
2 
MAPPINGS  AND  GRAVJ4AS  ON  TREES 1 , 

William C. Rounds  

Case Western Reserve University  

(1) A preliminar version of this work appeared in the Proceedings 
of the ACM Symosium on the Theory of Computing Marina del Rey,  

Lfornia, May 1959.  

(2) Some of these results vere obtained in the author's doctoral  
dissertation,  supported  by  USeA  Contract  F  44 620-68-C-0030. 

(ACCSIQN NUMBER)4 THRZU) CZZ  Yi,-

2 (PAGES) (CODE) ~  ~~~~&tch0,. 

Ve10Q193-3oI933 U 
0  (NASA CR OR TMX OR AD NUMBER) (CATEGORY) 
U-k 



INTRODUCTION  

Recent developments in the theory of automata have pointed to  

an extension of the domain of definition of automata from strings to  

trees. Here we study certain sets, functions; and relations on trees  

using natural generalizations of ordinary automata theory.  

Why pursue such a generalization9 First; because enlarging the  

domain of automata theory may strengthen and simplify the subject in  

the  same  way  that  emphasizing  strings  rather  than  natural  numbers 

already has done. Second, because parts of mathematical linguistics  

can be formalized easily in a tree-automaton setting. The theories of  

transformational grammars and of syntax-directed compilation are two  

examples. A two-dimensional automata theory seens better suited to  

handle concepts arising in these areas than does the conventional  

theory.  

The algebraic properties of finite automata on trees have been  

extensively  studied;  see  Brainerd  [5],  Doner  [8], Meze.  and  Wright  [12], 

Thatcher [15],  Thatcher  and  Wright  [17],  and  Arbib  and  Giveton  [4]. 

The notion of recognizable set is central to these papers. A finite  

checking scheme (automaton) is used on an input tree. The scheme  

analyzes a tree from the bottom (leaves) up to the top (root), classify­

ing the tree as acceptable or not. The recognizable set associated  

with the automaton is The set of all acceptable trees.  

Here we will define sets of trees produced by finite-state  

generative schemes. In this respect, making autonata work from the  

top down instead of the bottom up is convenient. Rabin [13] was the  
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first to use  this  idea;  his  purpose  was  to  define  recognizable  sets  of 

infinite trees. We do not considec such trees here; ore emphasis is  

on generation but the top-doim concept is important for all our  

definitions.  

We use Thatcher and Wright's algebraic formalism to give  

succinct descriptions of linguistic constructions in the tree case.  

Using these constructions) we investigate decision problems and  

closure properties. Our results should clarify the nature of syntax­

directed translations and transformational grammars. (The latter  

prompted the definitions in Rounds [14].) Previous models of trans­

formational grammars had the capability of producing all recursively  

ennumerable sets as transformagional languages. The models given here,  

however, have the property that languages produced are recursive.  

We begin in Section I with a discussion of trees. Ile consider  

finite, labeled, ordered, rooted trees such that no label occurs on 

two nodes which have different numbers of branches. Such a tree ap­

pears in  Figure  1. 

A  
/\ 

/1 /\ 

Figure 1  

The top node of this tree is labeled A, and the bottom nodes are a, b,  

e. f. x, and y.  
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We define a dendrolanguage to be a set of trees of this form. 
I 

We then discuss recognizable dendrolanguages, relating them to deriva­

tion trees of a context-free grammar. These results also appear in  

Thatcher [15]; we include them because of their linguistic importance.  

In particular, we want to define functions on context-free derivation  

trees.  

We then introduce the simplest of our models, the deterministic 

finite­state  transformation.  In analogy with the generalized sequen­

tial machine mapping for strings, we define a function of trees which 

produces an output tree from a given input tree using finite-state 

rules,  and  which  works  first  on  the  top  node  of  the  input  tree;  then 

on the second level, and so forth until the bottom nodes have been  

processed.  

Thatcher [16] and Aho and Ullman [3] have recently studied 

similar models; the former looks at algebraic properties, and the  

latter at linguistic properties of these mappings. Our definition is  

slightly more general in that we allow functions to be partial. We  

obtain results about the domain and range of such functions; for  

example, the domain is a recognizable set.  

The yield of a tree is defined to be the string of symbols  

obtained  by  concatenating  all  the  labels  found  at  the  bottom  nodes 

together  in  left­to­right  order.  (The  yield  of  the  tree  in  Figure  1 

is the string abefxy.) The yield of a dendrolanguage is the set of  

strings  obtained  by  taking  the  yield  of  each  tree  in  the  dendrolanguage. 

For  each  tree  function  we  have  a  corresponding  relation  obtained  by 

taking yields of pairs of trees in the function. By considering the  

ranges of such relations, we obtain sets which extend the context-free  
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languages. These sets are called target languages.  

In Section II we propose two main variations on the model of  

Section I. The first is a nondeterministic finite-state transforma­

tion, obtained from the determinstic version by allowing more than  

one way to rewrite nodes in the input tree. We still insist, however,  

that a node be transformed at each stage. (In ordinary transducer  

language, this would mean that we cannot read the empty input symbol.)  

We extend the analysis of Section I to the new scheme. The second  

variation, in addition to being a nondeterministic scheme; allows a  

transformation to modify the input tree at any stage by building a neiw  

piece  at  the  top.  Hoever,  we  still  try  to  achieve  top­to­bottom 

processing,  and  a  generation  is  finished  only  when  all bottom  nodes 

have  been  transformed.  We  see  that  in  this  case  we  may  produce  an 

infinite dendrolanguage from a finate input set, and we study only  

this situation. This model is a creative dendrogrammar. The yields  

of creative dendrolanguages are the indexed languages of Aho [1]. The  

importance of indexed languages for transformational linguists remains  

to be investigated, but these languages arise at an early stage in the  

study of transformational grammars.  
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SECTION I  

DETERMINISTIC  TRANSFORMATIONS 

1.   Trees. 

If we think of an automaton carrying out a recursive process on 

its input,' it is natural to think of a recursive description of the  

input itself. This has been done for strings and natural numbers, in  

fact, a system of axioms similar to Peano's for the positive integers  

can be used to define all strings over a given alphabet. An inductive  

description of trees can be given as well: this description coincides  

with the ordinary description of terms in a formal system. Of course,  

we  must  show  that  formal  terms  can  be  identified  with  trees  in  a  one-

to-one manner. From the definition it should be clear that such a  

correspondence exists.  

The definition we use, found in Thatcher and Wright [171,  is a 

common one from universal algebra and logic. We need the idea of 

ranked alphabet; intuitively, the set of labels which can occur in a 

tree. We insist that a node with k descendants be labeled by a sym­

bol of rank k. Thus:  

Definition. A ranked alphabet is a pair (Zr) where Z is 

finite,  and  r:  Z  L4f.We  set 

sn = r-l(n).  

Now we   can  define  E­terms  (trees). 
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Definition. Let (S,r) be a ranked alphabet. The set  

(the constant S-terms) is the smallest set of strings such that  

a)  Y05 

b) if t0,..,tn  7,, and aEn,  then  

0(toi  )  E' n  

We  axe  formally  defining  certain  vell­formed  strings  of  symbols  over  a 

large alphabet; including parentheses and commas, but this set, rather  

than the set of all strings, will be the universe of discourse. It  

will also help to forget-that we are talking formally about certain  

strings, and to picture them instead as geometrical objects.  

= Example. Let S =  (0,layE, l fsincos,-), S72 +,.]" 

0 

A typical element of J is 

+(sin(a),.(cos(y),a)),  

in ordinary notation the term sin(a) + a • cos(y). The tree picture  

of this term appears in Figure 2.  

S4 

a cos  o, 
I 

Fagure  2 

The definition of term garantees unique readabmiity for any  

term. Linguistically this means that the definition is really an  



7  

unambiguous context-free grammar for terms. Therefore, it is not  

surprising that we can associate a tree picture with a term in a  

unique way.  

2o A preliminary example.  

To illustrate the model we plan to define in this section we  

will describe a function on -0, where Z is the alphabet in the  

previous example. This function will be the operation of finding a 

formal term representing the derivative of a given term over Z, 

taken with respect to y. The rules which we apply should be the 

familiar  rules for differentiation, and we  wish to apply them in a 

top-doim manner to a given tree. Let us find the derivative of the 

tree in Figure 2 as a special case. This tree represents the sum of 

two terms. If we began at the top, the first rule we apply is 

Dy(f+g) = Dyf + Dyg. Let us invent a state d which tells us to 

take the derivative. Then the first rewriting rule--linearity of  

differentiation--becomes  

X0- 

Figure 3  

This rule says: If the process is in state d. and the node to be  

rewritten is +, which may be followed by the subtrees x0 and x.,  

then put out the node -1 and apply d to the nodes at the top of the  

subtrees x0 and x . The result of applying such a rule to Figure 2 is  
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/ 

I / 
C~Ct 

Figure  i 

At this poinb, two rules become applicable the chain rule on the  

left, and the product rule on the right. We can symbolize these:  

d,VAAX,  l  No  c  , 
­

Figure 5 

Here, i is a new state, the identity or do-nothing state. We then  

derive  

- 

1  -t 

Figure  6 

The reader can easily make up productions which will finish the  

derivation.  
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Notice that in applying the product rule to derive the tree in  

Figure 6, we had to make two copies of the input subtree cos(y). The  

power to replicate subtrees of the input tree is a primitive operation  

associated with transformations. Notice also how the states sweep  

through the input tree from top to bottom. There is never a choice  

but to rewrite a given node in a unique way depending on the state.  

