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An overarching view of adaptive behavior is that humans and animals 
seek to maximize reward and minimize punishment in their choices. 
Solutions to such value-based decision problems fall along a crude 
spectrum. At one end, on-the-fly planning, based on a model of the 
relevant domain, can determine which of the available actions lead 
to a desired outcome. Finding optimal actions in this type of choice 
context, for instance, by searching the branches of a decision tree for 
the best outcome, poses severe demands on computation and memory 
and rapidly becomes intractable with growing complexity. This end 
of the planning spectrum is of particular importance when we have 
relatively little experience in an environment or where its aspects 
change quickly.

In contrast, when subjects have extensive practice in a relatively 
stable domain, they can directly learn from experience about the 
affective consequences of different actions. Decision-making at this 
end of the spectrum can become highly automated and need no 
longer be based on a complex representational model of the world. 
One of the main results in the field of reinforcement learning1, and 
indeed one of the earliest insights in artificial intelligence2, is that it 
is possible to learn optimal actions in complex, but stable, domains 
by making and measuring errors in predictions over the course of 
extended experience.

A rich body of work on value-based decision-making in humans 
has focused on learning on the basis of prediction errors3,4. Although 
there has been extensive investigation of various tasks involving plan-
ning, such as the Tower of London5, these tasks have typically not 
focused on value and have not been designed to compare the two 
ends of the spectrum referred to above. More recent investigations 
targeting this spectrum6–8 have been revealing, but have not directly 
addressed the computational mechanisms or neural encoding of 
value-based planning, or the integration of extensive training and 
planning–based evaluation and choice.

We designed a value-based choice task for human subjects and 
used functional magnetic resonance imaging (fMRI) to examine the 
neural mechanisms underlying forward planning and choices based 
on learned values after extensive behavioral training. Our task allowed 
us to separately index planning and extensively trained contexts, 
which allowed us to specifically investigate value representations in 
the brain associated with the computational processes of each type 
of choice. We found that medial striatum was more strongly engaged 
during planning and lateral striatum was more strongly engaged 
during choices in extensively trained contexts. Notably, the blood 
oxygen level–dependent signals in caudate pertained to individual 
computational components of planned choice values, whereas signals 
in posterior putamen selectively fluctuated with the values during 
extensively trained responses. Our results provide direct evidence 
in humans for multiple decision systems that operate independently 
and in parallel and recruit neural structures along a medio-lateral  
axis in basal ganglia. Furthermore, prefrontal cortex, specifically ventro-
medial prefrontal cortex (vmPFC), represented the value of the chosen 
option across systems, highlighting its possible role as a value com-
parator across both decision systems.

RESULTS
We asked 21 subjects to participate in a decision task in which deci-
sion values that were either derived from forward planning or learned 
through extensive training could be distinguished on a trial-by-trial 
basis. One component of the task required subjects to navigate a 
tree-shaped branching maze to reach one of several available ter-
minal states. Each state was associated with distinct probabilities of 
obtaining reward, thus rendering the value components of individual 
branches in the decision tree computationally transparent. In pure 
planning trials (Fig. 1a), probabilities of reward were visually dis-
played, but could change on each trial. Three consecutive choices led 
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Investigations of the underlying mechanisms of choice in humans have focused on learning from prediction errors, leaving the 
computational structure of value based planning comparatively underexplored. Using behavioral and neuroimaging analyses of 
a minimax decision task, we found that the computational processes underlying forward planning are expressed in the anterior 
caudate nucleus as values of individual branching steps in a decision tree. In contrast, values represented in the putamen pertain 
solely to values learned during extensive training. During actual choice, both striatal areas showed a functional coupling to 
ventromedial prefrontal cortex, consistent with this region acting as a value comparator. Our findings point toward an architecture 
of choice in which segregated value systems operate in parallel in the striatum for planning and extensively trained choices,  
with medial prefrontal cortex integrating their outputs.
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from the start state to the terminal state. Subjects planned the first and 
last choices; the middle choice was made by a predictable computer 
agent acting according to a fully disclosed rule (minimax, selecting 
the tree branch having the lower maximum value). This latter step 
induced a tree search strategy for calculating planned values, whereas, 
for instance, a mere requirement to compare displayed values might 
fail to invoke sufficient forward planning. Thus, the best possible 
choice in the task required a form of dynamic programming, involv-
ing the estimation of values at distinct stages in the tree (Fig. 1b).

A second component of the overall task design involved trials that did 
not require forward planning and were instead extensively exercised during  
3 d of behavioral training. In these, subjects had to make single choices 
between two available actions after having learned values from samples of 
a probabilistic reward delivery process (Fig. 1c). The inclusion of separate 
planning and extensively trained trials allowed us to investigate neural 
computations unique to each decision system. Subsequent to this, we 
examined mixed trials involving choices between either a planning or  

a trained branch (Fig. 1d) and choices between two trained branches. From 
a normative perspective, the combination of both components in the same 
trial entails a direct comparison of planned values from one branch with 
values derived from the extensively trained task on the other branch.

