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Abstract

Background: Traumatic brain injury is a major cause of morbidity and mortality worldwide. Ameliorating the neurocognitive
and physical deficits that accompany traumatic brain injury would be of substantial benefit, but the mechanisms that
underlie them are poorly characterized. This study aimed to use diffusion tensor imaging to relate clinical outcome to the
burden of white matter injury.

Methodology/Principal Findings: Sixty-eight patients, categorized by the Glasgow Outcome Score, underwent magnetic
resonance imaging at a median of 11.8 months (range 6.6 months to 3.7 years) years post injury. Control data were obtained
from 36 age-matched healthy volunteers. Mean fractional anisotropy, apparent diffusion coefficient (ADC), and eigenvalues
were obtained for regions of interest commonly affected in traumatic brain injury. In a subset of patients where
conventional magnetic resonance imaging was completely normal, diffusion tensor imaging was able to detect clear
abnormalities. Significant trends of increasing ADC with worse outcome were noted in all regions of interest. In the white
matter regions of interest worse clinical outcome corresponded with significant trends of decreasing fractional anisotropy.

Conclusions/Significance: This study found that clinical outcome was related to the burden of white matter injury,
quantified by diffusivity parameters late after traumatic brain injury. These differences were seen even in patients with the
best outcomes and patients in whom conventional magnetic resonance imaging was normal, suggesting that diffusion
tensor imaging can detect subtle injury missed by other techniques. An improved in vivo understanding of the pathology of
traumatic brain injury, including its distribution and extent, may enhance outcome evaluation and help to provide a
mechanistic basis for deficits that remain unexplained by other approaches.
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Introduction

Traumatic brain injury (TBI) is a major cause of morbidity and

mortality worldwide. The extent and severity of traumatic brain

injury is greatly underestimated by X-ray computed tomography

(CT) and conventional magnetic resonance imaging (MRI), which

often correlate poorly with functional outcome [1,2,3]. Indeed, some

patients may have no visible abnormalities and yet experience

significant neurocognitive sequelae post-TBI. These neurocognitive

outcomes are disabling for the individual, and expensive for society

[4,5,6]. Although ameliorating these deficits would be of substantial

benefit the mechanisms that underlie them are poorly characterized.

There is an increasing belief that many of the cognitive deficits

following TBI may be the consequence of traumatic axonal injury

(TAI), which may be subtle and is poorly quantified with

conventional imaging techniques. MRI with diffusion tensor

imaging (DTI) characterizes the diffusion of water molecules in

tissue environments, which is influenced by the microstructural

organization of tissues and their constituent cells, and can provide

unique insights into pathophysiology, particularly in white matter.

The diffusion tensor can be used to represent the magnitude of

water diffusion (quantified as the apparent diffusion coefficient,

ADC), whether such diffusion is directionally non-uniform

(anisotropy), and the orientation of that direction (eigenvectors/
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eigenvalues). Indeed, previous studies have used the technique in

TBI, and typically found consistent reductions in fractional

anisotropy (FA) in classical areas affected by TAI, even when

conventional MRI showed no lesion. These regions include the

subcortical white matter in the frontal and temporal regions,

splenium of the corpus callosum, posterior limb of the internal

capsule, and the cerebral peduncles [7,8,9,10,11,12,13]. FA has

also been noted to be decreased in other regions, including the

cingulum [9] and fornix [14], and ROIs that encompass the entire

white matter but show no lesion [15].

Despite these accumulating data on DTI in TBI, previous

studies have reported on small numbers of patients and/or

addressed a limited range of outcome categories. We wished to

examine how clinical outcomes related to the burden of white

matter injury, with outcomes ranging from the vegetative state to

patients with no or minimal sequelae.

Figure 1. Examples of the regions of interest used. Top from left to right; whole brain grey matter (blue), whole brain white mater (white), the
supratentorial white matter (red), right and left cerebellar peduncles (green and blue) and the cerebellar cortex (yellow). Bottom from left to right;
right and left pons (light blue and yellow), dorsal (yellow) and ventral (red) midbrain, thalamus (green and blue), anterior corpus callosum (red) and
posterior corpus callous (light blue).
doi:10.1371/journal.pone.0019214.g001

Table 1. Summary of the demographic and clinical characteristics of controls and patients.

