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Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest 

may be characterized by power spectral distribution (PSD) trends of the form 1/f α. Trends with 

1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple 

time scales. Estimates of the fractal properties enable the quantifi cation of phenomena that 

may otherwise be diffi cult to measure, such as transient, non-linear changes. In this study 

it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes 

related to dynamic, multi-scale alterations in cerebral blood fl ow (CBF) after a transient 

hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before 

and after hyperventilation. Different variables (1/f trend constant α, fractal dimension D
f
, and, 

Hurst exponent H) characterizing the trends were measured from BOLD signals. The results 

show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even 

during the dynamic CBF change that follows hyperventilation. The most dominant effect on 

the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-

reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. 

D
f
 was most sensitive to grey matter. H correlated with default mode network areas before 

hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In 

the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used 

for analyzing multi-scale alterations of cerebral blood fl ow.
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et al., 2009; Maxim et al., 2005). The Hurst exponent (H) and the 

fractal dimension (D
f
) have been used to estimate the scale invari-

ant features of the time series. According to Sprott (2003), the H 

and D
f
 are related to α by equations α = 2H − 1 and α = −2D

f
 + 3 

in fGn model. The H is most often used as it can describe the most 

essential scaling properties of a temporal signal on a scale from 0 

to 1. D
f
 on the other hand can be used to describe the high dimen-

sionality of the structure with a scale in theory from 0 to infi nitum 

(in practice from 0 to 3, Herman et al., 2009).

Theoretically, BOLD signal fl uctuations form as an interference 

of physiological processes affecting the deoxyhemoglobin level in 

the cortex (Kiviniemi, 2008). Spontaneous low frequency fl uctua-

tions (LFF) affecting the cerebral cortex, i.e. vasomotor, pCO
2
, elec-

trophysiologic and metabolic fl uctuations all affect the detected 

T2*-weighted signal (Kannurpatti et al., 2008; Laufs, 2008; Obrig 

et al., 2000; Pattison et al., 2009; Shmuel and Leopold, 2008). It has 

been shown that sedation, blood withdrawal and brain diseases 

all increase low frequencies of BOLD fl uctuations in a wide range 

and alter 1/f trends (Kannurpatti et al., 2008; Kiviniemi et al., 2005; 

Zang et al., 2007). Metrics measuring multiscale effects in BOLD 

signal 1/f trends have high potential for giving crucial information 

on the dynamics of the brain cortex.

In this study, we aim to fi nd a suitable metric for characteriz-

ing dynamic multi-scale changes in cerebral blood fl ow. We used 

INTRODUCTION

Natural phenomena, from coastline dimensions to organization of 

brain functional connectivity, incorporate self-similarity; i.e. the 

proportional characteristics of the observed variables resemble each 

other in multiple scales (Mandelbrot, 1975; Maxim et al., 2005; van 

den Heuvel et al., 2008; Wink et al., 2008). The latin word fractus 

(engl. broken), was fi rst used by Mandelbrot to describe the whole 

phenomenon as being based on these repeatable small pieces, as if 

they were broken parts of the whole (Mandelbrot, 1975).

Fractal temporal signals have power spectrum characteristics fol-

lowing a 1/f trend (Herman et al., 2009; Maxim et al., 2005; Sprott 

et al., 2003). Functional magnetic resonance imaging (fMRI) can 

provide temporal signals refl ecting the blood oxygenation level 

(BOLD) contrast with T2 and T2*-weighted image sequences 

(Ogawa et al., 1990). In the absence of cued stimuli, the BOLD signal 

variations in the brain follow a power spectral distribution (PSD) 

trend 1/f α, where f is the frequency and α is an index describing the 

trend (Biswal et al., 1995; Kiviniemi et al., 2000, 2005; Purdon and 

Weisskoff, 1998; Zarahn et al., 1997). In the frequency domain, the 

parameter α (also often referred to as the spectral index β) describes 

the PSD trend slope on a logarithmic scale.

Fractal signals fall into two categories, depending on whether 

they have a stable (fractional Brownian motion, fBm), or a time 

dependent variance (fractional Gaussian noise, fGn) (Herman 
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hyperventilation to induce a transient cerebral blood fl ow (CBF) 

reduction. A transient CBF reduction also alters the vasomotor fl uc-

tuations dynamically in several temporal scales; i.e. the fl ow returns 

towards a normal level within minutes, and the increased vasomo-

tor waves gradually return towards the original level (Kannurpatti 

et al., 2008). We hypothesize that differences in metrics measuring 

the 1/f trends (α, H, D
f
) could be used to localize the effects of the 

dynamic CBF alterations in the brain cortex. In the analysis of 1/f 

fractal properties, the temporal stability of variance, i.e. the fBm or 

fGn nature of the signal, should be examined and accounted for. 