Behavioral results
Subjects’ choices were largely consistent with choice values over all trial 
types (Supplementary Table 1), confirming that planning was cogni-
tively tractable, and consistent with subjects having learned values and 
action mappings in the trained trials. On average, subjects chose opti-
mally in 94% of planning trials and chose the rewarding door in 98% of 
extensively trained trials. Our task was designed such that only a tree 
search strategy would yield good performance in planning trials. To test 
whether participants indeed used a tree search strategy, we compared 
individual subjects’ choices to the optimal minimax strategy and to other 
simpler heuristics, such as picking the path with the largest maximum 
value later in the tree or picking the path with the highest average value 

Figure 1 Task and behavioral results. (a) Task 
flow in planning trials: subjects navigated a 
three-layer maze before reaching probabilistic 
rewards. Eight numbers (randomly changing 
from trial to trial) displayed reward probabilities 
of each terminal room. Second layer choice was 
determined by a deterministic value minimizing 
computer agent that implemented the lowest 
value option. (b) Exemplary planning maze: 
nodes represent rooms and lines represent 
transitions between rooms. Subjects moved 
forward by freely choosing at the first and third 
level (cyan circles); the computer determined 
choice at the second level (gray circles).  
The optimal path (arrows) was determined by 
backward induction of state values using a 
minimax strategy. State (black) and action (red) 
values are shown along the choice path. (c) Prior 
training over 3 d in four single-level mazes with invariant contingencies and distinct reward probabilities (P = 0.15, 0.40, 0.65 and 0.90). Wall colors 
provided distinguishable contexts that allowed subjects to distinctively identify each trained maze. No explicit information about reward probabilities or 
contingencies was given. (d) Combination of planned and trained options in the same trial; colored doors transitioned into trained maze of same color, 
the other door followed reduced planning branch with four outcome states. No reward probabilities were shown above colored doors. (e) Average fraction 
of correct choices according to a tree search planning strategy (plan) and two alternative heuristics: highest value (max) and higher average value (avg). 
Subjects’ choice behavior pertained to tree search planning strategy and could not be explained by any of the heuristics. Vertical lines represent s.e.m. 
See Supplementary Table 2 for individual subject behavior.
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Figure 2 Neural correlates of planning versus 
extensively trained choices. (a) Significant 
categorical effects for planning > trained trials 
(red) and trained > planning trials (blue). Medial 
sectors of basal ganglia, including medial 
caudate, thalamus, bilateral anterior insula, 
dorsomedial prefrontal cortex, bilateral medial 
frontal gyrus and precuneus, showed enhanced 
BOLD responses on planning compared with 
extensively trained trials. Lateral posterior 
putamen, posterior insula extending into the 
medial temporal gyrus and somatosensory 
cortex, including postcentral gyrus, were more 
activated when subjects made a response in the 
extensively trained context. (b) Effect size plots 
in a regression of planned values, convolved with 
a canonical HRF, against BOLD data at three 
time points: first choice, subjects’ second choice and outcome. Signals in caudate pertained to the value difference between actual target and alternative 
values in the choices along the traversed path, as indicated by both significant positive effects for target values and significant negative effects for the 
alternative values. Asterisks mark significant effects (P < 0.05; see Supplementary Table 5 for individual effect sizes and P values), a.u. = arbitrary 
units; vertical lines represent s.e.m. Posterior putamen did not significantly correlate with planned values. (c) Caudate activity related to classic reward 
prediction errors during trained trials. Posterior putamen showed significant value representations in extensively trained mazes at time of choice.
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in the leaf nodes. Subjects’ behavior was better explained by the mini-
max planning strategy than any of the alternative heuristics (P < 10−8, 
Wilcoxon rank sum test; Fig. 1e). Moreover, choices in every individual 
subject matched choices predicted by the planning strategy more closely 
than those predicted by the heuristics (Supplementary Table 2).

Before undergoing fMRI, subjects were trained for 3 d on exten-
sively trained trials to ensure that associated values had stabilized. 
Over the course of that training, subjects’ responses converged to the 
optimal action in each context; there was no difference between the 
rate of correct responses in higher and lower valued contexts from 
day 2 onwards (Supplementary Fig. 1).

Categorical neural differences: planning versus trained choices
We first compared activity at the time of initial choice during planning 
trials with activity in trials involving extensively trained choices. Activity 
dissociated along an anteromedio-posterolateral axis in basal ganglia 
(Fig. 2a). Structures that were preferentially activated during planning 
included caudate and medial striatum, thalamus, bilateral anterior insula, 
dorsomedial prefrontal cortex, dorsolateral prefrontal cortex, bilateral 
medial frontal gyrus and parietal cortex (precuneus extending into 
intraparietal sulcus). In contrast, lateral posterior putamen, posterior 
insula extending into the medial temporal gyrus, vmPFC and somato-
sensory postcentral gyrus were more strongly activated in trained trials  
(all P < 0.05 familywise error corrected; Supplementary Table 3). 
Anatomically defined region of interest (ROI) analyses confirmed that 
BOLD responses in caudate increased significantly only during planning 
trials, whereas posterior putamen activity was selective to trained trials.

