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Abstract

Content based image retrieval is highly relevant in med-

ical imaging, since it makes vast amounts of imaging data

accessible for comparison during diagnosis. Finding im-

age similarity measures that reflect diagnostically relevant

relationships is challenging, since the overall appearance

variability is high compared to often subtle signatures of

diseases. To learn models that capture the relationship be-

tween semantic clinical information and image elements at

scale, we have to rely on data generated during clinical rou-

tine (images and radiology reports), since expert annotation

is prohibitively costly. Here we show that re-mapping vi-

sual features extracted from medical imaging data based on

weak labels that can be found in corresponding radiology

reports creates descriptions of local image content captur-

ing clinically relevant information. We show that these se-

mantic profiles enable higher recall and precision during

retrieval compared to visual features, and that we can even

map semantic terms describing clinical findings from radi-

ology reports to localized image volume areas.

1. Introduction

Radiologists have to identify subtle local patterns or find-

ings in medical imaging data relevant for diagnosis or the

evaluation of treatment outcome. Retrieving and comparing

similar cases is critical during this process. However, the

variability of visual appearance in these data is high com-

pared to often subtle features that are informative regarding

disease differentiation. This causes content based image re-

trieval quality to suffer. At the same time, approaches that

rely on large numbers of annotated ground truth examples

are infeasible in the clinical context due to high costs of ex-

pert annotation. Instead, methods have to be able to learn

information that is generated during clinical routine: im-

ages, and radiology reports.
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Figure 1: In medical imaging (a) only a small part of the

information captured by visual features relates to relevant

clinical information such as diseased tissue types (b). How-

ever, this information is typically only available as sets of

reported observations on the image level. Here, we demon-

strate how to link visual features to semantic labels (c), in

order to improve retrieval (d) and map these labels back to

image regions (e).

In this paper we propose a method that re-maps purely

visual features to features that link appearance to weak se-

mantic information that may be extracted from radiology re-

ports describing diagnostically relevant findings in the im-
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ages. The resulting semantic profiles capture visual infor-

mation linked to diagnostic findings. Results demonstrate

that this not only improves retrieval accuracy, but allows to

map semantic terms from radiology reports to localized im-

age content. The extraction and identification of relevant

terms in radiology reports is not in the scope of this paper.

Content based image retrieval (CBIR) techniques are

particularly relevant for medical imaging data since, dur-

ing search, only imaging data is available, while the goal

of the search is to find candidates for textual descriptions

of the imaging findings. Visual retrieval approaches are

hampered by the lack of a one-to-one mapping between vi-

sual appearance, its interpretation, and the determination of

corresponding findings. This is sometimes referred to as

the semantic gap [24]. It has been addressed by carefully

selecting specific features that show good retrieval results

during experiments [5]. This does not scale well to arbi-

trary diseases, and is limited by the a priori chosen fea-

ture extractors. Adapting feature extractors can overcome

part of this limitation, by learning so-called bags of visual

words from un-annotated trianing imaging data [4]. While

this improves the representative power of the descriptors for

the variability occurring in a specific data-set, features are

dominated by the overall variability, and not necessarily by

characteristics linked to diseases.

An alternative is classification that learns a mapping be-

tween local image descriptors and corresponding annota-

tions (e.g., a voxel-wise labeling of the pathological tissue).

Typically, the annotation of data sets sufficiently large to al-

low supervised training of accurate classifiers that differen-

tiate often subtle features is infeasible, since expert annota-

tions are too costly. Instead we have to learn from available

clinical data, typically consisting of images and correspond-

ing radiology reports, that hold an expert description of the

image content. Once these reports are mapped to a termi-

nology such as RadLex1 [15], one can pose the problem

as a weakly-supervised learning task, or multi-label multi-

instance learning (MIL).

