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Abstract

Spatial information on crop nutrient status is central for monitoring vegetation health, 

plant productivity and managing nutrient optimization programs in agricultural systems. 

This study maps the spatial variability of leaf chlorophyll content within fields with dif-

fering quantities of nitrogen fertilizer application, using multispectral Landsat-8 OLI data 

(30 m). Leaf chlorophyll content and leaf area index measurements were collected at 15 

wheat (Triticum aestivum) sites and 13 corn (Zea mays) sites approximately every 10 days 

during the growing season between May and September 2013 near Stratford, Ontario. Of 

the 28 sites, 9 sites  were within controlled areas of zero nitrogen fertilizer application. 

Hyperspectral leaf reflectance measurements were also sampled using an Analytical Spec-

tral Devices FieldSpecPro spectroradiometer (400–2500 nm). A two-step inversion process 

was developed to estimate leaf chlorophyll content from Landsat-8 satellite data at the sub-

field scale, using linked canopy and leaf radiative transfer models. Firstly, at the leaf-level, 

leaf chlorophyll content was modelled using the PROSPECT model, using both hyperspec-

tral and simulated mulitspectral Landsat-8 bands from the same leaf sample. Hyperspec-

tral and multispectral validation results were both strong  (R2 = 0.79, RMSE = 13.62 μg/cm2 

and  R2 = 0.81, RMSE = 9.45 μg/cm2, respectively). Secondly, leaf chlorophyll content was 

estimated from Landsat-8 satellite imagery for 7 dates within the growing season, using 

PROSPECT linked to the 4-Scale canopy model. The Landsat-8 derived estimates of leaf 

chlorophyll content demonstrated a strong relationship with measured leaf chlorophyll val-

ues  (R2 = 0.64, RMSE = 16.18 μg/cm2), and compared favourably to correlations between 

leaf chlorophyll and the best performing tested spectral vegetation index (Green Normal-

ised Difference Vegetation Index, GNDVI;  R2 = 0.59). This research provides an opera-

tional basis for modelling within-field variations in leaf chlorophyll content as an indicator 

of plant nitrogen stress, using a physically-based modelling approach, and opens up the 

possibility of exploiting a wealth of multispectral satellite data and UAV-mounted multi-

spectral imaging systems.
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Introduction

In agricultural systems, the accurate spatial mapping of leaf chlorophyll content is impor-

tant for monitoring vegetation health and plant  stress, which can be used to guide ferti-

liser application in order to optimise crop yield and reduce excessive nutrient loss. Chloro-

phyll molecules facilitate the conversion of absorbed solar irradiance into stored chemical 

energy, through harvesting light energy and supply of electrons to the electron transport 

chain, which leads to the production of NADPH for the reactions of the Calvin–Benson 

Cycle (Croft and Chen 2018; Chen 2014). The amount of solar radiation  absorbed by a 

leaf is largely a function of the foliar concentration of photosynthetic pigments, and low 

chlorophyll contents can limit the photosynthetic capacity and reduce primary productiv-

ity of the plant (Croft et al. 2017; Peng et al. 2011; Houborg et al. 2015b; Richardson et al. 

2002). Chlorophyll content has also been demonstrated to have a strong relationship to leaf 

nitrogen content, due to the underlying investment of nitrogen in chlorophyll molecules 

(Sage et al. 1987). Nitrogen is an essential component of all proteins and nucleic acids and 

is essential to the development of new plant cells, crop growth and plant metabolic activity 

(Sinclair and Rufty 2012).

Leaf nitrogen is an important overlying regulator of vegetation productivity. In C3 plants 

over half of the leaf’s total nitrogen content is usually invested in photosynthetic machinery 

(Niinemets and Sack 2006). In industrialized countries, the rapid rise in crop yields dur-

ing the 1950s and 1960s was closely associated with increased nitrogen-based fertilizer 

application (Sinclair and Rufty 2012). However, excessive or ill-timed nitrogen application 

can cause contamination of rivers, lakes and unconfined aquifers through denitrification or 

leaching from the rhizosphere, leading to increased farming costs and reduced grain yield 

(Peng et al. 2010). Nitrogen must be supplied in appropriate quantities and accumulated by 

plants to prevent nitrogen deficiency, which can hinder crop growth due to lowered protein 

levels and decreased cell function (Sinclair and Rufty 2012). Maintaining plant nitrogen 

supply is affected not only by the availability of nitrogen in the soil, but also by the ability 

of plants to accumulate nitrogen, which is associated growth stage and rooting depth (Sin-

clair and Rufty 2012). Crops may not have the physiological ability to uptake and store all 

of the applied nitrogen, with only an estimated 30%–50% of nitrogen fertilizer taken up by 

crops (Tilman et al. 2002), necessitating an improved monitoring of crop nitrogen status 

for targeted fertiliser application. Nitrogen supply from the soil varies according to local 

soil properties and weather conditions, which vary annually and by field site (Rütting et al. 

2018). As leaf nitrogen content is often well-correlated with leaf chlorophyll (Sage et al. 

1987), a common approach is to estimate chlorophyll content, which is easier and more 

accurate to derive non-destructively, as an indicator of crop nitrogen status (Li et al. 2010; 

Haboudane et al. 2008). Thus, monitoring of chlorophyll content will be useful for optimis-

ing the timing, spatial location and the rate of fertilizer application in order to achieve high 

yields and minimizing nitrogen loss to the environment.

Remote sensing offers a resource-efficient means to model leaf nutrient content in a spa-

tially-continuous manner, and at regular time-steps. Perhaps the most widely used approach 

for deriving chlorophyll content from remote sensing data is through spectral vegetation 

indices (Haboudane et al. 2002; Wu et al. 2008; Gitelson et al. 2005). Statistical models 

are created between measured chlorophyll content and spectral indices, which are formu-

lated using reflectance at chlorophyll-sensitive wavelengths, and are usually normalized by 

reflectance in wavelengths that are sensitive to leaf or canopy structure (Blackburn and Fer-

werda 2008). However, literature shows a lack of generality and applicability of vegetation 
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indices, across species, plant functional types and different physiological conditions (Croft 

et  al. 2014). Alternatively, physically-based methods have been employed to model the 

radiative transfer processes that underpin the structural and biochemical controls on can-

opy reflectance in order to estimate crop chlorophyll (Jacquemoud et al. 2009). Most agri-

cultural studies have used a version of the original Scattering by Arbitrary Inclined Leaves 

(SAIL) model (Verhoef 1984) in conjunction with the Model of Leaf Optical Spectra Prop-

erties (PROSPECT) leaf model (Jacquemoud and Baret 1990). However, the ‘ill-posed’ 

inversion problem (Combal et al. 2003) denotes that the same canopy reflectance can be 

due to different combinations of leaf and canopy parameters and sun-viewing geometry, 

indicating the importance of a priori information to constrain the inversion (Kimes et al. 

