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Mapping twenty years of corn and 
soybean across the US Midwest 
using the Landsat archive
Sherrie Wang  1,2 ✉, Stefania Di Tommaso2, Jillian M. Deines  2 & David B. Lobell  2

Field-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played 
an important role in improving production forecasts and enabling large-scale study of agricultural inputs 
and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, 
such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data 
gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean 
at 30 m resolution across the US Midwest from 1999–2018. Our training data were CDL from 2008–
2018, and we validated the predictions on CDL 1999–2007 where available, county-level crop acreage 
statistics, and state-level crop rotation statistics. The corn-soybean maps, which we call the Corn-Soy 
Data Layer (CSDL), are publicly hosted on Google Earth Engine and also available for download online.

Background & Summary
�e Midwestern United States is one of the most intensive agricultural areas in the world, producing over 33% of 
the world’s corn and 34% of the world’s soybeans1. �e sustained productivity of this region requires an under-
standing of how its agronomic practices, ecological properties, and production outcomes have evolved through 
time, which in turn relies on knowing the location and extent of its two dominant crops over many years. Since 
2008, the con�uence of Landsat and other satellite imagery, training data from the Farm Service Agency, and scal-
able machine learning algorithms has enabled the United States Department of Agriculture (USDA) to create the 
Cropland Data Layer (CDL), which maps 108 crop types at 30 m spatial resolution across the 48 conterminous US 
states2. While it was created primarily to aid the USDA’s annual crop area estimates, CDL has enabled a multitude 
of downstream research and operational work in the past decade3, chief among them forecasting food produc-
tion4, monitoring crop yields5–9, identifying agronomic practices10–17, and assessing ecological impacts18–23.

Going further back in time, however, CDL no longer covers the conterminous US or even the entire Corn 
Belt: in 2007, CDL mapped 21 states; in 2004, 11 states; in 2001, 8 states, and in 1999, 4 states2. Major barriers 
that impeded the creation of large-scale CDL in the early 2000s include a lack of computational power and the 
cost of satellite data, which at the time was purchased by the image24. Today, the entire Landsat archive is free and 
available25 as calibrated surface re�ectance products26, and cloud computing platforms like Google Earth Engine 
have vastly decreased the time, complexity, and cost of training machine learning models on satellite imagery27. 
�e past two decades of constraints and advances can be seen in the changing composition of CDL, summarized 
in Table 1; for instance, in the shi� from primarily using Landsat imagery to ResourceSat imagery and then back 
to Landsat between 2004 and 2010, and from using an in-house maximum likelihood classi�er to an external 
decision tree algorithm in 20064.

If CDL were extended back in time, expanding our knowledge of where crops were grown across the Midwest, 
the longer time series would enable researchers to assess the impact of events prior to 2008 on agriculture in 
the Corn Belt at a �ner spatial resolution than ever before. An example is the e�ect of the 2007 Renewable Fuel 
Standard on corn intensi�cation, crop rotation, and water use, which has been studied through modeling of crop 
rotation probabilities28 but not yet via observed crop types. Longer crop type time series would also enable deriva-
tion of more robust and spatially detailed relationships between variables like crop rotation10,11,29, tillage13,30, water 
use31, �ooding32, climate33, and in-season satellite imagery7,8 and outcomes like yields. For the studies cited, gaps 
in CDL prior to 2008 were one factor limiting their scope to recent years or a subset of states with long histories 
of CDL.
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In this work, we created maps of corn and soybean across 13 states of the US Midwest back to 1999, using 
all available imagery from the Landsat archive and a consistent methodology across all years. �ese 13 states 
together produce 90% of US corn and soybeans, yet for the following state-years no CDL data currently exists: 
Iowa (1999), Indiana (1999), Nebraska (1999–2000), Minnesota (1999–2005), South Dakota (1999–2005), Kansas 
(1999–2005), Wisconsin (1999–2002), Missouri (1999–2005), Ohio (1999–2005), Michigan (1999–2006), and 
Kentucky (1999–2007). Even for years and states with data, CDL can vary in quality and resolution (56 m in 
2006–2007). To �ll these gaps and smooth inconsistencies, we used Google Earth Engine to train a random forest 
classi�er on Landsat-derived harmonic regression features and CDL labels—simpli�ed to corn, soybean, and one 
“other” crop class—from 2008–2018. We call this map the Corn-Soy Data Layer, or CSDL.

To validate CSDL, we compared it (1) to CDL in the years and states where CDL is available, (2) to planted 
acreage from the National Agricultural Statistics Service (NASS) in all years and states, and (3) to rotation statis-
tics from the Agricultural Resource Management Survey (ARMS) in 2001, 2005, and 2010. While each of these 
“ground truth” sources contain their own errors and uncertainties, when taken together the comparisons suggest 
that CSDL largely captures where corn and soybean are growing throughout states and years. Qualitatively, we 
observed that CSDL is less noisy in its classi�cations than CDL in earlier years (Fig. 1). At the same time, we found 
that the maps agreed with NASS and ARMS more in some states (Illinois, North Dakota, South Dakota) than oth-
ers (Kansas, Indiana, Wisconsin), as well as some years than others. CSDL also has a bias toward predicting corn, 
and tends to under-predict a crop when it is a small fraction of total cropped area in a region. We recommend that 
users use the metrics provided in our Technical Validation section, which we have released along with the maps, 
to determine the suitability of CSDL for downstream tasks in a particular region and year.

