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Mapping wind erosion hazard 
with regression‑based machine 
learning algorithms
Hamid Gholami1*, Aliakbar Mohammadifar1, Dieu Tien Bui2,3* & Adrian L. Collins4

Land susceptibility to wind erosion hazard in Isfahan province, Iran, was mapped by testing 16 
advanced regression‑based machine learning methods: Robust linear regression (RLR), Cforest, 
Non‑convex penalized quantile regression (NCPQR), Neural network with feature extraction (NNFE), 
Monotone multi‑layer perception neural network (MMLPNN), Ridge regression (RR), Boosting 
generalized linear model (BGLM), Negative binomial generalized linear model (NBGLM), Boosting 
generalized additive model (BGAM), Spline generalized additive model (SGAM), Spike and slab 
regression (SSR), Stochastic gradient boosting (SGB), support vector machine (SVM), Relevance 
vector machine (RVM) and the Cubist and Adaptive network‑based fuzzy inference system (ANFIS). 
Thirteen factors controlling wind erosion were mapped, and multicollinearity among these factors was 
quantified using the tolerance coefficient (TC) and variance inflation factor (VIF). Model performance 
was assessed by RMSE, MAE, MBE, and a Taylor diagram using both training and validation 
datasets. The result showed that five models (MMLPNN, SGAM, Cforest, BGAM and SGB) are 
capable of delivering a high prediction accuracy for land susceptibility to wind erosion hazard. DEM, 
precipitation, and vegetation (NDVI) are the most critical factors controlling wind erosion in the study 
area. Overall, regression‑based machine learning models are efficient techniques for mapping land 
susceptibility to wind erosion hazards.

Wind erosion, as an environmental problem, has many adverse e�ects on the economics of societies and the 
health of terrestrial and marine  ecosystems1–3. �erefore, predicting land susceptibility to wind erosion hazards 
such as dust emissions from land surfaces is essential for mitigating its e�ects. Literature review shows that 
di�erent tools and techniques have been proposed for investigating di�erent aspects of wind erosion and its 
consequences, uniquely identifying regions prone to generating sediments for wind erosion, including remote 
sensing, data mining, and sediment  �ngerprinting4–7. However, these techniques require intensive �eld sampling 
with expensive laboratory  analyses8, and as a result, they are not e�cient for large spatial domains.

Recently, together with developments of geospatial technology and computer sciences, machine learning 
(ML) has received considerable attention with many successful applications in the spatial mapping of di�er-
ent environmental hazards such as land subsidence, gully erosion, landslides, and dust provenance, as well as 
mapping of soil properties (microbial dynamics, moisture, shear strength, soil taxa, bulk density, total nitrogen, 
organic carbon). However, to the best of our knowledge, exploration of the utility of advanced ML techniques 
in predicting land susceptibility to wind erosion has not been undertaken.

Typical ML models applied to date in di�erent areas of environmental research include decision tree and linear 
equation models, the particle swarm optimization-adaptive network-based fuzzy inference system (PANFIS), 
genetic algorithms, support vector regression (SVR), arti�cial neural networks (ANN), hybrid models, random 
forest (RF), Wang and Mendel’s (WM), partial least square regression (PLSR), principal component regression 
(PCR), Cubist, Bayesian additive regression trees (BART), radial basis function (RBF), extreme gradient boost-
ing (XGBoost) and regression tree  analysis8–15. Since, to date, a comprehensive study applying regression-based 
ML models to mapping wind erosion hazard has not been investigated, there remains a need for such work since 
wind erosion hazards are a major socio-economic challenge for some parts of the world. Accordingly, this work 
aimed to address this gap in the existing literature by providing a comprehensive assessing of the prediction 
performance of 16 regression-based ML models (robust linear regression (RLR), Cforest, non-convex penalized 
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quantile regression (NCPQR), neural network with feature extraction (NNFE), monotone multi-layer percep-
tion neural network (MMLPNN), ridge regression (RR), boosting generalized linear model (BGLM), negative 
binomial generalized linear model (NBGLM), boosting generalized additive model (BGAM), spline generalized 
additive model (SGAM), spike and slab regression (SSR), stochastic gradient boosting (SGB), support vector 
machine (SVM), relevance vector machine (RVM), Cubist and adaptive network-based fuzzy inference system 
(ANFIS)) for mapping land susceptibility to the wind erosion hazard in the Isfahan province, central Iran. Using 
this case study, we provide more generic recommendations.