2000).

This research will assess the potential of using physically-based radiative transfer mod-

els for modelling leaf chlorophyll content at the sub-field scale, using multispectral Land-

sat-8 (30 m) satellite data. The fine spatial resolution, freely available access and the long 

term archive of the data from the Landsat series means that it is a remote sensing resource 

of unparalleled importance. However, both physically-based and empirical methods for 

modelling leaf chlorophyll content are  usually focused on hyperspectral or narrowband 

reflectance, restricting  the use of a wide range of sensors, including satellite and UAV-

mounted sensors alike, which typically sample the spectrum at fewer and wider spectral 

bands. Further, the lack of a chlorophyll-sensitive red-edge band (~ 720  nm) in Landsat 

data makes its potential for modelling chlorophyll content uncertain. Whilst,  a  limited 

number of studies have demonstrated the potential of using Landsat data to model chlo-

rophyll content using physically-based methods (Houborg et al. 2015a; Croft et al. 2015; 

Wu et al. 2010) it remains under-utilised for retrieving leaf biochemical information. Jac-

quemoud et al. (1995) also inverted the PROSAIL model (a combination of the SAIL and 

PROSPECT models; Jacquemoud et al. 2009) on simulated Landsat TM data using reflec-

tance data from sugar beet crops. This study will test the use of multispectral Landsat satel-

lite data for modelling chlorophyll content in two crops: winter wheat (Triticum aestivum) 

and corn (Zea mays), two of the major crops grown in Southern Ontario, Canada (Dong 

et  al. 2017). The specific objectives of this research are to: (1) Develop a remote-sens-

ing based method to assess sub-field scale nitrogen deficiency using multispectral satellite 

data; and (2) Improve the transferability of leaf chlorophyll retrieval methods to increase 

the accuracy of chlorophyll estimates across different crop types. This paper  therefore 

seeks to demonstrate the potential of using multispectral satellite for informing nitrogen 

management over different crop types. It is hypothesised that: (i) multispectral reflectance 

data can be used to accurately model leaf chlorophyll content, (ii) physically-based mod-

elling approaches will outperform empirical methods, and (iii) multispectral chlorophyll 

inversion methods can be operationally used to inform nitrogen management.

Methods

Field sampling sites

The field sites were located in two corn fields and two wheat fields, in Easthope Township, 

Ontario. This region is a highly productive agricultural area with 90% of the land being 

used for agricultural production (Reid et al. 2007). The soils in the area are mostly clay 

and silty loams and have good natural fertility (Schwan and Elliott 2010). The climate is 
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humid continental with warm to hot summers (July mean air temperature ~ 20.2 °C). Win-

ter wheat (Triticum aestivum), soybean (Glycine max), and corn (Zea mays) are the three 

major annual crops in the study area (Dong et al. 2017). Corn is usually sown in May and 

harvested between late September and early November. Winter wheat is usually seeded 

in late September to early October the previous year, germinating and growing to about 

10 cm before snow fall in November. It goes dormant during winter months (November 

to following March), and grows again from late March to early April until harvest in late 

July-early August (Dong et al. 2017). A total of 13 sites were sampled in two corn fields 

(CE1 and CE2) and 15 sites in two winter wheat fields (WE1 and WE2). For the majority 

area of the fields, the recommended rate of fertiliser application by the Ontario Ministry 

of Agriculture, Food and Rural Affairs (OMAFRA) (www.omafr a.gov.on.ca/engli sh/crops /

soils /ferti lity.html) was applied (105 kg N  ha−1 in the form of 28% urea-ammonium nitrate 

for the winter wheat, and 134 kg N  ha−1 was applied for the corn), except for the control 

area in the CE1, WE1 and WE2 fields, where no nitrogen was applied (Table 1, Fig. 1). 

Wheat and corn data were collected approximately every 10  days between May and 

August, and June and September, respectively, reflecting the growing seasons of the 

respective crops. Individual sampling sites and no-nitrogen plots are shown on Google 

Earth image (Fig. 1). Most study sites were at least 30 m apart and all sites were within a 

different Landsat satellite pixel.

Field data collection

Five representative leaves were sampled from the upper plant canopy at each sampling 

site for subsequent biochemical analysis and leaf reflectance measurements. Leaf sam-

ples were placed in plastic bags and kept at a temperature of 0 °C in dark conditions. 

The samples were then transported immediately back to the University of Toronto and 

processed within approximately 4 hours of sampling. Foliar chlorophyll was extracted 

using spectrophotometric grade N,N-dimethylformamide, and absorbance was meas-

ured at 663.8 nm, 646.8 nm, and 480 nm using a Shimadzu UV-1700 spectrophotometer 

(Wellburn 1994; Croft et al. 2013; Croft et al. 2014). The measured chlorophyll content 

values for each sampling site were calculated as mean values from the five leaf samples 

per site collected on each sampling date. Leaf chlorophyll content was measured from 

Table 1  Details of the field and sampling sites. Zero N sites refer to sites where no fertilizer was applied, N 

sites refer to sites that received recommended rate of fertilizer

Field ID Location Crop type Zero N sites N sites

WE1 43° 29′ 33″ N
80° 54′ 23″ W

Wheat WE1-01

WE1-36

WE1-38

WE1-02

WE1-18

WE1-26

WE1-50

WE2 43° 24′ 35″ N
80° 48′ 43″ W

Wheat WE2-19

WE2-50

WE2-55

WE2-01

WE2-09

WE2-20

WE2-52

WE2-54

CE1 43° 27′ 40″ N
80° 48′ 53″ W

Corn CE1-01

CE1-19

CE1-21

CE1-02

CE1-05

CE1-06

CE1-07

CE2 43° 27′ 40″ N
80° 48′ 10″ W

Corn – CE2-01

CE2-02

CE2-08

CE2-04

CE2-05

CE2-11

http://www.omafra.gov.on.ca/english/crops/soils/fertility.html
http://www.omafra.gov.on.ca/english/crops/soils/fertility.html
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leaves sampled from the top of the canopy, representing the maximum leaf chlorophyll 

potential for a given date (Zhang et al. 2007). Leaf reflectance and transmittance were 

measured using an  Analytical Spectral Devices (ASD) Fieldspec Pro FR spectroradi-

ometer (350–2500 nm; Analytical Spectral Devices Inc., Boulder, CO, USA) attached 

to a LI-COR 1800 integrating sphere (LI-COR, Lincoln, NE, USA), which provides an 

angular integration of radiant flux to give a uniform optical measurement. The ASD 

spectroradiometer was turned on for 90  min prior to sampling to allow the device to 

warm up. A dark measurement was taken before each sampling of leaf reflectance to 

remove the influence of electrical noise. A leaf was placed in the sample port of the 

integrating sphere and the reflectance spectrum (Rλ) of each leaf was calculated as:

