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ABSTRACT: 

Detection And Tracking of Moving Objects (DATMO) is essential and necessary for mobile mapping system to generate clean and 

accurate point clouds maps since dynamic targets in real-world scenarios will deteriorate the performance of whole system. In this 

research, a robust LiDAR-SLAM system is presented incorporated with a real-time dynamic objects removal module to improve the 

accuracy of 6 DOF pose estimation and precision of maps. The key idea of the proposed method is to efficiently cluster the sparse point 

clouds of moving objects and then track them independently so as to relieve their influence on the odometry and mapping results. In 

the back-end, in order to further refine the point clouds maps, a valid probabilistic map fusion method is performed based on the free-

space theory. We have evaluated our system on the dataset collected from daily crowded environments full of moving objects, providing 

competitive results with the state-of-the-art system both on the pose estimation and point cloud mapping. 

1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is designed to 

estimate accurate 6 DOF pose information of the platform itself 

as well as the positions of landmarks in a real-time manner. 

SLAM is usually used as an efficient technique to collect 

information of 3D environments which has been widely studied 

and used due to its efficiency to not only get the true trajectory 

but also the accurate surrounding map, especially for the 

Unmanned Ground Vehicles (UGVs). The principle of generic 

SLAM is based on the assumption of relatively static 

environments with static landmark distribution. However, such 

ideal static environment is not common in urban or daily real-

world scenarios. There are always full of moving objects such as 

people and cars, resulting in distortion of the pose estimation and 

fuzzy map area.  

As shown by the early work of (Wang et al., 2007; Wang and 

Thorpe, 2002), SLAM with DATMO is quite necessary for a 

robust UGV mapping system in dynamic environments. On the 

other hand, surveyors may care much more about the quality and 

the precision of map which will be used for their specialized 

applications as they normally use SLAM as an effective tool to 

accomplish the job of scene reconstruction. Motivated by the 

mentioned above, we therefore seek to develop a robust 

localization and mapping system filtering out the influence of 

dynamic objects.  

Considering the time efficiency and adaption with the SLAM 

framework, a robust mobile mapping system is proposed 

incorporating LiDAR SLAM with a novel dynamic objects 

detection and removal module as well as a probabilistic map 

fusion process in this paper, to further improve the accuracy of 

trajectory and point cloud map. The main contributions of our 

system are as belows:  

• In the front-end, a real time detection and tracking of dynamic

objects module based on fast density-aware clustering is

presented to alleviate invalid feature points used for the 6

DOF pose estimation of LiDAR SLAM.

• In the back-end, a probabilistic map fusion algorithm is

adopted to prevent unreliable observations from deteriorating

the final point cloud map caused by motion blur.

2. UGV MOBILE MAPPING SYSTEM OVERVIEW

Figure 1. Simple flowchart of our system. (a) Laser mapping 
thread; (b) Laser odometry thread; (c) DATMO thread. (All 
threads run simultaneously.)  

As shown in Fig. 1, our system mainly consists of three parts: 

laser mapping, laser odometry and DATMO. Upon a new frame 

of laser scan, the ground points will be identified and the non-

ground points will be coarsely segmented in order to denoise the 

whole point cloud. Then edge features and planar features 

collected from the segmented cloud will be used for laser 

odometry and laser mapping to retrieve 6 DOF ego-motion of the 

system. The LiDAR registration method used here is the robust 

point-to-line and point-to-plane workflow illustrated in 

LOAM(Zhang and Singh, 2017). Generally, the odometry runs at 

10hz (same with the frequency of the laser scanner) while the 

laser mapping usually runs at a slower rate to get more precise 

poses information. With regard to this, we innovatively add a 
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dynamic objects removal thread accompanied with laser 

odometry thread in the front-end to prevent the dynamic points 

on moving objects to be processed by laser mapping thread later. 

In the back-end of our system, a probabilistic LiDAR map fusion 

process is integrated to further differentiate the static background 

map and dynamic targets based on the free-space theory. As we 

don’t focus on the LiDAR registration, the method of DATMO 

and probabilistic map fusion will be detailed followed. 

3. DYNAMIC OBJECT DETECTION AND

TRACKING MODULE 

Figure 2. Point cloud selection with black as ground, blue as 

non-ground and red as interested part. (a) orginal laser scan; 

(b) convex hull region shaded; (c) top-down view; (d) side
view.