Cropland Data Layer Corn Soy Data Layer

Land Cover Classes 133 classes Corn, soybean, other

Geographic and Temporal 
Coverage

1 state (1997–1998)

13 states (1999–present)

4 states (1999)

6 states (2000)

8 states (2001)

18 states (2002)

9 states (2003)

11 states (2004–2005)

16 states (2006)

21 states (2007)

48 states (2008–present)

Satellite Imagery

Landsat 5 TM  
(1997–2006, 2010–2012)

All available  
images from:  
Landsat 5 TM  
(1997–2012)  
Landsat 7 ETM+  
(1999–present)  
Landsat 8 OLI  
(2013–present)

Landsat 7 ETM+  
(1999–2006, 2010–2012)

ResourceSat-1 AWiFS 
(2006–2010)

Landsat 8 OLI  
(2013–present)

Deimos-1 (2011–present)

UK-DMC 2 (2011–present)

ResourceSat-2 LISS-3  
(2017–present)

Sentinel-2 (2017–present)

Spatial Resolution

30 m (1999–2005)

30 m56 m (2006–2007)

30 m (2008–present)

Temporal Frequency Annual Annual

Classi�er

Peditor maximum  
likelihood classi�er 
(1997–2005) Google Earth Engine 

random forest classi�er
RuleQuest See5 decision  
tree (2006–present)

“Ground Truth” Training 
Labels

June Agricultural Survey  
(1997–2005)

CDL 2008–present
Farm Service Agency  
CLU (2006–present)

National Land Cover  
Data (1997–present)

Validation Subset of ground truth
CDL 1999–present  
NASS acreage estimates

Table 1. Comparison of the USDA’s Cropland Data Layer (CDL) versus Corn-Soy Data Layer (CSDL). �e 
changes in CDL throughout the years re�ect the technologies available at the time, while CSDL was created 
using the entire Landsat archive, a consistent machine learning algorithm, and uniform 30 m resolution.
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Methods
pixel-level crop type labels. Creating a crop type map using satellite imagery and supervised machine 
learning requires �eld-level ground truth of crop types on which to train a classi�er. For CDL, ground truth labels 
come from the Farm Service Agency’s (FSA) Common Land Unit dataset, which is available to NASS but not to 
the public due to FSA con�dentiality laws34. However, the user’s and producer’s accuracy of CDL on FSA labels 
are displayed in the CDL metadata, and generally exceed 95% for corn and soy from 2008 to 2018. Since we do 
not have access to FSA data, we used CDL 2008–2018 as our ground truth labels to train our corn and soybeans 
classi�er, and validated our maps using a combination of a CDL 2008–2018 hold-out set, CDL 1999–2007 where 
it exists, NASS county-level crop acreage estimates, and crop rotation data from ARMS. �e year 2008 was chosen 
to mark the beginning of our training set, because CDL is complete across the conterminous US (and therefore 
our study region) beginning in that year. �e quality of our classi�er and validation analyses thus depends on the 
quality of CDL, NASS, and ARMS data, which we discuss in further detail in the Technical Validation section.

Cropland mask. Our crop classi�er was trained to distinguish between corn, soybeans, and all other crops 
grouped into a third class; we did not classify cropland from non-cropland. Instead, we used the National Land 
Cover Database (NLCD) product35,36 to mask out non-cropland pixels. NLCD classi�es a variety of land cover 
types — for example, water, developed, and forest — including a single “cultivated crops” class that amalgamates 
all crop types. �e rasters are available at 30 m ground resolution for the years 1992, 2001, 2004, 2006, 2008, 2011, 
2013, and 2016. Each year’s CSDL was masked by the last available NLCD product. For example, the 2008–2010 
CSDLs are produced with the 2008 NLCD cropland mask. An exception is that the 1999 and 2000 CSDLs use the 
2001 NLCD mask, because the previous NLCD product from 1992 was constructed with very di�erent methods.

Crop acreage statistics. Every year at the end of the harvest season, NASS conducts the County 
Agricultural Production Survey (CAPS) in cooperation with individual states to estimate acreage and production 
of selected crops and livestock species at the county level. Each state has its own CAPS sampling strategy, usually 
involving mail surveys and follow-ups as needed to obtain adequate coverage and response rates37. Responses 
from operators are used to allocate state totals previously obtained from NASS surveys to counties.

We acquired data on the planted area of corn and soybeans at a county level from the NASS Quick Stats data-
base38 across the 13 states, and used these county-level acreage estimates as a form of validation on our maps from 
1999–2018. Noteworthy for our validation is that, starting in 2009, the CDL program began to be incorporated 
into the NASS crop acreage estimates through a regression model4, so CDL and NASS acreages are not entirely 
independent datasets. We observed that the number of counties reported in NASS in these 13 states dropped from 
1093 in 1999 to 885 in 2018.

