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ABSTRACT

We investigate how to organize a large collection of geotagged pho-

tos, working with a dataset of about 35 million images collected

from Flickr. Our approach combines content analysis based on text

tags and image data with structural analysis based on geospatial

data. We use the spatial distribution of where people take photos

to define a relational structure between the photos that are taken at

popular places. We then study the interplay between this structure

and the content, using classification methods for predicting such

locations from visual, textual and temporal features of the photos.

We find that visual and temporal features improve the ability to

estimate the location of a photo, compared to using just textual fea-

tures. We illustrate using these techniques to organize a large photo

collection, while also revealing various interesting properties about

popular cities and landmarks at a global scale.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data Min-

ing, Image Databases, Spatial Databases and GIS; I.4.8 [Image

Processing and Computer Vision]: Scene Analysis

General Terms

Measurement, Theory

Keywords

Photo collections, geolocation

1. INTRODUCTION
Photo-sharing sites on the Internet contain billions of publicly-

accessible images taken virtually everywhere on earth (and even

some from outer space). Increasingly these images are annotated

with various forms of information including geolocation, time, pho-

tographer, and a wide variety of textual tags. In this paper we

address the challenge of organizing a global collection of images
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using all of these sources of information, together with the vi-

sual attributes of the images themselves. Perhaps the only other

comparable-scale corpus is the set of pages on the Web itself, and it

is in fact useful to think about analogies between organizing photo

collections and organizing Web pages. Successful techniques for

Web-page analysis exploit a tight interplay between content and

structure, with the latter explicitly encoded in hypertext features

such as hyperlinks, and providing an axis separate from content

along which to analyze how pages are organized and related [17].

In analyzing large photo collections, existing work has focused

primarily either on structure, such as analyses of the social network

ties between photographers (e.g., [7, 12, 14, 15, 24]), or on content,

such as studies of image tagging (e.g., [6, 18, 20]). In contrast our

goal is to investigate the interplay between structure and content —

using text tags and image features for content analysis and geospa-

tial information for structural analysis. It is further possible to use

attributes of the social network of photographers as another source

of structure, but that is beyond the scope of this work (although in

the conclusion we mention an interesting result along this vein).

The present work: Visual and geospatial information. The cen-

tral thesis of our work is that geospatial information provides an

important source of structure that can be directly integrated with

visual and textual-tag content for organizing global-scale photo col-

lections. Photos are inherently spatial — they are taken at specific

places — and so it is natural that geospatial information should

provide useful organizing principles for photo collections, includ-

ing map-based interfaces to photo collections such as Flickr [4].

Our claim goes beyond such uses of spatial information, however,

in postulating that geospatial data reveals important structural ties

between photographs, based on social processes influencing where

people take pictures. Moreover, combining this geospatial struc-

ture with content from image attributes and textual tags both re-

veals interesting properties of global photo collections and serves

as a powerful way of organizing such collections.

Our work builds on recent results in two different research com-

munities, both of which investigate the coupling of image and place

data. In the computer vision research community there has been

work on constructing rich representations from images taken by

many people at a single location [22, 23], as well as identifying

where a photo was taken based only on its image content [9]. In

the Web and digital libraries research community there has been

recent work on searching a collection of landmark images, using

a combination of features including geolocation, text tags and im-

age content [11]. While these previous investigations provide im-

portant motivation and some useful techniques for our work, they

do not provide methods for automatically organizing a corpus of

photos at global scale, such as the collection of approximately 35

million geotagged photos from Flickr that we consider here. As we



see below, working at the level of all locations on earth requires

robust techniques for finding peaks in highly-multimodal distribu-

tions at different levels of spatial resolution, and computer vision

techniques that can capture rich image invariants while still scaling

to very large image corpora.

As researchers discovered a decade ago with large-scale collec-

tions of Web pages [13], studying the connective structure of a cor-

pus at a global level exposes a fascinating picture of what the world

is paying attention to. In the case of global photo collections, it

means that we can discover, through collective behavior, what peo-

ple consider to be the most significant landmarks both in the world

and within specific cities (see Table 2); which cities are most pho-

tographed (Table 1) which cities have the highest and lowest pro-

portions of attention-drawing landmarks (Table 4); which views of

these landmarks are the most characteristic (Figures 2 and 3); and

how people move through cities and regions as they visit different

locations within them (Figure 1). These resulting views of the data

add to an emerging theme in which planetary-scale datasets provide

insight into different kinds of human activity — in this case those

based on images; on locales, landmarks, and focal points scattered

throughout the world; and on the ways in which people are drawn

to them.

Location and content. One of the central goals of this work is to

study the relation between location and content in large photo col-

lections. In particular we consider the task of estimating where a

photo was taken based on its content, using both image attributes

and text tags. The authors of [9] investigate a similar question,

of determining GPS location using solely image content. In con-

trast to their work, our goal is to use location estimation as an ex-

perimental paradigm for investigating questions about the relative

value of image features and text tags in estimating location. More-

over, our definition of location is hierarchical and depends on where

people take photos, rather than just GPS coordinates.

We consider two spatial resolutions in defining locations: the

metropolitan-area scale in which we resolve locations down to

roughly 100 kilometers, and the individual-landmark scale in which

we resolve locations down to roughly 100 meters. For ease of dis-

cussion we use the term landmark for the finer level even though

not all such locations would necessarily constitute “landmarks” in

the traditional sense of the term. At both scales, we determine im-

portant locations by using a mean shift procedure (see Section 3)

to identify locations with high densities of photos; these serve as

places whose locations we subsequently try to estimate by analyz-

ing the content of the photos at that place. Mean shift is particularly

applicable to the problem of finding highly photographed places,

because unlike most clustering techniques that require choosing

some number of clusters or making underlying distributional as-

sumptions, mean shift is a non-parametric technique that requires

only a scale of observation. We find that it is remarkably effective

on this type of data and at multiple scales.