Therefore we also investigated whether fBm or fGn model based 

analysis methods would be more accurately matched with grey 

matter signal behaviour.

MATERIALS AND METHODS

SUBJECTS, EXPERIMENTAL SETUP AND IMAGING PROCEDURE

Twenty-three healthy student volunteers (six females, mean age 

25 ± 3 years) were imaged in rest with closed eyes in normal 

ad liberam ventilation before and after 2 min of hyperventila-

tion. The study was approved by the Ethics Committee of the 

University of Oulu, and each subject gave written informed con-

sent. The imaging was performed by a 1.5-T General Electric 

Signa HDX scanner using 8-channel head coil with a parallel 

imaging acceleration factor of 2. Hearing was protected using 

earplugs, and motion was minimized using soft pads fi tted over 

the ears. Two separate scanning sessions were performed, one 

before (Pre-HV) and one after hyperventilation (Post-HV) using 

GR EPI sequence with 1764 ms TR, 40 ms TE, 90° fl ip angle, 

25.6 cm × 25.6 cm FOV and 64 × 64 image matrix. The whole 

brain volume was covered using 28 slices, with 0.4 mm space 

between slices and a 4 mm slice thickness. 250 brain volumes, 

lasting 7 min 21 s, were collected after exclusion of the fi rst three 

volumes due to T1 equilibrium effects. In addition to resting-

state fMRI, T1-weighted 1 mm3 voxel scans were taken with 3D 

FSPGR BRAVO-sequence in order to obtain anatomical images 

for segmenting the brains and for co-registration of the fMRI 

data to standard space coordinates.

PHYSIOLOGICAL MEASUREMENTS AND HYPERVENTILATION 

PROCEDURE

The subjects were monitored with a Schiller Maglife C 400G MRI-

compatible anaesthesia monitor. Expiratory end tidal CO
2
 (ETCO

2
) 

was measured from an MRI-dedicated ventilation mask. Peripheral 

blood oxygen saturation (SpO
2
) and heart rate (HR) were measured 

from the right index fi nger tip. Diastolic (DP) and systolic (SP) 

blood pressure were measured from the left arm using an auto-

mated cuff. The measurements were taken before the fi rst resting-

state scans, and during the last 15 s of the hyperventilation periods 

before the second resting-state scans. DP and SP were successfully 

collected from 16 subjects; hyperventilation-related motion arte-

facts prevented the automated measurement of blood pressure in 

seven subjects prior to the second scan.

During hyperventilation, the subjects were instructed to breathe 

forcefully as deeply and as quickly as they could for 2 min. The 

physiological measurements were repeated at the end of hyperven-

tilation just before the start of the second resting state. During each 

of the scans the subjects breathed spontaneously. One of the authors 

(VK) gave the instructions, and monitored the subjects beside the 

scanner throughout the duration of scanning sessions.

To ascertain that hypocapnia was induced by hyperventilation, 

the group level differences of normal ventilation and hyperventila-

tion-induced state in physiological measurements (ETCO
2
, SpO

2
, 

HR, DP and SP) were evaluated with paired t-test (states Pre and 

Post respectively; Table 1). SPSS software version 14.0 was used for 

the data processing.

PROCESSING OF STRUCTURAL BRAIN IMAGES

The 3D FSPGR images were co-registered with the fMRI datasets of 

corresponding subjects and with a Montreal Neurological Institute 

(MNI) standard structural space template (avg152T1 template 

included in FSL) to produce transformations for spatial normali-

zation of the fMRI results. FSL 4.0 FLIRT with default settings was 

used for registrations. The brain was extracted from the 3D FSPGR 

and BOLD images prior to registrations with the FSL 3.3 BET tool 

(f = 0.25 and f = 0.5 respectively, g = default).

Grey matter (GM), cerebrospinal fl uid (CSF) and white mat-

ter (WM) were segmented from the original brain-extracted 3D 

FSPGR data using the FAST segmentation tool in FSL 4.0 (default 

settings). The resulting subject-specifi c probabilistic segment maps 

were co-registered to MNI-templates with the same transforma-

tions as whole-brain structural images.

Registered segments and whole-brain structural images were 

averaged to produce group level mean segments and anatomy for 

overlaying the fMRI results on them, and for correlating the fMRI 

results with them. Whole-brain structural images were intensity-

normalized prior to averaging by dividing their intensities with 

their mean intensity.

fMRI PRE-PROCESSING

Brain extraction was carried out for BOLD images with FSL 3.3 BET 

using f = 0.5. Motion was corrected using the FSL 3.3 MCFLIRT. 