Results
Multicollinearity test. Table1 shows the values of the tolerance coe�cient (TC) and the variance in�ation 
factor (VIF) for the controlling factors for wind erosion. VIF > 10 and TC < 0.1 indicate multicollinearity among 
the e�ective factors. Based on our results, the lowest TC value was obtained for electrical conductivity (EC), 
while the highest VIF value (5.93) value was calculated for bulk density. �e results indicated the absence of any 
multicollinearity between the 13 factors controlling wind erosion in the study area.

Relative importance of the factors affecting wind erosion. �e model with the highest performance 
(MMLPNN) was applied to quantify the relative importance of the e�ective factors for wind erosion. Based on 
Fig.  1, three factors, DEM (with relative importance 0.95), precipitation (with relative importance 0.8), and 
NDVI (with relative importance 0.54), were recognized as the most important factors controlling wind erosion 
in the study area. Wind erosion has been shown to be a�ected by many factors such as wind, precipitation, tem-
perature, soil properties (texture, composition, and aggregation), topography, aerodynamic roughness, vegeta-
tion, and land use  practice16.

Discussion
Maps of wind erosion hazard. �e wind erosion hazard maps generated by 16 individual ML models 
are presented in Figs.2, 3, and 4. Table 2 indicates the area (percentage and  km2) of the four land susceptibility 
classes (low, moderate, high, and very high) for wind erosion hazard estimated by the 16 ML models. Based 
on the results of all 16 models, areas of land susceptibility to the low susceptibility class ranged between 15.5% 
(RVM and BGLM models) and 32.8% (MMLPNN model). �e minimum and maximum areas of moderate land 
susceptibility to wind erosion were estimated by the SGB (0.6%) and SSR (15.7%) models, respectively. �e area 
of land categorized into the high susceptibility class ranged from 1.2% (MMLPNN model) to 20.2% (NCPQR 
model). Corresponding areas assigned to the very high class of land susceptibility to wind erosion hazard ranged 
from 41% (NBGLM model) to 65.2% (SGB).

Model performance assessment. Model performance for mapping wind erosion hazard was assessed 
by three indices (MAE, MBE, and RMSE; (Fig. 5)). Additionally, a Taylor diagram for both the training and 
evaluation datasets were constructed (Fig. 6). MMLPNN was selected as the most accurate model for mapping 
wind erosion hazard, while according to the RMSE and MAE, NBGLM was the weakest predictive model, and 
NCPQR was recognized as the overall worst model.

Based on all three statistical indicators of model performance and the Taylor diagram for the evaluation data-
set, �ve models (MMLPNN, SGAM, Cforest, BGAM, and SGB) returned low errors. SSR and NBGLM had the 
lowest accuracies among the 16 models. Based on the Taylor diagram drawn for the training dataset, �ve models 

Table 1.  Values of the TC and VIF for examining multicollinearity among the e�ective factors for wind 
erosion using the training dataset.

E�ective factors

Collinearity 
test

TC VIF

AWC 0.199 4.972

Bulk density 0.169 5.93

Calcium carbonate percentage 0.154 5.291

DEM 0.183 5.46

EC 0.109 5.61

ESP 0.118 5.546

Land use 0.855 1.169

Geology 0.637 1.57

Precipitation 0.315 3.177

Organic carbon content 0.159 5.255

NDVI 0.597 1.674

Soil texture 0.203 4.932

Wind speed (m/s) 0.656 1.523
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(MMLPNN, Cforest, SGAM, SGB and NNFE) were identi�ed as the most accurate predictive ML models for 
mapping wind erosion hazard in the study area, whereas NBGLM and RVM were the weakest predictive models.