Crop rotation statistics. �e Agriculture Resource Management Survey (ARMS), co-sponsored by the 
USDA’s Economic Research Service and NASS, is a multi-phase series of interviews with farm operators about 
cropping practices, farm business, and farm households39. Within our study period, it was collected in 2001, 2005, 
and 2010. We used the survey’s crop rotation statistics for the purpose of validating our corn-soybean maps. In 
each of these three years and for each of the 13 states, we obtained (1) the number of acres that grew corn in the 
survey year and soybeans in the previous year (a soybean-corn rotation) and (2) the number of acres that under-
went a corn-corn rotation. Data were downloaded from the ARMS Tailored Report on Crop Production 
Practices40. We compared the fraction of soybean-corn rotation, de�ned as 

+

soybean to corn acreage

soybean to corn acreage corn to corn acreage
, 

predicted by CSDL against that reported by ARMS.

Multi-temporal satellite imagery. To perform crop type classi�cation back to 1999, we used annual 
multi-temporal satellite imagery from the Landsat archive. �e Landsat Program is a series of Earth-observing 

Fig. 1 Corn and soybean classi�cation around Webster City, Hamilton County, Iowa in 2001. �e USDA’s CDL 
is shown on the le� and our Corn-Soy Data Layer (CSDL) on the right.
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satellites jointly managed by the USGS and NASA, beginning with Landsat-1 in 1972 and continuing with 
Landsat-7 and -8 in the present day. Its archive was made freely available in 200825, and each satellite o�ers 
moderate spatial resolution (30 m) imagery taken every 16 days (every 8 days when two satellites are operating).

We used Google Earth Engine to obtain imagery over our study region in the period 1999–2018 from Landsat 
5, 7, and 8 Surface Re�ectance Tier 1 collections27. We chose to start in 1999 because Landsat 7 was launched that 
year. �e study region spans 2.2 million km2, which corresponds to 2.5 billion Landsat pixels and a total of 87,648 
images from January 1, 1999 to December 31, 2018. We used Landsat imagery from January 1 to December 31 
to capture crop phenology; in the Midwest, this time window encompasses a single growing season for most 
crop types. Clouds and other occlusions were masked out at the pixel level using the pixel_qa band that is pro-
vided with the Landsat Surface Re�ectance products. �e median cloud-free image count at a pixel during key 
crop growing months June–August was 7, with 2012 a notably lower year with a median of 4 (Fig. 2). �e dip in 
2012 occurred because Landsat 5 �ematic Mapper ended operations in November 2011 and Landsat 8 was not 
launched until 2013, combined with data gaps from the failed scan-line corrector aboard Landsat 7.

Although the Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI instruments measure slightly di�erent 
wavelengths due to di�ering radiometric resolutions, we consider them to share six surface re�ectance bands: 
blue, green, red, near infrared, shortwave infrared 1, and shortwave infrared 241. From these, we derived the green 
chlorophyll vegetation index (GCVI)42,

= −GCVI NIR/Green 1 (1)

Unlike NDVI, GCVI does not saturate at high values of leaf area and has previously been shown to aid in 
distinguishing corn from soybeans43. We ultimately included NIR, SWIR1, SWIR2, and GCVI features in our 
classi�er; for an explanation of how these were selected for corn-soybean classi�cation among various bands and 
vegetation indices, please see ref. 43.

Feature extraction. We summarized the Landsat time series at each pixel using a Fourier transform, or har-
monic regression (Fig. 3). Harmonic analysis has previously been shown to successfully capture the di�erent phe-
nology and spectral re�ectance across vegetation44,45 and crop types46,47, allowing corn, soybean, and other crops 

Fig. 2 �e number of clear Landsat observations available in June, July, and August across states and years. 
Number of observations were counted for each pixel in our sample a�er occluded pixels were masked out 
using the pixel_qa band provided with Landsat Surface Re�ectance products. �e gray lines show the mean 
observation availability, while the shading marks the range.
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to be distinguished from each other in the US Midwest43. Each spectral band or vegetation index was viewed as a 
time-dependent function f(t), so that the harmonic regression takes the form

∑ π ω π ω= + +

=

f t c a k t b k t( ) [ cos(2 ) sin(2 )]
k

n

k k
1

where ak are cosine coe�cients, bk are sine coe�cients, c is the intercept term, n is the order of the harmonic 
series, and ω controls the period of the function. �e independent variable t represents the day of year that an 
image is taken expressed as a fraction between 0 (January 1) and 1 (next January 1). We used a second order har-
monic (n = 2) with ω = 1.5, shown in previous work to result in good features for crop type classi�cation in the 
study area43. �is yields a total of 5 features per band or VI (Table 2).

Our feature extraction procedure therefore requires at least 5 points to �t a second-order harmonic regression 
and obtain coe�cients. �e �t will be a better summary of crop phenology if more non-cloudy Landsat images 
are taken in the growing season.