In more detail, we take n geotagged photos from each of k au-

tomatically identified popular locations. Each photo has a number

of features including textual tags and image attributes (described

in Section 4.1) as well as one of the k geographic locations. We

separate the images into training and test sets (disjoint not only in

photos but also in photographers), suppress the geographic infor-

mation in the test set, and evaluate the performance of machine-

learning classification techniques on estimating the (hidden) loca-

tion for each photo in the test set.

For assessing the combination of visual information with textual

tags, one must take into account that text-tags are the single most

useful source of features for estimating hidden location values — a

reflection of the fact that current techniques are considerably more

effective at exploiting textual data than image data, and that pho-

tographers are generally able to provide more effective short textual

descriptions than can currently be extracted from raw image data

(e.g., [6, 20]).

Nonetheless, we find that at the landmark scale (100m) image

information is also very effective in estimating location. In a num-

ber of locales, its performance is only a little below that of textual

information (and always far above chance prediction), despite the

enormous variability in photo content in the photos taken at any

fixed location. Visual information also works well in combination

with other features. In particular, when visual information is com-

bined with temporal information — i.e., adding in visual features

from photos taken by the same photographers within a few-minute

window — it produces location estimates that are generally com-

parable to and sometimes above the performance of textual infor-

mation. Further, the combination of textual and visual information

yields significant improvements over text alone, and adding tempo-

ral information as well yields results that outperform any subset of

these features.

At the metropolitan scale (100km) text tags are again highly ef-

fective for estimating location, but the image features are no longer

useful; the image features alone perform at the level of chance,

and adding the image features to the text features does not improve

performance above the text features alone. This negative result pro-

vides further insight into the settings in which image characteristics

are most effective for this type of task — specifically, in dealing

with a corpus at a level of spatial resolution where there will be

many different images of the same thing. It thus suggests a natural

scale — at fairly short range — where the computational cost of us-

ing image-based techniques will produce the most significant pay-

off. It also suggests that the approach taken in [9], of using image

features alone to estimate global location, is not the most powerful

use of image content in organizing large photo collections.

Representative Images. Our second task considers the question

of what is being photographed at a given location, by selecting

representative images from a specific location. While visual in-

formation played a significant but supporting role in the first task,

it becomes the dominant factor here. Selecting canonical or rep-

resentative images is a problem that has a long history both in

perceptual psychology and computer vision. The majority of the

computational techniques are based on three-dimensional analysis

of the surfaces in a scene (e.g., [5]). Recently, with the advent of

Web photo collections, attention has been paid to generating canon-

ical views of a site based on popular places to take photos of that

site [22, 23]. This work again makes considerable use of three-

dimensional structure of the scene to infer where photos are taken

from. Our approach for this task is based heavily on this work,

with the important difference that we do not make use of the three-

dimensional scene constraints of that work. This results in a more

lightweight, faster overall process that is capable of scaling to the

global scope of our data, and yet which still produces considerably

better results than randomly selecting photos from a landmark lo-

cation, or even selecting photos based purely on textual tags.

Ultimately, the effectiveness of image-based features for this task

— and the ability of the methods to scale to large data sizes —

closes an important loop that is consistent with our overall goal and

in contrast to earlier smaller-scale studies: to show the potential

of applications that can provide overviews of global photo collec-

tions using absolutely no domain knowledge — no hand-selection

of cities or subsets of the corpus — but instead simply employing

a combination of raw usage, text, and image data available. (Fig-



ures 2 and 3 are basic examples, in which the maps, the choice of

locations, the images, and the labels are all automatically inferred

from the Flickr corpus.)

2. DATASET
Our dataset was collected by downloading images and photo

metadata from Flickr.com using the site’s public API. Our goal was

to retrieve as large and unbiased a sample of geotagged photos as

possible. To do this, we first sample a photo id uniformly at random

from the space of Flickr photo id numbers, look up the correspond-

ing photographer, and download all the geotagged photos (if any)

of that initial user. For each photo we download metadata (tex-

tual tags, date and time taken, geolocation) and the image itself.

We then crawl the graph of contacts starting from this user, down-

loading all the geotagged photos. We repeat the entire process for

another randomly selected photo id number, keeping track of users

who have already been processed so that their photos and contact

lists are not re-crawled.

This crawl was performed during a six-month period in the sum-

mer and fall of 2008. In total we retrieved 60,742,971 photos taken

by 490,048 Flickr users. For the work in this paper we used a sub-

set of these photos for which the geolocation tags were accurate to

within about a city block (as reported by the Flickr metadata), con-

sisting of 33,393,835 photos by 307,448 users. The total size of the

database is nearly two terabytes.

3. FINDING AND CHARACTERIZING

LOCATIONS USING MEAN SHIFT
Given a large collection of geotagged photos we want to auto-

matically find popular places at which people take photos. In mea-

suring how popular a place is we consider the number of distinct

photographers who have taken a photo there, rather than the total

number of photos taken, in order to avoid pathologies associated

with the wide variability in photo-taking behavior across different

individuals.