This is the deterministic feature of the model.  

3. Recognizable sets.  

Transformational theory, as developed by Chomsky [7]  and many 

others, deals with the notion of phrase-structure grammar; and with 

certain mappings defined on derivation trees associated with the 

grammar. Derivation trees do not make much sense for context­

sensitive grammars, because they depend on the order of carrying out 

a derivation. We will therefore assume that mappings are to be 

defined on context-free derivation trees. Intuitively speaking, we 

may describe the domain of a transformation as a set of tree struc­

tures for simple (kernel) sentences (e.g. "I see the cat") and a  

transformation as an operation on the tree for this sentence which  

changes it into a structure for a closely related sentence (e.g. "The  

cat was seen by me"). The tr~es representing simple sentences are  

called deep structures, and transformed trees surface structures.  

Similarly, the theory of syntax-directed translation deals 

with changing  statements  in  a programming language into some other 

language by performing operations on the derivation trees of strings 

in the source language. One of the original schemes of this type was 
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developed by Irons [101; formalizations have been given by Aho and 

Ullman [2], [31,  and Lewis and Stearns [11]. 

We must, therefore, formalize the idea of a set of derivation 

trees. Here we follow Thatcher [16]. 

Definition. An (C-free) context-free (CF) grammar over a 

finite alphabet  F is  a  1 ­taple  G = (Vs  0 jSan)  where  ',0  CV, 

V is finite, S E  V­Z  O ,  and  H  is  a finite set of pairs (Aw) 

called productions, where A E V-S0 and w E y* - (e).  (c is the  

identity element of the free monoid f* over V.) 

A CF grammar is ranked if whenever (Aw) and (Ax) are in 11, 

then the lengths of w and x are equal. 

We  may  form  a ranked alphabet from a given ranked CFG by letting 

the set Z be the 0-ary symbols and letting 

En  = [A  E  V­Soj(Aaw)  E  J1 and  length  (w)  = n). 

Using this ranked alphabet we can define the set of derivation trees  

DG  associated  with  any  o  E  r; by  induction: 

G
(±) if  X E Z0,  D [W; 

(ii)  whenever (ow)E 1, a E Zn for n >l  

EE(tDG  
w .and t ED a j.tn E DG,. then  

DG The set of derivation trees of G is the set DG. Notice that 
S.  

DG under the correspondence of trees with terms; a term in is a tree  

with top node a,  and such that if T is any node label,  the labels 

a.  on  the  immediate  successors  satisfy  the  require.ent  that 
3. 



T  -4 O... m is a production of G. Notice also that any (c-free) 

context-free language can be obtained from a ranked CF grammar, by  

relabeling non-terminal symbols. (We could avoid using ranked  

grammars if we discussed ranked alphabets 7 iwhere r was a relation  

instead of a function.) No languages will contain the empty word in  

our discussion.  

Definition. Let Z be a ranked alphabet. A E-dendrolanguage  

DG is any subset of J. The sets are thus simple E-dendrolanguages,  

which could be called derivation dendrolanguages.  

We  need  a  function  to  read  off  the  sequence  of  bottom  symbols 

on  a  tree.  This  function  will  be  called  the  yield  of  a  tree 

y(X)  = X  for  K ES O; 

Y(Cr(toPtl2...;tn_l)) =Y(to) •Y(tl)..-Y(tn-1)  

where is concatenation in ;. The yield of a dendrolanguage 

is  

Y[R] = (Y(t)jt E R.  

A context-free language is thus the yield of a derivation dendrolanguage.  

Now we can define the important class of recognizable dendro­

languages: These sets, a generalization of regular sets of strings,  

are closely related to the derivation dendrolanguages. First, we 

define tree automata [ 5 1, which can be viewed as finite checking 

schemes for a tree. Each node a in a tree of rank n induces a 
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Anfinite  function  a  . 4 A,  where  A  is  intuitively  the  set  of 

states  of th automaton.  

Definition. let A be a set. By an assignment of  

S-operations on A we mean a function ,Z- 4 (A(A) In> 0) such 

that if a E S then c(a) E A(A)  m() will be written a and 

is simply an n-ary operation on A. If ?. E  Fop a is a fixed ele­

ment of A. (These aa will be the next-state functions.) 

Definition.  A  Z­algebra  is  a  pair  a = (Ac) where  A  is 

nonempty and a is an assignment of E-operations on A. If A is 

finite  a  is  said  to be  finite. 

Definition. A finite Z-automaton is a triple (A3a;,A,) where  

(Ala) is a finite S-algebra and AF S A. AF is the set of designated  

final states.  

Speaking automaton-theoretically, we can now extend the next  

state function to all of 5S.  

Definition. The response function 11Ila of a S-algebra is  

defined inductively by  

(i)  IIXI I= a> for  X ESZ; 

(ii)  11a(to­­­..t nl)ll  =  Iol­.InJ 

As is easy to verify, the evaluation of the response function  

on a tree corresponds to checking the tree from the bottom up.  
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We are in a position to define recognizable sets:  

Definition. P C is recognizable if there is a S-automaton 

a = (A~c ,A) such that 

Sft flItIla E AF). 

We do not develop any properties of recognizable sets here;  

many standard properties still hold in the tree case, in particular,  

decision problems are solvable. We state two results of Thatcher [151,  

which relate recognizable sets to derivation dendrolanguages, these  

are the reasons we review recognizable sets here.  

Theorem. Every derivation dendrolanguage is recognizable.  

Theorem. Every recognizable dendrolanguage can be obtained  

from a derivation dendrolanguage by a function (projection) which re­

names nodes in a tree.  

As corollaries, we find that the yield of a recognizable set is  

a CF language, and that every CF language can be obtained this way.  

4. Deterministic finite-state transformations.  

We want to formalize mappings like the syntactic derivative of  

Section 2. As indicated in the introductionj this should be done  

linguistically, not algebraically, although the two approaches are  

equivalent. We use the idea of a tree production. This will also  

permit succinct definitions of more complicated models.  



To formalize a rule like  

+  +­

we  need  only  imitate  the  ordinary  notation  for  trees  as  terms.  We  get 

(d,+(xox )) -,+((d~ 0Xo)(d~x9) ).  

The linearization of the product rule would be  

(d,.(xo0 xj) -4 +(((d,-O(ijxo)),.((iXo),(dlx!)))- 

Unfortunately,  we have  not  written  doin  well­formed  terms;  because 

pairs like (d;xo) occur as labels. The solution is to enlarge the  

set of terms so that other objects besides elements of Z0  occur at 

the bottom nodes of a tree. These other elements will be called indices  

and will come from a specified set disjoint from Zo0  

Definition. Let I be a set disjoint from Z0. The set of  

S­terms  indexed  by  I, written  Y%(I),  is  the  smallest  set  of 

strings such that  

(i)  I  U E0 Z (x) 

(ii) a E 'n and t0,... ;tn_l E Z(I) imply 

, a(t0...t-1 ) E Z().  

Particular index sets I follov.  
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Definition. Let X be a fixed countable set (xo,Xl.... 

The set .7(X) is the set of all terms in the variables X.  

Denote by the subset (xo ...;xnl of X. If Q is a Xn 0  

finite set (set of states), then we can define productions"  

Definition. A finite-state (index-erasing) production over Q 

and F is a pair ((qc(xo...Xnl))t') written (qcr(xo,.. .;xn-)) -4 t 

such  that  t'  E  .(Q X X). 

The reason for the name index-erasing is that application of a  

production to a given node takes place only once. Every time a node  

is rewritten, a new index node is designated for the next application  

of a production. This corresponds to the action of a finite state  

machine reading and erasing its input.  

The next objective is to define the entities to which produc­

tions apply. Looking at the example of #2, we see that they  

should be trees with states occurring in the branches. The subtree  

below a state represents undeveloped input, and the state marks an  

active location. We can represent such a configuration as an element  

of 
0.Y(Q X  Y.),  where  a  pair  (qt)  E  Q X  10o is an index which 

0 

represents an input suburee t  with the  state  q  attached  to  the 

top. 

All that remains is to describe how a production applies to an  

intermediate configuration. Let us do it first informally. Given a  

configuration v choose some (qt)E Q X occurring as an index  

in v. Let t = c(so,...,sn1 ). Suppose there is a production  
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(q,(Xo,... Xn1)) *  u in the given set of productions (for a given 

mapping). Here, u EC7(Q X Xn). Let t' be the result of substitut­

ing sO for x0,...)S n_ for xnl whenever these variables occur  

as indices in u. In other words, if (r;x) occurs as an index in  

u, replace it by the element (rs.) of Q. 0. Replace now the 

entire index (q~t) by the new tree t'. The result is the tree v' 

obtained by applying the given production. 

(Note: At each step we select a single occurrence of an 

index  (q(s  0  ...  ,s  n))  in  v  to which  we  apply the production 

(q(xO...  xn­1  ))  4 u.) 

We can now give,a  full formal description of the class of map-

pings  we  have  an  mind. 

Definition. A (deterministic) finite-state transformation is a  

4-uple  

T= (zQqon), 

where F is a ranked alphabet, Q is a finite set of states,  

qo E Q is the initial state, and 11 is a finite set of input-erasing  

productions over Q and F such that for each pair (qga) E Q x E,  

there is at most-one production (qc)-4 u in 11. A transformation 

is total if there is exactly one production for each pair in Q X E.  

Remark. We are defining transformations such that the domain  

and range of the mappings are trees over the same alphabet. This is  
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a minor point, and ire shall sometimes modify input and output alphabets  

when it is convenient°  

Definition. (Direct generation.)  