Ancillary features. Satellite observations of vegetation are a function of crop type along with plant health 
and stage of development, which are themselves functions of the amount of sunlight, degree days, water, and 
nutrients available for growth. We hypothesized that, given measurements of plant phenology via Landsat 
imagery, observations of these other variables might establish constraints that facilitate the deduction of crop 
type. To see what we mean, consider a simpli�ed example: suppose we know that a GCVI time series with a max 
value of 0.7 could be either corn grown under a large number of growing degree days (GDD) or soybean grown 
under a moderate number of GDD. �en knowing the value of GDD would help us deduce the crop type. We 
added features that capture some of these weather and climate variables to our classi�er and tested to see whether 
they aid in crop type classi�cation.

We used the University of Idaho’s Gridded Surface Meteorological Dataset (gridMET)48 and TerraClimate49 
to �nd the growing degree days (GDD), vapor pressure de�cit (VPD), mean precipitation, temperature extrema, 
aridity, soil moisture, and climate water de�cit at each pixel in the study region (Table 2). We found that these fea-
tures did not signi�cantly improve corn and soybean classi�cation in the study region, so our �nal map is created 
using only the Landsat-derived harmonic coe�cients. However, we note that these ancillary features may still 
help in a di�erent setting, such as one where weather varies more dramatically across space and time.

Training set sampling. To sample a set of points that is geographically representative of our study area, we 
created a 50km-by-50km grid over the 13 states and sampled 250 points uniformly at random from each grid cell. 
�e study area was covered by 839 grid cells; a�er �ltering for points falling inside the boundaries of the 13 states, 
we were le� with a set of 205,821 points. For every year between 1999 and 2018, we used Google Earth Engine to 
extract (1) the coe�cients from harmonic regression �t to the annual Landsat time series at each point and (2) 
the CDL label at each point if it existed for that year. We removed points from this dataset whose CDL label was 
nonexistent or a non-crop class, leaving us with 841,028 samples.

A summary of the number of samples for each crop type can be found in Table 3. Across the 13 states, corn 
is the most numerous class with 329,375 samples, or 39.2% of the total. Soybeans and other crops have 281,411 
(33.5%) and 230,215 (27.4%) samples, respectively. �e distribution of the three classes varies by state; Iowa, 
Illinois, Indiana, and Nebraska grew mostly corn and soybean and very little other crop, while North Dakota and 
Kansas grew mostly other crops.

Eighty percent of the samples from 2008–2018 were placed in the training set, while the remaining 20% of 
2008–2018 and the labeled samples from 1999–2007 were placed in the test set.

Classification algorithm. We used random forests for classi�cation, as they are well-documented in the 
�eld of remote sensing to perform well on land cover and crop type tasks50,51, and usually better than maxi-
mum likelihood classi�ers, support vector machines, and other methods for crop type mapping52–55. Random 

“Corn”

[−0.193, 0.105, −0.170, 0.076, 0.363]

Random forest classifier

Harmonic Regression

    + 0.363

Fig. 3 Feature extraction from Landsat time series using a harmonic regression. First, a curve is �t to the 
Landsat time series (shown here for GCVI) using cosine and sine transformations of the independent variable 
t (time of year). �e coe�cients and intercept are extracted as features, along with the CDL crop type label, and 
used to train a random forest classi�er.
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forests are an ensemble machine learning method comprised of many decision trees in aggregate56, and o�er 
ease of use, high performance, and interpretability at the same time. �roughout method development, we used 
Python’s scikit-learn implementation of a random forest classi�er with 500 trees and otherwise default param-
eters. To create the Corn Soy Data Layer product, we used Google Earth Engine’s ee.Classi�er.randomForest, 
similarly with 500 trees and otherwise default parameters. Figure 4 shows an example decision boundary learned 
by a random forest to classify corn, soybean, and other crops in Iowa, illustrating the possibility of distinguishing 
among the three classes.

Final map creation. To create the Corn-Soy Data Layer (CSDL)57, we �rst used Google Earth Engine to 
compute the harmonic features for Landsat NIR, SWIR1, SWIR2, and GCVI across the entire study region for 
each year in 1999–2018. We then used our training samples from 2008–2018 to train a random forest classi�er 
(ee.Classi�er.randomForest) on harmonic features to predict crop type labels derived from CDL (corn, soybean, 
or other). A separate model was trained for each state. Lastly, we applied each classi�er to predict crop type on all 
pixels in the relevant state from 1999–2018.

Evaluation metrics. In evaluating our CSDL product against CDL, NASS, and ARMS data, we used the 
following metrics.

First, CSDL and CDL were compared in each state and year using the overall accuracy metric. Accuracy is a 
commonly used metric for classi�cation and is de�ned as the fraction of correct predictions. While CDL itself is 
not a perfectly accurate ground truth of crop type, the accuracy metric computed between CSDL and CDL tells us 
how closely the two datasets agree. Note that an interpretation of accuracy must take into account the distribution 
of crop types in an area, as a more skewed distribution biases accuracy upward. To aid interpretation, crop type 
distributions by state are provided in Table 3.

