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\S 1. Introduction.

The following is a well-known Hurewicz-Kuratowski’s theorem for separa-

ble metric spaces $R$ and $A$ (W. Hurewicz [4], C. Kuratowski [6; 7]):

In order that a non-empty space $R$ has the covering dimension $\leqq n$, it is
necessary and suJficient that there exist a space $A$ with $\dim A=0$ and a closed
continuous mapping $f$ of $A$ onto $R$ such that the order of $f$ is at most $n+1$ .

In the above $\dim$ $A$ denotes the covering dimension of $A$, and the order

of $f$ is the supremum of $\{|f^{-1}(x)| ; x\in R\}$ , where $|f^{-1}(x)|$ are the cardinal
numbers of the sets $f^{-1}(x)$ . This theorem has been extended by K. Morita
[14] to the case when $R$ and $A$ are metric spaces. The classical Hurewicz-
Kuratowski’s theorem had been rather isolated from the general trends of

dimension theory for separable metric spaces. In the framework of dimension
theory for general metric spaces which has been constructed by the author
this theorem occupies an important position [17, \S 3]. It seems to the author
that closed mappings defined on O-dimensional spaces will be one of powerful

instruments to clear up the relation between the covering dimension and the
inductive one of non-separable spaces.

In \S \S 2 and 3 we shall characterize a non-metrizable space $R$ which has
the following property:

$(*)$ $R$ is the image of $a$ O-dimensional space under a closed continuous
mapping of $order\leqq n+1$ .

It will be shown that a space has this property if and only if there exists

a directed family of closed coverings of order $\leqq n+1$ , which follows out the

topology of a space (cf. Definitions 2.1 and 2.2 below). We shall notice in \S 4

that the inductive dimension of a space which admits a directed family with

the property stated above cannot be greater than $n$ . It is to be noted that

Theorem 4.1 below has been obtained independently by Soviet mathematicians,

I. Proskuryakov–B. Ponomarev–B. Pasynkov, under a more restrictive assump-

tion (P. Alexandroff [1, p. 80], B. Pasynkov [21]). It is also to be noted that

Corollaries 4.2 and 4.4 had been essentially proved by K. Morita (cf. Remark
4.7). As an immediate consequence of our results it will be shown, with the
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aid of examples constructed by Lunz and others, that we cannot expect that

Hurewicz-Kuratowski’s theorem may be valid even for the case when $R$ is a
compact Hausdorff space (Remark 4.11 below). In \S \S 5 and 6 we shall give

analogous theorems to Hurewicz-Kuratowski’s one for the case when $R$ is a
non-metrizable space, by introducing the notion ’ vague order ‘, instead of
‘ order ’, of mappings. In \S 7 we shall prove that any CW-complex $R$ whose

combinatorial dimension is $n$ has the property $(*)$ .
This paper includes a development in detail of our brief note [16]. The

author wishes to thank very much Professor K. Morita for his advice and
encouragement. He also expresses here his hearty thanks to Mr. Y. Sasaki

who was kind enough to translate voluminous Russian literature.

\S 2. Construction of mappings defined on $0$-dimensional spaces, from

directed families.

Let $R$ be a topological space. The small and the large inductive dimen-

sion, ind $R$ and $IndR$, are defined inductively as follows. For the empty set
$\phi$ let ind $\phi=Ind\phi=-1$ . We call $indR\leqq n$ , if for any point $x$ of $R$ and any

neighborhood $G$ of $x$ there exists an open neighborhood $H$ of $x$ with $H\subset G$

such that $ind(\overline{H}-H)\leqq n-1$ . We call $IndR\leqq n$ , if for any pair $F\subset G$ of a
closed set $F$ and an open set $G$ there exists an open set $H$ with $F\subset H\subset G$

such that $Ind(\overline{H}-H)\leqq n-1$ .
Let $\mathfrak{F}=\{F_{\alpha} ; \alpha\in A\}$ be a collection of subsets of $R$ and $x$ a point of $R$.

Then the order of $\mathfrak{F}$ at $x$, order $(x, \mathfrak{F})$, is the number of elements of $\mathfrak{F}$ which

contain $x$ . The order of $\mathfrak{F}$ , order $\mathfrak{F}$ , is the supremum of {order $(x,$ $\mathfrak{F});x\in R$ }.