Finding highly-photographed places can be viewed as a prob-

lem of clustering points in a two-dimensional feature space. For

instance [11] uses k-means clustering to find popular locations in

photo collections. k-means is a well-known example of a broad

class of fixed-cluster approaches that specify a number of clus-

ters in advance. Fixed-cluster approaches are particularly prob-

lematic for spatial data of the type we have, where extreme non-

uniformity occurs at many spatial scales. As an example, in our

dataset many of the largest clusters are in a few big cities such

as London, biasing fixed-cluster approaches away from the entire

globe and towards such areas. In their work, the authors of [11]

only apply fixed-cluster methods to a manually selected metropoli-

tan area (San Francisco); it would arguably be difficult to apply

this to discovering locations at high resolution over any larger scale

area.

Instead of fixed-cluster methods, we take advantage of the fact

that in spatial data there is a natural parameter based on scale of

observation. For instance, viewing a plot of photo locations at the

scale of a continent one will see clusters corresponding to cities

and metropolitan areas, whereas viewing the same data at the scale

of a single city one will see clusters corresponding to landmarks

and other points of interest. Thus we use mean shift clustering,

because this method requires only an estimate of the scale of the

data. While mean shift is often used for certain problems such as

image segmentation, it appears not to be as widely used in other

research areas.

Mean shift is a non-parametric technique for estimating the modes

of an underlying probability distribution from a set of samples,

given just an estimate of the scale of the data. In our setting, con-

ceptually there is an underlying unobservable probability distribu-

tion of where people take photographs, with modes corresponding

to interesting or important places to photograph. We are only able

to observe the locations at which people take photos, from which

mean shift allows us to estimate the modes of the underlying dis-

tribution. The mean shift approach is well-suited to highly multi-

modal probability density functions with very different mode sizes

and no known functional form, such as we have here.

Mean shift operates by directly estimating the gradient of the

probability density from the samples, in contrast with estimating

the density itself as is done with kernel density methods such as

Parzen windows. From zeroes of the gradient, local maxima of

the distribution can readily be determined. In fact the mean shift

calculation is an iterative procedure that uses the gradient estimate

as an update, so when the gradient vector is (near) zero magnitude

the procedure directly yields an estimate of the location of a local

maximum of the underlying distribution.

From a given location x the mean shift vector is defined as

mh,G(x) =

Pn

i=1 xig||(x − xi)/h||2
Pn

i=1 g||(x − xi)/h||2
− x

where the xi are observed data values, g are weights for each data

point corresponding to some chosen kernel function G (we use a

uniform function), and h is a bandwidth parameter. The mean shift

vector is simply the difference between the weighted mean, using

the kernel G, and x the center of the kernel.

The mean shift procedure computes a sequence starting from

some initial location x(1) where

x(i+1) = x(i) + mh,G(x(i))

which converges to a location that corresponds to a local maximum

of the underlying distribution as the mean shift vector approaches

zero. The convergence properties of mean shift are beyond the

scope of this paper, but the conditions are quite broad (see [2]).

Seeding this mean shift procedure from many initial points, the

trajectory from each starting point will converge to a mode of the

distribution (with a given mode often being the end-result of multi-

ple trajectories). In practice, the mean shift procedure can be made

very fast, particularly for low-dimensional data such as we have

here, through the use of bucketing techniques.

In our case we use the lat-long values in degrees for each photo,

treating them as points in the plane because the errors in doing

so are not substantial at the distances we consider. We bucket

the lat-long values at the corresponding spatial scale, 1 degree for

metropolitan-scale (100 km) and .001 degree for landmark-scale

(100 m). At a given scale, for each photographer we sample a sin-

gle photo from each bucket. We then perform the mean shift pro-

cedure at each scale separately, seeding by sampling a photo from

each bucket, using a uniform disc as the kernel.

We characterize the magnitude of each peak by simply counting

the number of points in the support area of the kernel centered at

the peak. This is effectively the number of distinct photographers

who took photos at that location (however may differ slightly as the

peaks do not align with the buckets used to sample a single photo

from each photographer).

Location clustering results. Table 1 presents the 15 most pho-

tographed metropolitan-scale peaks on Earth found via this mean

shift procedure, ranked according to number of distinct photogra-

phers. The table also shows selected lower-ranked peaks by rank.

The textual description of each cluster was generated automatically



Top landmark 2nd landmark 3rd landmark 4th landmark 5th landmark 6th landmark 7th landmark

Earth eiffel trafalgarsquare tatemodern bigben notredame londoneye empirestatebuilding

1. newyorkcity empirestatebuilding timessquare rockefeller grandcentralstation applestore columbuscircle libertyisland

2. london trafalgarsquare tatemodern bigben londoneye piccadillycircus buckingham towerbridge

3. sanfrancisco coittower pier39 unionsquare ferrybuilding prison lombardstreet sanfrancisco

4. paris eiffel notredame louvre sacrecoeur arcdetriomphe centrepompidou trocadero

5. losangeles disneyland hollywood gettymuseum frankgehry santamonicapier griffithobservatory californiaadventure

6. chicago cloudgate chicagoriver hancock searstower artinstitute wrigleyfield buckinghamfountain

7. washingtondc washingtonmonument wwii lincolnmemorial capitol jeffersonmemorial museum whitehouse

8. seattle spaceneedle market seattlepubliclibrary gasworkspark kerrypark downtown fountain

9. rome colosseum vaticano pantheon fontanaditrevi basilica spanishsteps vittoriano

10. amsterdam dam westerkerk nieuwmarkt amsterdam museumplein europe europe

11. boston fenwaypark trinitychurch faneuilhall publicgarden usa newenglandaquarium harvardyard

12. barcelona sagradafamilia parcguell boqueria cathedral casamilà spain casabatlló