A variety of MIL techniques are reported in the litera-

ture. MIL primarily aims to solve the problem of classi-

fying bags by predicting which set of classes they contain

(e.g. for image categorization [22, 26]). Many techniques

are adaptations of supervised approaches such as MIForest

[16] or SVM for MIL [1], or distance metric learning algo-

rithms for MIL [13, 9]. Shotton et al. proposed randomized

decision trees on pixel color and intensity values as features

to generate a visual vocabulary that is sensitive to semantic

labels [23]. While designed for labelled training data, he

showed that in a weakly supervised setting, the class distri-

butions in the leafs still convey discriminative power. Berg

et al. performed automatic attribute discovery from noisy

1RadLex is a unified terminology of radiology terms and their relation-

ships. http://www.radlex.org/

web data by linking images and image regions to terms oc-

curring in associated text using a MIL framework [2]. The

latter learn a distance metric with the objective to decrease

the distance between bags that share labels and increase the

distance between bags that do not share any labels.

Retrieval related to clinical findings such as lung tex-

ture poses a very particular form of MIL different to stan-

dard MIL metric learning techniques in several aspects. The

number of instances in the bags is substantially higher com-

pared to standard MIL data reported in literature (≫ 1000
vs. ∼ 10 as in e.g. [13, 9]) or MI benchmark datasets

such as Fox, Tiger, Elephant. The optimization problem in

[9] grows quadratically with the number of instances. Fur-

thermore, when analysing medical imaging data, the bags

are heavily skewed, each bag containing a large portion of

healthy instances since even patient lungs contain healthy

tissue. This poses challenges to distance definitions on the

bag level where the minimum distance among the instances

of two bags is used to judge their relationship [13, 9].

Classifying the query and performing the retrieval on the

basis of a class specific feature vector was discussed in [8],

but is limited by the need for annotation, classifier accu-

racy, and the assumption that all information is encoded

in the trained class labels. Retrieving anomalies based on

classification neglects intraclass variability, and differences

of characteristics that go beyond a limited set predefined

classes due to various factors such as the age of the patient,

smoking history, and extend of the disease [7].

Instead of training a classifier, we propose to inject se-

mantic terms into the feature learning process, to augment

the representation of relevant characteristics. We use these

features to perform content based image retrieval, and to

map the terms back to image regions, in order to mark the

locations with the strongest link to specific findings. Terms

describing the findings are used as sets of weak labels cor-

responding to an image volume (Figure 2 ). Rather than

training a classifier to label image volumes (as in standard

MIL approaches) we only re-map the feature vectors to al-

low sub-sequent algorithms such as indexing and retrieval

to focus on image information linked to semantic content of

images. The approach relies only on data available in clin-

ical routine and does not require additional annotation. It

uses semantic information present in radiology reports as a

basis for learning their link to image content. In the exper-

imental evaluation, we demonstrate that the resulting fea-

tures (semantic profiles) of local image patches improve the

precision and recall of disease relevant tissue types by con-

tent based image retrieval considerably. Furthermore, we

illustrate that the resulting features allow for a mapping of

semantic labels to local regions in images. This is impor-

tant for further learning from combined imaging and tex-

tual data, and allows to show users the localized basis of the
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Figure 2: Scheme of learning semantic profiles from a set of image - radiology report pairs. (a) True hidden labeling of the

data representing diseases in an organ that coincide with distinct tissue types, blue is healthy tissue. (b) Radiology reports can

be used as souce to extract the weak labels. (c) This results in weak labels on the image level are available during training.

(d) First, visual appearance is captured by local image descriptors. Then, weak label information is used to remap the local

purely visual descriptors to local semantic profiles.

retrieval result.

The learning technique is based on randomized subspace

partitioning and subsequent analysis of label distributions in

the partitions. The feature space partitioning is performed

by so called random ferns [19]. An ensemble of such ran-

dom ferns is used to embody a model of the label distribu-

tion in the feature space. During retrieval, this distorts the

similarity function so that it is dominated by partitions that

are informative for the difference between specific patholo-

gies / classes. The iterative randomized partitioning of a

feature space by Random Ferns that we utilize has been

used for a fast keypoint recognition technique [18, 19] and

as an alternative to k-means clustering for the bag of visual

words approach [20, 17], since it offers very fast runtimes.