Let $H$ be a subset of $R$ . Then the star of $H$ with respect to $\mathfrak{F},$ $S(H, \mathfrak{F})$ , is the

sum of $F_{\alpha}\in \mathfrak{F}$ with $ H_{\cap}F_{a}\neq\phi$ . The restriction of $\mathfrak{F}$ to $H,$ $\mathfrak{F}\wedge H$, is the col-

lection $\{F_{\alpha}\cap H;\alpha\in A\}$ . $\overline{\mathfrak{F}}$ denotes a closed collection $\{\overline{F}_{\alpha} ; \alpha\in A\}$ . Let $\mathfrak{H}=$

$\{H_{\beta} ; \beta\in B\}$ be another collection of subsets of $R$ . A mapping $\varphi$ of $A$ into $B$

is called a refine-mapping if for any $\alpha\in A,$ $F_{\alpha}\subset H_{\varphi(\alpha)}$ is valid. When there

is a refine-mapping $\varphi:A\rightarrow B$, we say that $\mathfrak{H}$ is refined by $\mathfrak{F}$ or abbreviatedly
$\mathfrak{H}>\mathfrak{F}$ . Let $F=\{\mathfrak{F}_{\lambda} ; \lambda\in\Lambda\}$ be a system of collections of subsets of a space
$R$ . Then the order of $F$, order $F$, is the supremum of {order $\mathfrak{F}_{\lambda}$ ; $\lambda\in\Lambda$ }.

DEFINITION 2.1. Let $F=\{\mathfrak{F}_{\lambda} ; \lambda\in\Lambda\}$ be a system of collections of subsets

of a topological space R. $F$ is called to follow out (the topology of) $R$ locally,

globally and fully if the following conditions are respectively satisfied.

(1) For any point $x$ of $R$ and any open set $G$ with $x\in G$ there exists a
$\lambda\in\Lambda$ with $S(x, \mathfrak{F}_{\lambda})\subset G$ .

(2) For any pair $F\subset G$ of a closed set $F$ and an open set $G$ of $R$ there

exists a $\lambda\in\Lambda$ with $S(F, \mathfrak{F}_{\lambda})\subset G$ .
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(3) For any open covering $\mathfrak{G}$ of $R$ there exists a $\lambda\in\Lambda$ with $\mathfrak{G}>\mathfrak{F}_{\lambda}$ .
DEFINITION 2.2. Let $F=\{\mathfrak{F}_{\lambda}=\{F_{a} ; \alpha\in A_{\lambda}\};\lambda\in\Lambda\}$ be a system of collec-

tions of subsets of a topological space R. $F$ is called a directed family with
$\{A_{\lambda}, \varphi_{\lambda/t}\}$ if the following three conditions are satisfied.

(4) $A$ is a directed set.
(5) For any ordered pair $\mu<\lambda$ there exists a mapping $\varphi_{\lambda\mu}$ : $A_{\lambda}\rightarrow A_{\mu}$ such

that $\{A_{\lambda}, \varphi_{\lambda\mu} ; \lambda\in\Lambda\}$ forms an inverse limiting system of $A_{\lambda}$ .
(6) For any ordered pair $\mu<\lambda$ and any $\alpha\in A_{\mu}$ it holds that

$F_{\iota t}=\cup\{F_{\beta} ; \varphi_{\lambda/},(\beta)=\alpha\}$ .

THEOREM 2.3. If a non-empty topological space $R$ has a directed family

$F=\{\mathfrak{F}_{\lambda}=\{F_{\alpha};\alpha\in A_{\lambda}\};\lambda\in\Lambda\}$ , with an inverse limiting system $\{A_{\lambda}, \varphi_{\lambda\mu}\}$ , of
locally finite closed coverings of $order\leqq n+1$ which follows out $R$ locally, then

there exist a completely regular space $A$ with ind $A=0$ and a closed continuous
mapping $f$ of $A$ onto $R$ with order $f\leqq n+1$ .

PROOF. Consider $A_{\lambda},$ $\lambda\in\Lambda$ , as topological spaces with the discrete top-

ology. Let $B$ be the limit space of $\{A_{\lambda}, \varphi_{\lambda\mu}\}$ . Let $x$ be an arbitrary point of
$R$ and $B_{\lambda}=\{\alpha;x\in F_{\alpha j}\in \mathfrak{F}_{\lambda}\},$ $\lambda\in\Lambda$ . Then for any $\lambda\in\Lambda,$ $B_{\lambda}$ is a non-empty

finite subset of $A_{\lambda}$ . Moreover for any $\mu<\lambda$ we have $\varphi_{\lambda\mu}(B_{\lambda})\subset B_{\mu}$ . Hence
$\{B_{\lambda}, \varphi_{\lambda/l}|B_{\lambda}\}$ forms an inverse limiting system and we have $\lim\{B_{\text{{\it \‘{A}}}}, \varphi_{\lambda\mu}|B_{\lambda}\}\neq\phi$ .
Let $A$ be the aggregate of points $a=(\alpha_{\lambda} ; \lambda\in\Lambda)\in B$ such that $\cap\{F_{\alpha_{\lambda}} ; \lambda\in\Lambda\}$