Leaf area index (LAI) was measured at the same sampling locations on the same days as 

leaf sampling, using the LI-2000 plant canopy analyser (LI-COR, Lincoln, NE, USA), 

(1)R
�
=

Leaf radiance
�

Calibration panel radiance
�

Fig. 1  No-nitrogen plots and field sampling sites shown with Google Earth images, for two corn fields (CE1 

and CE2) in the first row, and two wheat fields (WE1 and WE2) in the second row. Background image is 

from Google Earth, © 2019 Digital Globe (Accessed 1st March, 2019)
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following the methods outlined by Chen et al. (1997). Measurements were taken in uni-

form sky conditions and diffuse irradiance conditions. A 90° view cap was used to mask 

the operator from the instrument. Two reference measurements at the beginning of each 

measurement sequence were taken above the canopy in an open area at each site. After the 

reference was taken, nine below canopy measurements were taken perpendicular to the row 

direction at each sampling location.

Satellite data

Landsat-8 Surface Reflectance data (30  m spatial resolution, 16  day revisit time) were 

downloaded from Earth Explorer (http://earth explo rer.usgs.gov, accessed June, 2015). The 

Landsat-8 images were atmospherically and geometrically corrected by the USGS using 

the 6S model and are ready for user application. Table 2 provides the dates available from 

Landsat-8 in addition to the field dates of data collection to be compared. The solar zenith 

(defined as the angle between the zenith and the centre of the Sun’s disc; θs) and the solar 

azimuth (defined as the angle from due north in a clockwise direction; φs) at the time of 

image  acquisition are also given. Landsat-8 (OLI) is fixed for nadir view and the view 

zenith angle (defined as the  angle between the zenith  and the sensor) is < 7.5°, and the 

influence of its variation across the scene on canopy radiative transfer modeling is assumed 

to be negligible.

Deriving satellite leaf area index estimates

LAI is a key input to physically-based leaf chlorophyll inversion algorithms (Croft et al., 

in press), as leaf chlorophyll and LAI are the dominant variables that affect canopy reflec-

tance (Zhang et al. 2008). In order to retrieve leaf chlorophyll content, spatially-continuous 

inputs of LAI values must therefore be derived. The biomass-sensitive Reduced Simple 

Ratio (RSR, Chen et  al. 2002) vegetation index (Eq.  2) was calculated for all corn and 

wheat sampling sites for all the valid Landsat-8 dates (Table 2).

Table 2  Summary of Landsat 

imagery, and the dates of field 

data collection

The solar zenith (θs) and solar azimuth (φs) are also given

Field collection date Landsat-8 (OLI) 

acquisition date

θs φs

May 24 – – –

June 5 June 4 25.49 137.70

June 18 June 20 25.12 135.04

June 26 – – –

July 11 July 15 27.35 135.68

July 22 – – –

August 7 – – –

August 16 August 16 34.00 144.08

September 5 September 8 40.20 151.80

September 19 September 17 43.78 154.60

September 29 September 24 49.19 156.58

http://earthexplorer.usgs.gov
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where RNIR, RR, and RSWIR are the reflectance in the near infrared (NIR), red, and shortwave 

infrared (SWIR) respectively. RSWIRmin and RSWIRmax are the minimum and maximum SWIR 

reflectance found in the image. These are found from the 1% boundary in the cumulative 

histogram of the SWIR band. According to Chen et al. (2002), RSR is more advantageous 

than the Simple Ratio (SR) for estimating leaf area index (LAI) because it helps improve 

the accuracy of LAI retrieval for mixed land cover types, and the background influence is 

suppressed with the use of the SWIR band. The SWIR band is sensitive to canopy water 

content (Chen et al. 2002). Importantly, the inclusion of an additional SWIR reflectance 

band to the chlorophyll inversion algorithm brings in independent structural information 

about the vegetation canopy. The field measured LAI and RSR-modelled LAI values are 

shown in Fig. 2.

Using the relationship between RSR and measured LAI, the following equation (Eq. 3) 

was used to derive spatially-continuous LAI values from the Landsat-8 images for input 

into the leaf chlorophyll inversion (“Methods” section).

Modelling chlorophyll content using spectral vegetation indices

Spectral vegetation indices are a quick and straightforward method of estimating leaf chlo-

rophyll content (Croft et al. 2014; le Maire et al. 2008) for a range of different vegetation 

types. Typically, empirical relationships are developed between measured chlorophyll con-

tent and spectral reflectance from different combinations of wavebands. Vegetation indices 

offer advantages in that they require little expertise, minimal software knowledge, and are 

computationally fast. Airborne or satellite imagery that include a narrow red-edge band 

(2)RSR =

R
NIR

R
R

(

1 −

R
SWIR

− R
SWIRmin

R
SWIRmax

− R
SWIRmin

)

(3)LAI =
RSR + 0.564

4.10

Fig. 2  Relationship between field 

measured LAI and satellite-

derived RSR, for all wheat and 

corn sampling sites and cloud-

free Landsat TM images through-

out the 2013 growing season
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have proven to show strong linear correlations with chlorophyll measurements (Haboudane 

et al. 2002). However, relatively few studies have investigated the use of Landsat data for 

modelling leaf chlorophyll, due to its coarse spectral resolution and the lack of a red-edge 

spectral band. A total of 16 spectral vegetation indices were used in this study to test the 

accuracy by which leaf chlorophyll can be modelled using vegetation indices from multi-

spectral data (Table 3).

Chlorophyll‑inversion modelling algorithm

Overview

To derive leaf chlorophyll content from Landsat-8 reflectance data using a physically-based 

method, a two-step inversion approach similar to that of Zhang et al. (2008) was adopted. 