Neural correlates of choice relevant values
As choice crucially depends on value, we next investigated neural 
responses pertaining to valuations of available choices in two striatal 
regions that are strongly linked to decision-making, namely anterior 
caudate nucleus, implicated in goal directed choices9,10, and poste-
rior putamen, which has been associated with overtrained choices8. 
In addition, we examined responses in vmPFC, a region also widely 
implicated in value-based choice11–13. We delineated ROIs a priori (see 
Supplementary Fig. 2 for location details) based on previous research 
and anatomical criteria and regressed various values against fMRI sig-
nals in these regions. One set of values concerned were those of the 

target (the choice leading to the best reachable outcome, taking account 
of the computer’s minimax strategy) and of the alternative choices along 
the traversed maze path. This was motivated by the fact that these are 
the values that need to be compared during tree search. Indeed, con-
sistent with this hypothesis, fMRI signals in the caudate covaried with 
the difference between target and alternative values, as shown by the 
significant positive effects for target and negative effects for the alterna-
tives (P < 0.05; Fig. 2b and Supplementary Table 5). Notably, during 
the root choice, caudate activity related to several values relevant for a 
given choice, including those at the present (Vtarget − Valt.root), and to the 
consecutive choice deeper in the tree (Vtarget − Valt.deep). Note that suc-
cessful forward search of the decision tree required a consideration of 
the latter values even while at the root state. During the subjects’ second 
choice (layer 3), caudate activity was still associated with the values of 
both alternatives at the now current choice, but was no longer associ-
ated with the value of the previously rejected root branch. These value 
difference signals are likely to reflect the output of value comparisons, 
a predicted hallmark of a cognitive implementation of tree search. The 
effects seen in caudate for planning value components were not evident 
in posterior putamen. Instead, the putamen solely encoded values on 
extensively trained trials at the time of choice (Fig. 2c).

We next examined how the two networks interact in decisions that 
require a comparison of the respective values represented in these two 
distinct clusters. We presented subjects with a choice between a plan-
ning branch and a trained branch (Fig. 1d), that is, a task in which 
subjects need to access both planned and trained values. By design, 
the value of the trained branch was uncorrelated with the values of 
the planning branch, which allowed us to distinguish the influence 
of both value types. The caudate consistently represented the differ-
ence between the planned target value and the value of the alterna-
tive option on the planning branch, consistent with it performing  
the same value difference computations as in pure planning trials. 
Notably, the caudate represented these planned values and not the  
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values of the trained branch, regardless of which branch was later chosen 
(Fig. 3a). In contrast, activity in putamen pertained solely to values of 
the available trained branches, also irrespective of later choice (Fig. 3b). 
The putamen also represented the stimulus values of both available 
actions in trials comparing values from two trained branches.

The finding that activity in caudate and putamen covaried with 
planned values and values from the trained trials respectively, even for 
actions that were not chosen, provides direct evidence for a parallel 
and independent operation of two separate controllers. In turn, this 
parallel operation afforded us the opportunity to examine how these 
systems compete at the time of choice. Similar to action values14,15, 
the striatal correlates of planned values and values of the trained 
branches fulfill the criteria for pre-choice values and are likely to serve 
as inputs to a final decision comparator. The region most commonly 
implicated in comparative valuation is the vmPFC16–19. We observed 
that vmPFC activity covaried with the value of the chosen branch, a 
post choice signal, irrespective of whether it was planned or trained 
(Fig. 3c). Notably, we found no evidence for the representation of 
mere stimulus values in the vmPFC cluster: if vmPFC activity had 
related to some form of representation of both value options (or their 
sum), then we would have expected to see a positive effect for both 
chosen and unchosen values in this contrast. Furthermore, we ruled 
out that the vmPFC signals represented the best option (maximum 
value) rather than the chosen option by re-estimating our general 
linear model (GLM) with a maximum choice value regressor and 
performing Bayesian model comparison20 between both GLMs. This 
analysis provided strong evidence for a choice-related signal in both 
mixed and trained/trained trials (exceedance probability >0.99).

Functional coupling between basal ganglia and vmPFC
In mixed trials, signals in caudate and putamen consistently pertained to 
the value of the same system, independent of choice, whereas vmPFC per-
tained to the value that was modulated by choice. In other words, activity 
in vmPFC depended on choice, whereas activity in putamen and caudate 
did not. This suggests the caudate and putamen are at an input stage to a 
value comparison process, whereas vmPFC is at an output stage.

To discriminate between alternative mechanisms for how choice 
values from both systems are compared, we used a connectivity 
analysis, derived from a psychophysiological interaction (PPI), and 
examined the functional relationship between vmPFC, caudate and 
putamen during mixed choices. One possibility is that the competi-
tion between the planning and extensive trained system is resolved 
in the basal ganglia and the outcome is transferred to vmPFC. This 
predicts that the PPI will show increased coupling of only the winning 
area (caudate or putamen) with vmPFC. The alternative hypothesis is 
that values from both areas are transferred to vmPFC and that compe-
tition is resolved in vmPFC. This predicts increased coupling between 
both precursor areas and vmPFC, regardless of choice.