13. sandiego balboapark sandiegozoo ussmidway seals sandiegopadres starofindia comiccon

14. berlin brandenburgertor reichstag potsdamerplatz berlinerdom tvtower gedächtniskirche checkpointcharlie

15. lasvegas paris newyorknewyork bellagio venetian casino flamingo luxor

16. firenze pontevecchio duomo piazzadelcampo firenze santacroce bridge river

17. toronto cntower nathanphillipssquare dundassquare rom eatoncentre unionstation hockeyhalloffame

18. milano duomo castellosforzesco centrale colonne cordusio duomo sanbabila

19. vancouver granvilleisland vancouverartgallery vancouveraquarium downtown gastown englishbay clock

20. madrid plazamayor puertadelsol cibeles cathedral callao metropolis parquedelretiro

21. venezia sanmarco rialto canal italy venice venice italia

22. philadelphia libertybell artmuseum cityhall logancircle citizensbankpark rittenhouse centercity

23. austin capital emos sxsw sxsw sxswi tower southcongress

24. dublin oconnellstreet bridge dublin dublincastle trinity christchurch storehouse

25. portland pioneersquare powells saturdaymarket chinesegarden japanesegarden fountain pdx

Table 2: The seven most photographed landmarks on Earth, and the top seven landmarks in each of the top 25 metropolitan-scale

areas, found using mean-shift clustering.

Rank Users Photos Most distinctive tags

1 35860 1204137 newyorkcity nyc newyork

2 29152 1122476 london england

3 25694 1115870 sanfrancisco california

4 18940 586203 paris france

5 17729 775061 losangeles california

6 12025 515884 chicago illinois

7 11834 571698 washingtondc dc washington

8 11346 535671 seattle washington

9 9839 243726 rome roma italy italia

10 9607 280549 amsterdam holland netherlands

11 9318 402658 boston massachusetts

12 9229 258926 barcelona spain

13 9132 304720 sandiego california

14 8369 236818 berlin germany

15 7652 206670 lasvegas vegas nevada

16 7438 112204 firenze florence italy italia tuscany toscana

20 6586 164454 madrid spain españa

47 3620 156693 montreal canada quebec

61 2731 131367 hongkong china

73 2312 122972 pittsburgh pennsylvania

121 1591 20319 yellowstonenationalpark yellowstone wyoming

151 1308 61971 mexicocity df mexico

202 951 27754 ithaca newyork ny

301 579 19551 iowacity iowa

374 383 9580 nassau atlantis bahamas cruise

441 291 4254 juneau glacier alaska

640 139 2411 beirut lebanon

800 85 3525 galapagos wildlife galapagosislands ecuador

933 58 709 laketiticaca southamerica titicaca uros peru puno

1000 49 608 bialystok białystok poland polska

Table 1: Clustering results at the metropolitan-scale, showing

the most photographed places on Earth ranked by number of

distinct photographers.

Most salient

58.2 agra tajmahal

49.4 córdoba cordoba

46.4 dubrovnik croatia

45.7 salamanca españa

44.2 blackrockcity burningman

42.0 ljubljana slovenia

38.5 corpuschristi texas

34.6 montsaintmichel saintmalo

33.5 grandcanyon grand

32.8 deathvalley death

31.8 firenze florence

31.8 kraków krakow

31.7 habana havana

31.1 venezia venice

29.9 jerusalem israel

29.7 praha prague

28.7 keywest key

28.2 chattanooga tennessee

28.0 rome roma

27.9 trogir split

Least salient

6.1 desmoines iowa

6.1 minneapolis minnesota

6.0 fremantle perth

6.0 bern suisse

5.9 rochester ny

5.9 brisbane queensland

5.9 frankfurt germany

5.8 brest finistère

5.8 amsterdam holland

5.7 newcastle durham

5.7 taichung taiwan

5.5 santiago chile

5.4 sanfrancisco california

5.0 maastricht aachen

4.9 adachi arakawa

4.7 miami florida

4.6 connecticut ct

4.1 hannover deutschland

3.7 graubünden schweiz

3.4 taipei taiwan

Table 4: Cities ranked according to saliency of landmarks.



Single photos Temporal

City Baseline Textual tags Visual tags Combined Textual tags Visual tags Combined

1. newyorkcity 10.00 50.90 44.52 66.41 52.98 54.69 70.28

2. london 10.00 55.96 42.96 67.71 57.12 52.27 70.38

3. sanfrancisco 10.00 53.49 37.76 63.96 56.37 52.04 70.64

4. paris 10.00 50.30 45.34 64.84 51.48 56.74 69.04

5. losangeles 10.00 58.76 33.33 63.10 60.54 44.80 65.73

6. chicago 10.00 55.86 42.40 66.81 58.54 51.73 70.36

7. washingtondc 10.00 48.01 42.17 61.55 49.43 53.33 65.28

8. seattle 10.00 56.36 38.92 65.11 58.72 50.66 69.14

9. rome 10.00 44.73 47.56 62.97 45.14 58.63 66.74

10. amsterdam 10.00 34.96 24.00 39.02 36.13 28.87 42.80

Cities 1-10 10.00 51.67 41.63 63.86 53.21 52.55 67.81

Cities 41-50 10.00 46.91 34.15 55.25 48.12 42.88 58.08

Cities 91-100 10.00 38.87 26.58 44.27 39.84 30.29 46.18

Cities 1-100 10.00 44.57 30.59 51.71 45.70 37.57 54.06

Cities 1-10 (25-way) 4.00 44.64 23.56 51.11 45.90 30.11 53.16

Cities 1-10 (50-way) 2.00 38.16 14.40 41.85 39.53 20.56 43.96

Table 3: 10-, 25- and 50-way landmark classification performance for the 100 most photographed metropolitan-scale areas.

by finding the most distinctive of the popular tags for the photos in

the peak. In particular, we discard any tags not occurring in at least

5% of the photos in the geographic cluster, and then sort the remain-

ing tags in decreasing order according to the ratio of the number of

photos in the cluster that have the tag to the total number of photos

in the dataset that have the tag.