Second, we computed the user’s accuracy and producer’s accuracy for each crop type in each state and year, 
using CDL again as “ground truth” for CSDL. If we let TPc stand for the number of true positives for crop type c, 
FPc the number of false positives, and FNc the number of false negatives, then the user’s and producer’s accuracies 
for crop type c are de�ned as

=
+

=
+

user’s accuracy
TP

TP FP

producer’s accuracy
TP

TP FN

c
c

c c

c
c

c c

User’s accuracy is also known as precision, and producer’s accuracy is also known as recall. We have included 
these metrics with the CSDL map product to aid users in their assessment of how to use CSDL for their appli-
cations, and for congruency with the CDL product, which reports user’s and producer’s accuracy in each state’s 
metadata.

Lastly, to compare aggregated CSDL or CDL to county-level NASS data or state-level ARMS data, we used the 
coe�cient of determination (R2) metric. �e coe�cient of determination is de�ned as

Source Name Details # of Features
In �nal 
map?

Landsat

Blue

Harmonic coe�cients

5 N

Green 5 N

Red 5 N

NIR 5 Y

SWIR1 5 Y

SWIR2 5 Y

GCVI 5 Y

gridMET

GDD Jan 1–Aug 31 1 N

Mean monthly VPD Jun, Jul 2 N

Mean monthly precip Jun, Jul, Aug 3 N

Growing season precip May 1–Sep 15 1 N

Early season precip Jan 1–Apr 30 1 N

Mean monthly max temp May, Jun, Jul, Aug 4 N

Mean monthly min temp May, Jun, Jul, Aug 4 N

Aridity Jun 1–Aug 31 1 N

TerraClimate
Climate water de�cit May, Jul 2 N

Soil moisture Aug 1 N

Total — — 55 20

Table 2. Features considered in this study. A total of 55 spectral features and weather covariates were considered 
during the feature selection stage. �e �nal Corn-Soy Data Layer was created using 20 spectral features.
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= −
∑ −

∑ −
R

y y

y y
1

( )

( )

i i i

i i

2
2

2

ɵ

where yi are “ground truth” areas (NASS or ARMS), ɵy
i
 are the area predictions under the classi�er (CSDL or CDL), 

and y  is the mean of ground truth areas. In words, R2 measures the proportion of the variance in captured by the 
predictions.

Because we care about absolute error in CSDL predictions, the R2 between CSDL and NASS is computed not 
for a simple linear regression between y and ɵy, but on y and ɵy values themselves. In this case, R2 is bounded in the 
interval (−∞, 1]. It is possible for an R2 to be negative if the ɵy are worse predictions for y than the sample mean 

y . In order for R2 to be close to 1, the predictions must be both positively correlated with ground truth and unbi-
ased. R2 equals 1 only if ∑ − =ɵy y( ) 0i i i

2 , which requires = ɵy y
i i

 for all i.

Time Period State Crop Type # of Samples % of Samples

2008–2018

Illinois

Corn 51,336 54.3%

Soybean 39,458 41.7%

Other 3,719 3.9%

Indiana

Corn 25,162 49.0%

Soybean 23,650 46.0%

Other 2,549 5.0%

Iowa

Corn 58,069 55.9%

Soybean 41,164 39.6%

Other 4,612 4.4%

Kansas

Corn 18,522 21.2%

Soybean 14,349 16.5%

Other 54,347 62.3%

Kentucky

Corn 5,358 31.0%

Soybean 4,861 28.1%

Other 7,053 40.8%

Michigan

Corn 11,136 35.0%

Soybean 9,280 29.2%

Other 11,404 35.8%

Minnesota

Corn 34,982 40.4%

Soybean 33,386 38.5%

Other 18,261 21.2%

Missouri

Corn 13,222 30.5%

Soybean 20,404 47.1%

Other 9,725 22.4%

Nebraska

Corn 42,231 55.0%

Soybean 22,167 28.8%

Other 12,454 16.2%

North Dakota

Corn 11,963 13.0%

Soybean 22,408 24.4%

Other 57,348 62.5%

Ohio

Corn 15,207 37.3%

Soybean 20,623 50.6%

Other 4,904 12.0%

South Dakota

Corn 24,504 31.6%

Soybean 21,707 28.0%

Other 31,389 40.4%

Wisconsin

Corn 17,710 46.5%

Soybean 7,954 20.9%

Other 12,450 32.7%

Total

Corn 329,375 39.2%

Soybean 281,411 33.5%

Other 230,215 27.4%

Table 3. Number of samples by state and crop. For each state, the samples were used to train and validate a 
classi�er to distinguish between three classes: corn, soybean, and all other crops. �e crop type labels were 
derived from CDL in the period 2008–2018. Samples labeled as not cropland were excluded.
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Data records
�e Corn-Soy Data Layer is available on Google Earth Engine at https://code.earthengine.google.com/?as-
set=projects/lobell-lab/us_croptype_hindcast/CSDL and for download from Zenodo at https://doi.org/10.5281/
zenodo.374274357.