Controls TBI patients

(n = 36)
GOS 5
(n = 21)

GOS 4
(n = 20)

GOS 3
(n = 16)

GOS 2
(n = 7)

Age at scan (years) (mean, range) 38 (24 to 70) 32 (18 to 59) 38 (20 to 60) 38.8 (17 to 63) 39 (21 to 67)

Injury to MRI interval (days) (median, range) 306 (172 to 1252) 387 (174 to 1341) 373 (192 to 1130) 198 (105 to 681)

Gender (number (percentage))

Male 27 (75) 14 (66.7) 14 (70) 8 (50) 5 (71)

Female 9 (25) 7 (33.3) 6 (30) 8 (50) 2 (29)

Cause of Injury (number (percentage))

Motor Vehicle Collision 17 (81) 14 (70) 10 (62.5) 3 (42.9)

Assault 1 (4.8) 2 (10) 1 (6.3) 2 (28.6)

Fall 3 (14.3) 4 (20) 5 (31.3) 2 (28.6)

GOS = Glasgow Outcome Score at time of scan [19]; 1 = death, 2 = persistent vegetative state, 3 = severe disability, 4 = moderate disability, 5 = good recovery.
The TBI patients were divided into groups based on Glasgow Outcome Score (GOS) at the time of imaging.
doi:10.1371/journal.pone.0019214.t001
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Methods

Ethics Statement
Ethical approval was obtained from the Cambridgeshire 2

Research Ethics Committee, and written informed consent, or

written assent from next-of-kin where appropriate, were obtained

in all cases in accordance with the Declaration of Helsinki.

Sixty-eight patients who had sustained TBI underwent MR

imaging using a 3 Tesla Siemens Magnetom Total Imaging

Matrix (TIM) Trio. Thirty-six controls (healthy volunteers)

Figure 2. Trends for the ADC (left), axial, radial diffusivity and FA (right) for supratentorial white matter ROIs. The central lines in the
boxes denote the median values, the upper and lower edges the 75th and 25th percentiles, the error bars the 90th and 10th percentiles and the closed
circles the data outside these percentiles. *** p,0.0001; NS, non-significant. SWM: supratentorial white matter, ACC: anterior corpus callosum, PCC:
posterior corpus callosum. C = controls, GR = good recovery, MD = moderate disability, SD = severe disability, VS = vegetative state.
doi:10.1371/journal.pone.0019214.g002
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Figure 3. Trends for the ADC (left), axial, radial diffusivity and FA (right) for brainstem ROIs. The central lines in the boxes denote the
median values, the upper and lower edges the 75th and 25th percentiles, the error bars the 90th and 10th percentiles and the closed circles the data
outside these percentiles. *** p,0.0001; NS, non-significant. SWM: supratentorial white matter, ACC: anterior corpus callosum, PCC: posterior corpus
callosum. C = controls, GR = good recovery, MD = moderate disability, SD = severe disability, VS = vegetative state.
doi:10.1371/journal.pone.0019214.g003
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underwent an identical imaging protocol. This included DTI, 3D

T1 weighted structural imaging (magnetization prepared rapid

gradient echo; MPRAGE), a Fluid Attenuated Inversion Recovery

(FLAIR) sequence, a gradient echo (GE) sequence, and a dual

echo (proton density/T2) sequence. The DTI parameters were as

follows; 12 non-collinear directions, 5 b values ranging from 338 to

1588 s/mm2, 5 b = 0 images, acquisition matrix size 96696, field

of view 192 mm6192 mm, 63 axial slices, 2 mm slice thickness,

TR = 8300 ms, TE = 98 ms. All scans were visually inspected and

four patients with translational head movement greater than

5 mm during the diffusion sequence were removed prior to data

analysis. This left a dataset of 64 patients and 36 controls. All

conventional images were inspected by two neuroradiologists (JC

and DS), blinded to whether the images were from control subjects

or patients with TBI, and to the outcome category of individual

patients. The presence and location of lesions were noted.

Subsequent creation of regions of interest (ROIs) took account

of this information, and ensured that they did not include lesioned

tissue, since blood products may cause signal dropout in DTI.

The DTI data underwent eddy current correction and FA,

ADC and eigenvalue maps were created using the Oxford Centre

for fMRI of the Brain’s (FMRIB’s) Diffusion Toolbox (http://

www.fmrib.ox.ac.uk/fsl/). To aid coregistration the skull, and

extracranial soft tissue were stripped from the MPRAGE images

using the Brain Extraction Tool [16]. The diffusion weighted data

were normalized using a two step approach. First, all patient and

control MPRAGE images were coregistered to the MNI152

template using the vtkCISG normalized mutual information

algorithm (http://www.image-registration.com). The b = 0 image

was subsequently coregistered to the subject’s own MPRAGE

image. The transformation matrix normalizing the MPRAGE

image was then applied to the b = 0 image. After each step, the

data were visually inspected to exclude processing errors.

