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INTRODUCTICON

Recent developments in ihe theory of automata have pointed Lo
an exlension of the domain of definition of aubomata from strings to
trees. Here we study certaiﬁ sets, functions, and relations on trees
using natural generalizations of ordinary auvtomata theory.

Vhy pursue such a generalizabion? First, because enlarging the
domain of aulomata theory may slrengthen and simplafy the subject in
the same way that emphasizing strangs rather than natural numbers
already has done. Second, because parts of matvhematical linguistics
can be formalized easily in a tree-aubomaton setting. The theories of
transformalional grammars and of syntax-directed compilation are two
examples. A two-dimensional aunbtomata theory seems betier suited %o
handle concepts arising in these areas than does the coaventional
theory.

The algebraic properties of finile auvlomatz on trees have been
extensively studied; see Brainerd [5], Doner [8], Mezex and Wraght [12],

Thatcher [15], Thatcher and Wraght [17], and Arbib and Gave'on [L].

The notion of recognizable set is central to these papers. A finite

checking scheme (automaton) is used on an input tree. The scheme
analyzes a tree from the bobtom (leaves) up to the top (root), classify-
ing the tree as acceptable or not. The recognizable set associated
with the auvtomaton is whe set of all acceptable trees.

Here we will define sets of trees produced by finmite-state
generative schemzs, In this respect, making automata work from the

top down instead of the bottom up is conmvenient. Rebin [13] was the



farst to use thas 1dea; his purpose was to define recognizable sets of
infinite irees., We do not consider such trees here; ovre emphasis 13
on géneratlon, but the top-dowm concept is important for all our
definitions,

We use Thalcher and VWright's algebraic formalism to give
suceinet descriptions of linguistic constructions in the tree case.
Using these constructions, we investigate decision problems and
closure properties. OQux results sheould clasrify the nature of synbax-
directed translations and transformational grammars. (The latter
prompted the defanitions an Rounds [14].) Previous models of trans-
formational grammars had the capabilaty of prodveing all recuraively
ennumerable sets as transfoemational langnsges. The models given here,
hovever, have the property that languages produced are recursive.

We begin in Sectron I wath a discussicn of irees. Ve consider
finite, labeled, ordered, rooted trees such thal no label occurs on
two nodes which have different numbers of branches. Such a tree ap-

pears in Figure 1.
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Figure 1

The top node of this tree is labeled A, and the botlom nodes are a, b,

e; T, x, and vy.



Ve def}ne a dendrolanguage o be a set of trees of this form.
We Then discuss recognizable dendrolanguages, relating them to deriva-
tion trees of a conbexb-free grammar. These results also appear in
Thaﬂéher [15); we include them because of their linguistic importance.

In partarcular, we want to define funelions on context-free derivation

-

trees.

We then introduce the simplest of our models, the deterministie
finite-state transformation. TIn analogy with the generalized sequen-
$ial machine mapping for strings, we define a function of trees which
produces an outpul tree from a given input tree using fanite-state
rules, and which works fi;st on the top node of the input tree; then
on the second level, and so forth until the bottom nodes have been
processed,

Thatcher [16] and Aho and Ulliman [3] have recently studied
similar models; lhe former looks ab algebraic properbies, and the
latter at linguistic properties of these meppings. Qur definataon is
slightly more general in that we allow functions to be parlial. We
obtain resulits about the domain and range of such funcbions; for
example, the domain is & recognizable set.

The yield of a tree is defined to be the string of symbols
obtained by concatenating all the labels found at the bottom nodes
together an left-to-right order. (The yield of the tree in Figure 1
is the string abefxy.} The yi1eld of a dendrolanguage is the set of
strings obtained by taking the yield of each tree in the dendrolanguage.
For each tree function we have a corresponding relation obtained by
taking yields of pairs of trees in the function. By considering the

ranges of such relations, we obtain sets which extend the context-free



languages, These sets are called larget languages.

In Section II we propose two main variations on the model of

Section I, The first 15 a nondeterministic finmite-state transforma-

tion, obtained from the determanistic version by allowing morce than
one way to rewrile nodes in the input tree. We stz11 insist, houwever,
that a node be transformed at each stage. (In ordinary transducer
language, this would mean that we cannot read the empty input synbol. )
We extend the snalysis of Section I to ihe new scheme., The second
variation, in addition to being a nondeterministic scheme, allows a
transformation to modify the inputb tree at eny stage by burlding a new
piece at the top., Howvever, we stall try to achieve top-to-bottom
processing, and a generation is finished only when all bottom nodes
have been transformed. We see that in this case, we may produce an
infinite dendrolanguage from a finite input set, and we study only

this situation. Thas model 1s a creative dendrogrammar. The yields

of creative dendrolanguages are The indexed languages of Aho [1]. The

importance of indexed languages for transformational linguists remains
to be investigated, but these languages arise at an early stage in the

study of transformational grammars.



SECTION I

DETERMINISTIC TRANSFORMATIONS

1. Zrees,

If we think of an automaton carxying out a recursive process on
its ipput,’ it is natural to think of a recursive description of the
input itself. This has been done for strings and natural numbers, in
fact, a system of axioms similar to Peano's for the positive integers
can be used Lo define all slrings over a given alphabet. An induective
description of trees can be given as well: thas descraiption coineades
with the ordinary description of fterms ain a formal system. OFf course;
we must shor thet formal terms can be ideniified wiih trees i1n a one-
to-one manner. From the definition it should be clear that such a
correspondence exasts,

The definiticn we use, found in Thatcher and Wraght [171, is &
common one from universal glgebra and logic., We need the idea of

ranked alphabetl; intuitavely, the set of labels which can occur in a

tree. We insist that a node with k descendants be labeled by a sym-

bol of rank k. Thus:

Definition. A ranked alphabet is a pair (Z,r) where X is

finite, and r: L 2 WN. We set
...l{

n}.

Nowr we can define I-terms (trees).



Defanition, Iet (Z,r) be a ranked alphabet. The set Jg

(the constant X-terms) is the smallest set of strings such that

-0
-
a) T, S5

b} if to,...,tn_lEJS, and ¢ €T, then

-0

U(to,...,tn_l) € 7.
We are formally defining certain well-formed strings of symbols over a
large alphabet, including parentheses and commas, bub this seb, rather
than the set of all strings, will be the universe of dascourse., It
will also help to forget-that we are talking formally sbout certain

strings, and to picture them instead as geometrical objects,

Example. Tet EO = {0,1,a,¥}, El = {sin,cos,-}, 22 = {4,+7.

A typacal element of Jg is

+(sin(a),  (cos(y),a));

in ordinary notation the term sin(a) + a - cos(y). The tree picture

of this term appears in Figure 2.
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Faigure 2

The definitaon of term guaranitees wnigue readability for any

term. TLinguastically this means that the definition is really an



unambiguous context-free grammar for terms. TFherefore, it is not

surprasing that we can associabe a tree picture walh a term in g

unigue way.

2. A preliminary example.

Po illustrate the model we plan to define an thas section, we

will describe a funclion on Jg, where ¥ s the alphabet in the

previous example, This function will be the operation of findang a
formal term representing the derivative of a given ferm over 2,
taken with respect to y. The rules vwhich we apply should be the
familiar rules for differentiation, and we vish to apply ithem in a
top-dovm manner to a gaven tree, Let us find the derivative of the
tree 1n Figure 2 as a special case. This tree represents the sum of
twro terms. If we begin at the top, the first rule we apply is

Dy(f%g) = Dyf 4+ Dyg. Let us invent a state 4 which tells us %o

take the derivative, Then the first rewriling rule--linearity of

differentiation--becomes
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Fagure 3
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This rule seys: If the process is in state d; and the node to be

rewritten 18 +, which mey be followved by the subltrees Xg and Xy 5

-

then pul out the node + and apply d to the nodes at the top of the

subtrees X and x.,. The result of applying such a rule to Figure 2 is

1



Figure &

At this point, two rules become applacable  the chain rule on the
left, and the product rule on the right. We can symbolize thesge:
d s °
N / N
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Fagure 5

Here, 1 is a new state, the identily or do-nothing state. We then

derive
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The reader can easily make up productions vhich will fanish the

derivation,



Notice that in applying the product rule to derive the tree an
Faigure 6, ve had to make iwo copies of ihe input subtree cos(y). The
power to replicate subtrees of the input tree is a primitive operation
associated with transformalions. Notice also how the states sweep
through the input tree from top to bottom. There is never a choice
but to rewrite a given node 1n a unique way depending on the state.

Thas is the deterministic feature of the medel.

3. Recognizable setbs.

TransTocmational theory, as developed by Chomsky (7] and many
others, deals with the notaion of phrase-siructure grammar, and with
certain mappings defined on derivelion trees associated wath the
grammar. Deraivation trees do not make much sense for context-
sensitive grammars, because they depend on the order of carrying out
a derivalion. We will therefore assume that maﬁ@ings are to be
defined on context-free derivataon trees, Intuitively spesking, we
may describe the domain of a bransformation as a set of tree struc-
tures for simple (kernel) sentences (e.g. "I see the cat™) and a
transformation as an operation on the tree for this sentence wgich
changes it into a structure for a closely relailed sentence (e.g. "The

cab was seen by me"). The trées representing sample sentences are

called deep stbructures, and transformed trees surface structures.

Simlarly, the theory of syntax-directed translation deals

with changing statements in a programming language into some other
language by performing operations on the derivation trees of strings

in the source language. One of the original schemes of thas type was
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developed by Irons [10]; formalizations have been given by Aho and
Ullman, [2]1, [3], and Tewis and Stearns [11].
We must, therefore, formalize the idea of a set of derivation

trees, Here we follow Thatcher [16].