Overall, MMLPNN, SGAM, Cforest, BGAM, and SGB were identi�ed as the most accurate models for pre-
dicting land susceptibility to wind erosion. Based on MMLPNN (Fig. 2e), the four susceptibility classes covered 
32.8%, 1.1%, 1.2% and 64.9% of the total area of Isfahan province, respectively. �e land susceptibility map to 
wind erosion hazard generated using SGAM shows the high and very high susceptibility classes covered 5.4% 
and 61.5% of the total area, respectively, whereas the low and moderate susceptibility classes occupied 27.4% and 
5.6%, respectively (Fig. 3d). According to Cforest (Fig. 2b), 26%, 6.4%, 6.6%, and 61% of the total area belonged 
to the low, moderate, high and very high susceptibility classes, respectively. Using BGAM (Fig. 3c), the very high 
susceptibility class covered 62% of the study area, whereas the low, moderate, and high classes occupied 23.2%, 
7.8% and 7% of the total area, respectively. Finally, in the case of the SGB model (Fig. 3f), the results classi�ed 
32%, 0.6%, 2.2% and 65.2% of the study area as low, moderate, high, and very high susceptibility, respectively.

�e map of wind erosion hazard produced by MMLPNN is the most accurate. Overall, multi-layer perception 
networks (MLPS) as universal estimators are well-known techniques for system identi�cation. �e monotonic-
ity of MMLPNN does not depend on the quality of the training data because it is guaranteed by its  structure17. 
GAM with spline function (SGAM) was one of the 5 most accurate models for wind erosion hazard mapping. 
�e spline functions allow the �exible representation of non-linear marginal relationships of the explanatory and 
response variables without the necessity to de�ne a speci�c  function18. Cforest, as a random forest (RF) model, 
uses conditional inference trees for  prediction19. Several studies con�rm the performance of RF as a suitable 
model for spatial predictions of environmental hazards. For  example20, reported that the RF model is the best 
model for digital mapping of soil carbon fractions.

Some  studies21 have also argued that RF has the highest predictive capability for modelling landslide suscep-
tibility in comparison with other ML models. Some previous  studies22 have also reported that in comparison 
with other methods, RF has better performance in estimating  PM2.5 monthly concentration. In this study, we 
applied the boosting with generalized additive model (BGAM), and based on the indicators for examining model 
performance, this model exhibited satisfactory performance and was selected as one of the �ve most accurate 
models for mapping wind erosion hazard. Boosting is a technique for improving prediction rules, and it can be 
applied to classi�cation and regression methods to increase the accuracy of the  predictions23. SGB is related to 
both boosting and  bagging24,25. Previous  research26 has reported that SGB provides stable predictions for tree 
species presence.

Conclusions
�is research assessed the performance of 16 individual regression-based ML algorithms for mapping land 
susceptibility to wind erosion hazard in an arid region in central Iran. In all, 13 e�ective factors for wind ero-
sion were considered and regions with active wind erosion were mapped using a "wind erosion inventory map". 
Based on three statistical indicators and a Taylor diagram, the MMLPNN model was the most accurate model. 

Figure 1.  �e relative importance of the e�ective factors for wind erosion estimated by MMLPNN. DEM, 
PR, NDVI, AWC, CCP, ESP, OCC, EC, GE, BD, WS, ST, and LU indicate digital elevation model, precipitation, 
normalized di�erence vegetation index, available water content, calcium carbonate content, exchangeable 
sodium percentage, organic carbon content, electrical conductivity, geology, bulk density, wind speed, soil 
texture, and land use, respectively.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20494  | https://doi.org/10.1038/s41598-020-77567-0

www.nature.com/scientificreports/

Figure 2.  Maps of wind erosion hazard generated by: (a) RLR, (b) Cforest, (c) NCPQR, (d) NNFE, (e) 
MMLPNN, and (f) RR. �e values for pixels was estimated by R so�ware (https ://CRAN.R-proje ct.org/doc/
FAQ/R-FAQ.html) and then, values of pixels were mapped by ArcGIS 10.4.1 (https ://www.esri.com/en-us/about 
/about -esri/overv iew).