ROIs, chosen due to their predilection for damage post TBI,

were manually drawn using Analyze 7.0 (http://www.mayo.edu/

bir) in MNI125 space using Colin27 [17] as a high resolution, high

signal-to-noise template, and included the corpus callosum (genu

and splenium), thalamus, midbrain, pons, cerebellar peduncles,

and cerebellar cortex (Figure 1). Each subject’s own MPRAGE

image was segmented to make whole brain white matter (WBWM)

and whole brain grey matter (WBGM) masks, using Automated

Segmentation Tool (FAST; FMRIB, Oxford, UK) [18], which was

coregistered to normalized space. A supratentorial WM (SWM)

ROI was created by subtracting the cortical grey matter and

Figure 4. Trends in ADC, axial and radial diffusivity for the ROIs compromised predominantly of grey matter. C = controls, GR = good
recovery, MD = moderate disability, SD = severe disability, VS = vegetative state. * p,0?0013; **,0.001; *** p,0.0001; NS, non-significant.
doi:10.1371/journal.pone.0019214.g004
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infratentorial WM from the WBWM mask. All coregistered

images were visually inspected to ensure that ROIs corresponded

to the regions specified, and any lesions identified by radiological

reporting were manually removed using Analyze 7.0.The mean

ADC, FA and eigenvalues for the different ROIs were calculated

using in-house software (written by GBW). Axial diffusivity was

defined as the major eigenvalue (l1) and radial diffusivity as the

average of the two minor eigenvalues ((l2+l3)/2).

Patients were categorized into groups using the Glasgow

Outcome Scale (GOS), which uses six simple questions in the

domains of physical, neuropsychological and social disability, and

is the most widely used outcome measure post TBI [19,20]. It has

been shown to have good reliability and validity across many

different populations groups [21,22]. This classification is generally

undertaken at least 6 months post injury, with the categories as

follows; 1: dead, 2: vegetative state, 3: severe disability (conscious

but dependent), 4: moderate disability (disabled but independent)

and 5: good recovery [19]. The GOS is often dichotomized into

Unfavorable (GOS categories 1 to 3) and Favorable (GOS

categories 4 and 5) outcomes. Although it has been criticized as

being a somewhat crude scale, it has the advantage of being

relatively easy to obtain, and is generalizable across patient

populations. The majority of patients in our study were at, or past,

the six month time point, but one patient (with a clinical diagnosis

of VS) was imaged three months post injury. The upper three

categories of the GOS (GOS 3 to 5) may be subdivided, creating

an eight-point scale or the extended GOS (eGOS) [22,23]. As data

for GOS was available for all patients, but only 90% had GOSE

available, GOS was used as the main clinical outcome variable.

Statistical analyses were conducted using SPSS14.0 (http://www.

spss.com) and graphs were produced using StatView (SAS Institute

Inc., 1998). Due to the small sample size in some groups, all analyses

using the GOS categories were performed using non-parametric

statistics. Mann-Whitney U (MHU) was used for unpaired tests and

the Wilcoxon signed rank test for paired comparisons. Since use of

the Spearman test is inappropriate for ordinal categories of less than

ten, the Jonckheere-Terpstra Test was used to test for trends in DTI

parameters with outcome category. The main analysis involved a

Figure 5. Trends in ADC, axial and radial diffusivity for the cerebellar peduncles and the cerebellar cortex. C = controls, GR = good
recovery, MD = moderate disability, SD = severe disability, VS = vegetative state. * p,0?0013; ** ,0.001; *** p,0.0001; NS, non-significant.
doi:10.1371/journal.pone.0019214.g005
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total of 38 comparisons for trend between outcome and DTI

parameters, and p values were accepted as significant if they were

corrected for multiple comparisons using the Bonferroni correction

(p,0.0013). For other analyses, p,0.05 was accepted as significant.

Results

The patient demographic details are shown in Table 1. No

evidence of differences in age or injury to MRI interval was found

between any of the groups. No systematic differences in DTI

parameters were observed between left vs. right sided ROIs, or

between patients with large and small structural abnormalities

(using a 1.5 cm lesion diameter as a cut off). In order to increase

statistical power, data in each of these categories were pooled for

intergroup statistical comparisons.