3.1 Candidates Detection 

The following process is applied to cluster potential moving 

objects online: 1) the ground filtering method proposed by 

(Himmelsbach et al., 2010) is firstly used to get rid of the futile 

points (ground points) as in Fig. 2; 2) The non-ground point cloud 

is coarsely segmented using the scheme of (Bogoslavskyi and 

Stachniss, 2016). The coarsely segmented result is scattered 

where, for example, a person may be separated into several parts 

(Fig. 3-(a)); 3) In order to refine the segments to retrieve objects 

efficiently, we first extract the convex hull of the ground point 

clouds and then filter the segmented cloud within this convex hull 

by means of simple range comparison. Actually, incorporating all 

of the segmented points for clustering is not sensible because we 

are more concerned of the points that are likely to belong to 

dynamic objects such like pedestrians and cars which in fact move 

only on the ground. As in Fig. 2-(b), points with ranges smaller 

than maximum ground range are assumed to be points that are 

above the ground. With the largely reduced number of points, an 

improved DBSCAN(Navarro-Hinojosa, 2016) clustering method 

with adaptive thresholds is proposed here to re-cluster the 

segments to generate the final object clusters. Since this method 

is density sensitive, the adaptive clustering thresholds solve the 

numerical relation between the distance form sensor and sparsity 

of the point clouds for better grouping of the sparse segments. 

Adopted from the ring sections in (Yan et al., 2017), desired 

clustering radius ℛ  and minimal point number 𝒩  can be 

calculated correspondingly. This density-adaptive parameter 

setting is designed based on the physical characteristic of the laser. 

The clustered potential candidates are shown in (Fig. 3-(b)).  

Figure 3. Example points distribution of people. (a) segmented 

point cloud; (b) clustered candidates. (Different colors 
encode different label.) 

3.2 Tracking 

To truly distinguish the moving objects among candidate clusters, 

we use general EKF method to respectively track the clustered 

objects extracted from the previous step. As the laser scanner 

works at 10Hz, there is actually no large displacement of objects 

between frames. We use common Multiple Hypothesis Tracking 

(MHT) strategy to avoid mixed match, and we only care about the 

x-y plane motion of the objects based on the fact that there is

ordinarily no movement in the z direction. Then through

analysing the valid tracklets, we are able to identify different

dynamic objects which is similar to the thought of (Moosmann

and Stiller, 2013). Once we recognize the moving targets, we

remove the corresponding points before pose estimation and

mapping followed.

3.3 Probabilistic Mapping 

According to the physical characteristic of LiDAR sensors, there 

should be no obstruction between the sensor origin and the 

endpoint which can be referred as the free-space (the path from 

origin to footprint) of individual laser point(Yoon et al., 2018). 

Following the mapping framework in (Zhang and Singh, 2017), 

we additionally model the confidence of every point by the 

occupancy probability stored in the octree structure. To lessen the 

impact of side effect, the confidence will decrease only if the grids 

appear in the free-space for multiple times. The detailed criterions 

are as follows:  

𝐼𝑓	𝑂' 	𝑖𝑠	ℎ𝑖𝑡:	

𝐿' .:/ = 𝐿' .:/1. + log	(
78

.178
) (1) 

𝐼𝑓	𝑂' 	𝑖𝑠	𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑒𝑑:	

𝐿' .:/ = 𝐿' .:/1. + log	(
7?

.17?
) (2) 

where OA represent the voxel in map. The previous estimation 

term 𝐿' .:/1.  models the accumulation of previous observations. 

PC,	PD are the confidence prior terms that represent the probability 

of voxels being hitted and passed through. In probabilistic fusion 

process, the only output is the occupancy probability value 

𝐿' .:/ , where sensor readings and previous state are integrated 

into current occupancy probability. For simplification, the 

confidence of a voxel given observation can be easily updated 

using log-odds probability. To maintain the robustness of 

estimation, PC  is usually higher than initial value while PD  is a 

little lower.  
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4. EXPERIMENTS AND ANALYSIS

Figure 4. UGV mobile mapping system 

Component Description 

VLP-16    Velodyne 16-beam laser scanner 

IMU Xsens Mti-300 

ZED Stereo camera 

NUC Intel micro-processor 

Jackal Mobile mapping platform 

Table. 1 System Equipment Description 

4.1 System design and dataset 

To evaluate the performance of our system, we have collected 

datasets of different scenes in Wuhan university including a large 

loop around the playground and a smaller loop in front of the 

building (Fig. 5) which are both typical outdoor scenes with lots 

of dynamic moving objects. The trajectories of the UGV are 

shown in yellow and red lines. The dataset descriptions are shown 

in table 2. Fig. 4 shows our mobile mapping platform integrated 

with a VLP16 laser scanner with 16 scan channels which have a 

360° horizontal and around 30° vertical field-of-view. Each laser 

scan frame contains around 30,000 points which is much sparser 

than 100,000 of 32-beam and 200,000 of 64-beam mentioned 

before. It rotates at 10 Hz with a maximum scan range of 100 m. 

Other sensors are not included in the processing workflow (Table 

1). Our framework has been fully implemented into the Robot 

Operating System (ROS) with high modularity. Data collection, 

as well as all experiments reported in this paper were carried out 

with Ubuntu 16.04 LTS (64-bit) and ROS Kinetic, with an Intel i7 

processor and 8 GB memory.  

Figure 5. Experiment sites shown in corresponding UAV 
image. 