Definition, An (e-Tree) contexi-free (CF) grammar over &

finite alphabet L, is a hotwple @ = (V,EO,S,H) vhere T, CV,
Vv is famite, S8 € V-§y, and Il is a finite set of pairs (A,w)
called productions, where A€ V-X, and v € vV - (e}. (¢ is the
identity element of the free monoid V° over V.)

A CF grammar is ranked if whenever (A,v] and (4,x) are in T,
then the lengths of w and =x are equal.

We may form a ranked alphabet from a given ranked CFG by letting

the set ZO be the O-ary symbols and letiing
£, = (A€ V—-’ZOI(A,W) €1 and length (w) = n}.

Using this ranked alphabet we can define the set of derivation trees

'Dg associated with any o € T, Dby induction:

¥ = (\);

(ii) whenever (o,w) €N, o € z, for n>1,

G G G
W= Ul.a;O'n; and tl £ Du_l;-.-;tn € Do_n, then G(to,.. .,tn‘-l) € DO'.

The seb DG of derivation trees of G is the set Dg. Notice that

. G .
under the correspondence of trees with terms, a term in Dcr is a tree

with top node o, and such that if T 215 any node label, the labels

o; om the immediate successors satisfy the requiresent that



11

T 2 Ogerad, is a production of (¢, Notice also that any (e-Tree)
context-free langusge can be obtained from a ranked CF grammar, by
relsbeling non-terminal symbols. (We could avoid using ranked
grammars 2 we discussed ranked alphabets ¥ vwhere r was a relation
instead of a funclion.) No languages will contbain the empty word in

~

our discussion,

Definition. Let ¥ be a ranked alphabet. A Z-dendrolapguage

e

is any subset of JE' The sebs DG are thus simple ¥-dendrolanguages,

which could be called derivabion dendrolanguages.

We need a function to read off the seguence of bottom symbols

on a tree. This function will be called the yield of a tree
y(A) =N for A€ Ty

Y(U(toftl:- . -Jtn_l)) = y(to) * Y(tl)"'y(tn_l)

where -+ 1s concatenation in Eg. The yield of a dendrolanguage §

‘y[&] = (y(t)|t € ).

A context-free language is thus the yield of a derivatiocn dendrolanguage.
&
Now we can define the important class of recognizable dendro-

languages. These sets, a generalization of regular sets of strings,
are closely related to the derivation dendrolanguages. First, we
define tree automata [ 5 ], whach can be viewed as finite checking

schemes for a tree. EFach node ¢ in a tree of rank n induces a
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finite function cx,g. An = A, where A 318 intuitively the set of

states of thé aubomaton.

Defimition. ILet A be a set. By an assignment of

a

n
T~operations on A we mean s funcbtion o' T -+ {A(A )]n > 0} such

n
thal if o € z, then af(o) € A(A ). o{o) will be written a s and
is simply an n-axy operation on A, If A € EO’ oy is a faxed ele-

ment of A. (These @ will be the next-state functions. )

Definition. A x-algebra is a pair G = (A,x) where A is
nonempty and o is an assagnment of S-operations on A. If A is
finite (G is said to be fanate.

Definition. A finite S-aubomston is a traple (A,a,,AF) where
(A,0) is a finite T-algebra and AL, CA. Ay is the set of designated

final states.

Speaking avtomaton-theoretically, we can now extend the next

state funchbion to all of J'g.

Definition. The response function || || g Of @ E-algebra is

defined inductively by

() Nl =« for Aez;

(12) [JoCogseeesty_ M = e lsgllseeslley oD

As is easy to verify, the evaluation of the response function

on a tree corresponds to checking the tree from the bottom up.
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We are in a positron Lo define recognaizable zets:

Definitio_g. < Jo

5 18 recognizable if there is a Y-automaton

a = gA,m,AF) such that

o= (o[l € Agh.

We do not develop any propertires of recognizable sets here;
many standard properties still hold in the tree case, in particular,
decision problems are solvable. We state two regulits of Thateher {l%],
vhich relate recognizable sets to derivalion dendrolanguages, these

are the reasons we review recognizable sets here,
Theorem, Every derivation dendrolanguage is recognizable.

Theorem. Every recognizZable dendrolanguage can be obtained
from a derivabion dendrolanguage by a function {projection) which re-

names nodeg in a tree.

As corollaries, we find thal the yield of a recognizable set is

a CF language, and that every CF language can be obtained this way.

L, Deterministic finite-state transformations,

We want to formalize mappings like the synbtactic derivatave of
Section 2. As indicated in the introduction, this should be done
linguistically, not algebraically, although the tiro approaches are

equivalent. We use the idea of a tree production. This will also

permit succinet definitions of more complicated models.



b

To formalize a rule like

d +

-!‘E —
/N —=> /N
Xo %y d ¥ A%y

we need only imitate the ord::v_nary notation for trees as terms. We get
(d,+(x0,xl)) - +((d,xo),(d,xl)).
The linecarization of the product rule wouwld be
(85 gy )) =+ (@20, () )+ (o) (d42,)))

Unfortunately, we have not writbten dowm well-formed terms, because

pairs like (d,xo) oceur as labels. The solution is to enlarge the
set of terms so that other obJjects besides elements of 20 occur ab

the bobtom nodes of a tree. These other elements will be called indices

and will come from a specified set drsjoant from EO’

Definition. Let I be a set disjoint from EO. The set of

T-terms indexed by I, writlen J‘E(I), is the smallest set of
strings such that

(1) Tuz, 5:1“2(1)

(i) o€ Z, and, to,...,tn_l £ J'E(I) amply

o{tgreeesty ) € T5(T).

Particular index sets T follow.
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Definataon, Iet X be a fixed countable set {xo,xl,...}.

The set J‘E(]{) is the set of all terms in the variables X.

Denote by x the subset [xo,...,x

n—l} of X. If @ is a

finite set (set of states), then we can define productions-

Definivion. A finite-state (index-erasing) production over §

and % is a pair ((q,u(xo,...,xh_l)),t') written (q,d(xo,...,xn_l)) 4t

1 "~
such that t' ¢ JE(Q X xn).

The reason for the name index-erasing is thal application of a

production to a given node takes place only once. Every time a node
is rewritlen, a nev index node is designated for the next application
of a production. Thas corresponds to the aclion of a Tfinite state
machine reading and erasing its inpub.

The next objecbive is to define the entities to which produc-
taoons apply. Looking at the example of £2, we see that they
should be trees with stabes oceurring in the branches, The subtree
below a state represents undeveloped input, and the state marks an
active location. We can represent such a configuration as an element

-0

of Ji(Q X Jg), where a pvair {g,t) € @ X JE is an index which
D)

represents an input subfree + with the state q attached to the

LoD,
£11 that remsins 1s to describe how a production applies to an

intermediate configuration. Let uws do it farst informally. Given a

confaguration v choose some (g,t) € @ X 79

5 occurring a8 an index

in v. Let t = U(SO""’Sn»l)' Suppose there is a production
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(g, U(xo, .o .,xn_l)) +n in the given set of productions (for a given
mapping). Here, u € J"E(Q XX ). Let t' be the result of substitub-

i s fOr X . j,..+,8 for x whenever these v bles occur
"8 %o 07+ 5n-1, n-1’ aras

- ¢

as indices in wu. In other words, if (r,xg) ocecurs as an index in

u, replace it by the element (x ’Sj) of Q ¥ J'g. Replace pow the

entire index (q,t) by the new tree +'., The vresult is the tree V'
obtained by applying the given production.
{(Note: At each step we select a single occurrence of an

index (q, d(so,...,sn_l)) in v ‘%o vhich we apply the production
gq,a(xo, .. .,xn_l)) + u.)
We can now give a full formal description of the class of map-

Ppings we have 1n mind,

Definition. A (deterministic) finile-state transformation is a

hovuple
T = (ZJQ:QO:H ):

where ¥ is & ranked alphabet, @ is a fimite set of states,

9, € Q is the initial state, and [ is a finite set of anput-erasing

productions over @ and 3 such that for each pair (qg,0) € @ X T,
there is at most-one production (q,0) »u in . A transformation

is total if there is exactly one production for each palr in Q %X Z.

Remark. We are defaining transformations such that the domain

and range of the mappings are trees over the same alphabet, Thas is
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a minor point, and we shall sometimes modify inpub and oubpub alphabets

when it is coanvenient.

Definition. (Direct generation.)
Given t € J’E(Q X J‘Z) the set of trees +t' such that +

directly generates +' (vaa T) is defined induetively on t.

(1) If t€x) then (t'|t=1"}=g;
(i1) if t e€eq ¥ J then % = (q,5) where % ¢ Jgo

There is a subdefanition depending on the form of %.

(a) If T=xrc¢ T, ‘then if there is a production (gq,3) - 4!

in H, then
(t" [(@,%) = ¢'} = (£'].
If not, then {1'](q,%) =+'} = 4.

{(v) I £ = U(SO’°°"Sn~l)’ then if there is a production
(@,0(xgseeesxy 1)) 2w dn W, then (t'](q,E) ="} = (4'[t* can be
obtained from u by substibtubing s o for %, in each pair (r,xo) index-
ing u, substituving s; for x,, and so forth (up to s,.p for }cn__l)}u If
there is no such production then {t'[(q,t) = t'} = 4.