Clinical outcome showed an inverse trend with ADC in all

ROIs (Figures 2–5, Supplementary Table S1). A corresponding

trend for decrease in FA with worsening outcome was found in the

predominantly WM ROIs. These changes appear to be a

consequence not only of an increase in radial diffusivity, but also

increases in axial diffusivity in the SWM, ACC, pons, thalamus,

and WBGM. No correlation was found between time from injury

and DTI parameters in any ROI. There was good sensitivity and

specificity for all ROIs to distinguish between patients with

favourable versus unfavourable recovery as evidenced by the area

under the receiver operating curve (ROC). This discrimination

was mainly driven by differences between GOS 2 and GOS 3, and

to a smaller (but still significant) extent by differences between

GOS 3 and GOS 4 (Table 2). However, apart from differences

between GOS 2 and 3, DTI (in general) poorly differentiated

between adjacent GOS categories.

A small subgroup of four patients had their conventional MR

sequences reported as normal by both neuroradiologists. Their

clinical characteristics are shown in Table 3. Despite normal

conventional radiology, only one of these was clinically classified as

having achieved a Good Recovery (GOS 5). In spite of their normal

appearing structural MRI scans, this exhibited a significant decrease

in FA in the SWM and increased ADC in the SWM, PCC, WBGM,

thalamus, cerebellar peduncles and the cerebellar cortex (Figure 6).

Discussion

To our knowledge, this study is the first to use DTI to

investigate the full spectrum of outcome of TBI patients in the

chronic phase post injury, ranging from the vegetative state to

minimal or no disability. We show gradations of DTI abnormality

in a broad range of ROIs, with patients with worse outcomes

having lower FA and higher ADCs. An eigenvalue analysis of DTI

data suggested that the changes in FA were associated with

increases in both radial and axial diffusivity. These findings

support the inclusion of DTI in the portfolio of imaging tools used

to characterize the burden of insult following TBI.

Previous studies have found little correlation between CT and/

or conventional MR sequences on one hand, and cognitive and

functional outcomes on the other [2,3]. We found that quantitative

DTI was sensitive in detecting damaged tissue, and, perhaps more

importantly, that these imaging measures correlated with a full

range of outcomes post-TBI. The detection of these changes is of

particular interest in cohorts of patients who have no abnormal-

ities detected on CT or conventional MRI. In these cases DTI

may provide the only available means of documenting the

anatomical substrate for late neuropsychological deficits post-

TBI. Multiple mechanisms may underlie these late changes,

including demyelination, axonal disconnection, astrogliois, and

damage to intracellular cytoskeleton and neurofilaments [24].

Indeed, in a small subset of patients that were reported as having

normal MRI despite having functional deficits, abnormal DTI

parameters were documented even in ROIs that were not selected

based on patient symptomatology (Figure 5). These data suggest

that the functional deficits observed in TBI survivors may be the

consequence of damage to integrated neuronal systems, rather

than lesions at focal injury sites.

Significant differences in DTI parameters in the central WM,

WBGM, corpus callosum (anterior and posterior) and the

thalamus were found in comparisons between all patients groups.

However, the midbrain and pons ROIs were only significantly

different to controls in patients in the poorest outcome groups

(GOS 2 and 3). This may indicate that damage to these areas is

particularly important in determining whether a patient develops

permanent impairments in consciousness or not. Indeed, brain-

stem lesions have previously been associated with unfavorable

outcomes in TBI [3,25,26].

The increase in diffusivity in both radial and axial directions may

be expected in grey matter regions like the WBGM and thalamus,

where cellular necrosis may result in less restricted diffusion. How-

ever, we also noted this finding in predominantly white matter ROIs,

such as the central WM, pons, and the anterior corpus callosum. Such

changes would not be explained by simple demyelination, which

would only predictably increase radial diffusivity [27]. However,

change in axonal microstructure might also reduce the restriction of

water diffusion along the long axis of the axon. Alternatively, this

finding may imply a change in the dominant cell type contributing to

the signal, with axonal bundles being replaced by astrocytes and/or

microglia, with increased diffusion in all directions.

The patients studied here encompassed a wide range of disability.

It is difficult to find robust cognitive tasks and functional measures

that are applicable across such a broad spectrum of patients, who

range from the vegetative state, to those able to return to work with

minimal or no impairment. In this context, the GOS has several

advantages: it characterizes the entire spectrum of TBI outcomes, is

easily obtained and reproducible, and is widely used. These

attributes make our results more easily applicable and interpreted in

the context of other cohorts of TBI patients. However, despite these

advantages of the GOS, the lack of refinement in describing some

Table 3. Clinical Characteristics of the four patients with normal appearing conventional MR sequences.