$\neq\phi$ . Then $A$ is a completely regular space with ind $A=0$ .
Define $f;A\rightarrow R$ such as $f(a)=\cap\{F_{\pi_{\lambda}(a)} ; \lambda\in\Lambda\}$ , where $\pi_{\lambda},$

$\lambda\in\Lambda$ , are the

projections of $A$ into $A_{\lambda}$ . Then $f$ is onto from the above observation. More-

over $f$ is continuous, since $F$ follows out $R$ locally. To prove order $f\leqq n+1$ ,

assume that there exists a point $x$ of $R$ such that $|f^{-1}(x)|>n+1$ . Let { $a_{i}$ ;

$i=1,$ $\cdots$ , $n+2$ } be a system of mutually different points of $A$ with $f(a_{i})=x$,

$i=1,2$ , $\cdot$ .. $n+2$ . Let $\lambda$ be an index of $\Lambda$ such that $\{\pi_{\lambda}(a_{i});i=1, n+2\}$

forms a system of mutually different indices of $A_{\lambda}$ . Then the order of $\mathfrak{F}_{\lambda}$ at
$x$ is not less than $n+2$ , which is a contradiction. Hence we have order $f\leqq n+1$ .

To prove the closedness of $f$, let $C$ be an arbitrary non-empty closed

subset of $A$ and $x$ an arbitrary point of $\overline{f(C)}$ . Let $ D_{\lambda}=\{\alpha;x\in F_{\alpha}\in \mathfrak{F}_{\lambda},f(C\lambda\cap$

$F_{a}\neq\phi\},$ $\lambda\in\Lambda$ ; then $|D_{\lambda}|<\infty$ . Since $S(x, \mathfrak{F}_{\lambda})$ contains $R-\cap\{F_{a} ; x\not\in F_{\alpha}\in \mathfrak{F}_{\lambda}\}$

$=U_{\lambda}$ and the latter is an open neighborhood of $x$ by the local finiteness of
$\mathfrak{F}_{\lambda}$ , we have $ D_{\lambda}\neq\phi$ for any $\lambda\in\Lambda$ . Let $\lambda<\mu$ be an arbitrary ordered pair

and $\beta$ an arbitrary index of $D_{1}$ ; then $ f(C)_{\cap}F_{\beta}\neq\phi$ and $x\in F_{\beta}$ . Let $\alpha=\varphi_{\mu\lambda}(\beta)$ ;

then $ f(C)_{\cap}F_{\alpha}\neq\phi$ and $x\in F_{\alpha}$ by the inequality $F_{\beta}\subset F_{(t}$ . Therefore $\varphi_{\mu\lambda}(D_{\mu})$

$\subset D_{\lambda}$ . Since $ f(C)_{\cap}U_{\lambda}\neq\phi$ , we have $ C\cap f^{-1}(U_{\lambda})\neq\phi$ . Since $f^{-1}(U_{\lambda})\subset U\{\pi_{\lambda}^{-1}(\alpha)$ ;
$\alpha\in D_{\lambda}\}$ , we have $ E_{\lambda}=\{\alpha;\alpha\in D_{\lambda}, C\cap\pi_{\lambda}^{-1}(\alpha)\neq\phi\}\neq\phi$ for every $\lambda\in\Lambda$ .

Since for any pair $\mu<\lambda$ it holds that $\varphi_{\lambda\mu}(E_{\lambda})\subset E_{\mu},$ $\{E_{\lambda}, \varphi_{\lambda\mu}|E_{\lambda} ; \lambda\in\Lambda\}$

forms an inverse limiting system consisting of non-empty compact spaces $E_{\lambda}$ .



104 K. NAGArVII

Hence $E=\lim\{E_{\lambda}, \varphi_{\lambda\mu}|E_{\lambda}\}$ is not empty. Let $(\alpha_{\lambda} ; \lambda\in\Lambda)$ be an arbitrary point

of $E$ ; then $\bigcap_{\backslash }\{F_{\alpha_{\lambda}} ; \lambda\in\Lambda\}=x$ . Hence we have $E\subset A$ . Let $a$ be an arbitrary

point of $E$ ; then $\pi_{\overline{\lambda}^{1}}(\pi_{\lambda}(a))\cap C\neq\phi$ for any $\lambda\in\Lambda$ . Hence we have $a\in\overline{C}=C$.
On the other hand we have already known that $f(a)\in f(E)=x$. Hence $x\in f(C)$

and the closedness of $f$ is proved. Thus the proof is completed.