(321) If ¢ = c(t'o,...,tn_l) then + = %' if for exectly one

s t 1 1
i, &' = c(to, . .o,ti,“ "tn-l) and t = %, .
Ve can decide effectively when two trees t and +' are such

that = ',
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The previous conditions define a relation = on J‘E(Q, X Jg)o

et =¥ be the reflexive, transitive closure of =,

Defanition. Iet T = (E,Q,qo,ﬂ). The funchbion computed by T

is the set of pairs T = {(s,s ) € J X J l(qo:s) = S}

One easily shous lhet T is a function (using induction on s).

If T 1is total, then it computes a tobal function.

Examples. (i) We leave it to the reader to write out a formal

description of the differentiation operator (Section 2).

(ii) DbeMorgan's law for Boolean polynomials. This function
takes a Boolean polynomial over a finmate get W of variables and
transforms it inbo an equivalent one so that the variables are the
only subexpressions occurring with complement signs on them.

Let T = (2,Q0 ;II) where

(1) Q = {c,J}
(11) gq5=13
(1i1) Ty = W, the given seb of variables
21 = {—1}
e
22 = {V,A}

(iv) T bhas eight productions as follows:

(j:/\(xo:xl)) -+ A((jJXO):(j:Xl))
(j:V(XO:Xl)) -+ V((j:xo):(J:xl))
(j:“'l(xo)) - (c:xo)

(§537) » w for eny w € W.
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J is a state which locks For a complemenled subexpression. When such
an expression is found, the complement sign is erased and the process

goes to a nev stabe which will carry out DeMorgsnts law:

(C:/\(XO:X]_)) -+ v( (C,X'O), (C:Xl))
(C:V(XOJXl)) - A( (C:Xo); (C:XJ_))
(cimlxg)) » (iry)

(e,w) + =(w) for we€EW.

In the previous two examples, the transformations were total.
Not every transformation has this properly, of course. Ve may have an
zlphabet T and a proper subalphabet A, and may wish to define a

mapping on J‘O only, wath values in J”O. It is convenient to leave

A =
productions which read symbols an T\A oub of the definition. If a
tree with some node in IN\A occurs, we wash ouvr lransformation to be
undefined. (This behavior is ecalled blocking in transformational

theory.) Our farst resull about transformations is

Theorem 1. The domain of a partial deterministic transformation
is a recognizable set (effectively obtainable).

Proof: let T = (E,Q,qo,n) be the given transformation. We
a3
construct an automaton @ = (A,cx,,A.F):

(i) A =p(Q) (all subsets of Q)

(11) «, = (¢ € qlal(e,M) » ul €T}

@ (QyreeesQ 1) = {a € Q|al(g,0) ~ul €, such that vheaever

3

(q',xi) indexes wuw, then q' € Q.].
Since T is finite, one may effectively construet O, and o

for each N €X,, 0 €L . We claim that for zach + € J‘O, and each
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g €Q
(@ € ) (at) =" ) 1ff qe I\l

The proof is by induction on +. Suppose farst that + =X € )‘;O. If

(q,8) =5 s ¢ JJ“O, it must be by a one-step process, so there is a

production {q,A) » s in [I. Thus, gq € “}‘“a (The converse is evi-

dent.) Suppose now that the result holds for Boreeest and let

lJ

¢

t = a(to,...,t ). If (a,t) =¥ s where s €7, then there is a

n-1
production (g,0) »u in [ and a tree +' such that +' is

obtained from wu by substitubing 'bl for x, whenevey (r,xi)

indexes u. Now (r,tl) = s, where s e s°. By hypothesis,
r € Htlu Since thas 1s true whenever (r,xl) indexes u, we con-

clude by definition of o  that q € 6]l Conversely, let q € ||t.

Then, there is some production (g,0) +u in T such that whenever

(r,xl) 18 an index of w, we have 1 € Htlﬂ The hypothesis applies,
telling us that there 1s s € J’O such that (r,tl) =t s . Since the

production {q,0) 2 u applies to +, yielding +', and the indices

(r,ti) cceurring on +' all generate terminal trees, so does (g,t).

The theorem follows when we take AF = {qo}. Q.E.D.

We used implicitly the fact that for any tree t € J“E(Q X .’fg),

t generates some terminal tree (element of J‘O) if and only if every

(q,tl) occurcsing as an index on t  generates a terminal tree. Thas

fact is easy to prove by induction.
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Now, we wish to anvestigate composition of *transformetions.

Theorem 2. Tobal deterministic transformations are effectavely
closed under composition.
Proof. Define T(q,t) to be the unique tree s such that

3
(th) =>T S‘

We want to make the actions of 8§ and T +take place
simultaneously. As soon as T produces an output, from application
of a productron, S will act on thal oubput. This suggests defining
right-hand sades of productions for the composite U +o be the result
of 8 acting on the right-hand sides of productions of T. This
result will of course depend as well on whach state 8 starts in.

The production of U will therefore be of the form ((qs,q?),d) - v,
where (q?,a) 4 u 1s in HT, and v 1s the result of § actbing on

u starting in state q?. Of course, u € Jﬁ(Q X Xn), so striclly

speaking, S dis not defined on wu. However, it is easy to give an
inductive definition of the action §(q?,u) of 8 on u starting in
state qg. For constants, §(q$,h) = S(qs,K). For variable paars,

=, 5 T s 7
S(a ,(a",x)) = ({d"s97),x). For u of the form o(to,...,tn_l),
§(q$,u) is the result of replacing every index (rs,xl> (an the tree

1 s t =f 8 R L
t such thet (g”,0) » ') by §{» st ). Obviously, 1f u € J,
=75 S . =, 8 - 3 T
S{q su) = 8(q”,n). Othexwise §(q ,u) € 42((Q X Q)% Xn) whenever
the variables of u are in Xh.

- . 5 8 -8
Now we can begin the proof. Iet § = (3,Q ,qo,ﬁ )s

T = (Z,QT,qg,HT). T 15 to be carried out first. Define
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U U U
U= (2090 ) by letting Q" = x qf, qg = (qg,qg} and by

putting the productions ((c_|~S ,qT) »0) = §(qs su)  (for every qs € QS)

into IIU whenever (qT, o) 2 u is in IIT. We want to prove by indue-

tion on & € J'O that

U((CLS: Q.T):t) = S(QS:T(QT:t))-

For + =%, this is clear, because T(qT,?s.) EJ‘O, $0 'S'(qS,T(qT,?\)) =
5 T S T =, 5 T .

= 8(q",T(q" sn)). Also, ({(d,a ),n) » 8(q »T(a"5*)) is a production

in HU. The result follows.

Now suppose + = U(to,...,tn_l), and assume the result for
S S T T .
each g €@, and g € Q when applied to tO"'""tn—l'

S T . ) . . s T =, T
U{(d"5q7),%) is caleulated by first applying ((d",q ), o) = S(q”,u)
to t, where (qT, 0) + u is the applicable production of 0v. Tet
v be the first stage an calculating U((qs,q?),t). Also, let t' be

the result of applying (qT,.c) s u to t, A typical index on %!
e M ( T T .
looks like \r ’tg » Wwhere |[=rx ,xj indexes u. Leb us write

1t = u[(rT,ta)] by which we mean that (rT,tJ) occurs at a faxed

Jocation in 1.

We can similarly write
sr T S _T
v =5(q Ju)[((r 5T )Jt3>]

but we mean to specify here that (rT,tJ) is the same index occurring
in t' that we picked out before. Thus the 1ndex ((rs ,rT) ,ta)

dpends on our previocus choice of index. Now T(qi,t) = u[T(rT,ta)].
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{The index (rT ’tj) has been transformed, assume all others have also

been iransformed.) Hence,
8 T s T S T
JCRICFIIENICRRS Pl CaRAY

s,

and by inductive hypothesis this 1s eaual to

st € 2

Bubt this last quantity as Just U((qs,q?),t). Q.E.D.

Theorem 2 ig a little special, and ve naturally ask whether it
can be exbended@ to more general transformalions. The answer is nega-
tive for partial deterministaic ones as well as Tor nondeterministac
ones. We present a counterexample of W, Ogden (personal comm. ) for
the partial deterministic case. Thatcher [16] has an example for the

nondeterministic case, These are counterexamples to the theorems in Rounds [14].

Example. Let I = fa,w}, 22 = {a}.

T = (EJQ.TquJHT)J where
T

&
i

q05

HT consists of

(qO’a(XO’Xl}) <+ a( (q‘l’xo)’(q{)’xl));

(ql’a(XO’Xl) ) = a((ql’xo)’ (qlel) )3
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(qoix) - N; (qle) A, (ql:w) - W,

T defines a partial function on J. which is the identity on

Z

the set of all trees vhose extreme right-hand bottom node is not

labeled with an w. The function 18 undefined Tor trees not in this

s

set.

The system S is (E,Qs,qg,ﬂs), where
S ]
Q = {rO’rl}’- qo = r05

the following productions make up HS:

(roia(xo.’xl)) -4 (rllxo).;
(zg) + 85 (p0) - 0,
(rl’a(xO’Xl)) + a((rl’xo)’(rl’xl))’
(rl,?\.) + A3 (rl,u)) - W,
S(a(to,tl)) = To3 s(A) = x; 8(w) = w.
We nobice that S(T(a(to,tl))) = t, if t; is not lebeled
with an ®w on the extreme right-hand leaf; obtherwise is undefined,
2
We claim 8°T as not partial determanistic.