Given t E 7(Q x- the set of trees t' such that t  

directly generates t (via T) is defined inductively on t.  

tt (i) If t E Z0 then t')=) 

(ii) if t EQ  X7 then t=(qE) where tE  o 

There is a subdefinition depending on the form of t. 

(a) If t XE Z., then if there is a production (q,x) 4 t'  

in E, then  

(t'(qaA) t'] = t'°  

t If not, then ft'I(qyB) = t' 

(b) If E = c(so.'Sn-l then if there is a production 

(q(xo...x;Xnl))  * u in U, then ft'j(qAZ) th)  = ft'It' can be 

obtained from u by substituting so for x0 in each pair (Tmxo) index­

ing u) substituting s1 for X1, and so forth (up to Sn_1 for xn-1)]O If 

there is no such production then ft'f(qE) t' =. 

(i3i)  If  ar(to...tn-l) then t't  0 t = if for exactly one 

ij t' = a(to,0 4 0 ,t.'.tn) and t t 

We can decide effectively when two  trees  t  and  t' are such 

that  t  =  t'. 
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The  previous  conditions  define  a  relation  = on  7j(Q  X g 0 

Let  => be the reflexive, transitive closure of °  

Definition,  Let  T  = (Qqo,). The  function  computed by T 

is the  set of pairs T  {(ss) E 0x g01(k  s) =:,stII 

One easily shows that T  is a function (using induction on s). 

If T  is total, then it computes a total function. 

Examples. (i) We leave it to the reader to vrite out a formal  

description of the dilferentiation operator (Section 2).  

(ii)  DeMorgan's law for Boolean polynomials. This function  

takes  a  Boolean  polynomial  over  a  finite  set  W  of  variables  and 

transforms  it  into  an  equivalent  one  so  that  the  variables  are  the 

only  subexpressions  occurring  with  complement  signs  on  them. 

Let  T  (s,Q~qo,n)  where 

()  Q  cj) 

(ii)  q 0 =j  

(iii)  E0 W, the given set of variables  

=,1-

F2  fVA3  

(iv)  11 has eight productions as follows:  

(jA(xoxj) -4A((,Xo. (jx)) 1  

(.JV(XoX )) - v((j,%),(JXj)) 

(,-(xo)) 4 (c,xo )  

(j,)  -)w for  any  w EW.  
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j is a state which looks for a complemented subexpression. When such 

an ekpression is found, the complement sign is erased and the process 

goes to a new state which will carry out DeMorgan's law: 

(cA(xOx 1 )) -4 V((cx 6),(cx,))  

(c,V(X 0 x)) 4 A((cxO)Xc~xl))  

(Cr-i(x 0)) - (j,x0 ) 

(Cow)  4 ­n(w)  for  w  E W. 

In  the  previous  two  examples,  the  transformations  were  total 

Not  every  transformation  has  this  property,  of  course.  We  may  have  an 

alphabet  Z and  a  proper  subalphabet  A,  and  may  wish  to  define  a 

O mapping on S3A only, with values in 70.O It is convenient to leave  
A F, 

productions which read symbols in Z\A out of the definition0 If a 

tree  ith  some  node  in  s\A  occurs,  we  wash  our  transformation  to  be 

undefined. (This behavior is called blocking in transformational  

theory.) Our first result about transformations is  

Theorem 1. The domain of a partial deterministic transformation  

is a recognizable set (effectively obtainable).  

Proof:  Let  T  =  (ZqoH)  be  the  given  transformation.  We 

construct an automaton a = (A mA):  

(i)  A  =  P(Q)  (all subsets of Q) 

(ii)  m,  =  (q  E  QjSJ(qX)  u]  EI) 

Ga(qo  OO.qn­)=  q  E  Qj[(q,a)  such  that  whenever) ul E II, 

.(q'xi)  indexes u, then q' C Qi] 

Since U is finite, one may effectively construct a and G.  

0  
for each X E Zf) a E 5,,. We claim that for each t E z ,; and each  
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qE Q 

The proof is by induction on t. Suppose first that t =  X E S0. If 

(q~t)  *  s  E s7, it  must  be  by  a  one­step  process,  so  there  is  a 

production (q,%) -* s in H. Thus, q E 11%la. (The converse is evi­

dent.) Suppose now that the result holds for t0 ...,tn1 l  and let 

t  =  (t  0  ...  ,tn).  If (q,t) =* s  where  s  E f, then  there  is  a 

production (qa)4 u in H and a tree t' such that t' is 

obtained from u by substituting t for x whenever (rx.)
1 123  

indexes  u.  Now  (rt)  s  where  sI  E  0 . By hypothesis, 

r  E  lit.II.  Since  this  is  true  whenever  (rx,)  indexes  u; we con­

clude  by  definition  of  a  that  q  E 11th.  Conversely,  let  q  E jth. 

Then, there is some production (q,cr) 4+ u in  11 such that whenever 

(rxI)  is an index of  u, we have r  E  IItill.  The hypothesis applies, 

telling us that there is si E 170 such that (rtI) = s Since the  .  

production (q,c) 4 u applies to t, yielding t, and the indices 

(r,ti) occurring on t' all generate terminal trees, so does (qt). 

The theorem follows when we take AF = (q.). Q.E.D. 

We used implicitly the fact that for any tree t E (N X S.  

t generates some terminal tree (element of 70) if and only if every  

(q~tI) occurring as an index on t generates a terminal tree. This  

fact is easy to prove by induction.  
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Now, we wish to investigate composition of transformations.  

Theorem 2. Total deterministic transformations are effectively  

closed under composition.  

Proof. Define T(qt) to be the unique tree s such that  

(qt)  t  S. 

We want to make the actions of S and T take place  

simultaneously. As soon as  T produces an output, from application 

of a production, S will act on that output. This suggests defining 

right-hand sides of productions for the composite U to be the result 

of S acting on the right-hand sides of productions of T. This 

result will of course depend as well on which state S starts in. 
The production of U will therefore be of the form ((qS T),a) V,- 

where  (q ,C) - u  is  in  11  ,  and v is the result of S acting on 

Su  starting in state q .  Of course, u E E (Q  X  Xn))  so strictly 

speaking, S is not defined on u. However, it is easy to give an 

inductive definition of the action S(qSu) of S on u starting in 

S  -S 
state q . For constants, S(q  ,X) = S(q ,%). For variable pairs, 

(qS,(c  ,x))  =  ((q S, )x). For u  of the form a(to, ...  ;tn­l), 

S(q ,0u)  is the result of replacing every index (r  Sx) (in the tree 

t' such that Nq ,a) i tV) by E(rSt,). Obviously, if  ui E JPI 

S(qSu) = S(c ,it).  Otherwise  9(q  E -3]j x Q ) X n  whenever,iu)  E 

the variables of u are in X  

n 
S S S  

Nov we can  begin  the  proof.  Let  S  (Q  qofl), 

T T T 
T (EQ ;qO;l ). T is to be carried out first. Define 
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HU U U U T U /3,T U = (FQU ,1) by  letting  Q  =  Q  X  QT , =  qoq 0), and  by 

putting the productions ((qS, To) S ,u) (for every S Q  ) 

1Uinto  whenever  (q  ,)  ­ u  is  in  IIT  .  We  want  to prove  by  induc-

tion  on  t  E $' that 

U((q1,Q ),t) = S( q~,(qC  T,i4). 

For t = X, this is clear, because T(qT) E? , SO  S(q ,T(qT  )) 

­S(q  ST(gq  ,x)). Also, (q ,PqT);,) ~  qF(,Tq ,X)) is a production 

. in EU The  result  follows. 

Nov  suppose  t  = a(t  0"...tn  and assume the result for1 ) 

each  qSEq  and  T  EQ  when  applied  to  t  't 

U((q  ,qT)t) is calculated by first applying ((qS,)q )  S(q ,u) 

to t, where (NT),) -4 u is the applicable production of ITT . Let 

v be the first stage in calculating U((qSqT)t). Also, let t' be 

the result of applying (qTa) -4 u to t. A typical index on t' 

looks like (r t  where (rTx.)  indexes u. Let us write 

t  (rT,)] t  by  which we  mean  that  (rT;t) occurs at a fixed 

location in u. 

We can similarly wirite 

v = (qT u)[((rS-,T)t] 

but we mean to specify here that (rT;t) is the same index occurring 

in t' that we picked out before. Thus the index ((crSrT)t) 

dpends on our previous choice of index. Now T(Jt)  = U[T(rT  t)]. 
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(The index (rTIti) has been transformed, assume all others have also  

been transformed.) Hence,  

S~~Tq ~)­ qUS ITL\Tj11 

and by inductive hypothesis this is equal to  

5(QlT:)[u((rt  rD)tj)]  E 4.O 

But this last quantity is just U((qS, ),t). Q.E.D.  

Theorem 2 is a little special, and iTe naturally ask whether it 

can be extended to more general transformations. The answer is nega­

tive for partial deterministic ones as iTell as for nondeterministic 

ones. We present a counterexample of W. Ogden (personal comm.) for 

the partial deterministic case. Thatcher [16] has an example for the 

nondetermnistic case. These are counterexamples to the theorems in Rounds [1i] 

Example. Let F0 = (Xj),  Z2 = (a). 

T(F QT qoT:I T), where 
TT  

QT =  (qo,ql};  

T  

iiT consists of  

(q1,a(x0,x1)  -
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(q0,X)-* X;  (q2 ,X)  4 X,  (q 1 ,w)  .4 0w. 