All the subjects exhibited less than 1.5 mm motion, and the mean 

motion of volumes relative to the previous time point was tested to 

be not statistically signifi cantly different between the scans before 

and after hyperventilation. As motion affects the BOLD signal 

(Friston et al., 1996), and especially its PSD (Maxim et al., 2005) 

even after motion correction, the movement-related confounding 

effects were removed from the BOLD signal time courses accord-

ing to Friston and co-workers, using motion parameter estimates 

produced by MCFLIRT, in-house developed Matlab software and 

FSL 4 fsl_regfi lt tool.

ESTIMATION OF VARIABLES α, H AND D
f

All brain BOLD signal time courses were detrended by fi tting 

a + b × t to them (where t is time). 128-point Discrete Fourier 

Transformations (DFTs) were computed for 123 128-points wide 

rectangular windowed sections of detrended time courses. Sections 

were overlapped by 127 points. Rectangular windowing was used in 

DFT with a spectrogram function in Matlab. As fMRI time courses 

are real-valued, their amplitude spectra are positively symmetric, 

and phase spectra are negatively symmetric with respect to Nyquist 

frequency. Consequently, we only used the fi rst N/2 + 1 coeffi cients 

of N-point DFT. As a result, 64 DFT coeffi cients were obtained for 

each 128-point section. PSDs were estimated as second powers of 
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are denoted by D
fH,

 and the values estimated with the modifi ed 

algorithm by D
fHmedian

.

ANALYSIS OF BOLD DATA USING VARIABLES α, H AND D
f

The estimation resulted in variables α, H
DOSD

, H
WDOSD

, H
FWD

, D
fH

 

and D
fHmedian

 for each voxel for the states of normal (state Pre) and 

hyperventilation-modulated CBF (state Post). Subject-level brain 

maps of these values were spatially normalized using transforma-

tions obtained from co-registration of 3D FSPGR to the original 

BOLD data and MNI template (c.f. “Processing of structural brain 

images”).

After spatial normalization, we tested on the group level whether 

each variable in each voxel (i.e. MNI standard space coordinate) 

exhibited a statistically signifi cant change between the states. The 

testing was done with a T-statistic in a permutation test framework. 

The randomise tool in the FSL software was used with 10,000 per-

mutations and with threshold-free cluster-enhancement (TFCE) 

for multiple comparisons correction. TFCE (Smith and Nichols, 

2007) does not require cluster-level thresholds, making the results 

independent of any bias due to arbitrary cluster-forming thresh-

old selection. Since TFCE enhances areas with values exhibiting 

spatial contiguity, it should be suitable for use in this study since 

we expected those values (changes of variables α, H and D
f
) to be 

extensively present and quite uniform in GM. Randomise was run 

separately for positive and negative changes between the states: 

1-sample testing was used on Post minus Pre, and Pre minus Post 

variable values of all patients in each voxel, resulting effectively in 

2-sample paired testing.

The resulting group level 1-p maps describing corrected p- values 

were spatially correlated to probabilistic group level mean tissue 

segment maps with the FSL 4 fslcc-tool (Table 2). Confi dence 

intervals (CI) for correlation coeffi cients were calculated using 

normality transformation. This shows how sensitively and specifi -

cally changes from baseline resting-state values of variables due to 

altered CBF correspond to GM, and thus how potent these changes 

are as temporal feature contrasts in detecting changes in CBF. For 

variables α and H, the correlation was calculated using 1-p maps 

corresponding to testing of Post minus Pre values, and for D
f
-vari-

ables using 1-p maps corresponding to testing of Pre minus Post 

values, since these are the dominant directions of change in these 

variables (Figures 2–4).

RESULTS

Physiological variables such as ETCO
2
, HR and DP changed signifi -

cantly between the states (p < 0.01; Table 1), while SpO
2
 and SP did 

not. The signifi cant change of ETCO
2
 agrees with the assumption 

that an hypocapnic state was achieved with the hyperventilation 

procedure.

Figure 1 shows mean FFT power spectra of probabilistic seg-

ments of the brain cortex. In all of the spectra, the power at the 

lowest frequencies is elevated, clearly altering the shape of the power 

spectrum rather than elevating any single frequency. The lowest 

frequency trends prevail after removing the signal trends suggestive 

of dynamic changes in BOLD variance throughout the POST-V 

scan.

Figure 2 illustrates the mean α, H and D
f
-histograms of 

the segmented brain voxels. Fractional Brownian motion and 

amplitude spectra (divided by the number of samples and sampling 

frequency). The fi nal PSD estimate for a time course was computed 

by averaging PSDs from individual sections. The averaging reduces 

noise related to the selection of the sampling period (Ifeachor and 

Jervis, 2002), but works under the assumption of at least some 

stationarity in the signal.

The actual 1/f α PSD trend of individual BOLD time courses were 

modelled through α by fi tting a + b × f −α to their PSD (Kiviniemi 

et al., 2000, 2005). The Ezyfi t 3rd party toolbox1 (version 2.04, 

default settings) was used for fi tting the model to individual PSDs 

(initial values a = 0, b = 1, α = 0).