Let U =8oT. If U were p.d., then there would be a produc-

tion (po,a(xo,xl)) >, (p& is the inatial state). t+ must have a

variable index, but no more than one, because U(a{w,\)) = w. t
cannot have a constant node for the sazme reason. Thus € must be

of the form (P’XO) or (p,xl) where p 1is a state, If the first
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case occurs, then since U(a(w,\)) = w, (p,») » @ mst be a produc-

tion. But then, the derdivation
(p ,a(w,w)) = (p,w) =
0

is possible; but T(a(w,n)) is undefined. In the other case, 2 simi-

lar conbtradiction is cbtained.

5. Transformational systems.

The composite mapping U Just described fails $o be a partial
transformation because it can act on a tree for which the first trans-
formation is undefined. If we were not allowed to give such trees as
arguments, then we could, in fact, write a partial %ransformatzion
which would agree with U on all trees in the domain of T. But thas
dowain is a recognizable set. This fact leads us to define a

Geterministic transformational system as a pair (R,T), where R is

a recognizable dendrolanguage and T 15 a deterministic transforma-
tion. This definiticn makes sense from the point of view of trans-
formational grammars, because transformations are defined on the
derivation dendrolanguages associabted wilh CF grammars. Such dendro-
languages are recognizable sets, Our idea 18 to restrict the trans-
Tormation T +o the dendrolanguage R.

Ve again wish to sbudy closure properties of restricted trans-
formations, These fall inkto two categories: one, the transformations
themselves as functions, and two, relations obuained by taking yields.
In the remainder of this chapter we will dascuss just a few of these

Propervies.
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For the first category, wve have just seen that closure under
composition fails uniess btransformations are tobal. Another facl as
that transformations do not in general preserve recognizable sets.

(Proof: let EO = (N0}, 22 = fa}. Define T so that
T(a(tyst,)) = altgsty). Then y(TIo,]) = (xx|x € z‘ﬁ}. e il

were recognizable, then [xx|x € Eg} would be a CFL. C(ontradiction.)

We do, however, have a weak result.

Definition. Let (R,T) be a transformational system. The

(deterministic) surface dendrolanguage produced by (R,T) is the set

TR].

Theorem 3, Debterminisiic transformations preserve deberministic
surface dendrolanguages.

Proof: This is essentially a modification of the proof of
Theorem 2, Wath 8, T, U given as in that proof, we observe that af
T is defined on t starting in state q?, then U((q?,q?),t) =
= 5(a",7(d"1)).

By ihe equality here ve mean that one side is defined if and
only if the other side is. (8 may not be total.)

Nov if (R,T) 4is the system producing T[R] as a surface
dendrolanguage, let 62':;5 ® N domaan (T). R' is recognizable because
domain (T) is recognizable, and because we have closure under inter-
section for recognizable sets. Now T(qg,t) is defined for every

1

te® . Therefore,

ulg'l = s(rirll. Q.E.D.
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Yields of irees occurring in a restricted transformation will

also prove to be fruitful.

Definition. Iet (R,;T) be a transformational system. The

(deterministic) translation defined by (R,T) is the seb

{(s)>y(8)) [(558) € T 1 (R % 7))

If T is total, then translations coincide with the GSDT's of Aho and
Ullman [3].°

It follows from work of Aho and Ullman that translations (for
total transformalions) are not closed under relational composition.
We suspect this is true also for partial and even nondeterministic
ones, though we do not study the question here. We may, however,
still consider domains and ranges of translations. From Theorem 1 1t
follows that the domain of a translation is context~free. The range,

by our previocus example, need not be context-free,

Definitaon. A {deterministic) target language is the range of

a (deterministic) translation. Since the range of a relation is empty
if and only if the domain is, and since we may effectively obtain s CFG
whose associabed language is the given domain, it follows immediately
that the class of deterministic target languages has a solvable
empbiness problem. We know very little else abou®t this class; most of
the interesting resulvs are obtained for the nondeterministic version.

We therefore burn to these extended models,
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SECTION IX

NONDETERMINISTIC MODELS

In this sectaion we anbroduce choice as a capahiliaty of trans-
formations, We shall consider both grammars and nondeberministic
mappings of trees but will use productions to define each model,
Roughly speaking, a grammar is a nondeterministic mapping applied to a
finite set of inputs (the starting configurations), whose range is, in
general, infinite., In contrast, a nondeterministic transformation
yields, for each input, a fanile set of outputs. Such a mapping must
therefore have infinite domain to produce an infinite range.

Transformatronal gramsars and generative grammars in general
are nondelerministic, Transformabions, howrever, seem tc have the
property That given a deep sirucvure for a sSenbence, only finxtely
many surface sbructures result from a single applicalion., (We assume
here that transformations are nobt i1terated.) It is elear also that
transformations should nckt be totsl functions., PFor example, only

trees vhich satisfy a structural description associated with a trans-

formation can be changed by that itransformation. IT a tree does not
satisfy such a descripbion, we may wish the transformation to be un-

defined. Another bat of evadence for non-functionality is the notion

of optional rule, Certain transformations have choices built into
them; one may decade at will whether or not to rearrange vord order in
some sentences, for example, The precise idea of nondeterminism is
intended to approximate this feature of transformational grammars.

We shall firsi investigate some mathematical properties of

nondelerministic transformations, indiceting the merits and drawbacks
3

t
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of these models and certain generalizations. Then .o wmew —vcommmna
grammars on trees, concentrating on an analogue of conbext-free
grammars in the tree case. The study of tree grammars at this point

is nol nearly complete.

1, DNondeterministic finite-stale transformations.

The definition of nondeterministic transformation 15 immediate:
simply allow any fanite mumber of productions wilh a given left-hand
side. Allow also a sebt of starting states instead of a single initaal

state. Formally:

Definition. A nondeterministic FS transformation is a h-tuple
T = (E,Q,QO,H) where % is a ranked alphabet, Q is a finite set of
states, Q,0 C Q@ 1s the set of amatial staies, and T is a fanite
set of index-erasing produclions over € and 3.

The definition of direct generation rs the same as for deter-

ministic transformations.

Definitaion. The relation computed by a nondeterminastic trans-

Tormation T is the set

{587 €% x 7°1(30 € Q) ((apr8) < 1)}

A partisl deterministic transformation is an honest special
case of a nondeterministic one. For some pairs (qg,0) the set of

productions with these pairs for left-hand side may be empty.

We have an immediate theorews for FS relations.
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Theorem 1. The domain of & nondeterministic FS relation is

recognizable (effectively).

The construction of an aubtomaton to recognize domain (T) is
exactly parallel to the constrvetion given for Theorem I-1, and may

be safely omitled here. We can now prove the converse resuli:

Theorem 2. Every recognizable set is the domain of a non-
deterministic transformation.
Proof. Iet @R E§5§ be recognized by @ = (A,a,AF). Tet

T T T
Q =A, T =%, QO = AF’ and let

(2,0) + 6((aging)s--es(a_sx 1))

. T " = 1
be in TI- exactly when ac(qo,...,qn“l) = ¢. We claim for all

aeq, tes’
(3s € 7°)((ast) = s) ifr llellg = a

We prove one half of this assertion by induction on 4. The ststement

is obvious for + € EO' Assume it therefore for tO""’tn—l and all

g € Q. Suppose
(ﬂs)(q,a(to,...,tn_l)) ﬁ? s.
Then
(@ 0(tgsenerty 1)) = o({ggty)sens(n, 458, )} =" s,

where (qo,.. is such that

- an_l)
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¢ (qgreerg, 1) = a

The hypothesis implies that utoua = qO""’th—lHa = q, s SO that
litllg = a

The other half of the assertion iz just as easy to prove, so we

omit it. Q.E.D.

An open question--can we construct a deterministiec transforma-

tion T recognizing K2

2. Transformational systems and surface dendrolanguages.

In keeping with previous definitions, we define a nondeter-
ministic transformational sysiem as a pair (R,T) where R as
recognizable and T is a NDFST. Since transformations are not closed
under composition (see [16] and below) we cannot immedaately study
the effect of arbitrary transformations on recognizzble sets, This is
something of a drawback, but can be remedied in the case of linear

transformations, as we shall see.

Defanition. The surface dendrolanguage associated with (R,T)
is the range of the relation computed by T when restricted to R.

This set will be denoted by TI[RI.

An obvious property of surface dendrolanguages is effective
closure under unions. To pro%e 1t, let T{R) and S[R'] be given;

let p ¢ © have rank 2. The set

s=(p(t)[t eruR"
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is recognizable. Define a nondeterministic U by making the state

sets.of 8 and T disgoint, adding a new inatial state Uy and

productions

(5P (1)) =+ (agsxg) | (a5sx,)-

Thus, U[8] = T[R] U 8{R'], proving the result.

We are now going %o establish a result on composition of non-
deterministic transformstions. In general, composition fails because
the second transformalion applied has repeated varizbles in some

productions. [B.g. (a,0) = U((q,xo),(q’,xo)).] If the first trans-
Tormation is nondeterministic, then its random effect on an input tree
may be duplicated in two places by the second transTormation., Thus,
it may be impossible to construet a third transformation which will
carry out this behavior all at once.