T defines a partial function on which is the identity on  

the  set  of  all  trees  whose  extreme  right­hand  bottom  node  is  not 

labeled with an w. The function is undefined for trees not in this  

set.  
S S S  

The  system  S  is  (,Q 8  qoS ),  where 

S= fro,rQ;  ro 

the  following  productions  make  up  ifS 

(roa(xo,xl))  4 (rloXo); 

(roX) - X;  (ro,w)  -, W; 

(rl, a(xo,xl)) -4a((rl,Xo), (r,,l)), 

(r14%) -' %;  (r1,w) - w. 

S(a(t0 t) = to; s(x) = %; s(w) = w. 

We notice that S(T(a(totl))) = to if tI is not labeled 

with  an  w  on  the  extreme  right­hand  leaf;  otherwise  is  undefined. 

0 

We claim SoT as not partial deterministic. 

Let U =  SoT. If U were p.d.j then there would be a produc­

tion (pOa(xoxl)) 4 t, (p0 is the initial state)0 t must have a 

variable index, but no more than one, because U(a(w,)) = w.  t 

cannot have a constant node for the same reason. Thus t must be  

of the form (P.Xo) or (pxl) where p is a state. If the first  
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case occurs, then since U(a(w,x)) =  w, (pg) - w must be a produc­

tion. But then, the derivation 

is possible; but T(a(ww)) is undefined. In the other case, a simi­

lar contradiction is'obtained.  

5. Transformational systems.  

The composite mapping U oust described fails to be a partial 

transformation because it can act on a tree for which the first trans­

formation is undefined. If we were not allowed to give such trees as 

arguments, then we could, in fact, write a partial transformation 

which  would  agree  with  U  on all trees in the domain of T. But this 

domain is a recognizable set. This fact leads us to define a 

deterministic transformational system as a pair (RT),  where R is 

a recognizable dendrolanguage and T is a  deterministic transforma­

tion. This definition  makes sense from the point of view of trans­

formational grammars, because transformations a2e defined on the 

derivation dendrolanguages associated with CF grammars. Such dendro­

languages are recognizable sets. Our idea is to restrict the trans­

formation T to the dendrolanguage R.  

We again wish to study closure properties of restricted trans­

formations.  These  fall  into  two  categories:  one,  the  transformations 

themselves as functions, and two, relations obtained by taking yields.  

In the remainder of this chapter we will discuss just a few of these  

properties. 
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For  the  first  category,  we  have  just  seen  that  closure  under 

composition fails unless transformations are total. Another fact is 

that transformations do not in general preserve recognizable sets. 

(Proof: let E0  =  No),  E2  =  (a). Define T so that 

T(a(to,t1 )) = a(to,to). Then y(T[JY]) =  (xxx E ZO).  If T[,Y9 

were  recognizable,  then  (xxlx  E Z* would be a CFL.  Contradiction.)O  

We do, however, have a izeak result.  

Definition. Let (RT) be a transformational system. The  

(deterministic) surface dendrolanguage produced by (6%T) is the set  

T[9].  

Theorem 3. Deterministic transformations preserve deterministic  

surface dendrolanguages.  

Proof: This is essentially a modification of the proof of 

Theorem 2. With S, TI U given as in that proof, we observe that if 

T is defined on t starting in state q , then  U((qSqT)t)  = 

­ S(qS,T(q ,t)). 

By the equality here we mean  that  one  side  is  defined  if  and 

only  if  the  other  side  is.  (S may not be total.) 

Now if (RIT) is the system producing T[,] as a surface  

=dendrolanguage; let R','z2 n domain (T). ,' is recognizable because 

domain  (T)  is  recognizable,  and  because  we have closure under inter­

section for recognizable sets. Now T(qTt) is defined for every  

t E 9'. Therefore,  

u[ =  S[T[].  Q.E.D. 
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Yields of trees occurring in a restricted transformation will  

also prove to be fruitful.  

Definition. Let (2,T) be a transformational system. The  

(deterministic) translation defined by (9,T) is the set  

f(y(s),y(t))f(st) ET n (tx  10)). 

If T  is total, then translations coincide with the GSDT's of Aho and 

Ullman  [3].' 

It  follows  from  work  of  Aho  and  Ullman  that  translations  (for 

total transformations) are not closed under relational composition. 

We suspect this is true also for partial and even nondeterministac 

ones, though we do not study the question here. We may,  however, 

still consider domains and ranges of translations. From Theorem 1  it 

follows that the domain of a translation is context-free. The range, 

by our previous example, need not be context-free. 

Definition. A (deterministic) target language is the range of 

a (deterministic) translation. Since the range of a relation is empty 

if and only if  the domain is, and since we may effectively obtain a CFG 

whose  associated  language  is  the  given  domain,  it  follows  immediately 

that the class of deterministic target languages has a solvable  

emptiness problem. We know very little else about this class; most of  

the interesting results are obtained for the nondeterministic version.  

We  therefore  turn  to  these  extended  models. 
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SECTION II 

NONDETERNNISTIC  MODELS 

In this section we introduce choice as a capability of trans­

formations. We shall consider both grammars and nondeterministic  

mappings of trees but will use productions to define each model.  

Roughly speaking, a grammar is a nondeterministic mapping applied to a  

finite set of inputs (the starting configurations), whose range is, in  

general, infinite. In contrastj a nondeterministic transformation  

yields, for each input, a finite set of outputs. Such a mapping must  

therefore have infinite domain to produce an infinite range.  

Transformational grammars and generative grammars in general  

are nondetermnistic. Transformations, however, seem to have the 

property that given a deep structure for a sentence only finitely 

many surface structures result from a single application. (We assume 

here that transformations are not iterated.) It is clear also that 

transformations should not be total functions. For example, only 

trees which satisfy a structural description associated with a trans­

formation can be changed by that transformation. If a tree does not 

satisfy such a description, we may wish the transformation to be un­

defined. Another bit of evidence for non-functionality is the notion 

of optional rule. Certain transformations have choices built into 

them; one may decide at will whether or not to rearrange word order in 

some sentences, for example. The precise idea of nondeterminism is 

intended to approximate this feature of transformational grammars. 

We shall first investigate some mathematical properties of  

nondeterministic  transformations,  indicating  the  merits  and  drawbacks 
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of these models and certain generalizations. Then ....­­­­­-

grammars on trees, concentrating on an analogue of context-free 

grammars in the tree case. The study of tree grammars at this point 

is not nearly complete. 

1.  Nondeterministic finite-state transformations.  

The definition of nondeterminastic transformation is immediate:  

simply allow any finite number of productions with a given left-hand  

side. Allow also a set of starting states instead of a single initial  

state. Formally:  

Definition. A nondeterminastic FS transformation is a 4-tuple 

T (S QQoll) where E is a ranked alphabet, Q  is a finite set of 

states, Q0 £ Q is the set of initial states, and T1 is a finite 

set of index-erasing productions over Q and Z.  

The definition of direct generation is the same as for deter­

ministic transformations.  

Definition. The relation computed by a nondeterinistic trans­

formation T is the set  

(Xs? E  )((%o,s){'_ ITOPS  C =*s 

A partial deterministic transformation is an honest special  

case of a nondeterministic one. For some pairs (qc) The set of  

productions with these pairs for left-hand side may be empty.  

We have an immediate theorem for FS relations.  
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Theorem 1. The domain of a nondetermnnistic FS relation is  

recognizable (effectively).  

The construction of an automaton to recognize domain (T) is  

exactly parallel to the construction given for Theorem 1-1, and may  

be safely omitted here. We can now prove the converse result:  

Theorem 2. Every recognizable set is the domain of a non­

deterministic transformation.  

'roof. Let F be recognized by C = (A,aA,). Let  

=A,- =E, and let  

(qa) -4 ((%,x0),...,(%_, xn_,)) 

be in UT exactly when a (q0 ..  .qn_,) = q. We claim for all 

qEQT,  t  EY 

T 0 

(as C ,O)((qt)  =t s)  iff  jltjlc  =  q. 

We prove one half of this assertion by induction on t. The statement 

is obvious for t E S0" Assume in therefore for t 0  ,...  tn_1 and all 

q  E Q. Suppose 

(as)(q (to...tn-1)) 4,  s. 

Then  

(qa(to .. tn.i)) c h(atl-tn-l) 
)  

,. ((qoto) ... * s  

where "-(q.1'...'°-i ) is such that  
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S(%,l...,%n_i)  -=q. 

The  hypothesis  implies  that  ltolla  =  qo"...  ltn­l11o  =  qn_l  so  that 

The other half of the assertion is just as easy to prove, so we  

omit  it.  Q.E.D. 

An  open  question­­can  we  construct  a  deterministic  transforma-

tion T recognizing Z?  

2. Transformational systems and surface dendrolanguages.  

In keeping with previous definitions, we define a nondeter­

ministic transformational system as a pair (RT) where a is 

recognizable and T is a NDFST. Since transformations are not closed 

under composition  (see  [16]  and  below)  we  cannot  immediately  study 

the effect of arbitrary transformations on recognizable sets. This is 

something of a drawback, but can be remedied in the case of linear  

transformations, as we shall see.  

Definition. The surface dendrolanguage associated with (9,T)  

is the range of the relation computed by T when restricted to 6.  

This set will be denoted by T[6].  

An obvious property of surface dendrolanguages is effective  

closure under unions. To prove it, let T[R] and S[R'] be given;  

let p Er have rank 2. The set  

a = fp(t)jt  E R U R') 
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is  recognizable.  Define  a  nondeterministic  U  by  making  the  state 

sets-of S and T  disjoint,  adding  a  new  initial  state  Uon and 

productions  

T  S 

(u0,p(xo)) - (qO,xo) I (qgx).  