For estimation of the Hurst exponent H and fractal dimension 

D
f
, both original and integrated versions of the detrended BOLD 

time courses were used as inputs for the estimation algorithms. The 

value at each time point in an integrated time course is a sum of the 

values at corresponding and previous time points in an original, 

detrended BOLD time course. This way the estimation of H and 

D
f
 assumes fractional Gaussian model (fGn) of underlying BOLD 

PSD trends, which has been shown to be a fi t description of rest-

ing-state BOLD data corrected for motion-related confounding 

effects (Maxim et al., 2005). In the fractional Brownian motion 

(fBm) model analysis, the original BOLD time courses were used 

as was earlier suggested by Maxim et al. (2005).

Three estimates of H were computed from integrated BOLD 

signals with the Matlab function wfbmesti. One estimate given 

by this function is based on discrete the second-order derivative 

(DOSD) method (Istas and Lang, 1994) and another on the wave-

let-based version of DOSD. A third one uses the linear relationship 

that exists on a double-logarithmic scale between the variance of 

details produced by wavelet transformation and the corresponding 

detail level (Flandrin, 1992). These three estimates are later denoted 

as H
DOSD

, H
WDOSD

 and H
FWD

.

One estimate of D
f
 was calculated from integrated BOLD sig-

nals according to Higuchi. This method has been demonstrated to 

give stable estimates with limited data (Higuchi, 1988; Klonowski, 

2007), which is also the case regarding the length of BOLD time 

courses. The procedure involves computing a curve length (line 

integral) of the original time course and average curve lengths of 

its down-sampled versions. Down-sampled versions of time courses 

are used to extract information about signal characteristics on dif-

ferent scales. The curve lengths constitute a line when plotted on a 

double-logarithmic scale (base 10) against the lengths (k) of cor-

responding down-sampling intervals. The absolute value of the 

slope of the line is the fractal dimension.

Individual average curve lengths may be sensitive to outliers. If 

there is a wave form present on one scale, but not on others (i.e. 

some deterministic pattern that would yield a spike in the PSD 

that does not follow the general underlying trend of that PSD), this 

could bias the line fi t in a double-logarithmic coordinate system. 

In other words, the original algorithm of Higuchi could be sensi-

tive to distinct BOLD fl uctuations with large enough amplitude. 

In order to overcome this problem, we investigated the use of 

median instead of mean curve lengths on different time scales, 

since median is more insensitive to individual large outliers. From 

here on, the values of D
f
 estimated with the original algorithm 

1www.fast.u-psud.fr/ezyfi t

www.fast.u-psud.fr/ezyfit
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Gaussian noise hypotheses were both used to calculate the D
f
 

and H  metrics. The α-values stay within −1 < α < 1-limits, show-

ing that the variance is not time dependent, and therefore the 

BOLD signal in both states matches with an fGn model rather 

than an fBm model. Also regarding the fGn model, D
f
 estimated 

from integrated BOLD time courses varied between 1 and 2, 

and H between 0 and 1, as they should. The histograms of fBm 

measurements both in D
f
 and H show no signifi cant difference 

between the pre and post- hyperventilation scans, also pointing 

to the same conclusion. Based on the fi ndings, we chose to use 

the fGn model in the following estimations of the metrics. The 

median yields even greater separation between the states in D
f
 

measurements.

The mean values of α, H and D
f 
based on the fGn model from 

mapped probabilistic regions of interest are shown in Table 2. The 

changes are in line with the idea that hyperventilation related blood 

fl ow reduction transiently increases in low frequency fl uctuation. 

There were signifi cant changes detected between the pre and post-

hyperventilation scans in α, H
FWD

, D
fH 

and D
fHmedian

 in the selected 

ROI’s. DOSD and wavelet DOSD values were not signifi cantly 

altered.

The group level mean maps of estimated α showed a signifi cant 

change in cortical structures between pre and post-hyperventila-

tion scans (Figure 3). Please note that in the normal status, the 

cerebral blood vessel-related pulsation of the major cerebral arteries 

dominate the α values with the given threshold. After hyperventi-

lation, the arterial pulsation dynamics completely alter and a low 

frequency fl uctuation in the cortex becomes a dominant source of 

the α contrasted map.

Unlike the α plots, the D
f 
values are quite uniform over the whole 

brain in normal ventilation (Pre-HV), c.f. Figure 3. The fractal 

dimension, in contrast to both α and H, is reduced during reduced 

blood fl ow in the brain cortex after hyperventilation, as predicted. 

The D
fHmedian

 version of the D
f 
analysis is more sensitive to grey 

matter changes than the version using mean D
fH,

 c.f. Figure 3. This 

is in line with the histogram results in the Figure 2, showing more 

differentiation between the two conditions.