Example. Let T, = {c), B, = {py71, EO = {A}. T has state
set Q= {q}, and productions

(@,0(x)) » p({2,x)) | 7((a,x))

(a,\) = A,

(Let the input set be j?; L}‘) S has states (r,s}, initial stabe
7

r, and productions
(x;p) = U((S:XO)J (S:XO))

(x,7) = U((SJXO)J(S:XO))

(s,p) = p(s5%,)
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(857) = 7(s,x,)

(s,N) » AL

S has the undesirable effect of reproducing the random string
produced by T from po(A). To get rid of this duplication, we make
the hypothesis that the second transformation have no repeated vari-

ables in its productions. Following category theorists, we therefore

have:

Defanition. An NDFST L 1s lineer if whenever (q,o0) + u is
a produclion, and (q,xl) and (s,xa) occur as indices on  u, then

X, A X

Theorem 3. Linear transformations eflectively preserve non-

deterministic surface sets.

Discussion. The conjecture that IeT is a nondeterministac
transformalion 1s apparently false, see the example of (Ogden in
Sectaon I. (T is also linear in this example,) We are forced,
therefore, to define first an analogue of totality for nondeterministic
transformations. We will replace the given surface set with one
generated by a total transformation. Intuitively, totality means that

3
no stage in a derivation is ever blocked.

Definition. Tet T be a WDFST, q € Q°, and tEJ‘g. T is

completely defaned on t starting in state q if t satisfies the

inductive definition

() 2f t=ANE€ Z,> ‘then there is a production CRSEN:

in 1.
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(ii) If t = o(% ;b then there 1s a production

o)

(q,0) 2 u  in HT, and for each such production; whenever (r,xi)
is an index on W, then T is completely defined on tl starting

in state »r.

We say that T is completely defaned on + 3if the above con-

ditron holds for T on t starting in state g for each g € Q’O’

E=]

and T is c.d. on g if T 18 c.d. on t for each T € {.

It is easy to prove by induction that if T is c.d. on %

.~

starting in ~gq, and (g,t) =5 t' where t' € ji(Q X jo), then if

-

(r,tl) occurs as an index in t', then there is an s € JD such

thatl (r,ti) =F g,

Proof of Theorem 3. First we show that wvithoul loss of

o

generalily, the first transformation T has a single initial stlate.

Let Tq be the same as T bubt wish inatial state {q}. Now

U T [R].

Q€Q, 4

T(R]

This implies

LiT{R]]

it

u L[Tq[se,] 1.

Q€Q,

Since surface- sets are closed under union (effectively) it suffices to

show that L[Tq[&]] is a surface set., Thus we may assume T has one

initial state.

The result is proved in two steps.
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Temma 1. CGiven T and § we may find effectively T' and
R's where T' has one inilial state, such that T'[R'] = T[Rl, R'

is recognizable, and T' 185 completely defined on R'.

Temma 2, If T is c.d. on R and I is linear, Then

LITIR]] is effectively a surface set.

Proof of Lemma 1. Let il be the set of productions for T.

€0 is legal for + ain to it t satisfaes

(i} = is legal for nERy if =« is (q,A) = s for some

g &€ Q.

(ii) = is legal for U('to_,...,tn__l) if n is (q,0) 0 u,

where ¥  is such that whenever (r ,xl) is an andex on t*, then
there is a legal production for ta with r on its left-hand sude.,

The seb of legal productrions for a tree T 1is exactly the set
of productions which can be successfully applied tc t yieldang a
terminal tree. Nobice that the defanition of legalily is really the

construction of a finrte avtomaton G such that

“tnaz {r €N|n is legal for +}.

(We omit this part of the proof.)

Now we construct the set R'. Tt will be defained over an
extended alphabet ¥'. Iet T be the power set of the production
set T. Iet 21; =1 x T,. Nowlet P be the projection from J'g,

o J—g induced by P(X,0) = 5. P and Pt preserve recognizable

sels (Thatcher [16]). Now set
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0
Ry = {t € Tpe (V" )" = (K0} (bgpmme0ty ;)

implies K# @ and XK = [rzln: is legal for t} )}

(Here, t' <+t means that t' is a subtree of t.) Set

»

R' = {t € RﬂP(‘G) € R N domain (T)}.

To show R' recognizable, it is sufficient to show R

1 1s recognizable.

To do this, moreover, it is sufficient to show it for &6, which has the

same definition except that the condition X # § is omitted. (This

follows by intersecting &6 with a suitable recognizable set.)

But the recognizability of Ré follows from the general fact

that if (@ has state set A, T'=A X EI, and

8= (b €I (V" <)(t" = (@,0)(5y,. .00t 1) ::_mplies a = ||2( )},

then § 18 recognizable., [We construct below an automaton for 8.

et B=AU (N}, QF A, Iet

g if o, =4

A
8 =
(@) 7 1o othervise
: (q 1fall ¢ €4 and
' B(q,o)(qo,""qn_l) =< cc’g(qo"",qﬂu—l) = q
Q1 obherwise.
“
The inductive statement (which we do not prove) is

[tllge = a€ae (67 <4)(E = (x,0) (5550008, 3)

implies r = “P(t)ua = Ht‘"a,).
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The fact follows vhen we take BF = A.]

1 H
Define T' as follows Q,T = Q,T, qg = qg, and

(q,{(X;0)) v is a production in n° if and only 12f (q,0) = u
is a production in XK. We must show that T'[R'] = T[R] and that T
is completely defaned on R'.

Let (qo,t) =>"£., s where s,t Gig,;

0

where v is a tree in J‘Z,(Q X Js

t € R'. If we take P(v)

) such that (qo,'t) =>",§, v both in
the index and the output tree, we obtain immediately a tree derivable

(via T) from (qO,P("b)). Thus s can be derived from (qO,P(t)),
so T'[R'] ¢ [R]l. Conversely let (qo,t) m‘; § be a derivation of a

terminal tree 5 from T € R. Every step of this derivation is the
application of a legal production for the subtree being transformed at
that point. Iabel each node of t with the set of productions legal
for the subtree headed by that node; we obtain a tree in R'. We can
then mimic the T-derivation with a T' derivation. Thus,
'8’} o TlR].

Finally, we prove that 7' 1s completely defined on R'. To

do this, let

p(2) = {t € 7°l(zs € 1) ((a,8) < o)}

1
We will show by induction that for each +t € J"g, and q € Q,T 3

if ¢ € sai f P’lfnq(T)], then T' as ¢.d. on t starting in state

q.
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Suppose that t = (K,\) € 2('), and let g be such that
t 1 ~1 . . T
€ER NP [DO(T)]. Then there is a production w € : (gA) =+ s

and thus (g, (K,)\)) » s €1'. Thus, T' 1& completely defined on 1+

starting in- q.

Now let % = (K, c)(to,...,tn__l) and gq be such that
t € &i 0 P-l[Dq(T)]. First, we must find a ="' € U': (g (K,0)) » u .
¥ow Pt € DqT, so we may find a legal = €1': (q,0) @+ u . Thus,

nt: (g;(K,g)) » u  can be found an ['. Next, ve must show that if
(r,xi) indexes u , then T' is c.d. on %, startang in r. By
inductive hypotheses, we have therefore to show % € P—l[Dr(T)] n R:'L.
But every subtree of a tree in R:lt is in Ri, S0 ti € Ri. Now
B(t) = P(u) and = is legal for P(%). Thus there 1s a terminal
tree s; such that (r, P(ti)) :5; s because (r,P(tl)) indexes

P(t'). Thus, ti < Pnl[Dr(T)]. The anductive statement follows, and

since R’ cR' N P_l{DqO(T)}; Lemma. 1 is proved.

Proof of Lemma 2. Inlroduce some notation: if =« is a produc-

tion, let rm be the right-hand side and 4x the left-hand side of =.

Define a new transformation U from I and T as in the proof

of Theorem I-2. That is, Q,U qL € QL;

it

Q,I' X QT, and for w« ¢ I[T,

define

B(=, Q.L)

{t' | (qL,rir} =f£ ﬁ‘}.

Here we mean =a'}£ in the sense of an L~action on rmw;
1

t
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i.e., if (q?,xa) occurs as a variable node on rw, then
|
L/ T L T U
(Q_ :(q :XJ)) = ((q :q :XJ)-’ Thus, B(ﬂ:qL) EjE(Q X X)-
L T ' . . u
Let ((q,q7),0) » ' be a production in I~ exactly when
I
there is a production =« = (q?,c) +rx and %' € B(ﬂ,q;).

Assertion Tor t & jD, q? € QT, if T 1s completely

defined on + starting in q?, then
{sla®ah).0) < e} = {sl@((0) % v ana (&) < o))

(Here, s, t, and w are in jo.) By the assertion, U is the com-
posite LoT when restricted to these inputs for which T is completely
defined. The theorem thus follows from the inductive statement.

Proof of the assertion. ( D ). Proceed by induction. If

t =M€ 20, both sides are equal, by defanition, to the union of the

B(n;qL) for which q? occurs in  gx, Buppose the result for

to""’tn-l" let t = ot ;... Assume that

o’ n-l)'

(Ew)((qT,t) =5 w and (q;,wj S

Then there 18 a = € HT and

T
st) = sty Jreeaslq, Py ]
(a",t) ﬂfrﬁ{(qlo 10) (qlk-l 11:-1)

(these are the indices occurring in left-to-right order in the
. . 3 %
derived tree). MNow (qlo,tio) = wb;...’(qiknl,tlk—l) Sp Wi q- If we

apply q; to ra(w.;ee.,t

T l)’ we can derive as an intermediate step
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where (q;,rﬁ) =§ t'. That 1s, t' € B(ﬁ,qL) looks like

ICRENEA RE(CHRT R E Y]

JP l JP 1
where the y's are certain of the xi's cccuering in rx. If now

we take this t' ¢ B(ﬁ,qp) and substitute the correct ta for .,
m

we knov that T s completely defaned in state qg on +© 4 - Now
n m

(qT. st ):f“L w. , and (qI’ 27 )=>* s . The induchbive hypothesis
dp I/ T Ip dn dp/ LM

applies; and so

[(q 4 ) ] 0<m< p-l.