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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Figure 3.  Maps of wind erosion hazard generated by: (a) BGLM, (b) NBGLM, (c) BGAM, (d) SGAM, (e) SSR, 
and (f) SGB. �e values for pixels was estimated by R so�ware (https ://CRAN.R-proje ct.org/doc/FAQ/R-FAQ.
html) and then, values of pixels were mapped by ArcGIS 10.4.1 (https ://www.esri.com/en-us/about /about -esri/
overv iew).

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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We conclude that MMLPNN is powerful tool for mapping wind erosion hazard in arid and semi-arid region 
ecosystems worldwide. We recommend that future work should focus on testing and comparing the performance 
of regression-based and classi�cation-based ML models for the mapping and spatial modelling of wind erosion 
and dust sources to ensure that robust evidence is provided to support management decisions.

Material and methods
Study area. Isfahan province (Fig.  7), an arid region, is located in central Iran, between the latitudes 
30°45′59.51" to 34°27′13.27" N, and between the longitudes 49°41′53.86" to 55°30′13.67" E. It is experiencing 
intensive wind erosion on the southeastern side (Segzi plain) and its northern parts. Based on a digital elevation 
model (DEM), there is high variability in altitude with maximum and minimum elevations ranging between 
686 m (in the northern part of the study area and southern parts of Dasht-e-Kavir) to 4398 m (in the vicinity of 
the Dena Mountain in the southwestern part of the study area). �e average annual precipitation ranges between 
72 mm (in the eastern part with a corresponding annual mean temperature of 18 °C) and 320 mm (in the west-
ern part with an average annual temperature of 13 °C).

Factors controlling wind erosion. Di�erent environmental and climatic factors are controlling wind ero-
sion phenomena in drylands. Environmental variables a�ecting wind erosion include soil properties, lithology, 
land use, vegetation cover, topography, and  elevation1,8,27. Previous  research28 introduced a local wind erosion 
climatic index based on the wind speed and e�ective precipitation index developed  by29 for applying in the 
Chepil wind erosion equation (WEQ).

Figure 4.  Maps of wind erosion hazard generated by: (a) SVM, (b) RVM, (c) Cubist and (d) ANFIS. �e values 
for pixels was estimated by R so�ware (https ://CRAN.R-proje ct.org/doc/FAQ/R-FAQ.html) and then, values of 
pixels were mapped by ArcGIS 10.4.1 (https ://www.esri.com/en-us/about /about -esri/overv iew).

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://www.esri.com/en-us/about/about-esri/overview
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Soil characteristics. Seven soil characteristics (e.g., available water content (AWC) (Fig. 8a), bulk density 
(Fig. 8b), calcium carbonate percentage (Fig. 8c), electrical conductivity (EC) (Fig. 8d), exchangeable sodium 
percentage (ESP)(Fig. 8e), organic carbon content (OCC)(Fig. 8f) and soil texture (Fig. 9a)) were extracted from 
the world soil  map30 and mapped by interpolation in ArcGIS 10.4.1. It should be noted that a total of 803 points 
(Fig. 7) were used for generating spatial maps.

Lithology and land use. Lithology (Fig. 9b) and land use (Fig. 9c) were mapped spatially based on the 
maps produced by the Forests, Rangelands, and Watershed Management Organization of Iran (FRWMOI).

Vegetation cover. �e normalized di�erence vegetation index (NDVI) (Fig. 9d)31 as the most common 
index used for the spatial mapping of vegetation cover was applied in our study. NDVI is the di�erence between 
the red (RED) and near-infrared (NIR) band combination divided by the sum of the red and near-infrared band 
combination (Eq. 1).

Elevation. A digital elevation model (DEM) (Fig. 9e) for the study area was generated using shuttle radar 
topography mission (SRTM) images with a 30*30 m  resolution8.