Classes in the CSDL map product are {0: unclassi�ed, 1: corn, 5: soybean, 9: other crop, 255: non-crop}. Note 
that, for ease of use, these are the same numeric values assigned by CDL to each land cover category. Unclassi�ed 
pixels may be due to not being in the study region or not having enough Landsat images to �t a harmonic regres-
sion. �e CSDL product shares the same projection as CDL to facilitate user transition between the two products.

Technical Validation
pixel-level comparison with CDL. First, we compared our maps at the pixel level for sampled points 
against CDL where it exists for years 1999–2007 and for a hold-out set of sampled points in 2008–2018 (Fig. 5). 
�e percent of pixels classi�ed with the same crop type (corn, soybean, or other) under both maps generally 
exceeded 85% across states in 2008–2018. �is agreement is lower in the test years 1999–2007, with a range from 
44% to 93% depending on the state and year. Of the states with long histories of CDL, Illinois, Indiana, Iowa, and 
North Dakota show high CSDL and CDL agreement, while Missouri 2001–2005 and Nebraska 2006 show low 
agreement. �ough not displayed in this manuscript, we have included a �le containing the user’s accuracy (pre-
cision) and producer’s accuracy (recall) for each crop type and state along with the CSDL product. �ese are the 
same metrics provided in the CDL meta-data.

While some of the mismatch between CSDL and CDL is no doubt due to inaccuracies in the CSDL classi�er, 
some of it can also be attributed to errors in CDL. Qualitatively, our maps appear less noisy in 1999–2007 than 
CDL where it exists. Figure 1 shows the crop cover classi�cation around Webster City, Hamilton County, Iowa 
in 2001 for CDL and CSDL. �e �eld-level classi�cations are the same, despite CDL 2001 being trained on FSA 
data from 2001 and CSDL being trained on CDL from 2008–2018. However, the �elds in CSDL are much more 
homogeneous, possibly due to the sparing use of Landsat imagery back in 2001 versus our use of all available 
Landsat 5 and 7.

County-level comparison with NASS crop acreage statistics. While CDL is only available for all 
states a�er 2008, NASS statistics on corn and soybean area planted exist back to the 1970s for counties across the 
Midwest. Figure 6 shows the coe�cient of determination R2 between annual NASS county area and annual CSDL 
county area, divided into the test years 1999–2007 and training years 2008–2018. �e R2 between NASS and CDL 
county areas are also shown for reference. We reiterate that, in order for the coe�cient of determination R2 to be 
close to 1, the aggregated CSDL or CDL predictions have to be both positively correlated with NASS data and 
unbiased; i.e. the absolute error must be small.

Random forest classifier decision boundary

Corn

Soybean

Other crop

CDL Label

Predicted Class

Corn

Soybean

Other crop

Fig. 4 An illustration of how a random forest classi�er learns to distinguish among corn, soybean, and other 
crops in a two-dimensional feature space. Here the features used for classi�cation and visualization are the 
second order cosine and sine terms of GCVI, and the data points were the ones we exported from Iowa in 2018. 
Note that the decision boundary learned for our �nal set of features (20 harmonic coe�cients total) would be 
more complex.
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�e results in Fig. 6 show that the Corn-Soy Data Layer is able to capture most of the variation in corn and soy-
bean area across counties and years. �is is true for the training years 2008–2018 (R2 = 0.943 for corn, R2 = 0.901 
for soybeans) as well as for the test years 1999–2007, though slightly lower (R2 = 0.913 for corn, R2 = 0.865 for 
soybeans). Agreement between NASS and CDL areas (where available 1999–2007) are overall even higher, and 
especially so in 2008–2018, when CDL became an input to NASS statistics. Relative to CDL, CSDL predictions 
show both a slightly larger variance and a bias toward over-predicting corn. Note that, from 1999–2007, the CSDL 
R2 is reported across 60 more state-year combinations than the CDL R2.

While agreement between CSDL and NASS crop area is high across the study area as a whole, a large amount 
of heterogeneity becomes apparent once the counties are disaggregated to state-years. Figure 7 shows time series 
of the R2 between CSDL and NASS county-level planted acreage for each state. Some states have consistently 
high R2 across years (Illinois, Iowa, South Dakota, Minnesota), while others have consistently low or variable 
agreement (Wisconsin, Missouri, Kansas, Ohio). Some years (2013–2017) also have consistently high R2 across 

Fig. 5 Pixel-level agreement between crop type classi�ed by Corn-Soy Data Layer (CSDL) and crop type 
classi�ed by CDL. Agreement is measured using accuracy, de�ned as the fraction of pixels with the same label 
under both classi�cations. Dark gray state-years indicate when no CDL classi�cation was available.