The results of the PPI analysis support the latter pattern hypoth-
esis, revealing a significant increase in the strength of coupling of 
both putamen and caudate with vmPFC during the time of choice, 
independent of the action that was finally chosen (P < 0.05; Fig. 4). 
In contrast, we did not find areas that showed a differential increased 
coupling with caudate on trials in which subjects chose the planning 
branch, but not on trials in which they chose the trained branch, or 
a differential increased coupling with posterior putamen on trained 
branch choices, but not on planning branch choices.

DISCUSSION
We found that behavior on trials invoking forward planning and trials  
with extensively trained options evoke activity in distinct neural  

systems during computations associated with choice. BOLD signals in 
the caudate pertained to values of the individual branches in a deci-
sion tree, whereas BOLD signals in the posterior putamen fluctuated 
with values associated with responses in an extensively trained context. 
Notably, during choices requiring a simultaneous comparison of values 
from both choice types, the individual striatal subsystems consistently 
represented their respective values regardless of final choice. These 
findings suggest that two independent systems represent the two choice 
types in our task. In contrast, activity in prefrontal cortex pertained to 
a value signal that depended on the actual decision that was made.

Converging evidence from animal and human studies has long 
suggested that two different learning processes govern behavior: one 
controlling the acquisition of goal-directed actions and one control-
ling the acquisition of habits21,22. According to this dissociation, an 
association between actions and outcomes governs action selection 
in the goal-directed case, whereas it is controlled through learned 
stimulus-response associations without any direct assessment of the 
outcome of those actions in the habitual case. As such, goal-directed 
control is performed with regard to the consequence of actions, 
whereas habits are determined by the predicting stimuli rather than 
the outcomes. Accounts suggesting a plurality of control are also sup-
ported by theoretical considerations of the computational mecha-
nisms underlying different forms of reinforcement learning23,24. The 
defining criterion in the more computationally centered literature has 
been a functional one, focused on the differences in the computational 
mechanisms underlying different types of learning. The dissociation 
that we used is between model-free temporal difference learning of 
cached values and model-based choice that predict, on the fly, the 
immediate consequences of each action in a sequence. Our planning 
task, which was designed to be only solvable by searching the deci-
sion tree, typifies model-based control. The absence of a devaluation 
or contingency degradation test means that we cannot definitively 
prove that our extensive training created a true habit. Similarly, we 
cannot exclude the notion that subjects derived values in the exten-
sively trained mazes by solving a decision tree during training and 
then memorizing it so that it could be retrieved at the time of choice. 
However, similar tasks in previous studies have shown that learning 
through numerous repetitions in stable contexts is solved by a predic-
tion error–based mechanism3,25–28.

In the caudate, we observed value differences, which are likely cor-
relates of the choice values during the planning process. The existence 
of planning value representations in anterior caudate is consistent 
with evidence for goal-directed impairment after caudate lesions in 
rodents29. In addition, a human imaging study found elevated activ-
ity in anterior caudate when subjects were performing on a high- 
contingency schedule compared with when they were performing on 
a low-contingency schedule10.

Although most of our results are consistent with previous findings 
implicating the caudate in explicit planning, it is notable that the BOLD 
signal in this structure also correlated with the values of the relevant 
options in extensively trained trials. There are a number of possible 
explanations for this. The simplest is that this activity is epiphenomenal 
for choice. That is, the main claim of dual systems accounts is not that 
redundant systems do not calculate (if they have the information to do 
so), but rather that their calculations do not influence behavior. Thus, in 
extensively trained trials, a planning system might estimate values, but 
with no effect or only a modest effect on behavior, or perhaps at most 
improving the prediction errors available to the other system6. When the 
planning system is engaged in its own unique computations, these cal-
culations are no longer possible. We consider the mixed trials as show-
ing this, although it would be interesting to design a more explicit test, 
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for instance, engaging the planning system with a distractor task while 
subjects make extensively trained choices. In such a scenario, we would 
expect value-associated signals in caudate to vanish, or rather to per-
tain to the concurrent planning task, while leaving choice performance 
on the extensively trained task essentially unimpaired. Diametrically 
opposed to this interpretation is the possibility that the caudate actually 
controls choice, even in trials that we consider to be non-planning. We 
believe this is unlikely, as the value of the trained branch was conspicu-
ously absent from caudate in mixed trials, whereas if subjects based all 
choices on planning then we should have seen a value difference in the 
caudate, similar to the pattern of activity observed in pure planning 
trials. A third, and more radical, possibility is that the values from the 
trained branches are used to ground evaluations in the planning system.  
This interpretation would be most appropriate for trials involving two 
trained branches, as these values could then be compared by the plan-
ning system. Such an integration of values across systems has been 
widely predicted from the very earliest days of planning2,30, but has not 
previously been observed. Our task is not ideal for testing this possibil-
ity, but it suggests an important area for future work. On a similar note, 
although we found that prediction error–based learning of action values 
did not affect choice in planning trials, we cannot exclude some form 
of concomitant model-free learning even in planning trials. However, 
in the absence of an overt expression of behavior from the model-free 
system, this would not be trivial to dissect using our methods. These 
questions are nevertheless important issues for future research.