In the forward mode, radiative transfer models simulate leaf or canopy reflectance accord-

ing to defined vegetation structural and biochemical variables that affect how light inter-

acts with the canopy. The inverse mode (or model inversion) therefore estimates vegetation 

structural or biochemical variables from the leaf or canopy reflectance that is measured 

by a satellite sensor or field spectrometer, using the same radiative transfer model. The 

first step is the retrieval of leaf-level spectral reflectance from satellite-derived canopy 

reflectance data, using the SAIL radiative transfer model (Verhoef 1984) to account for 

the influence of canopy architecture, image acquisition conditions and background on can-

opy reflectance. To invert the SAIL model, a look up table (LUT) was created, based on 

Table 3  A list of tested spectral indices in this study

The formulae contains calculations using Landsat-8 OLI bands. RC = 435–451  nm, RB = 452–512  nm, 

RG = 533–590 nm, RR = 636–673 nm, RNIR = 851–879 nm

Index Name Formula References

BGI Blue green pigment index RB/RG Zarco-Tejada et al. (2005)

BI Brightness index R
NIR

+R
R
+R

G
√

3

Liu and Moore (1990)

DVI Difference vegetation index R
NIR

− R
R

Jordan (1969)

EVI Two band enhanced vegetation index 2.5(RNIR
−R

R)
R

NIR
+2.42R

R
+1

Jiang et al. (2008)

G Greenness index RG/RR Zarco-Tejada et al. (2005)

GNDVI Green NDVI R
NIR

− R
G

/ R
NIR

+ R
G

Smith et al. (1995)

GRg Gitelson ratio green RNIR/RG−1 Gitelson et al. (2003)

MCARI1 Modified chlorophyll absorption 1 1.2
[

2.5
(

R
NIR

− R
R

)

−1.3
(

R
NIR

− R
G

)]

Haboudane et al. (2004)

NDVI Normalized difference vegetation index R
NIR

− R
R

/ R
NIR

+ R
R

Rouse et al. (1973)

NPCI Normalized pigment chlorophyll index R
NIR

− R
C

/ R
NIR

+ R
C

Penuelas et al. (1995)

OSAVI Optimized soil-adjusted vegetation index 1.16(RNIR
−R

R)
R

NIR
+R

R
+0.16

Rondeaux et al. (1996)

RNDVI Renormalized difference vegetation 

index
R

NIR
− R

C
/
√

R
NIR

+ R
C

Roujean and Breon (1995)

SAVI Soil-adjusted vegetation index 1.5(RNIR
−R

R)
R

NIR
+R

B
+0.5

Huete (1988)

SIPI Structure intensive pigment index R
NIR

− R
B

/ R
NIR

+ R
R

Penuelas et al. (1995)

SR Simple ratio RNIR/RR Jordan (1969)

SPRI Simple ratio pigment index RC/RR Penuelas et al. (1995)
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variable and fixed input parameters. The LUT approach was selected to optimise computa-

tional resources and reduce problems associated with appearances of local minima, given 

sufficient sampling of the variable space (Jacquemoud et al. 2009). Whilst these structural 

parameterisations are important, their influence on canopy reflectance is mediated by LAI, 

which is the dominant driver of modelled canopy reflectance (Zhang et al. 2008).

The second step was to retrieve leaf chlorophyll content from the modelled leaf reflec-

tance derived in Step 1, using the PROSPECT leaf optical model. A two-step inversion 

method is favoured over a coupled one-step inversion because the output of each stage can 

be assessed individually, and may be validated against measured leaf-level reflectance data 

at field sites (Croft et al. 2013; Zhang et al. 2008). This physically-based canopy inversion 

method has been successfully demonstrated previously using different combinations of 

canopy and leaf models (Croft et al. 2013; Moorthy et al. 2008; Zarco-Tejada et al. 2004; 

Kempeneers et al. 2008). A schematic overview of the chlorophyll-inversion algorithm is 

presented in Fig. 3.

Step 1: canopy‑level reflectance inversion using the SAIL model

For the first step, the SAIL canopy reflectance model (Verhoef 1984) was selected, as 

agricultural crops can be treated as one-dimensional (1D) turbid media, i.e. randomly 

distributed absorbing and scattering elements. The SAIL model is one of the first canopy 

reflectance models and is based on Suits model which is founded on a set of four differ-

ential equations: (1) diffuse incoming flux (2) diffuse outgoing flux (3) direct solar flux, 

and (4) flux with radiance in the direction of remote sensing observation (Suits 1971). 

Table  4 presents the fixed and variable parameters used in the SAIL model. LAI is a 

Fig. 3  Schematic overview of the two-step model inversion. The grey boxes represent inputs while the 

black boxes represent outputs. The dashed lines represent the inversion process and the double arrows pre-

sent an opportunity to validate with empirical data. Modified from Zhang et al. (2008)
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variable parameter and is input according to the RSR-modelled retrieval (“Deriving satel-

lite leaf area index estimates” section), incrementing at 0.1 steps in the LUT, from a mini-

mum value of 0.1 to a maximum value of 10. The solar zenith angle was set to increment 

between 0° and 60° with increments of 10° and is retrievable from the Landsat-8 acquisi-

tion metadata. The soil factor was set to 0, equivalent to a wet soil. This is likely to be the 

case in the early part of the growing season during spring months that experience more 

rainfall. During the summer, the LAI is higher and very little background soil will be vis-

ible, so any deviation from real conditions will have a negligible impact on the canopy 

reflectance inversion, due to its low contribution to canopy reflectance. The hotspot param-

eter quantifies the ratio between leaf size and canopy height (Jacquemoud et al. 1995), and 

falls between the values of 0–1 (Jacquemoud et al. 1995). This parameter has negligible 

effects on simulated canopy reflectance under Landsat acquisition conditions, because the 

vegetation canopy is observed far from the hotspot. The hotspot was set to a constant value 

of 0.5, based on estimates of plant height relative to leaf size (Vincini and Frazzi 2011).

The leaf inclination distribution function (LIDF) describes the frequency distribution of 

leaf orientation angles irrespective of azimuthal distribution, using terminology introduced 

by de Wit (1965). The same crop can be architecturally different according to the cultivar 

and genetic differences, stem density, leaf size and growth stage. Winter wheat is com-

monly classified as erectophile (angular distribution of leaves is predominately vertical) or 

planophile (angular distribution of leaves is predominately horizontal) (Yanli et al. 2007; 

Huang et al. 2006; Jackson and Pinter Jr. 1986). Hosoi and Omasa (2009) found that during 

the stem elongation and flowering stages, most leaves bent downwards to horizontal posi-

tions (i.e. planophile distribution). The angular distribution of corn leaves has been consid-

ered planophile, erectophile or spherical (the angular distribution of leaves is the same as 

the surface elements of a sphere) (Wang et al. 1995; Jacquemoud et al. 2000; Nguy-Robert-

son et al. 2012; Fang 2015). Based on visual inspection in the field, both corn and wheat in 

this study could be considered as planophile, meaning that leaves are more horizontal than 

the spherical distribution (Du et al. 2017; Fang 2015; Hosoi and Omasa 2009), with the 

majority of leaves approaching horizonal orientation (Fig. 4), although some young corn 

leaves showed a tendency of vertical orientation.