It is striking how clean the textual descriptions produced by this

simple process are: for nearly all of the clusters, the first tag is a

city name, with the remaining tags indicating state and/or coun-

try. This is a consequence of ordering the tags by distinctiveness:

states and countries are more geographically expansive than cities,

so their tags are more geographically diffuse. Thus from estimates

of the largest modes of the distribution of where Flickr users take

geotagged photos, we are able to reconstruct not only the locations

of the most popular places but also highly accurate textual descrip-

tions.

Analyzing peaks at both the metropolitan and landmark scales,

in Table 2 we show the seven most photographed landmarks in each

of the top 25 cities, as well as the seven most photographed land-

marks overall on Earth. The textual tags shown were automatically

selected by choosing the most distinctive tag, as described above.

Most of these landmarks are well-known tourist attractions, but

some surprising results do emerge. For example, one striking result

is that the Apple Store in midtown Manhattan is the fifth-most pho-

tographed place in New York City — and, in fact, the 28th-most

photographed place on the face of the earth! Note that repeated

tags in the table indicate landmarks with multiple 100 meter-scale

hotspots, such as the three distinct hotspots in Austin related to the

South by Southwest festival (having tag “sxsw”).

Some cities seem to have a small number of landmarks at which

most photos are taken, while in other cities landmarks are less im-

portant. The magnitudes of the largest fine-scale peaks relative to

the coarse-scale peak reflect this difference — in particular we con-

sider the ratio of the sum of the ten largest fine-scale peaks to the

coarse-scale peak. Table 4 shows the 20 highest-ranked and 20

lowest-ranked metropolitan-scale areas according to this criterion.

Some popular tourist cities show up in the top rank such as Agra

(location of the Taj Mahal), Florence, Venice, Jerusalem, Prague

and Rome. However other popular tourist cities such as London,

Paris and New York have large numbers of photos not taken at

landmarks and thus are not ranked highly by this measure. Rural

attractions such as the Grand Canyon, Death Valley and Burning

Man also are ranked very highly. The bottom end of the list con-

tains places whose lack of dominant landmarks accords with intu-

ition, as well as a few locations where it is likely that Flickr usage

is sufficiently high among the resident population as to crowd out

landmarks that might otherwise be more dominant.

4. ESTIMATING LOCATION FROM

VISUAL FEATURES AND TAGS
We next turn to the task of determining where a photo is taken

based on both its visual features and any textual tags that are avail-

able. For these experiments we select a set of k landmarks and

build a model for each of them by training a classifier using photos

taken at the landmark versus those taken elsewhere. We have used

approaches based on both Bayesian classifiers and linear Support

Vector Machines (SVMs); the SVMs perform slightly better and

so we report those results here. In particular, we train a separate

SVM (using [10]) for each of the k landmarks, where the positive

exemplars are the photos taken in the landmark while the negative

exemplars are those taken in the k − 1 other landmarks. To per-

form geolocation classification on a given test photo, we run each

of the k classifiers on it and choose the landmark with the highest

score (greatest positive distance from the SVM’s separating hyper-

plane). We split our photo dataset into training and testing portions

by partitioning the set of photographers, which avoids the possibil-

ity that highly similar photos by the same user appear as both test

and training images.

4.1 Features
Each photo is represented by a feature vector consisting of vector-

quantized SIFT features [16] capturing visual image properties and

text features extracted from the textual keyword tags. In our ex-

periments we consider using only the image features, only the text

features, and both together. Image and text features have different

strengths and weaknesses. For instance visual features have the ad-

vantage that they are inherent to the photo itself, whereas textual

tags are only available if a human user has added them and even



then can be irrelevant to geoclassification. On the other hand, au-

tomatically finding and interpreting visual features is much more

challenging than interpreting textual tags.

Visual features. Invariant interest point detection has become a

popular technique for dealing with the dramatic variations in ap-

pearance of an object from one image to another. The idea is to

identify salient keypoints in an image that are likely to be stable

across a range of image transformations such as scaling, rotation,

and perspective distortion – corners, for example. For each interest

point a descriptor is also computed that characterizes the image re-

gion around an interest point in an invariant way. We use keypoints

detected by SIFT [16], which is among the most popular feature

point detectors in the recent computer vision literature. SIFT works

by convolving an image with a bank of Laplacian of Gaussian fil-

ters at several different scales, and identifying image points that are

extrema in both the spatial and scale dimensions of the filter bank

response. A subsequent verification step removes points along im-

age edges and in noisy low-contrast regions. Finally, an invariant

descriptor is computed based on the response to the filter bank and

an estimate of local image scale and orientation.

For a typical image, SIFT produces several hundred feature points.

The SIFT descriptor for each keypoint is a 128-dimensional vector

and has been found to be a highly distinctive representation of the

local image data [16]. While the visual similarity of a pair of im-

ages can be measured by comparing all pairs of SIFT descriptors

across the two images to find the most similar matching ones, this

does not scale well (for instance, [11] does not use SIFT features

for searching photo collections because of the computational cost).