2. Method

The method consists of a training and an indexing- or ap-

plication phase. During training (Sec. 2.2) multiple dense,

random, independent partitionings of the feature space are

generated by a random ferns ensemble [19] (Figure 3 (1)).

Based on the label distributions in the resulting partitions, a

remapping of feature vectors is generated that captures the

link between appearance and weak labels (Figure 3 (2)). In

the indexing- or application phase (Sec. 2.3), an ensemble

affinity for a novel record to each class is calculated, and a

corresponding semantic profile feature vector is generated.

2.1. Problem definition

We are given a set I = {I1, I2, ..., II} of I images. For

each image, there exists an oversegmentation of Si super-

voxel [12] where pi,s identifies the supervoxel s in image

Ii. We collect all N = (
∑I

i=1
Si) super voxel identi-

fiers N = {p1,1, . . . , p1,S1
, p2,1, . . . , pI,1, . . . , pI,SI

} in all

I images. We assume that each supervoxel belongs to one

of T tissue classes (e.g. ’healthy’,’groundglass’, ...), defin-

ing a labeling

l : N → {1, . . . , T}. (1)

During training this labeling is not given for individual su-

pervoxels. Instead, for each image, we are given a set of

labels Ti ⊆ {1, . . . , T} corresponding to an entire image

volume. Similar to multi label multi instance learning, for

each of these labels, there exists at least one supervoxel in

the volume. This results in training data

〈Ii, Ti〉i=1,...,I , (2)

i.e., for each image we have a set of supervoxels and a set

of labels, 〈Pi, Ti〉, where

∀t ∈ Ti : ∃pi,s : l(pi,s) = t. (3)

To facilitate reading, we define the set Ct of supervoxels

across the entire training set associated with a weak label t

by this labeling, so that

∀pi,s : (pi,s ∈ Ct)|t ∈ Ti. (4)
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Figure 3: Label distribution model: (1) Multiple random partitionings of the feature space are generated without supervision.

(2) For a certain class, the relative term frequency is calculated. To calculate the ensembles affinity prediction of a novel

supervoxel to a class, the K partitions with the highest relative term frequencies are used to indicate a ferns vote.

Note that Ct contains many supervoxels that do not carry

the true label t. We aim for a similarity measure d that is

based on the visual appearance of supervoxels, and at the

same time reflects the true labels (that are never directly

accessible during training) of two supervoxels. Let a, b, c ∈
N be three supervoxel identifiers. We want to optimize d to

come as close to the desired property of:

d(a, b) < d(a, c) | l(a) = l(b) ∧ l(a) 6= l(c) (5)

To this end, we generate a visual descriptor fSP
pi,s

for each

supervoxel, so that the euclidean distance between the de-

scriptors comes close to this aim.

2.2. Linking weak labels and features

We are given arbitrary texture descriptors f describing

the visual contents of the supervoxels. We learn models of

the class label distributions in this primary feature space,

and remap each texture descriptors to a new descriptor that

is sensitive to the anomaly classes in the weakly labeld

training data.

Random Subspace Partitioning: We use Random

Ferns [18, 19] for space partitioning. A fern F is a sequence

of binary decision functions

F = 〈L1,L2, . . . ,LL〉, (6)

which when applied to a feature vector f result in a binary

vector encoding the partitioning of the feature space

L(f) : f 7→ {0, 1}, and F(f) : f 7→ {0, 1}L. (7)

The binary codes represent values in the range (1, . . . , 2L).
We use the binary decision function suggested by Pauly et

al. [20]:

Ll(f) =

{

0 if (ssubll )⊤ · fsubl ≤ τl

1 if (ssubll )⊤ · fsubl > τl
(8)

For a split test, a set of dimensions from the feature space

is randomly selected and only the corresponding sub vector

f
subl is considered. The sub vectors are then projected into

a one-dimensional space by building the dot product with

unit vector ssubll randomly sampled from the unit sphere so

that (ssubll )⊤ · fsubl is a scalar. To get a binary value, this

scalar is compared to a threshold τl. We randomly sample

this threshold from the projected values. We generate an

ensemble E of E Random Ferns of depth L to iteratively

partition the feature space.