Using the same model parameterisation for both crop types will also offer an oppor-

tunity to assess the transferability of the algorithm across crop types; limiting the need 

Table 4  Fixed and variable parameters used in the SAIL model for LUT generation

Two LUTs were created with the same parameters but with different inputs of leaf reflectance; one healthy 

and one unhealthy leaf

Symbol Quantity Units Set value Increment-

ing step 

factor

LAI Leaf area index m2  m−2 – 0.1

LIDF Leaf inclination distribution function – Planophile

SL Hot spot parameter m  m−1 0.5

ρs Soil reflectance factor (0 is wet and 1 is dry) – 0

θs Solar zenith angle ° – 10

θ View zenith angle ° 0°

φs Relative azimuth angle ° 0°
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for local information, such as species type. Whilst setting the LiDF to planophile for both 

species throughout the growing season may lead to some uncertainty in modelled chloro-

phyll prediction, Vincini et al. (2016) demonstrated that with the exception of erectophile 

LIDFs, varying the LIDF had relatively small impacts on the strength of the relation-

ship between chlorophyll and spectral indices, particularly when the solar zenith angle is 

between 30°–60°. This was also confirmed by (Croft et al., in press), where the imposed 

error on leaf chlorophyll prediction using physical-based inversion methods was quite con-

sistent between spherical, planophile, plagiophile (where oblique leaves are most frequent) 

and uniform canopies, with only erectophile canopies presenting a large difference. In this 

sensitivity analysis, it was also found that for a fully expanded canopy (LAI = 4.0), devia-

tions in the hotspot parameter value from the assigned value by 100%, only resulted in a 

negligible change (− 1.2 µg cm−2) in modelled leaf chlorophyll content values (Croft et al., 

in press). The inclusion of LAI as a variable parameter mediates against much of the uncer-

tainty generated in fixed structural parameters.

Two separate LUTs were created, using leaf-level reflectance data from a nitrogen defi-

cit (‘unhealthy’) leaf, and a fertilised (‘healthy’) leaf into SAIL, to forward model canopy 

reflectance of an unhealthy crop and a healthy crop. The LUT contained the ratio between 

the input leaf reflectance into SAIL, and the output modelled canopy reflectance (see 

Eq. 4), as a ‘scaling factor’, which encompassed the signal from soil reflectance, bidirec-

tional reflectance distribution function (BRDF) effects and multiple scattering within the 

canopy, according to the structural parameterisations detailed in Table 4. Accordingly, the 

leaf level reflectance for each Landsat-8 pixel was found by multiplying the pixel’s canopy 

reflectance by the Scalingfactor(λ) according to the pixel specific LAI value and solar/view-

ing angle value within the LUT.

Fig. 4  Photographs of representative (a) corn, (b) wheat sites
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LUT inversion through inverse distance weighting

The leaf reflectance input for SAIL greatly  influences the output of modelled canopy 

reflectance. Using a ‘healthy’ leaf reflectance to forward-model canopy reflectance in order 

to generate the LUT may bias the leaf-level inversion for the leaves experiencing stress. 

In order to compensate for this potential bias, healthy and unhealthy leaf LUTs were cre-

ated and inverse distance weighting was applied pixel by pixel for the best match. Each 

pixel in the Landsat-8 image was compared with the two LUTs (healthy and unhealthy) 

to find the Scalingfactor(λ) value according to the pixel’s solar zenith angle and LAI con-

ditions. An inverse distance weighting (IDW) was applied to extrapolate an appropriate 

ratio value between the healthy and unhealthy LUT match. IDW is based on the concept 

that nearer points are more similar than further points. By this theory, if a Landsat pixel’s 

canopy reflectance was more similar to the forward modelled canopy reflectance using the 

unhealthy leaf reflectance, it would apply a greater influence to the Scalingfactor(λ) values 

that would be used to calculate leaf reflectance. The canopy reflectance from the Landsat-8 

scene was compared to the LUT healthy and unhealthy match. Based on the distance (or 

difference) between the healthy and unhealthy and the Landsat-8 image, a weighting was 

applied on the ratio. Equation 5 gives the IDW equation used to calculate the Ratio(λ) that 

was used in each individual pixel’s case:

where Ratio(λ) is the ratio found for the particular pixel, Ratiohealthy(λ) and 

Ratiounhealthy(λ) are the ratios found from the match in the healthy and unhealthy LUT 

respectively, and

Leaf‑level chlorophyll retrieval using the PROSPECT model

The leaf radiative transfer model PROSPECT (Jacquemoud and Baret 1990; Feret et  al. 

2008) was then used to derive leaf chlorophyll content from the modelled leaf reflectance 

spectra generated in step one (“Modelling chlorophyll content using spectral vegetation 

indices” section). In PROSPECT-5, leaf reflectance and transmittance (400–2500 nm) are 

defined as a function of six parameters: structure parameter (N), chlorophyll (a + b) con-

centration  (Cab), brown pigment  (Cb), dry matter  (Cm) and equivalent water thickness  (Cw). 

Absorption is calculated as the linear summation of the specific absorption coefficients 

of the biochemical constituents and their respective concentrations (Feret et  al. 2008). 

(4)Scaling factor(�) =
RLeaf (�)

RCanopy(�)

(5)Ratio(�) =

(

Ratiohealthy(�)

dhealthy

+
Ratiounhealthy(�)

dunhealthy

)

(

1

dhealthy

+
1

dunhealthy

)

(6)dhealthy = [Modelled Refhealthy(�) − Landsat Ref(�)]
2

(7)dunhealthy = [Modelled Refunhealthy(�) − Landsat Ref(�)]
2
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PROSPECT has been widely tested across a large number of vegetation species and plant 

functional types, and is popular because of its accuracy and straightforward inversion, due 

to the relatively few leaf parameters within the model (Croft et  al. 2015; Demarez and 

Gastellu-Etchegorry 2000; Darvishzadeh et al. 2008; Malenovský et al. 2006). The PROS-

PECT model is inverted to model leaf chlorophyll content from input leaf reflectance by 

iteratively minimising a merit function (Feret et al. 2008).