Patient Cause of Injury Age at Injury Gender Injury to MRI interval (days) GCS at ictus GOS

1 RTA 37 Male 1130 15 3

2 RTA 46 Female 2342 13 4

3 RTA 46 Male 677 15 4

4 RTA 27 Female 1097 14 5

doi:10.1371/journal.pone.0019214.t003
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outcomes may be a disadvantage. For example, in GOS category 3,

patients in the minimally conscious state (patients who exhibit

inconsistent, but reproducible responsiveness; MCS) are grouped

with patients who, while unable to live independently, are

cognitively far less disabled. Arguably, MCS patients are clinically

more similar to the VS patients than those at the higher end of

GOS 3, but the framework of the GOS does not permit such

reallocation. In any event, a reanalysis with the MCS and VS

patients grouped together produced similar results.

One approach to a more refined outcome classification would

be to use the extended Glasgow outcome scale (GOSe). In 90% of

our patients we had outcome data that allowed such categoriza-

tion, and a reanalysis with patients categorized in this way did not

materially change our inferences about the association between

Figure 7. Results for the supratentorial white matter ROI as an example of the groups categorized into the Glasgow Outcome Score
Extended. 2 to 8 represent GOSe categories 2 to 8 and C is the control group.
doi:10.1371/journal.pone.0019214.g007

Figure 6. Comparison of ADCs for the ROIs in the control group (n = 20) versus a group of four patients (TBI) (one GOS 3, two GOS 4,
one GOS 5) who had normal appearing conventional sequences. Control data are shown in grey, and patients in white. For FA only SWM was
significantly lower in this subset of patients. SWM: supratentorial white matter, ACC: anterior corpus callosum, PCC: posterior corpus callosum, WBGM:
whole brain grey matter. The p-value pertains to a Mann-Whitney U (exact) test between the two groups. * p,0?05; ** ,0.01; NS, non-significant.
doi:10.1371/journal.pone.0019214.g006

DTI in TAI: Correlations with Functional Outcome

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e19214



DTI parameters and clinical outcome (see Figure 7 for an

example). The fact that GOSe outcome data could not be

calculated for a significant minority lead us to use the GOS as the

basis for our definitive analysis. Further refinement of the

relationship between imaging and outcome may be possible

within each GOS category by using outcome variables applicable

to that particular category (e.g. formal neuropsychological testing

in patients in the GOS 5 category (good outcomes)). Such an

approach will require data from a larger sample of patients.

The patients were also studied at varying time points after TBI,

but, except for one patient who was diagnosed to be in VS, had a

minimum interval between injury and imaging of approximately

six months. It is possible that continuing clinical recovery may

have resulted in some reclassification of functional outcome in

some patients. However, many studies in TBI use a follow up time

point of six months post-injury, recognising that a substantial

proportion of clinical recovery occurs by this time point.

Notwithstanding this, a future study that used uniform (and

potentially serial) late follow up and imaging would produce useful

corroboration of our findings. In addition, larger studies,

particularly involving patients with little damage on conventional

imaging, may allow more subtle differences in outcome and

neurocognitive functioning to be correlated with DTI parameters.

Finally, our demonstration of pervasive DTI abnormalities in

the cerebellum which scale with functional outcome reflect a

growing understanding that cerebellar lesions may be important in

defining TBI outcome. In a perceptive position paper, Ghajar and

Ivry summarized the evidence for abnormalities of cerebellar

function contributing to cognitive deficits in TBI [28]. They

suggested that the deficits in TBI may be due to a dysfunction in

the ‘‘predictive brain state’’, part of which could be attributed to

cerebellar dysfunction. Further, they suggested that DTI might

provide insights into the subtle abnormalities in key loops that

connect the frontal lobes, basal ganglia and the cerebellum. Our

data provide some evidence to support their hypotheses.

We have shown that clinical outcome relates to the burden of

white matter injury, as quantified by diffusivity parameters in

patients in the chronic phase post TBI. These DTI abnormalities

are seen even in patients with the best outcomes, and in patients

with normal conventional MRI, suggesting that they can detect

subtle injury that is missed by other approaches. Our data thus

provide a basis for including DTI in evaluating TBI outcome,

while providing a mechanistic basis for deficits that remained

unexplained by other approaches.

Supporting Information
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