But,

R [(CTTATI I (C RN RV

is derivable from + in the system TU. We conclude that since

T L L #*
v ((q SWa ),...,(qa ’Wj D =1, 81
p-1 “p-1

36" 30

then, in fact, V'ﬁg s, The inclusion thus holds in the inductive case,

Now for the other inclusion ( € ) we need to use complete de-
Tinabalaty and linearaiy at essential points. Again proceed by in-

duction; the basis holds, so let 1t = U(to,...,tn_l). Suppuse T is
|
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completely defained on t starbing in q?, and
#* O
((q;q)t)ﬁus, s €T .

We must show that there is a w such that (qT,t) z§ w and
(") < s

Apply one step in the derivation of s in the system U from

+. We obtain

RT(CTTATIM N (C I S|

where %' comes from the raght-hand side rw of some = € Hw, go

thet (q},rﬁ) =§ ', and qT occurs in 4w, Notice that T 1s com-

pletely defined on tJ s Sstarting in qg s because the pair
0 0

(q§ ’tj ) ocecurs in rm and T 1s c.d. on + starbting in q?. Nowr
0

let

(qT,t) = rj{(qzo,‘tio), ceey (qfk_]_’tik__l):'.

Number the index positions 0,1,...,k-l. Samilarly in

¢

t [( ) t ,.. ,( L ,qT sG ], number the indices
JO J Jp-l Jp-l Jp—l

0,1,...,p-1. ILinearity of I guarantees that there 1s a subset A of

{0,.0.5k-1)} end 3 bigection f: {0,...,p-1} - A such that if
((q% ,q? ),t ) oceurs at the mﬁh place in %', then (q? >t )
3, 0 0y ‘ 3,

oceurs at the f(m)th place in rn. Although thies is an inductive

lemma in 1beelf, its proof should be clear because as far as variables
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go, L can only permute them or drop them entirely. (Thus p < k.)
We will use £ +to construet the tree w needed to establish the
result.

Let

(g tag) 5 20 o (o

)t
p-1 Jp—l Jp-1

A

=‘-‘->U SP"l.

Thus s = t'[so,...,s ]l. Since T 1s ec.d. on 'bJ starbing in

p-1 m

qg » the hypolhesis applies, giving for each m a tree Vi € J"O,

m

such that

T 3 L #
(qJ ’tj ) S W and (qa ,Wm)n S

n m peil

T T
Mow 1n rn{:( X ), . ,( X )] substitute w for
%4 3oy 9 1 M1 m

(qf ) At the other posiztions, say (ql N ), we know
£(m)’ f(m) )

4

that there is a tree 17'7.5 so that ( ,t )=> W Thas follows,

because T is c¢.d. on t starting in qT. Substitute T}‘g for the

positions (qz ,xl ) Vge obtain a tree w € J‘O, and clearly

-]

(qT,t) = w. Also,

(qll,v) ﬂi t 'I:(q_g'o,wo), ‘e ,(q:;" l,trp_l)]
p-

because W = ra[w. s...,W ] and (qL,I'ﬂf) = t'; +the definition of
2q g L
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f ansures thai (qg v ) =§ LA because this pair occurs at
f(m) “f(m)

the mth place in t'. Thus during the I-derivation from w it

must occur at the mbh place as well. We see that

L $ .1 L I
(qa7w) =" ¢ [(q- :wo):---:(q- W 1)]
JO Jp-'l P-

3
= t‘[so;c-._jsp_l]o

But

((a%sa7),%) ﬁ t [( ; L ,---:((q¥ R l):ta

Jo Jo Jo

Hence, when ((q;,q?),t) ﬂ% s =1t'[s then we have

O,...,sp_l]J

(q?,t) = w and (qL,w) ﬂz s. This completes the proof of the lemma

and the theorem. Q.E.D.

2

We are in a position to investigate further properties of

surface dendrolanguages. Notice that Theorem II-3 is effective.

Corollary. The class of surface dendrolanguages 1s effectively
closed under intersection writh recognizable sets.

Proof. Iet R be recognizable, and let T[R'] be a surface
set, By the proof of Theorem 2 there is a linear transformation L
vwhich is 2 partial adentity on f. Hence t € LITIR']] aff

t e TR'] NR.

Corollary. Surface dendrclanguages form & subclass of the

recursive dendrolanguages over L.
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Proof., Given T[R] and % EJ'O, the set [t} 218 recognizabile.

Newr
t €re TR N (t] = 8.

By the previous corollary, T[R] N {t] is a surface set U[S]. But
Uls] = ¢ 'iff

domain (U) n & = @.
Domain (U) N & 4is recognizable, so the result follows.

To prove further properties, we need to define the set of paths
through a tree. Given a ranked alphabet ¥, et £' be the alphabet

(Z,r'), where

0 it GEEO

r'(v) =
1 otherwise,

0

Defanition. @Given + € JZ’

P(t), the set of paths through &,

iIs the subset of J‘g ;  defined inductively by
P(M) = {3}, M €3,
-1
P(U(to,...,'tn_l)) = igo{d(w) [w € P(ti)}'

I jog, then

PRl = U P(%).
LER
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P is clearly definable as a linear nondeterminisiic transforma-

tion. Hence:

Corollary. If 8§ is a surface set, then sc is P[S] (ef-

fectively).
A similar result holds for recognizeble sets:

Proposition. If [ 1is recognizable, then so is P[R].

Proof. Iet @ = (A,or,,AF) recognize R. Let BC A be the

set

{a e al(z € P8l = a)}.

B is effectively calculable from (@ using the solvabrlity of the
emptiness problem for the sets accepted by automata % which have

final states A% = {q} but are otherwise the same as (. Iet x € J'g,.

Construct an automaton (over ') M = (EQ',p,,F) such that

*) a €[l 3fr (@)(lel, = a and x € B(t)).

il

To do this, let u {a,} for NET.. If c€3 , define p_ as
A “\ 0 n o

follows. Choose 4 < n-l. Define
1]

Q

' l-"g_i)(Q) = {ma(qO""’qi""’qn—l)lqi € Q qJ € B}
() = KnU_luf,i)(Q)-

One verifies that (¥) holds with thas p. If ve let

F={QcA, an AL # 9}, then the lemma follows by (¥). Q.E.D.
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A ranked alphabet as monadic if £ =@ for n> 1. We now

prove

Theorem ¥, If TIR] 1s contained in ;1'20, T monadic, then

T[R] as (effectively) recognizable,

Proof. We may certainly assume that T[R] is the range of a
transformation T whose productions have right-hand sides which are
monadie, T dis thus lznear; and wall choose certain paths through
each tree in R as important Input., We may define for g & Q,T, and
any t, the set P(T,q)(t) of paths chosen by T starting in state
Qs

If t =X, then P(T,q)(t) contains A exactly when there is
a production (g,A) » w in IIT.

If &= U(to,...,tn-l), then P(T,q)(t) contains w iff

w = o(w'), and there is a production (g,o) = u(r,xa) an [0 such

that w' € P(T,r)(tj). We assert that for each g,
N e
{ema)e)fe € 55 = 1,

is a recognizable subset of J”g,.
7

We will not give-the full proof, but an automaton @ can be

easily constructed such that
Iy = (et € 7)) € Bx)(8)))-

Taking A = {alqg € @}, we find that (@ recognizes the asserted seb

Hq of paths. Now let R be the given recognizable set. Then
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ot T ditself

qu N P[R] is a recognizable subset (effectively) of JQ
defines a nondeterministic finite state mapping of strings in this set.
Such maps preserve recognizable sets, and so

T[R]) = T[H N PIRI]
) 99

is recognizable. Q.E.D.

Corollary. The anfaniteness problem for the class of surface
sets is effeclively solvable.

Proof. If § is a surface set, P[8] is infinite if and only
if & is. But P[8] is a recognizable set of strings effectively
cbtainable from 8. The infaniteness problem for such sets is

decidable, Q.E.D.

forollary. The class of surface sets is not closed under inter-

section.

Proof. Iet S =3, U% U%,, ¥%,= {pl; T, = {o,7}), To = N3,

Define ci(x) = o(x), ui+l(x) = U(Ui(x)). Put

IS ERCLSHIFFEESY

s, gp(oj(x)nj(oim))ll,a > 1).

8, and ée can both be obtained as surface sets (proof omitted), but
B(s, N8,) = ((P(A))) U (A (IO

is not recognizable, Q.8.D.

Now we give an example of an undecidable problem.
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Corollary. There is no decision procedure for determining

whether the wntersection of two surface sets is empty or not. (Sur-

face sebs here mean over arbitrary finite ranked alphabet.)