Landsat data simulation and hyperspectral spectral comparison

To investigate the impact of using Landsat-8 spectral bands instead of hyperspectral reflec-

tance on PROSPECT-modelled leaf chlorophyll content, Landsat-8 bands were simulated 

from wheat and corn hyperspectral leaf reflectance for all sampling dates and sites (“Field 

data collection” section). The Landsat-8 reflectance was simulated using the sensor’s spec-

tral response function (SRF), which describes its relative sensitivity to different wave-

lengths, and the measured leaf hyperspectral data (Eq. 8).

In the weighted sum formula above, L is the broadband Landsat-8 reflectance and L′(λ) is 

the original hyperspectral reflectance. (λ) is weight of the broadband Landsat-8 spectral 

response function (Chen et  al. 2002). The PROSPECT absorption coefficients were also 

recalculated to the Landsat-8 spectral resolution using their respective spectral response 

functions. By inverting PROSPECT using Landsat-8 simulated bands, the accuracy of 

the modelled leaf chlorophyll, using both hyperspectral and broadband reflectance inputs, 

could be directly compared.

Results

Seasonal trends of LAI and leaf chlorophyll content

The temporal trends in measured leaf chlorophyll and LAI through the growing season are 

shown in Fig. 5, for the fertilized (N) and non-fertilized (Zero N) sites in the four fields. 

Winter wheat commences growth earlier (DOY ~ 130), following seeding during the previ-

ous winter. Mid-season maximum values were reached around DOY 170 for LAI and DOY 

155 for leaf chlorophyll. The last measurement before harvest was on DOY 200, when 

LAI remained reasonably high (N LAI = ~ 3.0, Zero-N LAI = ~ 1.0), whilst chlorophyll had 

declined to < 20 µg cm−2. The corn crops began growing at DOY 160, reaching maximum 

LAI and chlorophyll values at DOY ~ 200, and declined slowly toward the later season.

The application of nitrogen fertiliser had a considerable impact on peak values of both 

LAI and chlorophyll in the middle of the growing season. For wheat, the fertilized fields 

had a maximum average LAI of 4.3, while the non-fertilized fields only reached a maxi-

mum average LAI of 1.6. Fertilizer application appeared to have a smaller impact on the 

LAI of maize, although CE1 Zero-N values were still lower than the sites that received 

nitrogen. Changes in leaf chlorophyll content across the growing season also show differ-

ences between nitrogen and no-nitrogen application areas, with fertilized sites reaching a 

higher value of leaf chlorophyll content than non-fertilized areas. For wheat, the maximum 

(8)L =

∑N

�=1
�(�)L�(�)

∑N

�=1
�(�)
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chlorophyll content is 64 µg cm−2 in fertilized plots, while it is only 45 µg cm−2 in non-

fertilized plots. Nitrogen application also affects the chlorophyll content in maize and to 

a greater extent than it affects LAI values, with the maximum values of 80 µg cm−2 and 

47 µg cm−2 for N and Zero-N sites, respectively. Additionally, leaf chlorophyll in no nitro-

gen application areas started to decline even  in  the growth period in the middle of the 

growing season, much earlier than their corresponding nitrogen fertilised sites.

Estimating crop chlorophyll with spectral vegetation indices

The performance of a number of spectral vegetation indices are evaluated for modelling 

leaf chlorophyll content using Landsat-8 reflectance data (Table  5). The applicability of 

these indices for monitoring fine-scale (30 m) variations in chlorophyll content at the sub-

field scale is important for operational agricultural applications.

The best performing indices for corn were GNDVI, GRg, EVI and SAVI with  R2 values 

of 0.67, 0.60, 0.56, and 0.56 respectively. For wheat, many of the indices had similar  R2 

values to corn, ranging between 0.32 and 0.54. However, like corn, GRg, SAVI, EVI and 

GNDVI were amongst the top performing indices with  R2 of 0.54, 0.49, 0.49, and 0.48, 

respectively. When combining the two crops types, GNDVI presented the strongest corre-

lation  (R2 = 0.59). Regressions for the best performing indices for each crop type, and both 

combined are presented in Fig. 6.

The results for both crop types combined (Fig.  6c) indicate that there is a degree of 

transferability  in the selected GNDVI vegetaion index between the two crops, although 

the modelled leaf chlorophyll values for wheat would often be under-estimated based on 

this regression equation. The relationship between GNDVI and chlorophyll content has a 

Fig. 5  Temporal variations in mean leaf chlorophyll for (a) wheat, (c) corn, and in mean LAI for (b) wheat, 

(d) corn, throughout the growing season. The error bars represent the minimum and maximum values for 

each field, and nitrogen fertiliser application is indicated by N/Zero N
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curvilinear nature, indicating saturation at higher chlorophyll contents. This is a typical 

response of indices that are comprised of red band reflectance, which are prone to satura-

tion (Croft and Chen 2018).

Table 5  A summary of the results from spectral indices

Relationships between the index and empirical chlorophyll measurements are displayed in the table. Linear 

regressions were used for analysis

*p < 0.01, **p < 0.001

Index Corn Wheat Corn and wheat

R2 Regression equation R2 Regression equation R2 Regression equation

BGI 0.21** 187.90x − 33.00 0.39** − 127.94x + 114.18 0.03 58.02x + 24.08

BI 0.20** 21.39x − 10.70 0.32* 26.49x − 13.63 0.17** 17.62x + 2.56

DVI 0.41** 13.26x + 0.83 0.45** 10.68x + 18.27 0.37** 11.43x + 10.22

EVI 0.55** 53.38x − 32.05 0.49** 29.78x + 8.17 0.49** 44.74x − 17.08

G 0.23** 33.88x − 0.33 0.40** 27.29x + 12.71 0.24** 31.44x + 4.85

GNDVI 0.67** 197.23x − 101.9 0.48** 97.71x − 22.43 0.59** 164.01x − 75.02

GRg 0.60** 5.43x + 7.63 0.54** 3.48x + 26.66 0.56** 4.83x + 13.83

MCARI1 0.38** 8.39x + 3.45 0.45** 6.88x + 19.52 0.34** 7.27x + 12.19

NDVI 0.56** 150.63x − 73.71 0.48** 78.93x − 12.02 0.50** 125.33x − 51.73

NPCI 0.49** − 129.39x + 93.67 0.49** − 338.20x + 152.19 0.45** − 130.9x + 92.99

OSAVI 0.55** 129.01x − 68.59 0.48** 68.53x + 9.88 0.50** 107.47x − 47.45

RNDVI 0.42** 1.72x − 52.30 0.46** 1.09x − 7.36 0.34** 1.34x − 26.98

SAVI 0.56** 85.17x − 35.73 0.49** 46.12x + 6.99 0.50** 71.14x + 20.11

SIPI 0.49** − 224.92x + 287.31 0.44** − 189.62x + 250.28 0.48** − 219.09x + 281.18