The putamen encoded values associated with the extensively trained 
trials throughout our study. A recent imaging study8 showed that cue-
driven activation in dorsolateral posterior putamen increases with 
prolonged habitization and concluded that this region may contribute 
to the habitual control of behavior in humans. Although that study did 
not investigate the value-related parametric effects in this region, we 
found neural representations of values for extensively trained choices 
in the same area. However, it is less clear whether there is a process of 
consolidation by which values migrate in the striatum over the course 
of overtraining. Our ROI (which was based on the coordinates in ref. 
8) was posterior to the location of many previous studies reporting 
prediction error signals in putamen during basic learning tasks4,27,31. 
When we tested for value signals in an ROI in anterior putamen, 
we did not find a reliable significant representation for values of the 
trained branches or planned values. This is consistent with evidence 
from studies on procedural sequence learning32,33, suggesting a trans-
fer of activity from rostral to more caudal parts of putamen with 
increasing learning.

Our data (including the behavioral effect that higher values in those 
trials reduce response times; Supplementary Table 1) also suggest 
that even extensively trained responses can still be influenced by 
learned values of the associated actions, rather than depending only 
on the sort of more arbitrary action propensities found in certain rein-
forcement learning models (notably the actor-critic34). It is interesting 
to note that in neither of the tasks did we observe a value difference 
for the extensively trained choices in posterior putamen, which might 
function as reinforcement learning cached memory. This is particu-
larly clear in trials with two trained branches, where the values of both 
available options were simultaneously represented in putamen. This 
pattern of option values, but not a value difference, suggests that the 
putamen does not compare values, but needs the vmPFC or caudate 
(where we see such a difference between the chosen and unchosen 
option) to perform this task. It should also be noted that posterior 
putamen did not reflect a prediction error at the time of outcome 
(unlike caudate), which might underlie the persistence of extensively 
trained habits.

Our finding that vmPFC increased its coupling with both caudate 
and putamen during choice and encoded the winning outcome of 
a choice process (chosen value) is consistent with it having a puta-
tive role as a value comparator. These results challenge the view that 
prefrontal cortex is largely sensitive to model-derived values10,11,35 
and instead suggest that the vmPFC is engaged whenever values are 
compared, to prepare an action, regardless of whether this derives 
from a planning computation or from extensive training. The absence 
of vmPFC value representations during extensively trained choice 
trials, which do not require a comparison, implies that subjects imme-
diately initiate the action in these trials. This interpretation would 
also explain why vmPFC does not represent choice values at the third 
stage of planning trials, as subjects might have already precomputed 
and stored deep choices at the root stage and then only executed 
the appropriate response at the deep stage. Our behavioral findings 
support this interpretation: subjects’ response times increased with 
decision difficulty (measured as absolute value difference) at the first 
stage, but not at the second stage (Supplementary Table 1). In con-
trast, caudate represented values of the second stage choice both at the 
time when they were computed (root choice) and at the time when the 
associated action was activated (deep choice), consistent with its pro-
posed role of organizing and representing the forward planning proc-
ess. In summary, vmPFC might facilitate actual value comparisons, 
whereas caudate represents the planned actions (together with the 
planned values) as long as they are task relevant and until the required 
actions are initiated. Furthermore, it is of interest that vmPFC per-
tained to the value difference between chosen and unchosen options 
during choices requiring a comparison of values from only one system  
(such as pure planning trials and trials involving a comparison 
between two extensively trained branches), but only to the chosen 
value in mixed trials. We cannot rule out the possibility that our test is 
insensitive to the negative effect of the unchosen option during those 
trials. However, an alternative explanation is that the brain employs 
different mechanisms for the value comparison in both conditions. 
This hypothesis requires further investigation, as previous studies 
have reported vmPFC sensitivity to both chosen values11,13,31,36,37 and 
to value differences between chosen and unchosen options16,19, but 
whether behavior was guided by planning or non-planning computa-
tions was not explicitly controlled for. In addition to chosen values, 
a number of previous studies found evidence for goods or option 
values in medial PFC12,38. Our overall interpretation suggests a value 
comparison role for vmPFC after pre-choice values are transferred 
there from other structures such as the basal ganglia. It is possible 
that vmPFC also has a separate role in the valuation of economic 
goods39,40, in which case it may also reflect stimulus values41. We used 
abstract monetary rewards and our task therefore did not require such 
an appraisal of real world items in common value space.