A more scalable approach, taken in the object category recogni-

tion literature, is to use all the SIFT features in the training set to

create a “visual vocabulary” by vector quantization, generally us-

ing k-means. In our experiments we use k = 1000 and as in [3]

we sample a fixed number of keypoints per image, so that photos

with a large number of feature points are not represented dispro-

portionately during the clustering. The result is a set of 1,000 “vi-

sual keywords” with which we can label an image. Each image

is then represented by a 1000-dimensional vector indicating how

many times each SIFT “keyword” occurs in the image. That is, to

produce the feature vector for an image, we run the SIFT detector

and then find its visual words by locating the closest cluster in our

vocabulary for each of the detected interest points in the image.

We extracted the visual features from photos at Flickr’s medium-

scale image resolution, which is about 500 pixels on the larger

dimension. We found this image size to offer a good compro-

mise between performance and computational cost: using higher-

resolution images (1000 pixels on the larger dimension) did not

improve classification results significantly, while thumbnail images

(100 pixels on the larger dimension) were very fast but lowered

classification results by 10-20 percentage points. We also tried aug-

menting the local SIFT-based features with more global scene-level

visual features using the Gist operator [19], but found that this did

not improve our results significantly.

Textual features. We encode the textual features using a simple

unweighted vector space model. Any textual tag occurring in more

than 2 training exemplars is included as a dimension of the feature

vector (a multi-word tag corresponds to a single dimension). Tags

occurring 2 or fewer times are ignored, as they are seldom useful for

geolocation. If a given image includes a given tag, then the entry

in the corresponding feature vector is a 1 and otherwise it is a 0.

The dimensionality of the feature vectors depends on the number

of distinct tags that are found in the training set, but is typically

between 500 and 3,000 in our experiments.

Geolocation results. Table 3 presents classification results for the

ten most photographed landmark-scale locations in each of ten most

photographed metropolitan-scale regions. In each case the task is to

classify photos according to which of ten possible landmark-scale

locations they were taken in. To simplify interpretation of the re-

sults, the test sets were constructed so that each of the landmarks

had an equal number of photos; thus simply guessing uniformly at

random achieves a baseline classification rate of 10% correct. The

table shows that the correct classification rate using textual tags

varies from region to region, but is typically 4-6 times better than

the baseline. Using visual tags alone performs considerably worse

than using textual tags, but still outperforms the baseline by a fac-

tor of about 3 or 4. That visual tags underperform textual tags is to

be expected, considering that computationally extracting meaning

from visual features remains a challenging problem. The classifica-

tion rate differences between the baselines, visual classifier, textual

classifier, and combined classifier were all statistically significant

at p < 0.00001 according to Fisher’s Sign Test.

It is somewhat surprising that, despite the power of text features

alone over visual features alone, the two together outperform text

features alone by a significant margin. Some of this performance

gain is because some images do not have textual tags (as not all

photographers add them) whereas all images by definition have vi-

sual features. For example, of the New York City photos (the first

row of Table 3), 14% have no textual tags; and in fact if these pho-

tos are excluded from the test set, the performance of the textual

features on the remaining photos jumps from 50.90% to 62.51%.

However even on this set where all images have tags, visual fea-

tures still improve performance over tags alone, increasing accu-

racy from 62.51% to 71.34%. This illustrates that visual features

are useful even when people have added explicit textual tags to all

the photos.

We conducted this 10-way landmark classification task for each

of the top 100 cities, in an experiment that involved a total of over

two million test and training images. The results are shown in

the lower portion of Table 3. The conclusions of this experiment

echo those observed above for individual cities: textual tags per-

form nearly 5 times better than chance, visual tags perform 3 times

as well as chance, and the combination of features performs better

than either does individually. As shown in the table, the perfor-

mance on higher-ranked cities is generally better than on lower-

ranked cities which is in part due to the greater number of training

exemplars that are available in larger cities. (For example, the clas-

sification results for Amsterdam are poor because although it is the

tenth-most photographed city, relatively few photos are taken in

its top ten landmarks, as reflected by its low saliency score in Ta-

ble 4.) However this also raises the interesting possibility that there

are certain properties of the more highly photographed cities that

make them more easily classifiable visually.

Table 3 also shows results for the 25- and 50-way landmark clas-

sification task for the top 10 cities. The performance of the visual

classifier degrades roughly linearly as the number of landmarks in-

creases, or about 4-6 times better than chance. Surprisingly, the

textual and combined classifiers degrade quite slowly relative to

the baseline; at 50 landmarks, the classifier performs more than 20

times better than chance. We do not report results for all 100 cities

because most of the lower-ranked cities do not have a sufficient

number of Flickr photos at their less salient landmark locations.

An analogous experiment can be performed for the top landmark-

scale locations of Earth (which are listed on the first line of Table 2).

For ten landmarks, the classification performance is 69.39% using



text features, 46.28% using image features and 79.59% using the

two combined; for fifty landmarks, the respective correct classifica-

tion rates are 52.67%, 25.43%, and 59.39% (the latter of which is

nearly 30 times better than the baseline). It is perhaps not surpris-

ing that text tags are even more valuable here, as tags such as the

name of a city or country are more informative when the landmarks

are geographically disparate. On the other hand the visual features

perform comparably on this problem as for the metropolitan-scale

problems, suggesting that landmarks across the globe are not visu-

ally more distinctive than those within a given city.