THEOREM 2.4. If a non-empty topological space $R$ has a directed family
$F=\{\mathfrak{F}_{\text{{\it \‘{A}}}}=\{F_{\alpha};\alpha\in A_{\lambda}\};\lambda\in\Lambda\}$ , with an inverse limiting system $\{A_{\lambda}, \varphi_{\lambda\mu}\}$ , of
locally finite closed coverings of order $\leqq n+1$ which follows out $R$ fully, then

there exist a paracompact Haudorff space $A$ with $IndA=0$ and a closed con-
tinuous mapping $f$ of $A$ onto $R$ with order $f\leqq n+1$ .

PROOF. Let $A,$ $f:A\rightarrow R$ and $\pi_{\lambda}$ ; $A\rightarrow A_{\lambda}$ be the same as constructed in the

proof of the above theorem. Since $F$ follows out $R$ fully, it does so locally.

Hence $f$ is a closed continuous onto mapping of order $\leqq n+1$ . Thus what we
have to do is to prove that $A$ is a paracompact space with $IndA=0$ .

Let $\mathfrak{G}$ be an arbitrary open covering of $A$ . For every point $x$ of $R$ let

$f^{-1}(x)=\{a(x, 1), \cdot.. a(x, m(x))\}$ , where $m(x)=|f^{-1}(x)|$ . Let $V(x, i)$ be an open

neighborhood of $a(x, i)$ such that $\{V(x, i);i=1, \cdots , m(x)\}$ is a mutually disjoint

collection which refines $\mathfrak{G}$ . Let $W_{x}=U\{V(x, i);i=1, \cdots , m(x)\}$ and $V(x)=$

$R-f(A-W_{x})$ ; then $V(x)$ is an open neighborhood of $x$ .
Since $F$ follows out $R$ fully, there exists an index $\lambda\in\Lambda$ such that $\mathfrak{F}_{\lambda}$

refines $\{V(x);x\in R\}$ . Then the following inequalities hold:

$\{W_{x} ; x\in R\}>\{f^{-1}(V(x));x\in R\}$

$>\{f^{-1}(F_{\alpha});\alpha\in A_{\lambda}\}>\{\pi_{\lambda}^{-1}(\alpha);\alpha\in A_{\lambda}\}$ .

Since $\{\pi_{\lambda}^{-1}(\alpha);\alpha\in A_{\lambda}\}$ is mutually disjoint, we can get a mutually disjoint

open covering $\{U_{x} ; x\in R\}$ of $A$ such that $U_{x}\subset W_{x}$ for every $x\in R$ by an
easy transfinite induction on $x$ with an arbitrary well-ordering. Since $U_{x\cap}$

$(U\{V(x, i);i=1, \cdots , m(x)\})=U_{x}\cap W_{x}=U_{x}$ ,

$\{U_{x}\cap V(x, i) ; i=1, \cdots , m(x), x\in R\}$

is a mutually disjoint open covering of $A$ which refines $\mathfrak{G}$ . Thus we can con-
clude that $A$ is a paracompact space with $IndA=0$ and the theorem is proved.

Let us state here a sufficient condition for the existence of a directed
family of closed coverings of order $\leqq n+1$ .

THEOREM 2.5. Let $U=\{\mathfrak{U}_{\lambda}=\{U_{aj} ; \alpha\in A_{\lambda}\} ; \lambda\in\Lambda\}$ be a family of locally

finite coverings of a topological space $R$ with order $U\leqq n+1$ and $\{A_{\lambda}, \varphi_{\lambda\mu} ; \lambda\in\Lambda\}$

an inverse limiting system, which sayisfy the following condition:
(7) For any ordered pair $\lambda<\mu$ and any $\beta\in A_{\mu},\overline{U}_{\beta}$ is contained in $U_{\alpha}$ , where

$\alpha=\varphi_{\mu_{\lambda}}(\beta)$.
Setling, for any $\lambda$ and any a $\in A_{\lambda}$ ,

$F_{a}=\bigcap_{\mu>\lambda}(\cup\{\overline{U}_{\beta} ; \beta\in A_{/}, \varphi_{\mu_{4}}(\beta)=\alpha\})$ ,
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$F=\{\mathfrak{F}_{\lambda}=\{F_{\alpha} ; \alpha\in A_{\lambda}\};\lambda\in\Lambda\}$ is a directed family of locally finite closed cover-
ings of order $\leqq n+1$ with an inverse limiting system $\{A_{\lambda}, \varphi_{\lambda\mu}\}$ .