Climatic variables. Wind speed (Fig. 9f) and precipitation (Fig. 10a) were used as climatic factors a�ecting 
wind erosion. �e spatial maps of these variables were generated based on the daily average wind speed and total 
annual precipitation data from 23 meteorological stations located in the Isfahan province. All spatial maps of 
factors controlling wind erosion were generated in ArcGIS 10.4.1.

Inventory map of wind erosion. An inventory map shows regions with active three-stage processes, 
comprising detachment, transportation, and sedimentation due to wind erosion. An inventory map is needed 
for predicting land susceptibility to wind erosion hazard. We used a map of regions with active wind erosion 
produced by the Forest, Rangeland and Watershed Management Organization of Iran (FRWMOI) (Fig. 10b). 
Based on the inventory map, wind erosion active regions covered ~ 10,961  km2 (440 pixels) in the study area. 
Pixels with active wind erosion were randomly selected for the training (70% or 308 pixels) and validation (30% 
or 112 pixels) datasets for the ML models (Fig. 10c). Based on �eld work and FRWMOI, inventory map of wind 
erosion was generated in ArcGIS 10.4.1.

Multicollinearity among the factors controlling wind erosion. �e tolerance coe�cient (TC) 
(Eq. 2) and variance in�ation factor (VIF) (Eq. 3) 8,15,32 were applied to examine multicollinearity among the 
factors for wind erosion in the Isfahan province.

(1)NDVI = (NIRb4− REDb3) / (NIRb4 + REDb3)

(2)TC = 1− R
2

Table 2.  Land susceptibility classes to wind erosion hazard calculated by 16 individual ML models.

Model

Susceptibility class

Low Moderate High Very high

Area  (km2) Area (%) Area  (km2) Area (%) Area  (km2) Area (%) Area  (km2) Area (%)

RLR 18,870 17.7 13,168 12.3 18,742 17.5 55,965 52.5

Cforest 27,759 26 7101 6.4 7084 6.6 64,779 61

NCPQR 21,076 19.7 12,963 12.1 21,554 20.2 51,174 48

NNFE 33,748 31.6 1717 1.6 1894 1.8 69,429 65

MMLPNN 35,007 32.8 1195 1.1 1296 1.2 69,295 64.9

RR 18,857 17.7 12,945 12.1 19,470 18.2 55,454 52

BGLM 16,356 15.4 15,126 14.2 20,484 19.2 54,474 51.2

NBGLM 32,702 30.5 13,433 12.6 16,992 15.9 43,646 41

BGAM 24,767 23.2 8295 7.8 7545 7 66,147 62

SGAM 29,148 27.4 5957 5.6 5752 5.4 65,627 61.6

SSR 18,894 17.7 16,719 15.7 23,510 22 47,562 44.6

SGB 34,541 32 60 0.6 2310 2.2 69,844 65.2

SVM 18,214 17 11,382 10.7 20,374 19 56,783 53.3

RVM 16,364 15.4 15,767 14.8 18,523 17.3 56,098 52.5

Cubist 19,326 18.2 12,543 11.7 19,797 18.5 55,077 51.6

ANFIS 24,022 22.6 10,391 9.8 12,873 12 59,167 55.6
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where  R2 is the regression coe�cient. If the TC is < 0.1 and the VIF is > 10, both coe�cients signify a multicol-
linearity problem.

Background of the ML algorithms used. �is section brie�y describes the 16 individual regression-
based ML algorithms, which were adopted for mapping wind erosion hazard. �ese algorithms are available in 
the caret package, in R so�ware.

Robust linear regression (RLR). Robust regression is designed to overcome some limitations of tradi-
tional parametric and non-parametric methods. Available robust regression methods include M-estimates33, 
R-estimates34, least median of squares (LMS)  estimates35, least trimmed squares (LTS) estimates and S-esti-
mates36, generalized S-estimates (GS-estimates)37 and MM-estimates38. We used a robust linear regression model 
with M-estimates for predicting land susceptibility to wind erosion.

Cforest. Random forest (RF), introduced  by39, is the most popular method for regression and classi�cation 
in decision tree  learning40. RF makes a large number of decision trees in the training phase, and then by averag-
ing the output values of the trees, the output of the model is �nalized. Cforest is a type of RF commonly applied 
for prediction  purposes19.