We note four caveats to our findings. First, nonsignificant results do 
not prove the absence of an effect. However, it should be mentioned 
that neural signals in caudate and putamen did not just correlate 
with a singular value signal, but instead pertained to a set of specific 
computationally meaningful patterns across several different tasks. 
Second, we concentrated on BOLD signals at the time of the choice 
rather than at the outcome. This was because we had no expectation 
for the computation at this time for either system. The outcome is 
irrelevant for planning, as values change on a trial-by-trial basis and 
the computer opponent’s strategy is instructed. For the choices in the 
extensively trained context, substantial experience with fixed outcome 
probabilities (unlike the case in ref. 6) should render nugatory any 
prediction error. Third, although our results in relation to categori-
cal differences between trial types (Fig. 2a) might be influenced by 
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variations in difficulty between conditions, this would not affect the 
parametric analysis of values, as those potential confounds are encom-
passed by the associated categorical regressor. Finally, all value signals 
are relative to the reference frame of the choosing agent38,42 and any 
neural representation of values should ultimately reflect subjective 
values. We assumed that our subjects employed a linear transforma-
tion of reward probabilities to value, consistent both with subjects’ 
choices and neural data showing a linear relationship between reward 
probability and BOLD in our ROIs (Supplementary Fig. 3).

Our findings add to recent investigations of value-based choices6–8,11,  
suggesting that there are conserved processes in basal ganglia across 
species. Previous studies were limited with respect to the questions 
that we posed by either not dissociating value representations of mul-
tiple controllers or not involving actual planning43. Furthermore, we 
designed our task to minimize the possible indirect interactions between 
the two forms of control; for instance, even if the planning system  
were to calculate temporal difference prediction errors on planning trials  
(unnecessarily for it)6, there would be little to do with them, as the 
values change on a trial-by-trial basis. Perhaps the most pressing possi-
bility furnished by our results is to embed values derived from extensive 
training deeper in the tree. This would require those learned values to 
be assessed as part of a planning choice in a more thoroughgoing way 
than in our trained/trained trials. As mentioned above, that this actually 
happens is a critical prediction of theories and practice in planning in 
extended domains, but has never been experimentally tested.

METhODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METhODS
Subjects. 21 healthy subjects (9 female, 18–35 years old) with no history of 
neurological or psychiatric illness participated in this study. None showed color 
vision deficiency in the Ishihara test. All subjects participated in 3-d learning of 
trained mazes and scan session 1 (see below). 20 of the 21 subjects participated in 
scan session 2. The Institute of Neurology (University College London) Research 
Ethics Committee approved the study.

Task. Our experiment consisted of four conditions: pure planning (P trials), 
extensively trained choices (E trials), choices requiring a comparison of planned 
and extensively trained values (PE trials), and choice between two trained 
branches (EE trials).

Planning. Subjects navigated through a tree-shaped maze in search of maxi-
mal reward. Each state in the decision tree corresponded to a unique room in 
the maze with state transitions implemented through left and right forward exit 
doors (backtracking was not possible). Depending on the chosen doors, subjects 
progressed along different branches in the tree maze until they reached a reward 
room at the end of each branch (Fig. 1b). All participants acquired correct map-
pings between room transitions and maze positions before the functional imaging 
experiment. Each reward room contained probabilistic reward, shown to subjects 
as a chest full with gold coins or an empty chest. The reward probabilities of all 
terminal rooms were clearly available to subjects throughout the trial as a display 
of eight numbers at the top of the screen. The reward probabilities fluctuated in 
discrete 0.1 wide steps between 0 and 1 and were shown to subjects as percentage 
integer number (in the range [0, 100]). Transitions from state to state within the 
maze (the spatial layout of the maze) were deterministic and constant throughout 
the entire experiment. However, the reward probabilities for the eight terminal 
states changed completely on every planning trial, thereby effectively preventing 
successful application of model-free learning strategies.

To engage subjects in forward planning over and above a mere comparison 
of instructed values, the choice at layer 2 in the tree was made by a deterministic 
value minimizing computer agent. Before the experiment subjects were explicitly 
instructed about the computer agent’s choice rule and, to avoid that subjects 
considered the computer as social agent, we emphasized that its choice rule 
would remain deterministic and predictable throughout the experiment. The 
only rational strategy in this task was to plan the best possible transit through the 
maze using a mimimax strategy44 to rollback state value. This involves, already at 
the root choice, considerations of the choice at the third layer and the computer’s 
choice in each of the two possible rooms in layer 2.

choices in extensively trained contexts. Each of the four mazes consisted of one 
choice room with two doors and a reward room behind each door. Only one door 
led to probabilistic reward and those contingencies never changed throughout 
the experiment. Different wall coloring (red, yellow, green and blue) provided 
distinct contexts in which subjects acquired separate value associations from the 
set of 15, 40, 65 or 90 percent45. We counterbalanced mappings between color, 
reward contingencies, and actions across subjects.

choices between planning and trained branches. Half of the decision tree was 
a planning branch with the same rules as in the planning maze; the doorframe in 
the root node of the other branch was colored and its choice led into the trained 
maze of that color. This required subjects to directly compare a planned target 
value from one branch with a trained value. We matched transitions in mixed 
trials to equate effort and time for traversing either branch. Note that this trial 
type did not provide subjects with an option to choose whether they would prefer 
to engage in planning or a choice based on the previously trained mazes. Instead, 
rational choice always required performance of both a planning part to calculate 
action values for the planning branch and retrieval of a value for the colored 
branch, followed by a direct comparison between values from both systems.

choice between two extensively trained branches. Finally, trials in a fourth 
condition involved a comparison between two learned values. The root room con-
tained two colored doors and choice of any transitions into the respective maze.