Interestingly, the H presented focusing on the ventromedial 

frontal, parieto-occipital and precuneal cortices similar to default 

mode regions, as well as visual cortices in occipital lobe (Fox and 

Raichle, 2007). Also the H
FWD

 analysis was highly sensitive to dif-

ferences in the BOLD signal between pre and post-hyperventila-

tion scans; following hyperventilation the H increased throughout 

the cortex and the default mode-pattern vanished with the given 

thresholding, c.f. Figure 3.

Table 3 shows how well 1-p maps describing the signifi -

cance of variable changes between states (Pre and Post), spatially 

 correlated with GM, CSF and WM. There was a strong anatomical 

Table 1 | Group level mean values and standard deviations of physiological measurements in the state of normal ventilation (Pre), and the 

hyperventilation-modulated state (Post), and the statistical signifi cance of differences of group level changes between the states.

 Pre Post Signifi cance*

 Mean SD Mean SD t p

ETCO
2
 (kPa) 3.3 1.3 1.1 0.6 10.4a < 0.001

SpO
2
 (%) 97 1.8 98 3.5 −1.4a 0.175

Heart rate (1/min) 71 14 104 19 −7.1a < 0.001

BLOOD PRESSURE

Diastolic (mmHg) 99 22 107 26 −3.5b 0.003

Systolic (mmHg) 84 25 91 30 −2.0b 0.064

*Paired t-test (two-tailed signifi cance).
adf = 22, bdf = 15.
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FIGURE 1 | The grey (GM), white (WM) and cerebrospinal fl uid (CSF) 

mean power spectral before (pre in black) and after (post in red) 

hyperventilation, showing the elevation of the power at the lowest 

frequencies and the altered PSD confi guration after hyperventilation.
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similarity between a change of all variables (α, H, D
f
), although 

DOSD-method based estimates of H performed poorly in every 

way. The confi dence intervals in the r-values are very small relative 

to the differences between the r-values with the ∼2.9 × 105 voxels 

in the analysed ROI. Therefore all the differences between the r-

values are signifi cant in Table 3. Quantitatively, variables α, D
fH, 

D
fHmeadian

 and H
FWD

 provide quite similar accuracy for mapping 

the effects of CBF change within the brain cortex. However, some 

qualitative differences in the spatial distribution of the detected 

alterations do exist.

Figure 4 shows statistically signifi cant (p < 0.05, TFCE cor-

rected) changes of variables α, H
FWD

, D
fH

 and D
fHmedian

 overlaid on 

the probabilistic GM segment. In line with the quantitative meas-

ure of spatial correlation of probabilistic segment maps of GM, 

WM and CSF (Table 2), the most signifi cant changes of variables 

were detected in GM, in agreement with the BOLD signal origin. 

Concerning sensitivity to GM, the change of D
fHmedian

 provided 

the contrast best coinciding with it. α provided the second best 

 contrast in this sense, while H
FWD

 and D
fH

 had performances similar 

to each other. However, sagittal views revealed that, in general, no 

variable changed signifi cantly in the occipital cortex around the 

visual cortex or at susceptibility artefact areas near the mastoid 

and frontal sinuses.

According to the sagittal view in Figure 4, there is a lack of 

signifi cant change in the metrics in the visual cortex, precuneus, 

temporal cortex. Changes in the superior temporal areas in D
fH

, 

D
fHmedian

 and H
FWD

 are not detected as clearly as in α. These results 

indicate that changes of variables are not uniform throughout the 

cortex. Accordingly, the spatial correlation results (Table 3) remain 

clearly below the identical correlation of 1. Interestingly, the BOLD 

signal trends alter signifi cantly along major blood vessel structures, 

also suggesting vasomotor changes. Also a spot in the bilateral hip-

pocampi was noticeable in all the measures, but it was not uniform 

through the limbic regions.

FIGURE 2 | Group mean histograms of α, D
f
 and H

FWD
 of the whole brain. The fBm and fGn model options were both assessed for D

f
 and H.
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FIGURE 3 | Group mean images α (hot-cold), D
fH

,
 
and D

fHmeadian
 (red) and H

FWD
 (green) in the brain during the state of normal ventilation (Pre-HV, on the left) 

and after hyperventilation (Post-HV, on the right) were overlaid on an MNI-coordinated grey matter template image. The range of color-encoding of each 

metric is shown in the middle of the image.

Table 2 | Mean (SD) metrics based on the fGn model of grey matter, white matter, and CSF, before and after hyperventilation.