(3)VIF =

[

1

TC

]

Figure 5.  �e values of the statistical indicators were used to evaluate model performance; (a) training dataset 
and (b) evaluation dataset.
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Non‑convex penalized quantile regression (NCPQR). Quantile regression (QR) has gained con-
siderable attention in di�erent �elds of modelling since the work  of41. In comparison with mean regression 
(MR), QR provides an alternative that is more e�cient when the error term follows a non-normal heavy-tailed 
 distribution42. We used a penalized QR with a non-convex  function42 for mapping wind erosion hazard.

Neural networks (NN). NN can accurately approximate complicated non-linear input/output 
 relationships43. �e NN structure includes a set of interconnected units or neurons that estimates the non-

Figure 6.  Taylor diagrams for assessing the performance of the models in this research; (a) training dataset, and 
(b) evaluation dataset.
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linear correlations between each variable. �e input neurons or predictor variables are connected to a single 
or multiple layers of hidden neurons, which are then linked to the output  neurons44. We used a NN with the 
feature extraction algorithm (NNFE)45 and a monotone multi-layer perception neural network (MMLPNN)46 
for mapping wind erosion hazard. �e feature extractors used textural features based on the spatial relationships 
between  pixels45.

Ridge regression with variable selection. Ridge regression (RR), which was proposed  by47, is expressed 
as follows (Eq. 4):

Given a set of n vectors,  x1, … ,  xn in  Rm, where m is the number of properties, and the dependent variable 
 yi ∈ R, i = 1, …, n, the objective is to minimize the loss function, i.e., the discrepancy between the real values  yi 
and the predicted values ỹi = w.x.

We applied a RR model with a kernel  function48 as follows:

where K(x, xi) is the kernel function and βi is the weighting.

Generalized linear models (GLMs). GLMs have been applied to a wide range of  research49. GLMs have 
three components, comprising an observation model, a linear predictor, and an invertible link  function50. Using 
boosting with GLMs can improve prediction  accuracy23. We applied two GLMs; boosting GLM (BGLM) and 
negative binomial GLM (NBGLM)51.

Generalized additive models (GAMs). GAMs52 can be expressed as follows:

with

where Yi is the ith value of the response variable from an exponential distribution family (EF) with a location 
parameter ( µi) and a scale parameter ( ∅),Z∗

i
 indicates the ith row of a parametric model matrix with the vector 

(4)L(w) =

n
∑

i=1

(

yi − ỹi
)2

=

n
∑

i=1

(yi − w.xi)
2

(5)ỹ = f (x) =

n∑

i=1

ßiK(x, xi)

(6)
e(µi) = Z∗

i .ß +

∑

j

fj(xij)

(7)µi = E(Yi), andYi ∼ EF(µi ,∅),

Figure 7.  Location of the study area in Iran and sampling sites used for this study. Soil sampling sites were 
extracted from the world soil  map30 and then, these sites were mapped in ArcGIS 10.4.1 (https ://www.esri.com/
en-us/about /about -esri/overv iew).

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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β, fj shows unknown functions and xij indicates the ith value of the jth variable. g(µi) is the link function. We 
applied two GAMs, comprising boosting (BGAM) and spline (SGAM)18.

Spike and slab regression (SSR). SSR is one of the typical variable selection approaches in regression 
settings, and this model has been applied widely in challenging  problems53. SSR was proposed  by54 and can be 
expressed as  follows53:

(8)yi = β1,0xi,1 + · · · + βp,0xi,p + εi , i = 1, . . . , n,

Figure 8.  Spatial maps of soil characteristics: (a) AWC; (b) bulk density; (c) calcium carbonate percentage; 
(d) EC; (e) ESP, and; (f) OCC. All these factors were mapped spatially in ArcGIS 10.4.1 (https ://www.esri.com/
en-us/about /about -esri/overv iew).