SR 0.48** 2.25x + 19.41 0.49** 1.51x + 33.01 0.46** 2.02x + 23.95

SPRI 0.47** 116.54x − 8.94 0.48** 281.09x − 100.79 0.44** 119.19x − 11.12

Fig. 6  The top performing spectral indices for (a) corn, (b) wheat, (c) both  corn and wheat combined, 

against measured leaf chlorophyll content
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Physically‑based chlorophyll modelling

Multispectral and hyperspectral PROSPECT inversion

At the leaf level, PROSPECT is usually inverted with hyperspectral reflectance  as input 

data. However, this is not possible for multispectral  satellite-derived reflectance data, 

and precludes the use of a wealth of available satellite data for agricultural leaf chlorophyll 

determination. Before modelling leaf chlorophyll from the satellite Landsat-8 imagery, the 

implications of using a reduced bandset on the accuracy of PROSPECT chlorophyll esti-

mates are first tested against hyperspectral reflectance inputs. The hyperspectral leaf reflec-

tance data was used to simulate Landsat-8 bands, using Landsat-8 SRFs (“Modelling chlo-

rophyll content using spectral vegetation indices” section), so results from the simulated 

Landsat-8 bands and the hyperspectral data could be compared directly (Fig. 7).

Figure 7 reveals strong linear relationships between modelled and measured leaf chlo-

rophyll, with a slightly stronger relationship for hyperspectral data. Overall, PROSPECT 

performed well for corn and wheat combined, with  R2 = 0.79 for hyperspectral data and 

 R2 = 0.78 for simulated Landsat-8 data. These results suggest that at the leaf-level, PROS-

PECT is capable of estimating leaf chlorophyll using Landsat bands at accuracies compa-

rable to those from hyperspectral inputs. However, PROSPECT under predicted chloro-

phyll values from both the hyperspectral and multispectral data, with the regression falling 

below the 1:1 line, particularly for wheat. When permitted to vary freely, the leaf structural 

parameter (N parameter) ranged between 0.3 and 2.9. Other studies have suggested set-

ting the N parameter to a mean of 2.0 (with a SD of 0.34) for winter wheat (Atzberger 

et al. 2003), or a wider range of 1.0–2.5 (Danner et al. 2017). Alternatively, Shiklomanov 

Fig. 7  Leaf chlorophyll content estimated from PROSPECT model inversion for wheat and corn, separately 

and in combination, using hyperspectral (a–c) and simulated Landsat bands (d–f)
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et al. (2016) suggests that a bias in modelled chlorophyll values could be due to a failure 

of PROSPECT-5 to accurately represent the spectral properties of chlorophyll in leaves, 

as the specific absorption feature for chlorophyll a and b (kCab(λ)) in PROSPECT-5 is 

empirically calibrated from a the ANGERS dataset, which takes is name from the city of 

Angers, France, where it was measured in 2003 (Feret et al. 2008). This may lead to inac-

curate inversion estimates, for species dissimilar to those in the ANGERS data set (Shik-

lomanov et al. 2016). To correct for a potential mis-representation of internal leaf struc-

ture on PROSPECT modelled reflectance the value of the N parameter was incrementally 

adjusted until the slope value was closest to 1. The new results with the N parameter to set 

a value of 3 to correct for the systematic underestimation of leaf chlorophyll are presented 

in Fig. 8.

Figure 8 demonstrates the improved performance of PROSPECT when the N parameter 

is set to 3. Whilst the strength of the regression results remained fairly similar to the results 

where the N parameter was allowed to vary freely, specifying N = 3 improves the Landsat 

RMSE value from 13.62 to 9.45 µg cm−2, but worsens the hyperspectral RMSE from 11.97 

to 15.37 µg cm−2 (Figs. 7c, f and 8). While N was set for this study, it is recognised that 

this may restrict the operational utility of the inverse modeling approach across different 

sites and species. Further research is needed to refine estimation of the N parameter. Fur-

ther research directions could be to model the N parameter with leaf thickness and internal 

cellular structural information. Some approaches have relied on constraining the PROS-

PECT inversion to individual parameters based on different sensitive wavelengths ranges. 

Zarco-Tejada et al. (2004) used NIR wavelengths to first retrieve the N parameter, which 

was fixed accordingly per chlorophyll inversion. The limited number of wavebands in this 

multispectral study make this difficult.

Modelling chlorophyll from Landsat satellite data

Following the testing and optimising of the PROSPECT model at the leaf level, using leaf 

reflectance data, leaf and canopy chlorophyll content are now modelled using the two-step 

inversion approach directly from Landsat satellite data (Fig. 9).

The regression results indicate that the algorithm is performing quite well for satellite 

canopy reflectance inversions. The correlation between estimated and measured values for 

Fig. 8  PROSPECT chlorophyll estimates compared to measured chlorophyll, where N = 3.0 for (a) hyper-

spectral wavelengths, (b) simulated Landsat bands



873Precision Agriculture (2020) 21:856–880 

1 3

canopy chlorophyll content is particularly strong  (R2 = 0.87) because canopy chlorophyll 

is coupled with LAI. The modelled leaf level results are also good  (R2 = 0.64), with some 

overestimations for corn at lower chlorophyll values, which could be due to mis-parameter-

isation of LiDF at the start of the season where corn canopies may be more erectophile as 

young leaves tend to be clustered around the stalks (Monteith 1969).

The spatial variability in leaf chlorophyll content, derived from the Landsat images at 

select dates across the growing season, can be seen in Fig. 10. The no nitrogen application 

areas are highlighted by a black box labelled with “N/F”.

The no nitrogen areas show clearly apparent lower leaf chlorophyll content values than 

the surrounding areas, however considerable spatial variation also exists even within the 

fertilised area (Fig. 10). While collection dates and available Landsat-8 imagery were lim-

ited for wheat plots, the corn plots had more cloud-free satellite data available, allowing 

seasonal trends to also be visible. The progression of images from July 15th to September 

24th shows the change in chlorophyll content from the middle of the season to the end of 

the  season for the  corn fields, and the degree of variability in chlorophyll values that is 

present within a field on all dates through the season. The decline in chlorophyll content 

values are visible within this mapped time series, with the non-fertilized areas declining 

earlier than the fertilized areas.