Fig. 6 County-level agreement between NASS planted area and CDL or Corn-Soy Data Layer (CSDL) predicted 
area for corn and soybean. Agreement is measured by the coe�cient of determination, R2, across 1175 counties 
in the study region. Test years (1999–2007) are shown on the le� and training years (2008–2018) are shown with 
a gray background on the right.
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states, while others (2006, 2012) do not. Corn areas usually agreed more with NASS statistics than soybean areas, 
with North Dakota being an exception with high soybean R2. In general, the crop types, states, and years with low 
pixel-level accuracy when compared with CDL corresponded to low R2 when compared with NASS.

Meanwhile, CDL and NASS areas exhibited high R2 a�er 2008 for all states (except soybeans in Kansas and 
Kentucky). �is may be explained by the high quality of FSA data, the use of more than just Landsat satellite images, 
and CDL informing NASS statistics from 2009 onwards. Prior to 2008, CDL agreement with NASS varies by crop and 
year for the mapped states, from R2 s above 0.80 in Iowa and Illinois to below 0.40 in Indiana 2005 and Missouri 2001.

Looking within each county over time, we found that CSDL planted area can sometimes be biased relative 
to NASS, but nevertheless shows similar trends from 1999–2018 (Fig. 8). Both NASS and CSDL capture the 
fact that, in two decades, corn expanded throughout the Midwest, especially in the eastern Dakotas and west-
ern Minnesota. Soybean expanded as well, largely in the western states, and contracted in southern Minnesota, 
northern Iowa and Illinois.

If historical CDL agreement with NASS can be used as a threshold for acceptable quality, then the CSDL �lls in 
many missing years between 1999–2008 in Minnesota, Wisconsin, Michigan, South Dakota, Kentucky, Ohio, and 
Kansas. However, we did notice that CSDL under-predicted corn or soybean in counties where the crop is a small 
fraction of total cropped area. We advise users of CSDL to verify the product in a county (for example, against 
historical NASS) before using it in cross-year analyses.

State-level comparison with ArMS crop rotation statistics. For a veri�cation independent of NASS 
and CDL, we compared the soybean-to-corn rotation area at the state level derived from CSDL against available 
ARMS statistics. Figure 9 shows the two datasets’ estimates of the fraction of corn area in 2001, 2005, and 2010 
that was previously growing soybean in 2000, 2004, and 2009, respectively. Across the 13 states, the squared 
correlation (r2) between CSDL and ARMS estimates improves over time, from 0.421 in 2001, to 0.643 in 2005, to 
0.870 in 2010 (though North Dakota and Kentucky are omitted in 2010 because their ARMS data did not report 
corn-corn rotations). Relative to ARMS, CSDL underestimates the soybean-corn rotation fraction, which is con-
sistent with observations that CSDL overestimates corn and underestimates soybean compared to NASS. Similar 
to the NASS analyses above, these results suggest that CSDL, like CDL, improves in quality over time, and that 
CSDL should be assessed for each state and year before used for downstream applications.

Fig. 7 Annual agreement between NASS county-level area and CSDL-predicted county-level area for each 
state in the study region. Agreement is measured by the coe�cient of determination, R2. Years with a gray 
background display results in our training years (2008–2018). �e order of states corresponds to their relative 
geographic locations.
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Sources of error in CSDL. Errors in CSDL can be grouped into three main categories of causes: (1) missing 
or erroneous input data, (2) similarity in corn and soybean spectral re�ectance and phenology, and (3) systematic 
di�erences between training years (2008–2018) and test years (1999–2007).

Missing or bad input data include limited Landsat imagery (especially during the growing season of May to 
September), errors in CDL labels, and mislabeling of cropland introduced by our use of NLCD. Landsat image 
availability may be lowered by clouds or, in the case of 2012, only one Landsat mission being active. �ere is a 
noticeable dip in the mean number of clear Landsat images available in 2012 (Fig. 2), and signi�cant areas in 
each state for which few or no clear images were acquired during key points in the growing season. Crop type 
classi�cation at these locations became error-prone or impossible, and CSDL classi�cation accuracy compared to 
CDL and agreement with NASS were correspondingly low in 2012 for many states. Failure of the Landsat 7 scan 
line corrector in 2003 also caused more gaps in coverage and introduced visible striping artifacts into CSDL 2012. 
�ese artifacts are not present in other years when Landsat 5 or 8 are also operational.

Similarly, some individual state-years that have low R2 in Fig. 7, such as Ohio 2006 and South Dakota 2006, can 
also be attributed to patches of missing Landsat imagery. For example, Fig. 10 shows that the high errors in Ohio 
2006 can be attributed to the absence of any clear Landsat imagery in western Ohio from July 1 to September 30, 
2006, which resulted in missing the peak of vegetation. Since soybeans have high GCVI, missing the peak caused 
soybean pixels to be incorrectly classi�ed as corn or other crop. A potential remedy for the dearth of Landsat 
imagery would be to include imagery from other satellites, e.g. ResourceSat, the way CDL does.

Fig. 8 Trends in county-level corn and soybean area from 1999–2018, as measured by NASS or Corn-Soy Data 
Layer (CSDL). �e trend is measured by the slope of the linear regression �t to planted area versus year. Counties 
in red saw an average annual increase in acreage between 1999 and 2018, while counties in blue saw a decrease.