 Pre Post t p

 Mean SD Mean SD

ALPHA

 Grey −0.068 0.182 0.207 0.310 −3.748 0.001

 White −0.128 0.153 0.090 0.296 −3.204 0.004

 Csf −0.190 0.340 0.127 0.315 −3.805 0.001

D
fH

 Grey 1.742 0.046 1.690 0.072 2.626 0.015

 White 1.759 0.045 1.713 0.070 2.452 0.023

 Csf 1.747 0.044 1.692 0.066 3.019 0.006

D
fHmedian

 Grey 1.693 0.049 1.616 0.090 3.346 0.003

 White 1.715 0.048 1.646 0.085 3.176 0.004

 Csf 1.700 0.046 1.619 0.077 4.065 0.001

H
dosd

 Grey 0.608 0.054 0.624 0.058 −1.419 0.170

 White 0.578 0.035 0.587 0.041 −1.118 0.276

 Csf 0.593 0.081 0.613 0.073 −1.386 0.179

H
fdw

 Grey 0.370 0.043 0.428 0.086 −2.894 0.008

 White 0.336 0.043 0.385 0.081 −2.587 0.017

 Csf 0.356 0.042 0.423 0.075 −3.837 0.001

H
wdosd

 Grey 0.596 0.054 0.600 0.056 −0.374 0.712

 White 0.562 0.036 0.565 0.039 −0.416 0.681

 Csf 0.586 0.078 0.591 0.074 −0.397 0.695

p, signifi cance of paired t-test.
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DISCUSSION

In this study, BOLD signal power spectrum estimates α, H and 

D
f
 were found to alter signifi cantly between scans taken before 

and immediately after 2 min of hyperventilation. Quantitatively, 

all variables have a similar performance in terms of the goal of 

 mapping these effects. The spatial correlation of the detected 

changes was highest with the grey matter maps of the same 

group, suggesting that areas responsive to respiratory challenges 

are dominantly located in those cortical structures with the high-

est CBF.

FIGURE 4 | Statistically signifi cant variable changes (between the state 

of normal ventilation (Pre) and the hyperventilation modulated state 

(Post) (2-sample paired TFCE corrected permutation test, p < 0.05). 

The detected voxels are overlaid on the group level mean GM segment in 

the MNI coordinates in the same locations as in Figure 3. From left to 

right: α, D
fH

, D
fHmedian

 and H
FWD

. Cold-blue colours = decrease, and 

warm red-yellow colours = increase in variable between Pre and Post, 

respectively.

Table 3 | Correlation coeffi cients r with confi dence intervals computed between the group mean probabilistic tissue-segment maps and the 1-p 

maps describing signifi cant of group level changes in different metrics between Pre-HV and Post-HV.

 GM CSF WM

 r 95% CI r 95% CI r 95% CI

α 0.75 0.748–0.752 0.66 0.658–0.661 0.55 0.547–0.552

D
fH

 0.74 0.738–0.742 0.59 0.587–0.592 0.66 0.658–0.661

D
fHmedian

 0.80 0.798–0.801 0.63 0.627–0.632 0.71 0.708–0.712

H
DOSD

 0.43 0.427–0.433 0.40 0.397–0.402 0.32 0.316–0.323

H
FWD

 0.74 0.738–0.741 0.64 0.638–0.642 0.60 0.597–0.602

H
WDOSD

 0.34 0.336–0.343 0.32 0.316–0.323 0.27 0.266–0.273

r, correlation coeffi cient; CI, confi dence interval; GM, grey matter; CSF, cerebrospinal fl uid; WM, white matter.
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dimension estimate D
fHmedian

 provided the contrast that coincided 

best with GM, and consequently also with changes in BOLD signal 

generation from physiological processes related to CBF. The altera-

tion of the blood CO
2
 level due to hypocapnia induces a global 

reduction of blood fl ow, and its effects can be prominently detected 

in grey matter and CSF, less so in white matter (van der Zande et al., 

2005). Occipital areas of GM (sagittal view) failed to be mapped 

with a change of any variables. The vasomotor reactivity may not 

be so prominent in these areas due to the reduced number of sym-

pathetic nerves controlling the posterior cerebral artery compared 

to other parts of the brain (Heistad, 1984).

The estimation of α was based on averaged spectral estimates 

of segments that were computed without zero-padding regard-

ing DFT. This also makes the estimation of α itself more stable. 

The estimation could, however, be regionally biased toward some 

direction or another, if the temporal BOLD signal in those areas 

contains signal components with high power on some character-

istic frequencies, thus affecting the PSD fi tting procedure used to 

acquire α. With current knowledge of characteristic resting-state 

BOLD signal PSD spikes, i.e. the prominent frequencies, it would 

be challenging to fi lter these effects automatically from the sig-

nals, without affecting the baseline signal and, consequently, the 

estimation of α.

The estimation used for D
f
 is suitable for data analysis with 

relatively few time points (Accardo et al., 1997; Higuchi, 1990). 

Accardo et al. (1997) showed that less than 125 data points are 

needed in order to obtain reliable estimations of D
f
. We have tested 

the algorithm with 50–500 time points, and agree that stable results 

can be obtained with at least 150 time points.