Thus, U[9] = T[R] U S[9']; proving the result.  

We are now going to establish a result on composition of non­

deterministic transformations. In general, composition fails because  

the second transformation applied has repeated variables in some  

productions. [E.g. (q,a) -i a((qx 0 ),(q',x0 )).] If the first trans­

formation is nondeterministic, then its random effect on an input tree  

may be duplicated in two places by the second transformation. Thus,  

it  may  be  impossible  to  construct  a  third  transformation  which  uill 

carry out this behavior all at once.  

=Example. Let Z2 (a),  zi =  (Py'rl 1O= 4. T has stateZ.  

set Q =  q], and productions 

(q,p(x)) -4p((qx)) I r((qx)) 

(q,X,)  -4X. 

(Let the input set be S_0 S has states fr,s), initial state  

r, and productions  

(r,p)  ­a a((s,x),(sx  0 )) 

(r, ) ­M  ((SX,(s,xo)) 

(sap)  ­ P(s,x o  ) 
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,  T(X.  0 
(SX.) -4 %.  

S has the undesirable effect of reproducing the random string  

produced by T from pfn(,). To get rid of this duplication, we make  

the hypothesis that the second transformation have no repeated vari­

ables in its productions. Following category theorists, we therefore  

have:  

Definition. An NDFST L is linear if whenever (qc,) - u is  

a production, and (qx.) and (s.,x) occur as indices on U, then  

x xj.  

Theorem 3. Linear transformations effectively preserve non­

deterministic surface sets.  

Discussion. The conjecture that LoT is a nondeterministic 

transformation is apparently false, see the example of Ogden in 

Section I. (T is also linear in this example.) We are forced, 

therefore, to define first an analogue of totality for nondeterministic 

transformations. We will  replace  the  given  sucface  set  with  one 

generated by a total transformation. Intuitively, totality means that 

no stage in a derivation is ever blocked. 

Definition.  Let  T  be  a  NDFST,  E Q  and  t  E Z . T  is 

completely defined on t starting in state q if t satisfies the  

inductive definition  

(1)  if  t  =  N E FO, then there is a production (q,%) -)s 

in 
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(ii) If t = a(t0,... tnl), then there is a production 

(q,a) - u in T and for each such production whenever (rjxj) 

is an index on uj then T is completely defined on tI starting 

in state r. 

We say that T is completely defined on t if the above con­

dition holds for T on t starting in state q for each q E QV 

and T is c.d. on 2 if T is c.d. on t for each t E a. 

it is easy to prove by induction that if T is c.d. on t 

Starting in -q, and (qt)=Jk t'  where t' E .(Q X JO
0), then  if 

10
(rt) occurs as an index in V, then there is an s E J such  

that (r~t. s.  

Proof of Theorem 3. First we show that without loss of  

generality, the firsb transformation T has a single initial state.  

Let T be the same as T but with initial state (q). Now  

q  

T[R] =  U  T  [9].  

This implies  

= U LET f]. 

Since surface- sets are closed under union (effectively) it suffices to  

show that L[Tq(]] is a surface set. Thus we may assume T has one  

initial state.  

The result is proved in two steps.  
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Lemma 1. Given T and R we may find effectively T' and  

' where T' has one initial state, such that T'[.'] = TER], 9'  

is recognizable, and T' is completely defined on g'.  

Lemma 2. If T is c.d. on R and L is linear, then  

L[T[%]] is effectively a surface set.  

Proof of Lemma 1. Let H be the set of productions for T.  

it E is legal for t in t0 if t satisfies  

(i) v is legal for E Z if  it is  (q,%)  - s  for  some 

q E Q. 

(ii) ic is legal for 5(t01...,tnl) if it is (q,o) -)u,  

where u is such that whenever (rxI) is an index on t', then  

there is a legal production for t with r on its left-hand side.  

The set of legal productions for a tree t is exactly the set  

of productions which can be successfully applied to t yielding a  

terminal tree. Notice that the definition of legality is really the 

construction of a finite automaton a such that 

JtIll  = (7tE  is  legal  for  t. 

(We omit this part of the proof.)  

Now we construct the set R'. It will be defined over an  

extended alphabet Ft. Let TI be the power set of the production  

=  set  11.  Let F' 11  X  S . Now let P be the projection from J 
n  n 

to induced by P(Kc)  = r. P and 1 preserve recognizable 

sets (Thatcher [16]). Now set 
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R{=t E40 I(Vt, < t)(t' = (K:)(to,...:tn-1 )  

implies K # and K = (irjIr  is  legal  for  t)}. 

(Here, t'  < t means that t'  is a subtree of t.) Set 

= ftC€ IP(t) E R n domain (T)). 

To  show  a' recognizable, it is sufficient to show is recognizable. 

To do this, moreover, it is sufficient to show it for g', which has the 

same definition except that the condition K / 9 is omitted. (This 

follows by intersecting g' with a suitable recognizable set.)  

But the recognizability of ' follows from the general fact  

that if a has state set A, Z' = A X Z, and 

g= (t E 9,I(Vt' <t)(t' =  (q, )(tO,...,tn I ) implies q = IIP(t')lla)), 

then g is recognizable. [We construct below an automaton for S. 

Let B = A  U  (20) ( 2A. Let 

q
i f  M 

tq  
= {= otherwise 

o q if all qi E A and 
C 

)(qo,."" n­M('"­,qn­ =  1 )  =c 

0 otherwise.  

The  inductive  statement  (which we do not prove) is 

1111a,  = q E A (Vt' < t)(t, = (r,1a)(8 0,."'en-) 

implies r  = IP(t)lla  = Ilt'lla,)-
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The  fact  follows  when  we  take  BF  = A.] 

T? T TI T
Define  T'  as  follows  Q  = Q ,q =  qo, and 

(q,(K,  ))  4  u  is a production in  11T'  if  and  only  if  (qU)  4  u 

is a production in K. We must show that T'[R'] = T[9] and that T 

is completely defined on R'. 

Let (q0 ,t) 4, s where s,t E J.0,)t E  '. If we take P(v) 

where v is a tree in 7,(Q  x JT,)  such that (qot) =,  v  both in 

the index and the output tree, we obtain immediately a tree derivable 

(via T) from (qo,P(t)). Thus s can be derived from (qOP(t)), 

so T'[9']  T[R].  Conversely let (qo,t) =* s be a derivation of a 

terminal tree s from t C 6. Every step of this derivation is the  

application of a legal production for the subtree being transformed at  

that point. Label each node of t with the set of productions legal  

for the subtree headed by that node; we obtain a tree in g'. We can  

then mimic the T-derivation with a T' derivation. Thus,  

T'['] :D T[R].  

Finally, we prove that T' is completely defined on g'. To  

do this, let  

q  ft T 
0 1(Ss E ,f((­ t  s.Dq(T) {t E 0 

q E QT' 
We will show by induction that for each t E '0 and 

if t E R P­[Dq  (T)], then T' is c.d. on t starting in state 

q. 
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Suppose that t = (K%)E Z', and let q be such that 

0T 

t E ln P [ 0(T]. Then there is a production t E 1T: (q,%) 4 s 

T tand  thus  (q,(KK))  - s  C f1'.  Thus,  is  completely  defined  on  t 

starting in, q.  

Now let t = (K,)(t0 ...,tnl) and q be such that  

t  P  [Dq (T)]. First, we must find a T El':  (q,(Kc))  4 u 

Now  Pt  E  DT) so we may find a legal it E  H': (q,) 4 u  . Thus, 

it': (q)(Kcr))  4 u  can be found an fl'. Next, we  must  show  that  if 

(rxi) indexes u ; then T' is c.d. on ti starting in r. By  

inductive hypotheses, we have therefore to show E  P­[Dr(T)]  nRit I  . 

But every subtree of a tree in I is in tl; so t E 2. No  

P(t) =, P(u) and 7c is legal for P(t). Thus there is a terminal  

tree s. such that (r,P(t )) =* s because (r,P(t)) indexes 
I i T 

P(t').  Thus, t. E PE [Dr  I)].  The inductive statement follows, and 

since 9' c ' nlP [Dqo(T)], Lemma 1 is proved. 

Proof of Lemma 2. Introduce some notation: if iT is a produc­

tion,  let  rT be  the  right­hand  side  and  itrthe  left­hand  side  of  it. 

Define a new transformation U from L and T as in the proof 

of Theorem 1-2. That is, U =Lx T and  for  v E H1T L L 

define  

B(itqL) =  ftI(qaLrt)  

Here we mean L in the sense of' an I-action on j  
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i.e.,  if  (qT x ) occurs as a variable node on rx, then
I  

(jL(QTX )) ((qLQTx) Thus,  B(iTcqL) CT  U ) 

Let  qq),o) - t'  be  a  production  in  IT exactly when 

there  is  a  production  C=  (q )a) 4 r3t  and  t'  E  B(irq). 

Assertion" For t E ,Oj qT  Q  , if T is completely 

T 
defined on t starting in q T then 

{sI(  Lt  T),t)  *U l  {(w(qTIs  1 q  t) T and  (qL­,)  ={)-L 

(Here, s, t. and w are in 70.) By the assertion, U is the com­

posite LoT when restricted to these inputs for which T is completely 

defined. The theorem thus follows from the inductive statement. 