Training of values in colored mazes. To induce stable values in the colored 
mazes, we informed subjects that each color corresponds to a different maze with 

its own stable reward probabilities and then trained them on three consecutive 
days (720 trials in interleaved ordering) before the fMRI scan (Supplementary 
Fig. 1). We did not perform functional imaging during this training phase, but it 
is well established in numerous animal and human studies3,25–28 that such a task 
induces prediction error mediated learning.

fmRI experiment. To prevent a deterioration of responses in trained mazes  
(PE trials might stimulate a formation of a new explicit value representation 
for each colored maze, inducing a strategy change on subsequent E trials), we 
blocked our experiment into two parts and first presented E and P trials and in 
a subsequent block PE and EE trials.

In scan session 1 we presented subjects with 96 P and 96 E trials, randomly 
intermixed, to measure choice related brain activity unique to either planning or 
decisions in extensively trained contexts. After a 15-min break outside the scanner,  
subjects participated in scan session 2, which contained intermixed 100 PE  
and 50 EE trials. Subjects’ payout related to the earned rewards (£0.20 during 
fMRI session and £0.05 during training). In total, subjects accumulated approxi-
mately £60 in rewards (range £55–64).

model predicted choice values. We used constant values of the true reward 
probabilities throughout the study. Due to the large number of training  
trials, and because subjects universally chose the better option toward the 
end of training, we can assume that subjects acquired learned values for the 
colored mazes during the training period and that those values had converged to  
the true value at the time of the fMRI study (trial-by-trial fluctuations in value 
would then be minimal due to a very small learning rate, adapted to the stable 
environment46).

Forward planning. We assumed that subjects would unroll values from the 
reward rooms (instructed on the screen) to every prior state and then plan in 
the root state the optimal transit through the maze. We modeled this forward 
search47 for rewards R and calculated planned values for action a in each state s 
of Layer L(s) using a maximizing strategy over available choices in states under 
subjects’ control (layer 1 and 3), and a minimizing strategy in states under the 
computer’s control (layer 2). 

V s a R s V s a L s V s a L s
a a

( , ) ( ) max ( , ) ( ) min ( , ) ( )← + ≠  + =′ ′ ′ ′ ′
′ ′

2 2




∑

s′

Behavioral analysis. To investigate potential motivational (caused by a high 
target value) and difficulty based influences (originating from small differences 
between target and alternative values) on choice time we regressed Vtarget, the 
negative absolute value difference (−|Vchosen − Vunchosen|), and trial number on 
logarithmic RT separately for each trial type. Note that we neither instructed 
subjects to respond quickly nor was it the case that fast responses had any mone-
tary benefit to subjects (except for finishing the experiment slightly sooner). 
We similarly analyzed the influence of these parameters on correct choice 
(Supplementary Table 1).

Stimuli. We programmed stimulus presentation in MATLAB using Cogent 2000 
(http://www.vislab.ucl.ac.uk/cogent.php).

fmRI data acquisition. Data were acquired with a 3T scanner (Trio, Siemens, 
Erlangen, Germany) using a 12-channel phased array head coil. Functional images 
were taken with a gradient echo T2*-weighted echo-planar sequence (repetition 
time = 3.128 s, flip angle = 90°, echo time = 30 ms, 64 × 64 matrix). Whole brain 
coverage was achieved by taking 46 slices in ascending order (2-mm thickness, 
1-mm gap, in-plane resolution of 3 × 3 mm), tilted in an oblique orientation at 
–30° to minimize signal dropout in ventrolateral and medial frontal cortex. We 
also acquired a B0-fieldmap (double-echo FLASH, TE1 = 10 ms, TE2 = 12.46 ms,  
3 × 3 × 2 mm resolution) and high-resolution T1-weighted anatomical scan of 
the whole brain (MDEFT sequence, 1 × 1 × 1 mm resolution).

fmRI data analysis. We used SPM8 (rev. 4068; http://www.fil.ion.ucl.ac.uk/spm/) 
for image analysis and applied standard preprocessing procedures (EPI realign-
ment and unwarping using field maps, segmenting T1 images into gray matter, 
white matter, and cerebrospinal fluid, and using segmentation parameters to 
warp T1 images to the SPM Montreal Neurological Institute (MNI) template, 

http://www.vislab.ucl.ac.uk/cogent.php
http://www.fil.ion.ucl.ac.uk/spm
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and spatially smoothing of normalized functional data using an isotropic 8-mm 
full-width half-maximum Gaussian kernel).

We regressed fMRI time series onto a composite GLM containing individual 
regressors representing the presentation of the root, second choice, computer 
choice/transition, and outcome. We modeled choice trials in all four conditions 
separately and further divided choices in the PE condition into planning and 
trained chosen trials. Additional regressors captured button presses and motion 
correction regressors estimated from the realignment procedure. Regressors at 
the choice time and outcome were parametrically modulated by task relevant 
decision variables as described in the separate section below. We did not apply 
orthogonalization when we entered regressors and modulators into the design 
matrix, ensuring that the regressors of interest were not confounded by spuri-
ous correlations from signals pertaining to any of the other value signals48. We 
assessed statistical significance with a second-level random-effects analysis using 
a one-sample t test against zero on the effect sizes in individual subjects.