E = 〈F1, . . . ,FE〉 (9)

The ensemble generates E independent partitionings so

that

E : Rd → {1, . . . , 2L}E (10)

E(f) : f 7→ 〈y1, . . . , yE〉, y ∈ {1, . . . , 2L} (11)

We define Ye
y as the set of supervoxels in a certain partition

y of fern Fe so that

∀i ∈ N : i ∈ Ye
y | Fe(fi) = y (12)

Label Distribution Model: For all Ye
y , we analyse the ra-

tios of the weak labels according to their relative class fre-

quencies. The relative class frequency makes leaf nodes or

partitions comparable with respect to the number of exam-

ples of a certain class they hold. Some leaf nodes may hold

very few or even just a single example. We use Laplace

smoothing [3, 21] to diminish an overrating of such small

example groups. We define f(Ye
y , t) as the smoothed rela-

tive class frequency of t in the leaf set Ye
y :

f(Ye
y , t) =

1 + l(Ye
y , t)

γ +
∑T

j=1
l(Ye

y , tj)
(13)



where γ is a factor to control the impact of the smoothing

and l(Ye
y , t) gives the number of examples in the leaf node

Ye
y that are represented in Ct:

l(Ye
y , t) =

N
∑

i=1

1Ye
y
(i)1Ct

(i) (14)

The use of f reduces the value of the relative class fre-

quency for small partitions.

2.3. Mapping the features to the classes

We define

Kt = {〈e1, y1〉, . . . , 〈eK , yK〉} (15)

as the set of the K leaf nodes in the ensemble with the K

highest values of f(., t) indexed by fern index ei and leaf

index yi. Let’s consider a hypothetical supervoxel that is

represented in all leaf nodes in Kt. This supervoxel is seen

as a prototype representative of class t. Note, that this rep-

resents an area rather than a point in the feature space. We

interpret the similarity of a supervoxel to this prototype as a

measure of its affinity to the class. We construct an affinity

indicator for a supervoxel j reflecting its affinity to a class

t:

dE(j, t) =

E
∑

e=1

2
L

∑

y=1

1Ye
y
(j)1Kt(〈e, y〉)). (16)

dE(j, t) sums the occurrences of a supervoxel in Kt so that

dE(j, t) ∈ 0, . . . , E.

For a supervoxel j, dE(j, t) is calculated for t = 1, . . . , T
resulting in a new vector. The maximum possible number

of votes from the ensemble for one class is E. In prac-

tice, this value will be smaller and vary between different

classes. Thus, we scale each dimension to [0, 1] resulting

in the new feature vector for each supervoxel that we call

semantic profile (SP):

f
SP
j ∈ [0, 1]T = [dE(j, 1), . . . , dE(j, T )]] (17)

We expect that this descriptor provides a higher specificity

in retrieving representatives of the learned anomaly classes

compared to a feature vector resulting from a descriptor that

is learned on visual information only.

3. Evaluation

We evaluated two aspects of semantic profiles: (1) do

they improve retrieval accuracy in clinical imaging data,

and (2) do they map terms in radiology reports accurately

to regions in the corresponding imaging data? We want to

understand if injecting weak label information can improve

retrieval over purely visual features, and if the correspond-

ing descriptors indicate a mapping of terms to the individual

volumes.

Data We performed experiments on a set of 300 high

resolution computed tomography (HRCT) scans of lungs

provided by LTRC [11]. All voxels in the images are la-

belled into one of five tissue classes: healthy lung tex-

ture and four tissue types (ground-glass, reticular pattern,

honey combing, emphysema) occuring in interstitial lung

diseases (ILD). Only voxels within the lungs are analyzed.