Proof of the assertion. ( 2 ). Proceed by induction. If 

t =  X E ZO both sides are equal, by definition, to the union of the 

B(nrq  L ) for  which  q occurs  in  LT. Suppose  the  result  for 

t0 ...,tn-l let t = a(to,...tnl). Assume that 

(aw)((j2,t) =*  w  (qLp) *  s).and  2 

Then there is  a  E HT  and 

N(T ,t)  r[(qOtiO00 .(qik­i  )tiki) 

(these are the indices occurring in left-to-right order in the 

derived  tree).  Now (q30  tio ) %T W...,(qiklik­)  =T  Wk­l  If  we1 

apply  qL to  rT(wO,...  ;Wkl))  -we can derive as an intermediate step 
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1700 p­1(qO  q  Pl  )] 

where  (q  :TIC)  j  t  . That as, t'  E B(;qL)  looks like 

tt[  L q 0..(( L T 

where the y's are certain of the x.Is occurring in rit. If now  

C we take this t'  E B(T q )  and substitute the correct t m mmfor 

T 
we know that T is completely defined in state qm on tim. Now  

.  and ; 4 L  s  . The inductive hypothesis  

mam m  ain m)m  

applies, and so  

[( ;j )'t]= s, 0< m < p-i. 
qm m am  

But,  

Vp= t  [) ol...  _ 

is derivable from t in the system U. We conclude that since  

then, in fact, v =t s. The inclusion thus holds in the inductive case.  

Now for the other inclusion (S )  we need to use complete de­

finablity and linearity at essential points. Again proceed by in­

duction; the basis holds, so let t = c(t0 ...;tn 1 ). Suppose T is  
I 
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T 
completely defined on t starting an qT and 

((qLIqT)t)  u  s, s  E o. 

T * 
We must show that there is a w such that (q ,t)  T w and 

Apply one step in the derivation of s in the system U from  

t. We obtain  

where  t'  comes  from  the  right­hand  side  rT of  some  it E  11 so 

that (qLric) J  t, and q occurs in itr.Notice that T is com-
L  

T 
pletely defined on t00 starting in q 01 because the pair  

/T0 T 
qj  occurs in rn  and T is c.d. on t starting in q .  Nov 

let 

(T~t)  =  r  (joti  ..  kltiklI 

Number the index positions 0,1,...,k-1. Similarly in  

­ !  - OP-11t'[(kqj0L ;q3q T)It0  ... ap  I I ]It  ,(q qjP 1) t number the indices 

0,1l...,p-1. Linearity of L guarantees that there is a subset A of 

(0,...,k-l) and a bijection f: (0,...)p-1) -* A such that if 

occurs  at  the  mth  place in t', then ( qt 

occurs at the f(m)t h  place in rnt.  Although this is an inductive 

lemma in itself, its proof should be clear because as far as variables 
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go, L can only permute them or drop them entirely. (Thus p < k.)  

We will use f to construct the tree w needed to establish the  

result.  

Let  

L T N S "'' qT l  

Thus s = t'[so ... sp-l]. Since T is c.d. on t starting in  

T 0 
qjm the hypothesis applies, giving for each m a tree wE r  

such that  

(T t ,fL * 
(j m T W m and (qO J m 

T Now in r{( T ,x s...,(4 ,x  1  substitute w for
L\-i0 ) \k-I Ik-llJ m q3­

(T N(T N  
2' IXf j. At the other positions, say (q, pxwe know  

"NM) f1(m)'  
S 

that there is a tree w so that (qT ,t , i}. ;) This follows, 
£T  

T 
because T is c.d. on t starting in q. Substitute ilz for the 

/T N 0. 

positions kT X)  We obtain a tree w E ,'O and clearly 

T  
(q At) & w.  Also,i  ,q 

because u = ric~w ,...,w I and (qLjriC) t<; the definition of 



insures that (4 Tw because this pair occurs at 

f'(m), 'f(mi)T  

the ruth place in t'. Thus during the L-derivation from W  it 

must occur at the mth place as well. We see that 

L L (q;w)  L otI(qjo,,,o),..,qjp_-Is_Il  

But 

* I:L TNL  

C( ql),t)*t (qjo o),to...,((. j ,tj , and  

,,T msL* s, O<m<p-1. 
qn ,qm M  hnMUm 

Hence, when ((q ,q ),t) r s = t then we have 

T  L(qt)Jr w and (q w) = s. This completes the proof of the lemma 

and the theorem. Q.E.D.  

We are in a position to investigate further properties of  

surface dendrolanguages. Notice that Theorem 11-3 is effective.  

Corollary. The class of surface dendrolanguages is effectively  

closed under intersection vith recognizable sets.  

Proof. Let 5Z  be  recognizable,  and  let T[5i'] be  a  surface 

set. By the proof of Theorem 2 there is a linear transformation 

which is a partial identity on 6. Hence t E L[T[']] iff 

t E T[EO] n a. 

Corollary. Surface dendrolanguages form a subclass of the  

recursive dendrolanguages over E.  

L 
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froof. Given T[6] and t E J', the set (t) is recognizable.  

Now 

t  E R  T[6QJ  n  (t)3  5 

By the previous corollary T[a] n  (t) is a surface set U[9]. But 

U[g]  =  9 'iff 

domain (u)nS =  . 

Domain (U)n  a  is recognizable, so the result follows. 

To prove further properties, we need to define the set of paths 

through a tree. Given a ranked alphabet S, let 2' be the alphabet 

(Srt ),  where 

r'(U)  =I  f  E 0 

fr = otherwise. 

Defanition. Given t E 0 P(t), the set of paths  through t, 

is the subset of 7, defined inductively by 

n-l  
P(O(tO  ...  tni)) =  U {F(w)jw  E P(ti)­

i=C 

If PR C-, then 

P[R]  =U  P(t). 

tE9  
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P is clea3y definable as a linear nondeterministic transforma­

tion. Hence:  

Corollary. If 9 is a surface set, then so is P[g] (ef­

fectively).  

A similar result holds for recognizable sets: 

Proposition. If  p is recognizable, then so is P[G]. 

Proof. Let a = (Asa,.AB.) recognize g. Let B C  A  be  the 

set 

{q  E AI(r  E  0)(ltlla = q 

B is effectively calculable from ( using the solvability of the  

emptiness problem for the sets accepted by automata  aq which have 

final states A= (q) but are  otherwise  the same as a.  Let x E JZ1. 

Construct an automaton (over Z') M9 = (2Qp,F) such that  

(*)  q  E  ItxI6 iff  (St)(11t11( =  q  and  x G P(t)). 

To  do  this,  let  p. =  L(a)  for  X  E  Z.  If  a  ESn,  define Po as 

follows.  Choose  i  <  n­1.  Define 

0 

fq)(  =  (qo '"%.''".n­9  E  Q, qa E  B) 

I.L 04Q) U W Q)
i<n­i  C 

One  verifies  that  (')  holds  with  thus  pL. If  we let 

F  = QC A,  Q  f § )), then  the  lemma  follows  by  (*).  Q.E.D. 
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A  ranked  alphabet  is  monadz.c  if  Z=  for  n  >  1.  We  now 

prove 

Theorem 4. If T[9] is contained in T0,  Z monadic, then 

T[2]  as (effectively) recognizable. 

Proof.  We  may  certainly assume  that  T[91 is  the  range  of  a 

transformation T whose productions have right-hand sides which are 

monadic. T is thus linear, and wll choose certain paths through 

each tree in R  as important input. We may define for q E Q T  and 

any t, the set P(Tq)(t)  of paths chosen by T starting in state 

q.  

If t = X, then P(T,q)(t) contains X exactly when there is  

a  production  (q,%)  4 w in  fT1 

If t = (t0'...tnl), then P(Tq)(t) contains w iff  

w a(w'), and there is a production (q,a) -* u(rx )  in  11
T 

such 

that w' E P(Tr)(t.). We assert that for each q,  

a0{P(T, q)(t)lIt  E 7§  = Hq 

is a recognizable subset of 1 . 

We will not give-the full proof, but an automaton Q  can be 

easily costructed such that 

IjwjI~t= (rj( 1t  EAJ)(w  E  N(T~r)(t))). 

Taking AF = (Qjq E Q), we find that ( recognizes the asserted set  

H of paths. Now let R be the given recognizable set. Then q 
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H n P[R] is a recognizable subset (effectively) of 0 T itself  

defines a nondeterministic finite state mapping of strings in this set.  

Such maps preserve recognizable sets, and so  

T[R] r T[Hq P[91] 

is recognizable. Q.E.D.  

Corollary. The infiniteness problem for the class of surface  

sets is effectively solvable.  

Proof. If 9 is a surface set, P[9] is infinite if and only  

if g is. But P[S] is a recognizable set of strings effectively  

obtainable from 9. The infiniteness problem for such sets is  

decidable. Q.E.D.  

Corollary. The class of surface sets is not closed under inter­

section. 

Proof. Let = 0 U FI U 72 E2 (p), SEl1 =a,'r], S0 = . 

Define ai) C(x),c ai+ 1 (x) = c(iW(x)). Pat 

= (p(a(),,i( (&(X)))j0Ij  > 1) 

2 = p(&(%);Tj(c(X)))Ia > 1. 

9, and  S2  can  both  be  obtained  as  surface  sets  (proof  omitted);  but 

F(81f' g2 ) = fp(o5(x)) 1 U (P(oj(T5(%)))) 

is not recognizable. Q.E.D.  

Now we give an example of an undecidable problem.  
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Corollary. There is no decision procedure for determining  

whether the intersection of two surface sets is empty or not. (Sur­

face sets here mean over arbitrary finite ranked alphabet.)  