Discussion

Multispectral reflectance data can be used to accurately model leaf chlorophyll 

content

To date, the integration of multispectral satellite sensors in leaf chlorophyll or nitrogen moni-

toring studies has been relatively low. In an early study, Jacquemoud et al. (1995) tested the 

use of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data and 

Landsat TM bands within the PROSAIL model for modelling sugar beet biochemical proper-

ties, finding similar results for both input datasets. Croft et al. (2015) also found similar results 

for hyperspectral reflectance data and simulated Landsat bands for needleleaf and broadleaf 

samples, using PROSPECT-5  (R2 = 0.76 and  R2 = 0.79, respectively). This study confirms 

Fig. 9  Two-step inversion validation, for (a)  leaf-level chlorophyll content and b canopy-level chlorophyll 

content
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Fig. 10  Within-field scale maps of leaf chlorophyll content for the (a) corn fields, and (b) wheat fields, for 

different dates within the growing season. The black square box and adjoining no fertilizer (N/F) label high-

lights the control areas with no fertilization
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these findings; with relationships between modelled and measured leaf chlorophyll data of 

 R2 = 0.81 and  R2 = 0.79 for hyperspectral and Landsat data, respectively (Fig. 8). On the sur-

face this result may appear surprising due to the reduced number of Landsat and the larger 

bandwidths relative to hyperspectral data. However, Thenkabail et al. (2004) argued that there 

is a high degree of redundancy of wavelength channels (Jacquemoud et  al. 1995), and the 

volume of hyperspectral data can be reduced by 97% for vegetation studies, and identified 

seven optimal bands (495 nm, 555 nm, 655 m, 675 nm, 705 nm, 915 nm, and 985 nm). Croft 

et  al. (2015) compared PROSPECT-modelled leaf chlorophyll from hyperspectral inputs to 

simulated bands for three other sensors (MERIS, MODIS and SPOT5 HRG), and found very 

strong linear relationships with hyperspectral results for Landsat, MODIS and MERIS bands 

(all sensors:  R2 = > 0.96). A decreased performance using SPOT5  (R2 = 0.88; bands = 545 nm, 

645 nm and 835 nm) was likely due to the absence of a blue band and the very large red band-

width (610–690 nm). In a comprehensive study, Shiklomanov et al. (2016) tested the inversion 

accuracy of PROSPECT using a Bayesian approach for simulated bands for ten different sen-

sors. They found that the uncertainty and bias of leaf chlorophyll retrieval were relatively low 

for all sensors with the exception of AVHRR, which only has 3 bands, and relatively coarse 

wavebands (100–275 nm). The results from this research support these findings; indicating 

that a minimum presence of bands at key spectral inflection points (i.e. blue, green, red, NIR) 

is required. Importantly, given the presence of these bands, and a spectral bandwidth that is 

not too coarse (< 30 nm), it is possible to model leaf chlorophyll content from multispectral 

data.

Physically‑based modelling approaches outperform empirical methods

The two modelling approaches demonstrate the ability to map within field variability in 

leaf chlorophyll content, with physically-based methods presenting the stronger results 

 (R2 = 0.64, p < 0.001), compared to the best performing VI (GNDVI,  R2 = 0.59, p < 0.001). 

It is well documented, that empirical vegetation indices are limited by their lack of trans-

ferability, across species, sites and time (Croft et al. 2014). This lack of transferability is 

because they fail to explicitly account for variations in canopy structure, solar geometry 

and associated changes in canopy BRDF and multiple scattering and background reflec-

tance contributions. As shown in this research, including information on image acquisi-

tion conditions, canopy architecture and an independent, variable source of LAI, allows the 

implementation of the algorithm across different species and paves the way to its applica-

tion across larger spatial extents. Despite the good performance of the physically-based 

approach, it is also worth recognising that these methods also have some limitations. The 

main source of uncertainty arises from inaccurate parameterization, and the need to have 

some a priori constraint to overcome the ill-posed problem (Ustin et al. 2009). Whilst some 

parameterisations may be treated as variable parameters, such as LAI and solar/viewing 

zenith angles, other canopy architectural values are more difficult to derive remotely. Vari-

ations in leaf angle distribution within a growing season, and between crop species and 

cultivars may lead to uncertainties in the retrieved leaf chlorophyll values. Studies have 

highlighted that for the same species, different development stages, crop genotypes and 

population densities can have widely different angular distribution of leaves (Vincini et al. 

2016).
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Multispectral chlorophyll inversion methods can be operationally used to inform 

nitrogen management

The close relationship between chlorophyll and nitrogen, (Sage et al. 1987), offers an oper-

ational approach to quantifying crop nutritional status remotely, through the estimation of 

chlorophyll content. The ‘crop nitrogen requirement’ (CNR)) describes the relationship 

between canopy green area and the above-ground N content per unit of ground area. For 

UK-grown winter wheat, it is approximately 3 g nitrogen per m2  green area (Pask et  al. 

2012; Sylvester-Bradley et al. 1990). Deriving a quantitative measure of chlorophyll con-

tent at fine spatial scales, means that it possible to target fertiliser application to maintain 

crop nitrogen at a suitable level throughout the growing season. The finding that multispec-

tral reflectance data can be used for chlorophyll content estimation not only  enables the 

use of multispectral satellite sensors, but also UAV-based sensors; therefore providing an 

operational means of monitoring crop management to local-scale agricultural practioners. 

Hyperspectral imaging cameras are currently limiting in their size and cost for drone-based 

applications, whereas multispectral sensors (i.e. Tetracam Micro-MCA or modified infra-

red cameras) are available at relatively low cost. Given a suitable graphical user interface, 

a physically-based UAV approach may also allow agricultural managers to set some a pri-

ori information using ‘on the ground’ information, such as LiDF, soil wetness and species 

type, which should improve the accuracy of mapping further

Conclusion

This research demonstrates the potential of using multispectral reflectance data for moni-

toring sub-field scale spatial variability in leaf chlorophyll content, in order to optimise 

nitrogen fertiliser management. The results show that physically-based retrieval algorithms 

outperform empirical methods  (R2 = 0.64 and  R2 = 0.59, respectively), due to their explicit 

consideration of confounding factors such as solar/view zenith angle and LAI that also 

affect canopy reflectance. However, the different vegetation indices also  show consider-

able variation in prediction accuracy ranging from  R2 = 0.59 (GNDVI) to  R2 = 0.03 (BGI), 

demonstrating the need to be cautious in selecting an appropriate vegetation index. This 

research provides an operational basis for modelling within-field variations in leaf chlo-

rophyll content as an indicator of plant nitrogen stress using fine spatial resolution Land-

sat-8 data. The findings also pave the way for using other multispectral sensors, includ-

ing drone-mounted sensors, within a physically-based framework for precision agriculture 

applications.
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