Fig. 9 Agreement between ARMS and CSDL-derived rotation statistics for the 13 states in our study region. 
�e statistic being compared is the fraction of corn area in 2001, 2005, or 2010 planted with soybean in the 
previous year. �e squared correlation (r2) between ARMS and CSDL is shown for each year.
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On the label side, since the CSDL random forest is trained on CDL, the classi�er may perpetuate CDL errors, 
though in an attenuated way if CDL errors from 2008–2018 are not perfectly correlated. During model develop-
ment, we tried training a classi�er on only high con�dence CDL labels (>90% con�dence band value), but did 
not observe greater classi�cation accuracy or agreement with NASS. We also do not classify non-cropland our-
selves, instead using the most up-to-date NLCD product available in a given year to mask out non-cropland. �is 
results in the years between NLCD updates having out-of-date cropland masks by up to two years. Since cropland 
expanded from 1999 to 2018, using the last available NLCD should on average result in slight underestimates of 
cropland area (with the exception of 1999 and 2000, which should be slight overestimates). At the same time, 
previous studies have shown that cropland expansion in the Midwest has occurred largely on marginal land with 
severe limits to cultivation19, so any error of corn or soybean area should translate to a smaller error in potential 
downstream production applications.

�e second major source of error is that corn and soybean may look similar in spectral re�ectance and phe-
nology in some regions and years. To illustrate this, one can imagine that greater similarity translates to the corn 
points and the soybean points overlapping more in Fig. 4; this makes it di�cult for the classi�er to distinguish the 
two. �is is true in Nebraska 2002, when both corn and soybeans reached lower-than-average peak GCVI, possi-
bly due to higher-than-average VPD in summer 2002. Since soybean usually has a high GCVI peak in the training 
set, depressed soybean growth resulted in soybean being misclassi�ed as corn. Previous work also showed that, 
while soybean is planted and harvested on average later than corn across the Midwest, this di�erence is more 
pronounced in the southern states (Illinois, Iowa, Indiana) than the northern ones (Michigan, Wisconsin)43. �is 
suggests that classi�cation using Landsat time series would perform better in the southern states, which overall 
we did observe. CDL also reports lower user’s and producer’s accuracies in the northern states. Overcoming this 
challenge would require the engineering or acquisition of better, more discerning features.

Lastly, long-term changes or anomalies in climate and crop cultivation could render the statistical associations 
found between spectral time series and crop type in the period 2008–2018 weaker or inapplicable in 1999–2007. 
One long-term trend can be found in steadily rising yields; average corn yield between 1999–2007 was 143 bu/ac, 
while between 2008–2018 it was 161 bu/ac38. It is possible that a model trained to di�erentiate corn and soybean 
in more recent years would struggle with lower-yielding counterparts in earlier years. Unusual climatic conditions 
in the test years not observed during training years could also cause errors at test time. For example, unusually 
heavy precipitation in April and May 2002 delayed planting in Indiana and Ohio; since corn is usually planted 
earlier than soybean, this shi� in planting date caused corn to be misclassi�ed as soybean in these states in 2002. 
With access to annual FSA data for training, CDL is una�ected by these shi�s, but any hindcast model must be 
wary of them. Improving out-of-domain generalization remains an active area of machine learning research.

Usage Notes
We recommend that users consider metrics such as R2 with NASS statistics across space and time to determine in 
which states/counties and years CSDL is of high quality. �is can be done with the annual county-level statistics 
and example code we have included in our repo at https://github.com/LobellLab/csdl. We have also included, 
for states and years with CDL, a CSV �le summarizing the user’s accuracy (precision) and producer’s accuracy 
(recall) of CSDL compared against CDL.

Code availability
Code used to generate the training samples, compute harmonics, train a random forest classi�er, create the �nal 
maps, and produce the validation analyses are available publicly as Google Earth Engine scripts, R markdown 
�les, or Jupyter notebooks. Links to scripts and data for analyses can be found in the GitHub repository at https://
github.com/LobellLab/csdl.

Ohio 2006 CSDL Predictions
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Fig. 10 One explanation for CSDL classi�cation failure. Error analysis of CSDL in Ohio 2006 (corn R2 = −0.17) 
reveals that (a) corn is greatly over-predicted in 12 counties, while soybean is under-predicted. (b) �ese 12 
high-error counties are clustered around the center of one Landsat orbit track. (c) �is Landsat track failed to 
acquire any clear images between July 1 and September 30, 2006. (d) Comparison of a time series inside the 
track (point 1) and outside it (point 2) shows how peak vegetation was missed and led to the misclassi�cation of 
much soybean as corn.
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�e so�ware used in this work include:
• R version 3.5.1, dplyr 0.8.0.1, sf 0.6–3, raster 2.6–7, rgdal 1.3–4, salustools 0.1.0, sp 1.3–1
• Python 3.7.3, numpy 1.16.4, pandas 0.24.2, matplotlib 3.1.0, sklearn 0.21.2, plotly 4.5.0
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