PROOF. Let $\lambda<\mu$ be an arbitrary ordered pair of $\Lambda$ and $\alpha$ an arbitrary

element of $A_{\lambda}$ . First we prove $F_{\alpha}\supset\cup\{F_{\beta} ; \varphi_{\mu\lambda}(\beta)=\alpha\}$ . Let $\xi>\lambda$ ; then there

exists a $\nu$ with $\nu>\xi$ as well as $\nu>\mu$ , and it holds that

$\cup\{\overline{U}_{\gamma} ; \varphi_{\nu},.(\gamma)=\alpha\}=\cup\{\cup\{\overline{U}_{r} ; \varphi_{\nu\xi}(\gamma)=\delta\} ; \varphi_{\xi\lambda}(\delta)=\alpha\}$

$\subset||\{U_{\delta};\varphi_{\xi^{j_{\backslash }}}(\delta)=\alpha\}$ .
Hence we have

$F_{\alpha}=(\cap\{\cup\{\overline{U}_{\delta} ; \varphi_{\nu\lambda}(\gamma)=\alpha\} ; \nu>\mu\})$

$\cap(\cap\{U\{\overline{U}_{\delta} ; \varphi_{\xi\lambda}(\delta)=\alpha\} ; \xi\}\mu, \xi>\lambda\})$

$=\cap\{\cup\{\overline{U}_{\delta} ; \varphi_{\nu\Lambda}(\gamma)=\alpha\};\nu>\mu\}$

$=\cap\{U\{\cup\{\overline{U}_{\gamma} ; \varphi_{\nu_{f^{\prime}}}(\gamma)=\beta\} ; \varphi_{\rho_{4}}(\beta)=\alpha\} ; \nu>\mu\}$ .
On the other hand it is evident that

$\cup\{F_{\beta} ; \varphi_{\mu\lambda}(\beta)=\alpha\}$

$=U\{\cap\{\cup\{\overline{U}_{\gamma} ; \varphi_{\nu\mu}(\gamma)=\beta\} ; \nu>\mu\} ; \varphi_{\mu\lambda}(\beta)=\alpha\}$ .

Therefore we have $F_{\alpha}\supset U\{F_{\beta} ; \varphi_{\mu\lambda}(\beta)=\alpha\}$ .
To prove $F_{\alpha}\subset U\{F_{\beta} ; \varphi_{\mu^{j_{\downarrow}}}(\beta)=\alpha\}$ , let $x$ be an arbitrary point of $F_{\alpha}$ . For

each $\nu>\mu,$ $x$ is a point of $U\{\cup^{1}\{\overline{U}_{\gamma} ; \varphi_{\nu\mu}(\gamma)=\beta\};\varphi_{\mu\lambda}(\beta)=\alpha\}$ . Hence

$B_{\mu}(\nu)=\{\beta;x\in\cup\{\overline{U}_{\delta} ; \varphi_{\nu\mu}(\gamma)=\beta\}, \varphi_{\mu_{A}}(\beta)=\alpha\}$

is a finite and non-empty subset of $A_{\mu}$ . When $\nu>\nu^{\prime}>\ell 4$ , it is evident that
$B_{r},(\nu)\subset B_{\mu}(\nu^{\prime})$ . To prove $\cap\{B_{\mu}(\nu);\nu>\mu\}\neq\phi$ , assume the contrary. Let $\nu_{0}$ be

a fixed index with $\nu_{0}>\mu$ and $B_{\mu}(\nu_{0})=\{\beta_{1}$ , $\cdot$ . $\beta_{m}\}$ . Then for every $i$ with
$1\leqq i\leqq m$ there exists an index $\nu_{i}$ with $\nu_{i}>\mu$ such that $\beta_{i}\not\in B_{\mu}(\nu_{2})$ . Let $\nu_{m+1}$

be an index such that $\nu_{m+1}>\nu_{i}$ for $0\leqq i\leqq m$ ; then $B_{\mu}(\nu_{m+1})\subset B_{f^{f}}(\nu_{0})$ and $B_{\mu}(\nu_{i})$