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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where (εi)1≤ i ≤n are independent random variables such as E(εi) = 0 and E ( ε2
i
 ) = σ 2

0
> 0. Write X for the n × p 

design matrix corresponding to (1) and β0 = (β0,1, . . . ,β0,P)T for the true regression parameter. �e vari-
ables xi = (xi,1, . . . , xi,p)

T and the response-vector y = (y1, . . . , yn)
T are assumed to the standardized such 

that:
∑n

i=1 xi,k = 0,
∑n

i=1 x
2
i,k = n,

∑n
i=1 yi = 0.

Stochastic gradient boosting (SGB). SGB or gradient boosting machine, proposed  by24 is a hybrid algo-
rithm that combines both the advantages of bagging and boosting. �is model makes additive regression models 
by the least-squares at each iteration.

Figure 9.  Spatial maps of: (a) soil texture; (b) geology; (c) land use; (d) NDVI; (e) DEM, and; (f) wind speed. 
All these factors were mapped spatially in ArcGIS 10.4.1 (https ://www.esri.com/en-us/about /about -esri/overv 
iew).

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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Support and relevance vector machine (SVM and RVM) algorithms. �e relevance vector machine 
(RVM) is a probabilistic sparse kernel model identical in functional form to the support vector machine (SVM). 
SVM is a very successful approach to supervised learning, and it makes predictions based on the following 
 function55:

where wn indicates the model weights and K (. , .) is a kernel function. We applied two algorithms, SVM with 
linear kernel function and RVM with polynomial kernel function.

Cubist. Cubist, a rule-based regression tree algorithm, is based on the M5  theory56. �is model involves four 
main steps as follows: (1) growing a tree by branching data, (2) developing the model, (3) pruning the tree, and 
(4) smoothing the  tree57.

Adaptive network‑based fuzzy inference system (ANFIS). �is model has been applied in di�erent 
sciences. ANFIS works based on the fussy if/then  rules58:

(9)y(x) =

m∑

n=1

wnK(x, xn) + w0,

(10)Rule 1 : if (x is A1) and
(

y is B1
)

then
(

f1 = p1x + q1y + r1
)

(11)Rule 2 : if (x is A2) and
(

y is B2
)

then
(

f2 = p2x + q2y + r2
)

Figure 10.  Spatial maps of: (a) total annual precipitation; (b) locations of the pixels with active wind erosion, 
and; (c) locations of the training and validation data points. All these characteristics were mapped spatially in 
ArcGIS 10.4.1 (https ://www.esri.com/en-us/about /about -esri/overv iew).

https://www.esri.com/en-us/about/about-esri/overview
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where x and y are as input parameters for FIS, f as FIS output, A and B are fuzzy sets, and p, q, and r are 
parameters.

In all 16 models, the predicted values for pixels ranged between 0–1. �erefore, we can divide susceptibility 
predictions into four classes (low (0–0.25), moderate (0.25–0.50), high (0.50–0.75) and very high (0.75–1)).

Assessment of model performance. In order to evaluate model performance in predicting land suscep-
tibility to wind erosion hazard in the study area, three statistical methods comprising root mean square error 
(RMSE), mean absolute error (MAE)59,60 and mean bias error (MBE) were used:

(12)RMSE =

√

∑m
i=1

(vk − vp)
2

m

(13)MAE =

∑m
i=1

∣

∣vk − vp
∣

∣

m

(14)MBE =

1

m

m∑

i=1

(vk − vp)

Figure 11.  Flowchart of the methodology for mapping of wind erosion hazard.
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where m is number of the observations, vk and vp indicate the measured and predicted values, respectively. Also, 
a Taylor diagram was applied as a further test for assessing the performance of individual regression-based ML 
 models14.

Prioritization of the factors controlling wind erosion. Among the 16 ML models tested, a model with 
the lowest error (RMSE, MAE, and MBE) was applied to quantify the relative importance of the factors control-
ling wind erosion. In this study, MMLPNN had the lowest error (with RMSE, MAE, and MBE < 0.002%) and was 
therefore applied for determining the relative importance of the factors for wind erosion.

A brief overview of the main steps used in our methods is presented in Fig. 11.
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