We transform all volumes to an isotropoic voxel resolution

of 0.7mm3 in advance, and perform over-segmentation of

the volumes to monoSLIC supervoxels of an average size of

1cm3 [12]. We consider only supervoxels consisting of at

least 70% of one label, to avoid partial volume effects.

For the experimental validation we created a weakly la-

beled data set from the labeled lung data. To simulate a var-

ied distribution of labels in the training dataset we sample

683201 supervoxels of which 460912 show healthy, 42183

show ground-glass, 7461 show reticular, 12436 show hon-

eycombing and 160980 show emphysema. The sets Ct are

bagged to create a set equivalent to what would be train-

ing data from a clinical source for the proposed algorithm.

Only the set membership C1..C5 is known to the learning

algorithm. Since their distribution is relevant we show it

in Table 1. The negative instances in each bag are chosen

to represent in extent 10% of the population of the other

classes. Healthy lung texture is a special case as it can be

expected to be present in every lung. In a real world set-

ting, additional control examples of healthy lung texture can

be sampled from records of healthy lungs. Thus, a set of

healthy representatives C1 can be obtained.

All experiments are performed by 10-fold cross-

validation. The splitting into training and testset is per-

formed under consideration of the original volume mem-

bership of the supervoxels into 30 test and 270 training vol-

umes in order to prevent any wihtin-patient overlap between

training and test set.

We extract two texture descriptors for each supervoxel.

(1) 1200-dimensional Texture Bags [4], a multi-scale Bag

of Visual Words (BVW) approach on Local Binary Pat-

terns (in the following abbreviated with BVW), and (2)

52-dimensional Haralick features [10] on 21 × 21 × 21
patches around the center of the supervoxel. Both meth-

ods have been used for retrieval of anomalies in lung CTs

[4, 14, 25, 6]. For each descriptor, we generate a seman-

tic profile mapping. We term the novel features SP-BVW

and SP-Haralick for the respective embedding into the 5-

dimensional (5 indicators for healthy and the 4 anomalies)

feature space. For all experiments we fixed the parameters

for number of ferns E = 1000 and fern depth L = 8.

Retrieval To evaluate retrieval we randomly choose 200 su-

pervoxels of each anomaly class from the testset as queries

(overall 1000 queries). Based on each query, we rank the

training data using Euclidean distance among 4 feature vec-

tors: (1) BVW, (2) Haralick, (3) SP-BVW, and (4) SP-



Anomaly name Class t= # Healthy # Ground-glass # Reticular # Honeycombing # Emphysema Σ TP in %

Healthy 1 276547 0 0 0 0 276547 100

Ground-glass 2 46091 41682 746 1246 16098 105563 40

Reticular 3 46091 4138 7464 1246 16098 75037 10

Honeycombing 4 46091 4138 746 12463 16098 79536 13

Emphysema 5 46091 4138 746 1246 160980 213201 76

Table 1: Composition of the sets C1 to C5. Each line shows the distribution of the true classes in one set. The sum of

supervoxels Σ in each set and the share of True Positive representatives (TP) are shown on the right. During learning, only

the set (C1 to C5) memberships but not the true classes are visible to the training algorithm.
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Figure 4: Effect of parameter K on the retrieval perfor-

mance. The plot shows the averaged MAP over the five

classes for values of K from 10 to 105.

Haralick. We compare recall and precision achieved by

these descriptors.

Mapping terms to images We map the individual coeffi-

cients of the semantic profiles back to the volume to evalu-

ate if they allow for localization of the tissue areas respon-

sible for specific retrieval. We evaluate this qualitatively

(Figure 6) and quantitatively (Table 3), by classifying super-

voxels based on the highest coefficent of the corresponding

semantic profile. Note that this is not a sophisticated classi-

fier, but an inspection if the features capture the actual tissue

properties accurately. These experiments are performed on

volumes of the test set.