Value modulated parametric analysis. For the first scan session of the P trials,  
we hypothesized that the most salient value signals would be the value of  
the optimal path (target choice) and the values of the two alternative decision 
branches that subjects follow along their way through the maze. We therefore 
expected to find neural value representations of the optimal target action, the 
alternative tree branch at the root node and the alternative value at the second 
choice, and in response to the outcome in the reward rooms. In the example 
shown in Figure 1b, Vtarget = 40, Vroot_alternative = 20, and Vdeep_alternative = 30, 
reward outcome = 100 on rewarded and 0 on non-rewarded trials. To investigate 
the temporal dynamics of value representations during planning over the entire 
trial, we modulated regressors at three time points: during the root choice, during  
the second choice in layer 3 and during presentation of the outcome. The regres-
sor during outcome presentation was additionally modulated by actual reward. 
Although the time of third choice and outcome were fixed (to avoid confounding 
effects of any potential prediction errors), the effects of expected value during 
choice (on a continuous scale) and response to the actual outcome (either 1 or 0) 
are still dissociable through the principle of competing variances in unorthogo-
nalized regressors.

There was a significant positive effect for the target value and negative effect for 
the alternative value in this analysis, indicating a value difference between the two 
components in the overall signal. Separate testing of minuend (a) and subtrahend (b)  
is a more thorough test for a difference representation than a direct regression 
of the difference value a – b: if a alone had a very strong effect, then the latter 
test might still be significant despite the fact that the signal was actually better 
explained by a than by a − b. Notably, if there is a significant positive effect for 
a and a significant negative effect for b, then a contrast testing for the difference 
between a − b is necessarily also significant.

For the first scan session of E trials, we modulated regressors during presenta-
tion of the choice screen and at outcome with the true reward probability of the 
rewarding action (Vtrained). The regressor at the time of the outcome was also 
modulated by the experienced reward.

For the second scan session of the PE trials, we split trials according to subjects’ 
choices and modeled separately plan chosen and train chosen trials. Regressors 
during choice were parametrically modulated with the target value in the plan-
ning branch (Vtarget), the alternative value at the second choice of the planning 
branch (Vdeep.alternative) and the value of the colored trained branch (Vtrained). The 
regressor at the time of the outcome was modulated by the experienced reward.

For the second scan session of the EE trials, the regressor during presentation of 
the choice screen was modulated by the value of the chosen (Vchosen) and unchosen  
(Vunchosen) branch, at the time of the outcome by the experienced reward.

PPI analysis. We performed a PPI analysis49 to examine the functional cou-
pling between vmPFC and caudate and putamen BOLD during mixed choices.  

The PPI term was Y × P, with Y being the BOLD time courses in either the caudate 
and putamen ROI, and P being an indicator variable for the times during which 
mixed choices were made. We entered the seed region BOLD Y, and the PPI inter-
action term along with all regressors from our model based parametric analysis 
(containing P and all value regressors) into a new GLM. Notably, this GLM also 
contained the parametric value signals for both branches, so any effect on the PPI 
interaction would reveal increased coupling that could not be explained from the 
mutual correlation of seed and target region with the choice values. We computed 
this PPI both for a seed in caudate and in putamen, thereby separately identify-
ing areas that showed a significant increase in coupling with both areas. The 
conjunction highlights common regions that played a role in mediating between 
both choice systems. Alternatively we tested for choice-dependent changes in 
coupling, that is, areas that would differentially increase coupling with caudate 
on plan chosen trials, but not on train chosen trials, and vice-versa for putamen. 
This analysis did not reveal significant results anywhere in the brain, even at a 
lenient threshold of P < 0.005, uncorrected.

We also tested the possibility that vmPFC correlated with the choice dependent 
difference time course18 between activity in caudate and putamen by estimating 
a GLM on the PPI = Y × P, where Y = tcaudate − tputamen, and P = 1 on plan chosen 
trials and −1 on trained chosen trials. However, when we added the paramet-
ric choice values Vplan and Vtrained as covariates of no interest to this PPI GLM  
(to rule out the possibility that effects on this interaction were solely due to mutual 
correlations of seed and target areas with the choice values), we did not find 
significant remaining interactions (P < 0.005 uncorrected).

whole brain analysis. A whole brain parametric analysis confirmed a selec-
tive representation of planned target values during P trials in anterior caudate 
(Supplementary Fig. 4a) and cached values during E trials within posterior puta-
men (Supplementary Fig. 4b). Besides precentral gyrus (putatively motivational 
motor preparatory) we did not observe any other significant correlation (P < 0.05 
FWE corrected) with value signals outside of our a priori brain regions in any 
trial types (Supplementary Table 4).

RoI analysis. We analyzed value signals (results in Supplementary Table 5) 
within a priori anatomically defined ROIs (Supplementary Fig. 2). For each 
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