Proof. Let S0 = NX),  El  = (ab), Z2 = (a). We  can 

naturally interpret an element of O. as a string in z, and  

conversely. Let (mO,... aM) and (%O,...,m1) be two sequences of  

words from Sl" The Post correspondence problem for these sequences  

is to determine whether there is a sequence of integers io... ik  

such that  

0  k  0  3k 

(There  is  no  algorithm  to  solve  the  Post  problem­for  arbitrary  pairs 

of  sequences  ((O...,cM)(O,...tm))  of  words  over  Z' 

.0  1  1k  
Let L la ba ... jiE 0ba ,Let  

3.1 
w = a b...ba and define D(T) a  ...  . It is easy to construct 

S0  k 

cp as a finite-state mapping of strings. Similarly, let  

Y(z)= .  ....  .- Since 0 and y are finite-state functions, the 
0 lk  

sets S = (f(w,cD(w))jwE L) and 3' = (a(w,'(w))Jw E  L)  are surface 

sets. But S n  s'  = 0 iff Rw E L with 0(w) = TUw). Thus, 

a P 3' = 0 iff there is a solution for the given correspondence 

problem. Q.E.D. 

Other problems are shown unsolvable in [14]; for example,  

equality of surface sets and whether a suiface set is recognizable.  
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3. Translations and target languages.  

Let (R,,T) be a transformational system. The translation de­

fined by (6%T) is the set  

f(y(s),y(t)j(st) E T, s  E 9). 

(Recall T = (s~t)js *t).)  

By Theorem 1 the domain of a ]DFS translation is a context-free  

language. We again wish to consider the ranges of such translations,  

because of their importance for transformational grammars. Define a  

target language as the range of a translation. An immediate question  

a grammarian asks is: "Are target languages recursive sets" For  

NDFS target languages, the answer is yes, and the proof is elegant.  

Lemma 1. The emptiness problem for the class of NDFS target 

languages is effectively solvable. 

Proof. let L = y[T[]]. L =  5 iff T[9] 95. Whether 

T[9] =  0 is solvable. Q.E.D. 

Lemma 2. Let K be an ordinary regular subset of EO Then  

0'  

y-1-[K] is (effectively) a recognizable subset of 90  

Proof.  let (QSO8,a.,F) recognize K. For w E Z' let
0  

8w(q) = 5(q,w). Remark: 8XY= 8  for all x,y 0 

Now  define  a  S­automaton  at by setting 

A  = ([P: Q no ) I 

a= IXfor X-E E ( is not the empty string);  
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C ". ­1  )  =  %­i.  .  

By  our  first  remark, for all t  E  J4,  q E Q  

IltlI5(q) =  8,(q),  where  w  = y(t). 

Hence, if A0 = fPjcp(qo) E F), then a accepts y- [K]. Q.E.D. 

Theorem 5. The class of target languages is closed (ef­

fectively) under intersection with regular sets.  

Proof. Let L = y[T[2]] and let K be regular. Then;  

K n L = y[T[,] n f-[K]]. But by the corollary to Theorem 3,  

T[E] n y-I [K] is a surface set (effectively). The result follows.  

Corollary. Target languages are recursive.  

Proof. Let L be a target language and w E  S. Then w  E L 
0 

iff 0  IwIL  = $; apply Theorem 5 and Lemma 1. Q.E.D. 

Notice that Lemma 2 provides an easy proof of the fact that  

context-free languages are closed under intersection with regular sets.  

(Use the technique of Theorem 5.)  

Finally, as a special result; we demonstrate that the infinite­

ness problem for the class of target languages is solvable. 

We say a tree is a fan if no nodes of rank 1  occur in it. We 

can always prune the nodes of rank 1 from a tree without changing its 

yield. Formally: 

fan(%) = X X E Z0  

fan p(t) = t, p E 1  

fan c(to...t) a(fan(to);o... fan(tn)), n> 0.  
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A tree is a fan if fan(t) = t. Also, y(fan(t)) = y(t), and  

fan is a linear FST. If & is a surface set then so is fan[g];  

and y[fan[S]] =y[].  

Theorem 6. The infiniteness problem for the class of target  

languages is solvable.  

Proof. Let L = y[8]. Then L = y[fan[S]]. L is infinite if  

and only if fan[S] is infinite, as an easy counting argument shous.  

Q.E.D.  

4. A simple extension of the nondeterministic model.  

When carrying out a transformational derivation one checks  

trees to see whether or not transformations apply. For example, a  

transformation which changes sentences to the passive voice applies  

only  to  structures  of the form "noun  phrase--verb--noun phrase". 

Our transformations, as defined, do not have this checking  

ability, because only one node at a time is read and transformed. In  

the example just described; howeverj we are required to check the level  

of nodes NP-V-NP belw the top node S of the input tree. In other  

examples, a structural condition may have to be satisfied which could  

occur at any level in the input tree.  

To remedy (partially) this defect in the basic model we may  

modify our productions. We give them a look-ahead capacity--the local  

output tree (right-hand side) will depend on the state, the symbol  

being read and trafisformed, and a specified number of look-ahead  

symbols, arranged in a tree form.  

The productions will have the form  
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where  s  E ZX,  u  E  xX),  c E S A production will apply  to 

G(to,...,tn-1) if each s occurs at the top of tie [This can be  

formalized as a definition.] The result of application uill be the  

tree in r(Q x ..) obtained by substituting (q',t) for each pair  

(q',x )  occurring in u. 

An FS transformation with templates is a transformation with  

productions like the above. The extended definition provides a  

limited look-ahead capability for nondeterministic mappings. One can  

prove, however, that if (9T) is a transformational system, where T  

has templates, then T[9] is an ordinary surface set. The idea is to  

use the transitions of T in a nondeterministic mapping U which  

guesses that the template expected by T will actually appear. If this  

is the case: U performs the action of T; if not, U becomes un­

defined. Details are omitted.  

5. Creative grammars on trees.  

We  turn  now  to  a  new  type  of  production  which  will  grow  input 

trees to be processed as well as read and destroy input nodes. One  

system using these productions provides an extension of context-free  

grammars to trees. Brainerd [6] has considered regular tree grammars;  

his  definition  can  be  subsumed  here. 

Consider an FS index-erasing production; for example  

C, J)6­Xj)  ­ r, 

/,XI) 
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Here, the  next  states  occur  as  labels  on  the  variables  at  the  bottom 

of the output tree. Another possibility, however, would be to allow 

productions like 

Xi 

Figure 2  

or even  

Figure 3 

In the first of these cases, we would operate next on the tree  

starting in state r, and on the tree P(x2 ) starting in state  

q. In the second case, the next operation would be performed on  

a(p(xl),x 2 ) starting in state q.  

This idea lets us define a new operation on trees (which may be  

nondeterministic). If wve select a starting configuration it may be  

possible to grow index trees nondeterministically ad infinitum before  

the application of index-erasing productions takes place. We will  

call the new productions index-creating. in the first example of an  

index-creating production, no new input was actually created, the  

state q remained stationary. This, of course, is the analogue of a  

pointer remaining stationary in an input string. The creation of a  

new index in the second example is not the analogue of moving backward  
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in  the  input  string  but,  of  using  the  input  str:ng  both  as  a  push­down 

memory  and  as  an  input. 

Example. Consider the monadic productions  

0 LI  I 
(j,) b 

Figure 4  

and the starting configuration (qS()). This system produces a 

dendrolanguage Ihich can be identified with  L(G), where G is a 

CFG with productions 

S -4 aSS  I  ab. 

Notice, however, that derivations in the tree case correspond to left­

to­right  derivations  in  the  grammar.  As  is  well­Imown,  there  is  no 

loss of  generality  in  doing  left­to­right  derivations  exclusively  in a 

gramar. We shall not prove it, but this property is also true for a 

class of tree grammars. 

One more word--we shall not use creative productions to define 

mappings.  We  shall  fix one  configuration  to  start  from,  and  will  con-

sider  sequences  cf  producbions  which  from  this  configu  ation  eventually 

produce state-free trees or terminal trees. Thus we are really doing  

grammars. 
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Consider the whole tree t which may occur labeled by a state  

q on the right-hand side of some creative production. The pair (q~t)  

may itself by considered an index. If t = x E X: then we get an  

index in the old sense. The new index set is, however, Q X (X);  

instead of Q x X. Formally:  

Definition. A pair (q5$(xo,... Xn_l)) 4 u is an index­

creating production if u E  Y (Q X.7 (X)). 

Definition. For R a given set of creative productions, and  

t EE X J), the set of trees t' directly generated by t is  

defined inductively.  

(i) if t E ZO, then ft'ft t') =  , 

(ii) if t = (q,;), there are 2 cases depending on the form  

of E:  

(a) if t E. , then there is some pDroduction (qt) - u 

in ic; and t' = u; 

(b) if t a(tZ0 ... ,tn-l)9 then there is a production  

(q,c) ­ u in ir and t' is obtained from u by substituting t 

for x , j = 0,.. .n-1, whenever x occurs in an index of u. 

(iii) If t = c(to0 ...tn9l); then there is an i < n such  

that t generates t! and t' = a(to...,t{,.. l  

At this point we had better say something about substitution as  

mentioned in part (b) of the last definition. We shall give a formal  

definition and use it later to prove a result. This definition can  

also be used t6 justify formally what we said in previous sections.  
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Definition. Let u E Y x E(XmY)) and let (so;...,Sm-l)  

be a fixed sequence of terms. The function Subxo." .U),  or 

S(S  fu) is defined by induction on u* 

(i) if u=X,= Q%ju =x;  

(ii)if u = (q,%), s(xilu  ­­ (q,%); 

if u (qqxj, SGj'u) (qs  

if u = (qjp(to...,tm)), then  

s. s SG  U=x"Psi to0).  A tm)))  o 

(iii) if u  = a(Uo,...,uk1 ), then 

sG' , ... <iu)= hi s ui.j).  