$\supset B_{\mu}(\nu_{m+1})\exists\ni\beta_{i}$ for $1\leqq i\leqq m$ . Hence we have $ B_{\mu}(\nu_{m+1})=\emptyset$ , which is a contra-

diction. Therefore $\cap\{B_{\mu}(\nu);\nu>\mu\}$ is not empty and contains an element,

say $\beta_{0}$ . Then $\varphi_{\mu\lambda}(\beta_{0})=\alpha$ and for any $\nu$ with $\nu>\mu,$ $x$ is contained in $U\{\overline{U}_{T}$ ;
$\varphi_{\nu\mu}(\gamma)=\beta_{0}\}$ . Thus $x$ is contained in $\cap\{U\{\overline{U}_{\gamma} ; \varphi_{\nu\mu}(\gamma)=\beta_{0}\};\nu>\mu\}$ and hence

so in $U\{F_{\beta} ; \varphi_{\mu 4}(\beta)=\alpha\}$ . Therefore the inequality $F_{\alpha}\subset U\{F_{\beta} ; \varphi_{t^{\ell}},.(\beta)=\alpha\}$ is

proved.

Finally we show that each element of the family $F$ is a closed covering

of order $\leqq n+1$ . For any $\lambda$ and any $\alpha\in A_{\lambda}$ , it is almost evident that $F_{\alpha}$ is a
closed subset of $R$ which is contained in $U_{o\}}$ . Thus the order of $\mathfrak{F}_{\lambda}$ is at most
$n+1$ . To prove that $\mathfrak{F}_{\lambda}$ covers $R$, let $x$ be an arbitrary point of $R$. Setting

$C_{\mu}=\{\alpha;x\in U_{\alpha}\in \mathfrak{U}_{J}\}$ , $\mu>\lambda$ ,

it is evident that $\{C_{\mu}, \varphi_{\mu\nu}|C_{\mu} ; \mu>\nu>\lambda\}$ forms an inverse limiting system.
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Since $C_{\mu}$ is a finite and non-empty subset of $A_{\mu}$ for every $\mu>\lambda,$ $\lim\{C_{\mu}, \varphi_{\mu\nu}|C_{\mu}\}$

is not empty and hence contains an element $(\alpha^{0}(\mu);\alpha^{0}(\mu)\in C_{\mu}, \mu>\lambda)$ . For
any $\mu,$ $\nu$ with $\mu>\lambda,$ $\nu>\lambda,$ $\varphi_{\mu\lambda}(\alpha^{0}(\mu))$ coincides with $\varphi_{\nu\lambda}(\alpha^{0}(\nu))$ . Denote this

common value by $\alpha^{0}(\lambda)$ . Then $F_{\alpha^{0}(\lambda)}$ contains $x$, since $x\in U_{\alpha^{0}(\mu)}$ for every
$\mu>\lambda$ . Therefore $\mathfrak{F}_{\lambda}$ is a covering and the theorem is proved.

\S 3. Construction of directed families from mappings defined on $0$-dimen-

sional spaces.

LEMMA 3.1. For a topological space A the following conditions are equivalent.

(1) $indA=0$ .
(2) $A$ is homeomorphic to a non-empty dense subset of the limit space of an

inverse limiting system of finite discrete spaces.
This is a part of [18, Corollary 2].

THEOREM 3.2. If a non-empty topological space $R$ admits a closed continuous
mapping $f$, with order $f\leqq n+1$ , of a completely regular space $A$, with ind $A=0$ ,

onto $R$, then $R$ is a regular space and has a directed family $F$, with order $ F\leqq$

$n+1$ , of finite closed coverings of $R$ which folllows out the topology of $R$ locally.

PROOF. $R$ is regular from the regularity of $A$ and the compactness of
$f^{-1}(x)$ . By Lemma 3.1 we can consider $A$ as a subset of the limit space of an
inverse limiting system $\{A_{\lambda}, \varphi_{\lambda\mu} ; \lambda\in\Lambda\}$ of finite discrete spaces $A_{\lambda}$ . Let $\pi_{\lambda}$ ;

$A\rightarrow A_{\lambda},$ $\lambda\in\Lambda$ , be the projections. Then $F=\{\mathfrak{F}_{\lambda}=\{F_{\alpha}=f(\pi_{\lambda}^{-1}(\alpha));\alpha\in A_{\lambda}\}$ ;
$\lambda\in\Lambda\}$ is a directed family of finite closed coverings of $R$ with an inverse

limiting system $\{A_{\lambda}, \varphi_{\lambda\mu} ; \lambda\in\Lambda\}$ . Moreover it is evident that order $F\leqq n+1$ .
To prove that $F$ actually follows out $R$ locally, let $x$ be an arbitrary point

of $R$ and $U$ an arbitrary open neighborhood of $x$ . Let $|f^{-1}(x)|=j$ and $f^{-1}(x)=$