4. Results

Retrieval Figure 5 shows precision-recall curves for the five

tissue classes. Baseline, i.e., random-ranking is indicated

by a gray line. Table 2 lists the corresponding mean aver-

age precision values (MAP). Semantic profiles return better

precision for all anomaly classes in comparison to the corre-

sponding purely visual descriptors. A distinctive improve-

ment can be seen from BVW to SP-BVW for the retrieval of

ground-glass supervoxels (MAP of 0.22 to 0.71). Compar-

ing the visual descriptors to the semantic profile embedding

the averaged MAP over the five classes is raised from 0.38

to 0.58 for BVW and from 0.53 to 0.65 for Haralick. Fig-

ure 4 shows the effect of the parameter K on the retrieval

performance. If K is chosen too low, the model of the label

distribution in the feature space is too sparse, if K is chosen

too high the model associates regions in the feature space

that have no association to the modelled class. Figure 7

shows examples of queries and resulting nearest neighbor

supervoxels using BVW and SP-BVW descriptors. One can

see the suppression of the (for this anomaly irrelevant) rota-

tion variant features of the BVW descriptor resulting from

re-mapping to semantic profiles.

Mapping terms to images Figure 6 shows ground truth la-

belings of volume data, and a labeling obtained by assum-

ing that the highest semantic profile coefficient is a good

estimator for the correct label. Corresponding quantitative

results for the best performing descriptor (SP-Haralick) are

shown in Table 3. The right side of Figure 6 shows the map-

ping of the semantic profiles back to the imaging data. Note

how the distribution of voxel scores learned from weakly

labeled volumes, mirrors the true voxel labels very well.

Runtime To generate E = 1000 partitionings, runtime

for the unsupervised part of the training (Figure 3 (1)) on

615000 52-dimensional Haralick features is 85 seconds.

The iterative modeling of the label distribution in the fea-

ture space (Figure 3 (2)) needs 20 seconds per class (100

seconds for 5 classes). This runtime experiments have been

performed on a 12-core 24 thread Intel Xeon processor uti-

lizing a Matlab implementation of the method. The calcu-

lation of the semantic profiles for 7526 haralick descriptors

(average number of supervoxels for a volume) needs 1.37

seconds.

5. Conclusion

In this paper we propose and evaluate semantic profiles

that capture visual information related to clinically relevant

terms. Training of semantic profiles is weakly supervised. It

is based on pairs of image volumes and corresponding sets

of terms in radiology reports that describe radiological find-

ings present in the imaging data. We show that the resulting

descriptor substantially improves retrieval precision and re-
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Figure 6: Left: Mapping terms to the volume data. Ground truth labeling not available during training and the label of highest

semantic profile coefficient for the same image slice. Right: maps of the semantic profiles used for retrieval mapped back to

the data. Red indicates high values for a pathology pattern, blue indicates low values.
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BVW 86 22 14 5 61

SP-BVW 93 71 32 18 76

Haralick 92 77 12 20 64

SP-Haralick 93 83 20 42 86

Table 2: MAP in % for retrieval of four anomaly classes and

healthy. Semantic Profile embedding increases the MAP

significantly over the visual descriptors used as input for

the learning algorithm. Best MAP for each class is marked

bold.

call. Furthermore it allows to map terms back to regions in

the imaging data. The method improves retrieval in medi-

cal imaging data since it augments the representation of im-

age characteristics that are linked to diagnostically relevant

terms. Importantly, it can be trained based on data gener-

ated during clinical routine, without the need for additional

annotation.
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Healthy 114922 459 35 353 34

Gound-glass 227 3789 116 2 0

Reticular 80 266 381 16 0

Honeycombing 471 20 22 717 2

Emphysema 2247 0 1 36 13811

Sensitivity 0.99 0.92 0.51 0.57 0.86

Specificity 0.86 0.99 1.00 1.00 1.00

Table 3: Confusion Matrix and Sensitivity and Specificity

values for supervoxel labeling on the basis of the highest

semantic profile coefficient on SP-Haralick
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