Proof. Iet 20 = {\}, 21 = {a,b}, 22 = {o}. We can

naturally interpret an element of J. as a string in YN » and
EOUZJ_ 1

conversely. Let (cx.o,...,or,m) and ([30, ...,Bm) be two sequences of
words from }L‘i. The Post caorrespondence problem for these sequences
is to determine whether there is a sequence of integers io,. . "ik
such that

{There is no algorithm to solve the Post problem-for arbitrary pairs

of sequences ((cx,o, .o ,ot,m), (BO, .. .,Bm)) of words over Z‘i. )

i i

2
Tet L = {a Oba l...ba k|ij € [O,...,m}}. Let
3 1y
Ww=a b...ba and define o(w) = @ «ead o I is easy bo construct

0] k
¢ as a finite-stete mapping of strings. Similarly, let

y(w) = Bi ...Bi . Since & and V¥ are finite-state functions, the
0 k

sets § = {o(w,a(w))|w € L} and &' = {o(v,¥(w))|w € L} are swface
sets. But S N8 =¢ iff dw €L with o(w) = ¥{w). Thus,
SNns' =@ iff there is a solution for the given correspondsnce

problem. Q.5.D,

ther problems are showm unsolvable an [114]; for example,

equality of surface sebs and whether a swrface set is recognizable,
\
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3. Translations and target languages.

Let (R;T) be a transformational system. The translation de-

fined by (R,T) is the set

{(y(s),y(t)|(s,8) € T, s € R].

(Recall T = {(s,t)]s =§ t}.)

By Theorem 1 the domain of a NDFS translation is a context-free
language, We again wish to consider the ranges of such translatioas,
because of their imporiance for transformational grammars, Define a
target languwage as éhe range of a btranslation., An immediabe question
a grammarian asks is: VAre target languages recursive sets?” For

NDFS target languages, the answer is yes, and the proof is elegant.

Lemma 1. The emptiness problem for the class of NDFS target
langnages 15 effectively solvable.
Proof. et L = y[T[R]]. L=¢ iff TIR] = §. Whether

T[R) = § is solvable. Q.E.D.

Temma 2. Let K be an ordinary regular subset of ‘z‘%. Then
-1 . 0
y [K] is (effectavely) a recognizable subset of Tge

Proof. Iet (Q,% ,é,qO,F) recognize K. For w €5, let
—— QO 0

; 3
5w(q_) = 6.(q,w). Remark: 6}@_ = for all x,y € £.

&_o8
Yy X

Now define a ZT-avtomaton O by setiing

A= {9]e: Q= q},

@ =68, for A€ 24 (A is not the emphty string);
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GO,(CPO,-..;‘:Pn-l) = q)n-l @ ess © (PO.

'
By our first remark, for all + € Jg, q¢€@

]

ntna(q) = éw(q), vhere w = y(t).
Hence, if Aj = [@I@(qo) € F}, then Q@ accepts v kl. Q.E.D.

Theorem 5. The class of target languages 15 closed (ef-
fectively) under intersection with regular sets.

Proof. Tet L = y[T[R]]) and let X be regular. Then,
KNL=y[TR]N y“l[K]]. But by the corollary to Theorem 3,
I

TRl Ny [K] 215 a surface sel (effectively). The result follows.

Corollary. Target languages are recursive.

Proof, ILet I Dbe a target language and w € ZE. Then w € L

iff {wini-= ¢; apply Theorem 5 and Lemma 1. q.E.D.

Notice that Lemma 2 provides an easy proof of the fact that
context-free languages are closed under intersection with regular sets.
(Use the technique of Theorem 5.)

Finally, as a special result, we demonsitrate that the infinite-
ness problem for the class of target languages 1s solvable,

We say a tree is a fap if no nodes of rank 1 occur in it. We

can always prune the nodes of rank 1 from a tree without changing 1ts

yield., Formally:
fan(A\) = A, A€ Zo
fen p(t) =t, p €3,

fan ?(to"“’tn) = G(fan(‘bo),a..,fan(tn}), n > 0,

|
t
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A tree is a fan if fan(t) = t. Also, y(far(t)) = y(t), and
fan is a linear FST. If § is a surface set then so 1s fan[8];

and y[fan(s]] = y[8].

Theorem 6. The infaniteness problem for the class of target
languages is solvable. :

Proof. Iet L = y[8)]. Then L = y[fan[8]]. L is infanate if
and only 1f fan[8] is infinite, as an easy counting argument shovs.

Q.E.D.

L, A simple extension of the nondeterministic model,

When carrying out a transformational derxrivation, one checks
trees to see whether or not transformations apply. For example, a
transformalion which changes sentences to the passive voice applies
only to struchbures of the form "noun phrase-~ver5--noun phrase”.

Our transformations, as defined, do not have this checking
ability, because only one node at a time is read and transformed. In
the example just described, however, we are required o check the level
_of nodes NP-V-NP below the top node £ of the input tree. In cther
examples, a structural condition may have to be satisfied which could
cccur at any level in the input tree,

To remedy (partm%lly) thas defect 1n the basic model, we may
modify ocur productions. We give them a look-ahead capacity--the local
oubput tree (right-hand side) will depend on the sbate, the symbol
being read and traisformed, and a specified nunber of look-ahead

symbols, arranged in a itree form.

The productions will have the form

(q,d(so,...,sn_l)) -,
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where s € Ji(X), u € Jﬁ(Q % Xn), ¢ €3 . A production will apply to
c(to,...,tn_l) if esch s = occurs at the top of t,. [This can be

formalized as a defanition.] The result of application will be the

tree an Jé(Q X Jg) obtained by substitubing (q',tj) for each pair
(Q':XJ) occurring in .

An FS transformation with templates is a transformation with

productions like the above. The extended definition provides a

limited look-ahead capabilaty for nondeterministic mappings. One can
prove,-however, that 1f (R,T) 2s a transformational system, where T
has templates, then T[R] 18 an ordinary surface set. The idea is to
use the transitions of T in a nondeterministic mapping U whach
guesses that the template expected by T will acluwally appear. If this
is the case, U performs the action of T; if not, U becomes un-

defined. Detbtails are omitied.

5. C(reative grammars on trees,

We tucrn nov to a new type of production which will grouw input
trees to be processed as well as read and destroy input nocdes, One
system using these productions provides an extension of context-free
grammars to trees. Brainerd [6] has considered regular tree grammars;

his definition can be subsumed here.

Consider an FS index-erasing production; for example
G
e (r; X,)

(tL) Xﬂ)
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Here, the next states occur as lsbels on the variables at the bottom
of the ocutput tree. Another possibility, however, would be to allow

productrons like

o

/
(CL> 0 (Xy 5 Xz)) —> ((1, e) \CI’J X2

|
Xq
Figure 2

or even

(Cl,J dcxiS xz)) —__9 e X?‘

Figure 3

In the first of these cases, we would operate next on the tree

% starting Iin state r; and on the tree p(xg) starting in state

g. In the second case, the next cperation would be performed on

U(p(xl),xe) starting in state gq.

This idea lets us define a new operation on trees (which may be
nondeterministic)., If we select a sbarting configuration, it may be
possible to grow index trees nondetermimistically ad infinitum before
the application of index-erasing productions Takes place. We will

call the nev productions index-creating. In the first example of an

index-creating production, no new input was actually created, the
state ¢ remained stationary. This, of course, is the analogue of a
pointer rewaining stationary in an inpud string. The creation of a

nevw index in the second example is not the analogue of moving backward

¢
b
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in the input strang bubt, of using the input string both as a push~down

memory and as an inpub.

Example., Consider the monadic productions

O Q.
| |
: (q:> b
(g, S(x)) —> I |
S Gﬁ;xj
!

= A

Figure U

(q, n)

and. the startaing confaigvration (q,5(AN)). This system produces &
dendrolanguage which can be adentified with IL(G), where G is a

CFG with productions
S -+ a8 | ab.

Notice, hovever, that derivaltions in the tree case correspond to left-
to-right deravations in the grammar. As is well-¥nowm, lhere is no
loss of general:ity in doing left-to-right derivations exclusively in a
grammar. We shall not prove it, bubt this property is zlso true for a
elass of tree grammars.

One more word--we shall not use creative productions to define
mappings, We shall fax one configuration to start from, and will con-
slder sequences of producbions which from this configuration eventually
produce state-free trees or termainal trées., Thus we are really doing

Erammars.



Consider the whole tree % which may occur labeled by a state
q on lhe right-hand side of some creative production. The pair (q,t)
may itself by considered an index. If t = x € X, +then we get an

index in the old sense., The new index set is, however, Q X J‘E(X),

instead of Q X X. Formally:

Definition. A pair (g, o(xo,. ..,xn_l)) 4 u is an index-

ereating production 1f u € J'E(Q X J’Z(Xn)).

Definition. For II a given set of creative productions, and

% € J"E(Q X J‘g), the set of trees t' directly generaled by t is

defaned inductively.

(i) if & €3, then (']t =1t"} =4,

(22) 2af & = (q,%), there are 2 cases dependang on the form

(a) if t ¢ o> ‘then there is some production {g,t) » u

- -

(b) if Tt = ot ,...,% then there is a production

Il-l)"

(e;0) 21 in = and t' 4is obbained from wu by substituting t;l
for XJ s J=04...50-1, whenever XJ occurs in an index of .
(iiy) If t = c;(to,...,tn_l), then there is an i <n such

that +t, generates t:.:_ and t' = U(to,...,t;,...,t ).

n-1

At thas point we had bebter say something about substitution as
mentioned in part (b) of the last definivion. We shall give a Fformal
definition and wse it later to prove a result. This defanition can

also be used o Justafy formally what we said an previous sections.
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Definition. Iet wu € 7.(Q X Jé(Xm)) and let (SO""’Smrl)

PR
SO..OSm-'l
be a fixed sequence of terms. The function Su.b(X - lu), or
o.c- m—l
55
S(x u) is defined by induction on wu-
i
51
(1) if u = A, S(x u):?\,'
1
85
(11) if u=(ar), () = (@)
!
53
if w= (a:x.), S(x u) = (a,5.)
d 3 d

if u = (q:p(to;.‘o)tm))) then

o ")

) - (ol

(iii) if u = c(uo,...,ukrl), then

55
to)‘, e ,SQ
a2

k- 1)) .