$\{a_{1}$ , $\cdot$
., $a_{j}\}$ ; then there exists, for every $i$ with $1\leqq i\leqq j$ , an index $\lambda_{i}\in\Lambda$ such

that $f(\pi_{\lambda_{i}}^{-1}(\pi_{\lambda_{t}}(a_{i})))\subset U,$ $i=1,$ $\cdots,j$ . Let $\mu$ be an index of $\Lambda$ such that i) $\mu>\lambda_{i}$

for $i=1,$ $\cdots$ , $j$ , ii) $\{\pi_{\mu}(a_{i});i=1, \cdots ,j\}$ consists of mutually different represen-

tatives. Then we have $f(\pi_{\overline{\alpha}^{1}}(\pi_{\mu}(f^{-1}(x))))\subset U$ and $|\pi_{J}(f^{-1}(x))|=j$ . Suppose that

there exists an $\alpha\in A_{\mu}$ such that $\alpha\not\in\pi_{\mu}(f^{-1}(x))$ and $x\in f(\pi_{\overline{u}^{1}}(\alpha))=F_{a}$ . Then

we have $|f^{-1}(x)|\geqq|\pi_{\mu}(f^{-1}(x))|\geqq j+1$ , which is a contradiction. Therefore we
have $S(x, \mathfrak{F}_{\mu})\subset U$ and the theorem is proved.

THEOREM 3.3. If a non-empty topological space $R$ admits a closed continuous
mapping $f$, with order $f\leqq n+1$ , of a normal space $A$ , with $IndA=0$ , onto $R$,

then $R$ is a normal space and has a directed family $F$, with order $F\leqq n+1$ , of
finite closed coverings of $R$ which follows out $R$ globally.

PROOF. $R$ is normal from the normality of $A$ . Let $\beta A$ be the Stone-
Cech-compactification of $A$ ; then it is evident that $Ind\beta A=0$ . Consider $\beta A$

as the limit space of an inverse limiting system $\{A_{\lambda}, \varphi_{\lambda\mu} ; \lambda\in\Lambda\}$ of finite

discrete spaces $A_{\lambda}$ . Let $\tilde{\pi}_{\lambda}$ be the projection of $\beta A$ onto $A_{\lambda}$ and $\pi_{\lambda}$ the restric-
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tion of $\tilde{\pi}_{\lambda}$ to $A$ . Then

$F=\{\mathfrak{F}_{\lambda}=\{F_{\alpha}=f(\pi_{\lambda}^{-1}(\alpha));\alpha\in A_{\lambda}\} ; \lambda\in\Lambda\}$

is a directed family of finite closed coverings of $R$ with an inverse limiting

system $\{A_{\lambda}, \varphi_{\lambda\mu} ; \lambda\in\Lambda\}$ . Moreover it is evident that order $F\leqq n+1$ .
To prove that $F$ follows out $R$ globally, let $F\subset G$ be an arbitrary pair

of a closed set $F$ and an open set $G$ of $R$ . Since $f^{-1}(F)\subset f^{-1}(G)$ , there exists

a bounded real-valued continuous function $\varphi$ of $A$ such that $\varphi(a)=0$ if $ a\in$

$f^{-1}(F)$ and $\varphi(a)=1$ if $a\in A-f^{-1}(G)$ . Let $\psi$ be a continuous extension of $\varphi$

to $\beta A$ . If we set $F_{1}=\{a;\psi(a)=0\}$ and $F_{2}=\{a;\psi(a)=1\}$ , then we have an
open covering $\mathfrak{G}=\{\beta A-F_{1}, \beta A-F_{2}\}$ of $\beta A$ . Since $\beta A$ is compact, there exists

an index $\mu$ Of $\Lambda$ such that $\{\tilde{\pi}_{\overline{\mu}^{1}}(\alpha);\alpha\in A_{\mu}\}$ refines $\mathfrak{G}$ . Let

$G_{1}=S(F_{1}, \{\tilde{\pi}_{\overline{\mu}}^{1}(\alpha);\alpha\in A_{\mu}\})$ ;

then $F_{1}\subset G_{1}\subset\beta A-F_{2}$ . Hence we have $f^{-1}(F)\subset A\cap F_{1}\subset A\cap G_{1}\subset A\cap(\beta A-F_{2})$