In contrast to previous vasoreactivity studies using often hyper-

capnic elevations of pCO
2
 with repeated blocks of respiratory chal-

lenges, there were no respiratory nor other challenges going on 

during the scanning. A 2-min respiratory challenge was performed 

prior to scanning. This was done in order to introduce a dynamic 

multi-scale CBF alteration without affecting or stimulating the sub-

ject during scanning. The transient hypocapnia returns to normal 

and induces a long time scale change in vasomotor waves and/or 

CO2-fl uctuations (Kannurpatti et al., 2008; Pattison et al., 2009). 

This dynamic low frequency alteration was used, instead of a tem-

porally sustained elevation in the mean BOLD signal intensity level, 

to give functional contrast to brain structures. The lack of tasks 

during imaging ensured that there was no interference from task-

related neural activity to the resting-state BOLD signals measured. 

At the same time, confounding hyperventilation related motion 

artefacts were also minimized.

The hypocapnic state was effi ciently achieved based on ETCO
2 

reduction, although it has to be mentioned that only intubation 

would give accurate, non-leaked ETCO
2
-values. Intubation that 

requires sedation of the awake control subjects was not used for eth-

ical reasons. The expiratory and arterial ETCO
2
 is closely matched 

in a supine position, with a difference of 0.8 mmHg (Serrador et al., 

2006). Based on the literature, the ETCO
2
 reduction of 2.2 kPa 

(i.e. 16.5 mmHg) achieved in this study will, on average, reduce 

regional blood fl ow by 40% and volume by 8% (Last et al., 2007; 

Poppel et al., 2007). Hyperventilation was selected as the method 

since it has a relatively smaller effect on the cerebral blood volume 

(CBV) compared to CBF, and thus partial volume effects affecting 

As the cardiorespiratory challenge that we used was a dynamic 

change occurring over several minutes after cessation of hyper-

ventilation, (i.e. while the pCO
2
-level was normalizing), it was 

hypothesized that the variance of the BOLD signal might alter as 

a function of time, i.e. be fBm in nature. However, after spin his-

tory and motion correction, the BOLD signal behaves according to 

the fGn rather than the fBm theory based on the −1 < α < 1 type 

histograms (Maxim et al., 2005). This means that the variance of 

the BOLD signal does not change as a function of time, and the fGn 

analysis option is valid also in this study. The subsequent analyses 

of both D
f
 and H were therefore performed according to the fGn 

hypothesis.

Despite the slowly returning arterial CO
2
-level and the sub-

sequent diminishing of low-frequency vasomotor effects after 

hyperventilation, the changes of BOLD signal characteristics were 

successfully observed in the cortical structures. Furthermore, the 

changes of variables α, H and D
f
 observed in this study were found 

to be located in the same cortical structures as block design respira-

tory tests have shown vasoreactivity and arterial blood fl ow reserve 

alterations (Hedera et al., 1996; Lu et al., 2003; Lythgoe et al., 1999; 

Rostrup et al., 1994; van der Zande et al., 2005; Vesely et al., 2001). 

Hyperventilation has also been shown to reduce electrophysiologi-

cal complexity brain cortex and vagal outfl ow. (Müller et al., 2003; 

Penttilä et al., 2003).

Through similar map assessment, contrast based on D
fHmedian

 was 

also found to least coincide with the CSF segment at the cortical 

boundary, making it more specifi c to GM than the contrast based 

on straight-forward PSD trend estimation (contrast based on α). 

Considering some coincidence observed between changes of all 

variables and the WM segment, we argue that it is probably due to 

partial volume effects in image data collection causing some GM 

to contribute in areas mainly occupied by WM. Also the interin-

dividual anatomical variability across subjects affects the results, 

dispite spatial normalization.

The property of α maps to be able to differentiate between blood 

vessels and cortical structures makes it a very informative tool in 

the overall assessment of BOLD signal dynamics. The resting-state 

map of α in the state of normal ventilation (state Pre, Figure 2) also 

corresponded to the earlier results (Maxim et al., 2005).

H
FWD

 was the only Hurst exponent estimate evaluated in this 

study that provided reasonable results in mapping the effects of 

CBF alterations. A more detailed study of the signal properties 

would be required in order to understand which factors led to the 

insensitive H estimate when using DOSD-based methods. Different 

applications are likely to require different choices of estimators; 

for example, in Maxim et al. (2005) H was used in the analysis of 

Alzheimer’s disease by measuring the aspects of fGn noise that may 

refl ect the BOLD response related more on the neuronal activity. 

Maps of regional homogeneity (ReHo) and amplitude of low fre-

quency fl uctuation (ALFF) tend to give rather similar maps (Zang 

et al., 2004, 2007) focusing on default mode areas (Fox and Raichle, 

2007). This pattern was abolished after hyperventilation, as the H 

increased over the whole cortex. This effect may be confounded by 

attentional shifts in the default mode after the rather demanding 

hyperventilation challenge.