Finally we consider the ability to estimate the location of more

geographically disperse areas than specific landmarks. We use the

same training and classification paradigm, but for clusters of pho-

tos at the metropolitan-scale rather than the landmark-scale. Tex-

tual tag features remain quite distinctive at this scale and hence

perform well, giving a correct classification rate of 56.83% on the

10-way problem. Visual features, on the other hand, are not use-

ful, performing comparably to chance (12.72%) on their own and

not improving the text-only results when used in combination. This

result is intuitive: there is relatively little that visually separates a

typical scene in one city from a typical scene in another. These re-

sults support the use of image features for classification of spatially

local landmarks rather than identifying where on the globe photos

were taken.

5. ADDING TEMPORAL INFORMATION
Time provides another dimension along which photographs can

be connected together. That photos are taken at the same time is

not in itself a strong connection – dozens of unrelated photos are

taken within seconds of one another in our dataset. However, pho-

tos taken at nearby places at nearly the same time are very likely to

be related. In this section we show that temporal information can

be exploited both to recover interesting facts about human behavior,

and to geolocate photos more accurately.

Sequences of photos for which we know both the location and

time of capture can give fascinating insight into the way that people

move and interact. Geotagged and timestamped photos on Flickr

create something like the output of a rudimentary GPS tracking de-

vice: every time a photo is taken, we have an observation of where

a particular person is at a particular moment of time. By aggre-

gating this data together over many people, we can reconstruct the

typical pathways that people take as they move around a geospatial

region. For example, Figure 1 shows such diagrams for Manhat-

tan and the San Francisco Bay area. To produce these figures, we

plotted the geolocated coordinates of sequences of images taken by

the same user, sorted by time, for which consecutive photos were

no more than 30 minutes apart. We also discarded outliers caused

by inaccurate timestamps or geolocations. In the figure we have

superimposed the resulting diagrams on city maps for ease of visu-

alization.

The figures are striking in the amount of detail they reveal about

these cities. For example, one can clearly see the grid structure of

the Manhattan streets, caused by users traveling and taking photos

along them. The Brooklyn Bridge, in the lower center of the figure,

is clearly visible, as are the Manhattan and Williamsburg bridges

just to the north. One can even see the route of the ferries that take

tourists from Lower Manhattan to the Statue of Liberty.

Improving classification performance. Given the strong connec-

tion between space, time, and images, it is natural to revisit the

landmark classification problem of the last section, adding tempo-

ral information in addition to the textual and visual features. We

integrate temporal information directly into the classification pro-

cedure as follows. In classifying a photo, we also examine the pho-

tos taken by the same photographer within 15 minutes before and

after the picture was taken. For each of these photos, we compute

the classification distances for each of the k SVM classifiers, sum

the scores from the different images together to produce a single k-

vector, and then make the classification decision using that vector.

The motivation behind this simple technique is that photos taken

within a short period of time are often different shots of the same

landmark. Thus the textual and visual features of contemporaneous

photos are likely to be relevant in performing landmark classifica-

tion.

Table 3 compares the performance on the landmark classification

task with and without using this temporal information. For the clas-

sifiers that use only textual tags, the improvement is small (though

statistically significant, at p < 0.00001): many Flickr users appear

to label groups of consecutive photos with the same tags, and so

tags from contemporaneous frames do not provide much additional

information. For the visual tags, however, temporal information

improves the results dramatically. In the case of New York City,

for example, the improvement is over ten percentage points. This

is also an intuitive result, though striking in the actual magnitude

of the performance gain: photographers take multiple pictures of

the same landmark in order to capture different viewpoints, light-

ing conditions, subjects, etc., and thus neighboring frames provide

nonredundant visual evidence of where the photos were taken. In

fact, for several of the cities including New York, Paris, Washing-

ton, and Rome, the temporal-visual features actually outperform

the temporal-textual tag features. For all of the cities the best per-

formance is achieved by using the full combination of textual, vi-

sual, and temporal information.

6. REPRESENTATIVE IMAGES
Given our ability to automatically find and generate textual de-

scriptions of cities and landmarks, it is natural to ask whether it is

possible to extract visual descriptions as well. That is, given a set

of photos known to be taken near a landmark, we wish to automat-

ically select a canonical image of the landmark. This problem is

non-trivial because the subject of most photos taken near a land-

mark is actually not the landmark itself, so simple techniques like

random selection do very poorly.

To choose a canonical image we once again exploit the informa-

tion revealed by the collective behavior of Flickr users. People take

photos because they think a subject is visually interesting, pleasing,

or distinctive: it is as if photos of a landmark are votes for what the

visual representation of the landmark should be. Thus we find rep-

resentative images by looking for subsets of photos that are visually

very similar, and choosing an image from among the most salient

subset.

As in [22], we pose canonical image selection as a graph prob-

lem. We construct a graph in which each node represents a photo

and between each pair of nodes is an edge with a weight indicating

the degree of visual similarity between the two photos. Our goal

is then to find a tightly-connected cluster of photos that are highly

similar. To do this we use a spectral clustering technique [21] that

partitions the nodes of the graph using the second eigenvector of

the graph’s Laplacian matrix. Finally, we choose as the canonical

image for each cluster the one corresponding to the node with the

largest weighted degree.

The main difference between our approach and that of [22] is that

we are not interested in reconstructing or using detailed 3-d infor-

mation about a landmark, but rather in finding canonical images for

each landmark among vast amounts of data. Thus we use an image

similarity technique that is less precise than their method, in that it



Figure 1: Visualization of photographer movement in Manhattan and the San Francisco Bay area.

does not enforce any 3d-geometric consistency, but is computation-

ally feasible for thousands of landmarks with thousands of photos

per landmark. Following [22] we extract SIFT interest points and

descriptors from each image. We then simply use the number of

“matching” interest points between a pair of images as a measure

of similarity, where matches are determined using the Euclidean

distance between SIFT descriptors.