Definition. A top-dowm creative tree grammar over F is a  
0 

tuple (ZQs r) where, Q  is a set of states, D is a set of index­

creating productions over Q and E. and S is a finite subset of 

x  ­)  (the  starting  configurations). 

As before, let be the reflexLve, transitive closure of the  

direct generation relation.  
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Definition, For G a tree grammar, the dendrolanguage  

generated by G is the set  

;PG {t E 4 I(Ss  E S)s t} 

Example. Let =  (C),  Z2 = (B], = (H],Z4 S1 Z0 = (a]. Let  

(q0,q 2) and let the initial configuration be (k0)H(a)). We  

have the productions  

(q,H(x)) - (q 0 ,H(H(x)))IC((q,x),(q 2,x),(qx),a) 

(q1,n(x)) 4 C((q,x),(q2,x),(q 2,x),a) 

(q2,H(x)) -4 B(a,(q2,x))  

(qa)  4 a  (i  = 0,1;2).  

Applying  the  first  production,  we derive  a  "string"  (qo,O(a)),  n > i. 

We then apply index-erasing productions which at each level add 2n+l  

2 
a's to the yield. The yield of the resulting tree is an  

The index-erasing productions in this grammar correspond to the  

application of the recursion equation  

f(n+l) = f(n) + 2n+l.  

0 

If  P  E I  [X]  is  a  polynomial,  and  if  k  E U, then  the  language 

[a (n) In  >_(1) where =(x) p.(x)kt can be obtained as the 

i=l 

yield of a creatLve dendrolanguage. A grammar for such a dendro­

language  would  employ  a  state  qf  for  each  function  f  in  a  system 



58  

of  recursion  equations  needed  to  describe  (.  The  following  theorem, 

therefore,  may  be  surprising. 

Theorem 7. Every creative dendrolanguage can be generated by a  

one-state creative dendrogrammar.  

Proof. The problem with reducing many states to one is that  

during application of index-erasing productions, index subtrees may be  

duplicated an then processed in different ways. The index subtrees,  

however, are obtained from the starting trees by application of  

creative productions. Therefore, when a new index symbol is created,  

we must take into account the possible states in which at could be  

read off by an index-erasing production. The creative productions in  

a grammar will therefore be modified to encode state-transitions in  

their indices. If Q is the set of states in the original grammar,  

the new index labels will be of the form a(q) where 6 E S, and  

q E Q. The rank of a (q) will also be changed. If Q has p  

states, (p > 2), then r'(a (q )) = p-r(q). For notational con­

venience, we will relabel variables as follows:  

x(q) = 
I pi+q­1 

where q E Q  ;[,...,p). 

Thus, if H E Z has old rank 1, then H will have new 

rank p, 'selection by the new grammar of x M occurring as an index 

H (q )  on will correspond, in the old grammar, to selecting x. and 1 

going to state j. 

As illustrations, let us encode some productions. Suppose 

Q  =  [1,2,3]. Let 
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(la(x)) -4(2,H(H( x- ­

be an old production. Let be the single state of the new grammar.  

We  rewrite  it  as  shown  in  Figure  5. 

H0)  ­0­ 0 , 

Figure  5 

Next, suppose  

(3,H(x0)) - C((2,x0),(2,xo),(3,xo))  

is another production. Its encoding would be  

H(3()/) M x(2)x(P) C ' (2) )X(2) .X(3)  

Finally, if  

(2,K(xox)) -+C((4,Xo),(3,x),2,xl))  

is a production, its encoding is  

*j(3) .K(2)( (1) (2)(3)(:1)x(2). (3)4C (Xc1 ;( . .,(2)  

We can now proceed with the proof. We must encode productions, whose  

right-hand sides are elements of ( X 7­(Xn)).  Let 

A = (q) LT E Z q E Q). We first encode members of T%(X ) into En  
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= 
as  follows.  Let  q  E  Q  l,...,p]. DefineJ.A(Xp.n);  this  is  done 

maps  eq:  S'()  - 7(Xn)  by simultaneous induction: 

= X(q) eq(X)  

Now  we  can  encode  any  u  E  Y5Q x 75Xn)).  Define 

e  q(P~eOI.to,...,t_  )  1  )  ­­ ;((to);  ,Ie(sn_ 1  ) )  ps0 ...  . s -

E(x) = 

Here,  is  the  unique  neir  state; and so  3:  71(Q 
S
X .7(x

n 

$S(f.) X A(X  )). one proves with a tedious but straightforvard  

argument by induction on u, using our previous definition of sub­

stitution, thar for fixed so,...Ism  E T,(X +l)  and any  

u E 7  1Q5­Z(X,+)) that  

ef  
,e1(s)  

(* 
S~ (fau))= 

where I < i < p; 0 < j < m. Also (by induction) e is a one-to-one 

function; and if t E j40 then (t) = t. 
'S 

Now let G' = (z U A*)A['%So]111?) where G =  (s,QSOfl). If 

icE H1, say  (qo,  ..  'Xn­i)  -) u)  let  E(n)  be  the  production 

http:q(P~eOI.to
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Set H' ((T)Iit  E E).  

Let t t' mean that t directly generates t' by applica­

tion of the production n. Assertion: For any t  E7r(Q X  ) if 

then there is a t' E T.(Q  X 7 ) such that 

t  =  t'  and  w­ =  (t'). 

The theorem follows from this assertion because is 1-1 and if 

t E J 0 then 5(t') =  t. Thus, derivations correspond exactly in 
t E, 

both grammars. 

The proof of the assertion is by induction on t) and has three 

main cases: 

(i) If t = X E Z the assertion is vacuously true.  

(ii) If t = (qs) where s E 7 0 ,  then two subcases arise. 

(a)  s  = X E  s0 . Then 6(t) =  (.,eq()).  Now  5(1c) 

must be ((.,eq(?)) _ (u)),  where u E .50. Taking t'  = u satisfies 

the assertion. 

(b) s = p(so,...,sm). Then, 

E(t) = (­,p(q) (s5  ))),  0< j  m,  <  I  <p. 

Thus,  
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and  so 

l= ... xm) -

Now by hypothesis of the assertion  

e( s.)  
6(t)  w=u 

and  we  know 

t  =I  t'=SjI) 

By (*) above, E(t')  =  w. so the assertion holds in case (il). 

(iii) t = a(t0 ,...tnl) and the assertion holds for 

tO ,...*2tn- 1 No­i.  

E(t) = U(E(t0)I...M  (tn -1)).  

Since E(t) =,(,) w. there must be i  < n so that E(ti)  =_(.) w., 

and w =  c( (to,...,wi,...,(tn)). By inductive hypothesis, 

t. =  t'  and E(t!) =  w. for some t'.  Thus, 

U =I  t' = (t0,...;ta; ... tn-l) 

so that w = E(t'). Q.E.D.  

We shall not repeat the definition here, but an 01 (outside-in)  

macro  granmar  F­scher  [  9 ]  is  exactly  a  one­state  creative  dendrogrammar 
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which produces only  the  yield  of  the terminal tree. 01 grammars 

produce exactly the indexed languages of Aho [1]. Thus (the 

yield of) a creative dendrolanguage is always an indexed language, 

and conversely (modulo the empty string). 

In the spirit of Brainerd [6], one can define cont ext-free tree  

grammars  in  a  natural  way.  Let  E  =  N U T N  n  T  =  0  be  a  ranked 

alphabet. Consider productions of the form a(xo,... xn1l) 4 U, 

where 5 E N and u E  E(Xn).  Suppose  s  = a(SO...Jsnjl)  is  a 

t E I.subtree of a tree  

Let s' = S(' u.  Replace the subtree s by s'. The result­

ing tree t' is defined to be the tree obtained from t by the given  

production. 

Definition. Let  

G = (zSot) 

where Z  is as above, SO  is  a  finite  subset  of  J.  and  H  is  a 

finite  set  of  productions.  G  is  a  context­free  dendrogrammar. 

Definition.  The  dendrolanguage  generated  by  G  is 
C 

(fw  ET  (  0o  S  )(S o  =*  w). 

A  derivation  in  a  CF  dendrogramar  is  said  to be  top­down  if 

whenever a symbol a  is rewritten using a production a  is not a 

descendant of any node in N. This is the analogae of a left-to­

right  derivation  in  an  ordinary  context­free  grammar.  It is not hard 
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to  show  (in  fact  it  follws  from  work  of  Fischer  [91)  that  if  G  is 

any  CF  dendxograrmar  (CFDG), then  any  tree  in  Z(G)  may  be  obtained 

by  a  top­down  derivation.  Since  the  one­state  creative  dendrogrammars 

also work  from  the  top  down,  it  is  clear  that  the  context­free  dendro-

languages are exactly the creative dendrolanguages. Taking yields, we 

have the equation 

recognizable dendrolanguages context-free dendrolanguages  
context-free languages indexed languages  

One may also use creative productions to define transformations  

on trees, thus obtaining creative surface sets and target languages.  

Decision problems for these sets remain solvable; in particular,  

recursive target languages are still obtained. Creative transforma­

tions, however, do not seem to reflect properties of transformations  

proposed  for  natural  languages,  so  we  have  not  studied  them  here. 
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