427.

22. LeBihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, et al. (2001)
Diffusion tensor imaging: Concepts and applications. J Magn Reson Imag
13: 534–546.

23. Hagmann P, Thiran J-P, Jonasson L, Vandergheynst P, Clarke S, et al. (2003)
DTI mapping of human brain connectivity: statistical fibre tracking and
virtual dissection. Neuroimage 19: 545–554.

24. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, et al. (2007)
Association fibre pathways of the brain: parallel observations from
diffusion spectrum imaging and autoradiography. Brain 130: 630–653.

25. Wedeen VJ, Davis TL, Lautrup BE, Reese TJ, Rosen BR (1996) Diffusion
anisotropy and white matter tracts. Neuroimage 3: S146.

26. Hagmann P (2005) From diffusion MRI to brain connectomics [PhD
Thesis]. Lausanne: Ecole Polytechnique Fédérale de Lausanne (EPFL).
127 p.

27. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, et al. (2007)
Mapping human whole-brain structural networks with diffusion MRI. PLoS
ONE 2: e597. doi:10.1371/journal.pone.0000597

28. Iturria-Medina Y, Canales-Rodriguez EJ, Melie-Garcia L, Valdes-Hernandez
PA, Martinez-Montes E, et al. (2007) Characterizing brain anatomical
connections using diffusion weighted MRI and graph theory. Neuroimage
36: 645–660.

29. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y,
Melie-Garcia L (2007) Studying the human brain anatomical network via
diffusion-weighted MRI and graph theory. Neuroimage 40: 1064–1076.

30. Hidalgo CA, Klinger B, Barabasi A-L, Hausmann R (2007) The product
space conditions the development of nations. Science 317: 482–487.

31. Kamada T, Kawai S (1989) An algorithm for drawing general undirected
graphs. Inf Proc Lett 31: 7–15.

32. Batagelj B, Mrvar A (1998) Pajek - Program for Large Network Analysis.
Connections 21: 47–57.

33. Alvarez-Hamelin I, Dall’Asta L, Barrat A, Vespignani A (2006) Large scale
networks fingerprinting and visualization using the k-core decomposition.
In: Advances in neural information processing systems.Weiss Y, Scholkopf
B, Platt J, editors. Cambridge (Massachusetts): MIT Press. pp. 41–50.

34. Newman MEJ (2006) Modularity and community structure in networks.
Proc Natl Acad Sci U S A 103: 8577–8582.

35. Guimera R, Sales-Pardo M, Amaral LAN (2007) Classes of complex
networks defined by role-to-role connectivity profiles. Nat Phys 3: 63–69.

36. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Analysis
of visual behavior.Ingle DG, Goodale MA, Mansfield RJQ, editors. Cam-
bridge (Massachusetts): MIT Press. pp 549–586.

37. Freeman LC (1977) A set of measures of centrality based on betweenness.
Sociometry 40: 35–41.

38. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional
anatomy and behavioural correlates. Brain 129: 564–583.

39. Northoff G, Bermpohl F (2004) Cortical midline structures and the self.
Trends Cogn Sci 8: 102–107.

40. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, et al. (1997)
Metabolic reduction in the posterior cingulate cortex in very early
Alzheimer’s disease. Ann Neurol 42: 85–94.

41. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, et al. (2005)
Molecular, structural and functional characterization of Alzheimer’s
disease: Evidence for a relationship between default activity, amyloid,
and memory. J Neurosci 25: 7709–7717.

42. Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, et al. (2003)
Functional deactivations: Change with age and dementia of the Alzheimer
type. Proc Natl Acad Sci U S A 100: 14504–14509.

43. Petrella JR, Wang L, Krishnan S, Slavin MJ, Prince SE, et al. (2007) Cortical
deactivation in mild cognitive impairment: High-field-strength functional
MR imaging. Radiology 245: 224–235.

44. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default
network. Anatomy, function, and relevance to disease. Ann N Y Acad Sci
1124: 1–38.

45. Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of
higher visual areas in monkeys and humans. Trends Cogn Sci 8: 315–324.

46. Sporns O, Honey CJ, Kötter R (2007) Identification and classification of
hubs in brain networks. PLoS ONE 2: e1049. doi:10.1371/journal.pone.
0001049

47. Parvizi J, Van Hoesen GW, Buckwalter J, Damasio A (2006) Neural
connections of the posteromedial cortex in the macaque. Proc Natl Acad
Sci U S A 103: 1563–1568.

PLoS Biology | www.plosbiology.org July 2008 | Volume 6 | Issue 7 | e1591492

The Structural Core of Human Cortex



48. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the
human brain revealed by cortical thickness from MRI. Cerebr Cortex 17:

2407–2419.

49. Johansen-Berg H, Behrens TEJ, Robson MD, Drobnjak I, Rushworth MFS, et

al. (2004) Changes in connectivity profiles define functionally distinct
regions in human medial frontal cortex. Proc Natl Acad Sci U S A 101:
13335–13340.

50. Cohen AL, Fair DA, Dosenbach NUF, Miezin FM, Dierker D, et al. (2008)
Defining functional areas in individual human brains using resting state

functional connectivity MRI. Neuroimage. doi:10.1016/j.neuroimage.2008.
01.066.

51. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005)
Mapping complex tissue architecture with diffusion spectrum magnetic
resonance imaging. Magn Reson Med 54: 1377–1386.

52. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I.
Segmentation and surface reconstruction. Neuroimage 9: 179–194.

53. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II:
Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:
195–207.

54. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, et al. (2004)
Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11–22.

55. Latora V, Marchiori M (2001) Efficient behavior of small-world networks.
Phys Rev Lett 87: 198701.

PLoS Biology | www.plosbiology.org July 2008 | Volume 6 | Issue 7 | e1591493

The Structural Core of Human Cortex