Figures 2 and 3 present maps of representative images for the

top landmark in each of the top 20 North American and European

cities. All parts of the map were generated automatically using the

techniques presented in this paper: the metropolitan- and landmark-

sized clusters were found using the mean shift technique of Sec-

tion 3, the textual descriptions were formed by concatenating the

most distinctive textual tag of the landmark with that of the city,

and the representative images were chosen using the method pre-

sented in this section. Even the map itself was drawn automatically,

by simply plotting the raw latitudes and longitudes of all photos

geotagged within North America. The result is a strikingly accu-

rate map of the continent: land boundaries are easily recognizable

(presumably due to the large number of photos taken at beaches),

and one can easily see hotspots of photo activity corresponding to

cities and even major transportation arteries (such as the interstate

highways crossing the U.S. from east to west). Thus we see that

while individual users of Flickr are simply using the site to store

and share photos, their collective activity reveals a striking amount

of geographic and visual information about the world.

We have generated representative images for many of the top

cities and landmarks of the world; these results are available at

http://www.cs.cornell.edu/~crandall/photomap/.

7. RELATED WORK
Our work is motivated by and builds on recent results both in the

computer vision research community and in the Web and digital

libraries research community (as already mentioned in the previ-

ous sections). In particular we take much of our motivation from

the work of [9] and [11]; both of these papers have similar goals

of combining geospatial information with content for organizing

photo collections, with the former paper considering just image

content and the latter considering both images and text tags. While

pioneering papers, these works each have limitations that prevent

them from being scaled up even to the tens of millions of images

from around the globe that we consider here, much less the hun-

dreds of millions of geotagged images on photo sharing sites.

In [9] the authors propose the challenging problem of estimating

where a photo was taken based only on its image content. They cre-

ate a dataset of over 6 million geotagged photos by searching photo

sharing sites for tags such as names of cities and tourist sites. They

then characterize each photo using a number of image features such

as the gist operator [19], color and line features, and scene attributes

such as surface orientations. They then manually choose a set of

237 test images taken by photographers whose photos were not in-

cluded in the previous dataset. Using nearest-neighbor techniques

on vectors composed of the image features, they estimate a location

for each test image and measure the error compared to the (hidden)

true location. They find that this results in substantial improvement

compared to a random-guessing baseline, although the actual mag-

nitudes of the spatial errors are generally quite large for any practi-

cal application to photo organization. While [9] uses a set of over 6

million images, it is difficult to conclude how general their results

are because they are based only on 237 hand-selected photos, and

their methods do not scale to large evaluation sets. In contrast we

automatically find thousands of interesting locations, see how well

each can be localized using both image properties and text proper-

ties alone and together, and report statistically significant results.

In [11] the authors address the problem of searching a collection

of geolocated images, using a combination of spatial, text tag and

image content features. While like our work they consider the rela-

tive value of text tags versus image attributes for localization, their
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Figure 2: Representative images for the top landmark in each of the top 20 North American cities. All parts of the figure, including

the representative images, textual labels, and even the map itself were produced automatically from our corpus of geo-tagged photos.

methodology is based on qualitative user assessments of just 10 lo-

cations in a single geographic area (San Francisco) and using only

about 110,000 photos, again making it difficult to generalize their

results. Their method also does not scale well to a global image

collection, as we discussed in Section 3. There is a considerable

earlier history of work in the Web and digital libraries community

on organizing photo collections; however those papers in general

make little or no use of image content (e.g., [1]) and again do not

provide large-scale quantitative results.

8. CONCLUSIONS
In this paper we introduce techniques for analyzing a global col-

lection of geo-referenced photographs, and evaluate them on nearly

35 million images from Flickr. We present techniques to automat-

ically identify places that people find interesting to photograph,

showing results for thousands of locations at both city and land-

mark scales. We develop classification methods for predicting these

locations from visual, textual and temporal features. These meth-

ods reveal that both visual and temporal features improve the ability

to estimate the location of a photo compared to using just textual

tags. Finally we demonstrate that representative photos can be se-

lected automatically despite the large fraction of photos at a given

location that are unrelated to any particular landmark.

The techniques developed in this paper could be quite useful in

photo management and organization applications. For example, the

geo-classification method we propose could allow photo manage-

ment systems like Flickr to automatically suggest geotags, signif-

icantly reducing the labor involved in adding geolocation annota-

tions. Our technique for finding representative images is a practical

way of summarizing large collections of images. The scalability of

our methods allows for automatically mining the information latent

in very large sets of images; for instance, Figures 2 and 3 raise the

intriguing possibility of an online travel guidebook that could au-

tomatically identify the best sites to visit on your next vacation, as

judged by the collective wisdom of the world’s photographers.

In this paper we have focused on using geospatial data as a form

of relational structure, and combining that with content from tags

and image features. An interesting future direction is to relate this

back to the explicit relational structure in the social ties between

photographers. Preliminary investigation suggests that these can

be quite strongly correlated — for example, we observe that if two

users have taken a photo within 24 hours and 100 km of each other,

on at least five occasions and at five distinct geographic locations,

there is a 59.8% chance that they are Flickr contacts.
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Figure 3: Representative images for the top landmark in each of the top 20 European cities. All parts of the figure, including the

representative images, textual labels, and even the map itself were produced automatically from our corpus of geo-tagged photos.
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