Playground 

(Red) 

Building 

(Yellow) 

Trajectory Length(m) 988 352 

Original Points 

Num.(million) 
23.10 11.87 

Table. 2 Dataset descriptions 

4.2 Evaluation Results 

Since the detection and tracking of moving objects as well as the 

probabilistic map fusion are fully integrated into LiDAR SLAM 

system, we will respectively illustrate the improvement on the 

performance of SLAM by means of evaluating the results of pose 

estimation and point clouds map in this section. With collected 

datasets, our system outperforms other well-known LiDAR 

SLAM works (i.e. A-LOAM and LeGO-LOAM(Shan and Englot, 

2018)) especially w.r.t. the laser mapping.  

Positioning Evaluation: This part will demonstrate how the 

removal of dynamic objects benefit the pose estimation of LiDAR 

SLAM. For better positioning evaluation, we have individually 

tested A-LOAM, which is a popular implementation of (Zhang 

and Singh, 2017), LeGO-LOAM(Shan and Englot, 2018), which 

achieved robust performance in outdoor scenes, and our system 

with the collected datasets. Considering we mainly focus on the 

relative pose precision, loop closure detection is excluded for all 

systems. The overall trajectories of two datasets are shown in Fig. 

6. As it is depicted obviously, A-LOAM is not able to achieve

adequate results in both situations due to the complexity of the

dataset environments (with abundant trees and leaves). There is

relatively large drift in the height direction.

Figure 6. Trajectory Comparision. 

For playground dataset, we deliberately travel two marked sites 

twice so that we can exhibit the precision of pose estimation more 

clearly through comparing the position/translation part of 

platform while revisiting. As deduced by Fig. 7, there is less 

accumulated drift along the trajectory of our system as the UGV 

revisits these two places compared with LeGO-LOAM, which 

proves the effect of our dynamic module. To be more specific, 

here we ignore the result of A-LOAM to better illustrate the 

difference of translation (Fig. 7). There are around 5m 

discrepancies in the first loop closure spot and 2m in the second 

one between our system and LeGO-LOAM. While on the other 

dataset, the translation drift along z direction are relatively small 

(Fig. 8).   
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Figure 7. Translation difference of playground. Two revisited 

places are circled in orange in the trajectory and marked 

by different colors in the chart with parrallel dotted lines 

showing the discrepancies.  

Figure 8. Translation difference of building. 

Mapping Evaluation: This part will qualitatively and 

quantitatively shows the point cloud map refinement of our 

system. For probabilistic map fusion, we set the initial occupancy 

probability to be 0.5 in general. As the point cloud map 

incrementally being fused, the voxels’ confidence will be 

increasing with more and more observations while the confidence 

of voxels that are in the free-space of other laser endpoints will 

decrease accordingly with the times they are passed through. At 

the end of LiDAR SLAM, we only save the points with 

confidence higher than the average for better comparison and 

visualization. This means more repeated observations and higher 

guaranteed quality.  

The mapping result of playground are shown in Fig. 9: After 

filtering, the global map is clearly improved compared with the 

noisy original map; The final map consistency is improved, since 

there are no fuzzy point clouds of the moving objects especially 

on the road. The refined point cloud map without “ghost” points 

is more applicable.  

Figure 9. Detailed outdoor mapping results of playground. The point cloud is rendered by height and white points are with less 

confidence value than the average. 
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Figure 10. Outdoor mapping result of building with white points corresponding to the moving objects. The first row is the result of 

LeGO-LOAM while the second row is from our system.      

The mapping result of the building dataset is shown in Fig. 10. 

Compared with the point clouds generated by LeGO-

LOAM(Shan and Englot, 2018), our system can obviously 

produce a better map without heavy region of blurred points 

floating on the ground. Even though there are some areas of the 

static background being mistakenly removed as a result of 

relatively lack of observations. The probabilistic map fusion has 

achieved satisfied results. The promising results achieved by our 

system exhibit its’ potential ability for efficient large-scale mobile 

mapping.  

Quantitative evaluation results of the probabilistic mapping 

process are shown in Table 3. As it can be learnt from the results, 

the dynamic point clouds are more than 10% of the whole data 

points in both scene and the proposed method eliminate those data 

contaminations to improve the quality of the final point clouds 

maps.  

Dataset Playground Building 

Valid Points (Static) 

Num.(million) 
19.42 10.07 

Outlier Points 

(Dynamic) Num. 

(million) 

3.68 1.80 

Table. 3 Quantitative evaluation of the dynamic object detection 

5. CONCLUSION

In this paper, we have presented a robust LiDAR mobile mapping 

system incorporating SLAM with a real-time dynamic objects 

detection-tracking module and an efficient probabilistic map 

fusion process. With density-adaptive clustering mechanism, the 

proposed system is able to recognize and filter out the moving 

objects regardless of the sparsity of data, resulting in both 

improved trajectory estimating and map generating in real world 

scenarios. The generated point clouds map containing only the 

static landmarks are much more applicable for mobile mapping 

applications, such as façade modeling etc.  
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