5
5(

X,

K}

) -

Definition. A top-dom creative tree grammar over % is a

8,
) (1
uoj,...,S -
i

i
tuple (2,Q,5,01) where, Q@ is a set of states, I 1is a set of index-
creating productions over @ and L, and § 1s a finite subset of

Ji(Q X-Jg) (the starting configurations).

{

As before, let = be the reflexive, transitive c¢losure oif the

direct generation relation.
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Definition, For G a tree grammar, the dendrolanguage

generated by ¢ is the set

£(a) = {t € J§|(Hs € 8)s =¥ t}.

Example. Let Eh = {C}, 22 = (B}, 21 = {H}, EO = {a}. Let

Q= {qo,ql,qe] and let the initial configuration be (qO,H(a)). We

have the productions

(a0,H(x)) 2 (gqsH(H(x))) [C((qy5%), (4y0%)5 (g,%) 2)
(ql,H(x)) - C((ql,X),(qe,x),(qg,X),a)
(QQJH(X)) -+ B(a,(qe,x))

(q;52) = a (i =0,1,2).

Applying the farst production, we derive a "string™ (qO,Hn(a)), n>1,

We then apply index-erasing productions which at each level add 2n+l,
2

a's to the yield. The yaeld of the resulting tree is a° .
The index-erasing productions in this grammar correspond to the

application of the recursion equation

f(n+l) = f(n) + on+l.

o

If P €W[X] is a polynomial, and if kl € ¥, then the language

{am(n)ln > 1} where o(x) = pi(x)ki, can be obtained as the

[ gt IR

i=1
¥ield of a creative dendrolanguage. A grammar for such a dendro-

language would employ a state Lp for each function £ in a system
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of recursion equations needed Lo describe @. The following bheorem,

therefore, may be surprising.

Theorem 7. Every creataive dendrolanguage can be generated by a
one-state creative dendrosrammar,

Proof. The problem with reducing many states to one is that
during application of index-erasing prodnctions, index subtrees may be
duplicated and then processed in different ways. The index subtrees,
howvever, are obtained from the starting trees by application of
cereative productions. Therefore, when a new index symhol is created,
we must take anto account the possible states in which 1t could be
read off by an index-erasing production. The creative productions an
a grammar will therefore be modified to encode stabte-transitions in
their indices. If Q is the sel of states in the original grammar,
the new index labels will be of the form G(Q) where o € %, and
q € @. The rank of G(Q) will also be changed. If Q has p
states, (p > 2), then r'(d(Q)) = p-r{q). For notational con-
venience, we will relabel variables as follows:

xiq) - xp1+q—l
where ¢ € Q= {1,...,p}.
Thus, if H € T ‘has old rank 1, then 19 4311 nave new

rank p, selection by the new grammar of x(l)

J
(a)

occurring as an index

on H will correspond, in the old grammar, to selecting Xy and

going to state j.
As illustrations, let us encode some productions. Suppose

Q= {1,2,3}. Let
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(L,E(x,)) » (2,H(H(x,)) =

be an old production. Let + Dbe the single state of the new grammar.

We rewrite =n as shown in Figure 5.
L ( : H ?)
( . H (1) )

-ﬁ\‘ H [g) @)\

Ka) KfZ) Kcz)

A NN

() 0
0 %o A L

Wext, suppose
(5JH(X0)) - C((z:xo):(EJXO)J(B:XO))

is another production. Its encoding would be

(6§ B ) » (o6 Yo7
Fanally, if

(2,K(x5x,)) =+ (1% (35%,)5 (2,%)))

8
is a production, i1ts encoding is

(P21 20 ) 21 ) (- () ().

We can now proceed with the proof. We must encode produwctions, whose

right-hand sides are elements of J‘E(Q X jE(Xn))' Let

A = {c(q)lﬁ €Y%, g € Q). We first encode members of J‘E(Xn) into
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J“A(Xp_n); this is done as follows. Let ¢ € @ = {1,...,p}. Define

maps e, J“E(Xn) - J“A(Xp_n) by simultansous induction:

eq(xj) = xgq) 3

eq(p(so, . ..,sm)>= P(Q)(e“i‘(so), . .,ep(so),. . .,e"i(sm),. . .,ep(sm)).

Now we can encode any u € J’E(Q X J'E(Xn)). Define

e(\) = N\;

&((i,8)) = (':el(s))i
é(d(to,...,tn_l)) = c(é(to),...,é(tn_l)).
Here, + is the unique new state; and so 8&: J‘E(Q X J’Z(Xn))

- .‘J"E({°} X J A(Xpn))' One proves wath a tedious but straightforuvard

argument by induction on u, using our previous definition of sub-

stitubion, thav for fixed §g,...,5, € J‘g(xm+l) and any

u € J“Z(Q X J"E(Xm+l)) that

e (s,)

w)) - ‘S(X(,vz):J
J

]

(5

d

(.—

24
LS

é(u))

where 1< i<p, 0<J<m Also (by induection) & is a one-to-one

function; and if t € Jg, then &(t) = t.

Now let G' = (R U A,{-},E[SO],H') where G (E,Q,SO,H). It

€, say (g, U(xo, ""Xn-l) s u) let &(x) be the production


http:q(P~eOI.to
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(-,U(q')(xgl)) + 5(2)).

set 1" = {(e(xn)|x € 0},

Let t = t' mean that t directly generates t' by applica-

tion of the production =. Assertion: For any t € J”E(Q, X ;Fg) if
e(t) ®5(x) V7

then there is a %' € 7.(Q x 72

5 E) such that

N
e t' and w= 8(t7).

The theorem follows from lhis assertion, because €& is 1-1 and if |
t' € J“g, then &(t') = t'. Thus, derivations correspond exactly in
both grammars.

The proof of the assertion is by induction on %, and has three

main cases:

1t

(i) 12 t=nN¢€ $os ‘the assertion is vacuously true,

(ii) If t = (qg;s) vwhere s EJ”O, then two subcases arise.

fl

(s) s=X1€F%, Then &(t)= (-,eqN)). Wow B(x)

mist be ((+,e%(0)) » g(u)), where w € 7°. Paking %' = u satisfies

-}

the assertion.

(b) s = p(so,...,sm). Then,

3(6) = (- (s, o<igm 122gn

Thus,



and so

X = (q,P(xO,. ..,xm) -+ u).

Now by hypothesis of the assertion

and we know

By (*) above, &(t')

(iii) t = U(to,...Jtn—

t Now

0,. . .,tn_l.

e (s.)

&(t) 2a(n) ¥ = E"Q((j_)'-j
dJ

E(u))

it

H
tnﬂt

S.
S(XJ u).
J

= W, so the assertion holds in case (i1).

1) and the assertion holds for

g(t) = G('é(to), .. .,'e'(tn_l) ).

Since &(t) “5(x) ¥ there must be i <n so that e(ti) ®s(x) Y17

and W = G('é(to, RTPL AR .,é(tn_l)). By inductive hypothesis,

t, =t and &(t))
1 1 1

so that w = &(t').

We shall not

[t}

w, for some t'. Thus,
i a

ck

=?1'[ tt = G(to)o oc:t;—’. . .,tn—'l)

Q.E.D.

repeat the definition here, but an 0T (outside-in)

macro grammer Fischer { 9] is exactly a one-state creative dendrogrammar
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which producss only the yield of the terminal tree. OI grammars

produce exactly the indexed languages of Aho [1]. Thus (the

yield of) a creabive dendrolanguage is always an indesxed language,
and conversely (modulo the empty string).

In the spirit of Brainerd [6], one can define context-free tree
grammars in a natural way. Let £$=NUTE, NNT-= ¢, be a ranked

alphabet, Consider produvctions of the form G(xo,...,xn_l) -~ u,

vhere 0 €N, and u € JE(Xn). Suppose s = o(so,...,sn_l) is a

subbtree of a tree t € Jg

8.
let s! = s( 1
X
2

u). Replace the subtree s by s'. The result-

ing tree t' is defined to be the tree obtained from + by the given

production.

Definition. Iet

G = (E)SO:H)
where 3 1s as above, SO is a finite subsev of jg, and I is a

Tinite sel of productaons, G is a context-free dendrogrammar.

Definition. The dendrolanguage generated by & 1is

]

Z{(G) = {w € J&[(Hso € SO)(SO = ).

A derivation in a CF dendrogrammay is said to be top-down if
whenever a symbol ¢ 18 reuvritten using a production, ¢ is not a
descendant of any node in W. This 1s the analcgue of a left-to-

right deravation in an ordinary context-free grammar. It is not hard



6k

to shov (in fact 1t follous from work of Fischer [9]) that if G is
any CF dendrogremmar (CFDG), then any tree in #(G) may be obbtained
by a top-down derivation. Since the one-stale creative dendrogrammars
also work from the top down, it is clear that the context-free dendro-
languagess are exactly the creative dendrolanguages. Taking yields, we
have the equation

recognizable dendrolangusges  conbext-free dendrolanguages
context-free languages B indexed languages

One may also use creative productions to define transformations
on trees, thus cbtaining creative surface sets and target languages.
Decision problems for these sets remain solvable; in particular,
recursive target languages are slill obtained. Creative transforma-
tions, however, do not seem to reflect properties of transformations

proposed for natural langvages, so we have not studied them here.
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