As maps and ROI based analysis of the most signifi cant variable 

changes were inspected (Figure 3; Table 2), changes of the fractal 
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the BOLD signal caused by changes in blood vessel diameter are 

minimized (Fortune et al., 1995).

Despite the dominantly blood fl ow instead of volume change 

following hyperventilation, a reduction of 3.6–4.8 ml in brain vol-

ume is to be expected, based on existing literature. This grey mat-

ter volume loss that will be compensated with CSF space can be 

estimated. The simultaneous detection of changes in the CSF, WM 

and GM areas with the BOLD technique may partially result from 

compensatory volume alterations and subsequent partial volume 

effects. The same effect is bound to happen also in the more often 

used studies assessing vascular reactivity with repeated hyperven-

tilation challenges.

A potential application of functional 1/f trend based estimates 

such as α, H and D
f
 could be the detection of altered vasoreactivity, 

i.e. vasomotion, in the pre-capillary arteries and the following ves-

sels. Blood perfusion heterogeneity has been shown to be increased 

during ischemia (Simonsen et al., 2002). Stroke, transient ischemic 

attacks or other factors reducing regional perfusion increase the 

low-frequency vasomotion amplitude and reduce the dominant 

frequency (Hudetz et al., 1995; Liu et al., 2007). A lack of endothe-

lium in tumor neovasculature induces extended hypoxic states that 

are also refl ected in a BOLD signal as low-frequency events altering 

the temporal signal properties (Baudelet et al., 2006; Wardlaw et al., 

2008). These metrics may reveal new pathological mechanisms and 

enable the detection of areas at risk of cerebrovascular incidents.

We agree with Liu et al. (2007) and Baudelet et al. (2006) that 

the analysis of the low-frequency characteristics of the BOLD signal 

offers a new contrast mechanism refl ecting changes in vascular 

physiology in addition to neuronal changes. Indeed recently, the 

valuation of the microvascular state of rectal tumors have shown 

promising results (Wardlaw et al., 2008). As some of the changes 

in physiological low-frequency factors tend to occur over a wide 

range of low frequencies, instead of one single frequency, variables 

related to PSD trends and other features extracted from a temporal 

BOLD signal could be used as an improved marker of neurovascular 

integrity in tissue.

As the formation of the BOLD signal is a sum of several oscil-

lations affecting the deoxyhemoglobin, the resulting BOLD sig-

nal can be quite complex (Kiviniemi, 2008). A very important 

paper addresses this issue by incorporating the method to distinct 

monofractal and multifractal dynamics (Wink et al., 2008). This 

method may improve the sensitivity of the fractal properties, as 

the stationarity of the fractality is assessed. Also importantly, as 

the BOLD signal in the brain is an indirect measure of regional 

neuronal activity, the Hurst exponent type measurement may reveal 

important information about the long-lasting memory of neuronal 

population activity over multiple time-scales. The multi-fractality 

has been shown to be connected to Alzheimer’s disease and medica-

tion effects (Wink et al., 2008).

In general, the factors altering the PSD trend measures α, H and 

D
f
 need not be solely related to factors affecting CBF. In theory, the 

assessment of any factor capable of changing the low frequency 

BOLD signal oscillations (i.e. neuronal or metabolic activity as well) 

may be detectable as long as CBF, blood pressure and other factors 

contributing to the oscillations are within normal limits and remain 

stationary enough during experimentation. At present, it seems that 

during normal awake status, the neuronal activity fl uctuations are a 

major source of BOLD signal low-frequency fl uctuations (Fox and 

Raichle, 2007). The fractal dimension estimations described in this 

study offer new methods that are also applicable in the analysis of 

neuronal activity refl ected in temporal BOLD signals.

CONCLUSION

Estimates of 1/f trends of temporal BOLD signals can be used in 

mapping the dynamic multi-scale effects of cerebral blood fl ow 

induced by transient hypocapnia in the brain cortex. Estimation of a 

trend from the PSD itself (estimate α) was able to separate the brain 

cortex and cerebral arteries. The median variate of a fractal dimen-

sion (D
fHmedian

) estimate may provide a contrast that is more sensitive 

to changes of vasoreactivity than the Hurst exponent or α. The H
FWD

 

was able to detect a default mode pattern during normal status with 

specifi c windowing. However, in general, performance of α, D
fHmedian

 

and H
FWD

 was rather similar with respect to grey matter specifi city 

in depicting the dynamic neurovascular change. Applications of 

the metrics could include new diagnostic approaches to disorders 

affecting cerebral blood fl ow dynamics and to the assessment of 

the effectiveness of the treatment of such disorders.
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