$=A\cap\beta A-A\cap F_{2}=A-A\cap F_{2}\subset A-(A-f^{-1}(G))=f^{-1}(G,)$ . On the other hand
$S(f^{-1}(F), \{\pi_{\overline{\mu}^{1}}(\alpha);\alpha\in A_{\mu}\})\subset A\cap G_{1}$ holds. Hence we have $f^{-1}(F)\subset S(f^{-1}(F)$ ,

$\{\pi_{\mu}^{-1}(\alpha);\alpha\in A_{\mu}\})\subset f^{-1}(G)$ . Therefore we have $F\subset S(F, \mathfrak{F}_{\mu})\subset G$ and we know

that $F$ follows out $R$ globally. Thus the theorem is proved.

LEMMA 3.4 (E. Michael [10, Corollary 1]). A regular space which is a

closed continuous image of a pracompact space is paracompact.

Let $\{A_{\lambda}, \varphi_{\lambda\mu}\}$ be an inverse limiting system of discrete spaces $A_{\lambda}$ . Let
$\pi_{\lambda},$

$\lambda\in\Lambda$ , be the projection of $A=\lim\{A_{\lambda}, \varphi_{\text{{\it \‘{A}}}\mu}\}$ into $A_{\lambda}$ . We call the system

full if every open covering of $A$ can be refined by $\{\pi_{\lambda}^{-1}(\alpha);\alpha\in A_{\lambda}\}$ for some
$\lambda\in\Lambda$ .

LEMMA 3.5 (K. Nagami [18, Theorem 2]). In order that a topological

space $A$ be a paracompact Hausdorff space with $IndA=0$ it is necessary and

sufficient that $A$ is homeomorphic to the non-empty limit space obtained from an

inverse limiting full system which consists of discrete spaces.
THEOREM 3.6. If a non-empty topological space $R$ admits a closed con-

tinuous mapping $f$, with order $f\leqq n+1$ , of a paracompact Haudorff space $A$ , with

$IndA=0$ , onto $R$, then $R$ is a paracompact Hausdorff space and has a directed
family $F$, with order $F\leqq n+1$ , of locally finite closed coverings of $Ru’ hich$ follows
out $R$ fully.

PROOF. By Lemma 3.5 there exists an inverse limiting full system $\{A_{\lambda}$ ,

$\varphi_{\lambda\mu}$ ; $\lambda\in\Lambda$ } of discrete spaces $A_{\lambda}$ such that $A=\lim\{A_{\lambda}, \varphi_{\lambda\mu}\}$ . Let $\pi_{\lambda}$ : $A\rightarrow A_{\lambda}$ ,

$\lambda\in\Lambda$ , be the projections. Then

$F=t\mathfrak{F}_{\lambda}=\{F_{\alpha}=f(\pi_{\lambda}^{-1}(\alpha));\alpha\in A_{\lambda}\}$ ; $\lambda\in\Lambda$ }

is a directed family of locally finite closed coverings of $R$ with an inverse

limiting system $\{A_{\lambda}, \varphi_{\lambda\mu}\}$ . Moreover we have order $F\leqq n+1$ .
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To prove that $F$ follows out $R$ fully, let $\mathfrak{G}$ be an arbitrary open covering

of $R$ . Then by the fullness of $\{A_{\lambda}, \varphi_{\lambda\mu}\}$ there exists an index $\lambda\in\Lambda$ such that
$\{\pi_{\lambda}^{-1}(\alpha);\alpha\in A_{\lambda}\}$ refines $\{f^{-1}(G);G\in \mathfrak{G}\}$ . It is evident that $\mathfrak{F}_{\lambda}$ refines $\mathfrak{G}$ . By

Lemma 3.4 $R$ is paracompact. Moreover it is almost evident that $R$ is regular.

Thus the theorem is proved.

\S 4. Inductive dimension.

THEOREM 4.1. If a topological space $R$ has a directed family $F=\{\mathfrak{F}_{\lambda}=$

$\{F_{\alpha} ; \alpha\in A_{\lambda}\};\lambda\in\Lambda\}$ of locally finite closed coverings of order $\leqq n+1$ which

follows out $R$ locally, then $R$ is a regular space with ind $R\leqq n$ .
PROOF. To prove the proposition by the induction on $n$ let $(P_{i})$ be the

assertion of the proposition for the case $n=i$ . Then $(P_{-1})$ is evidently true.

Let $n>-1$ and order $F\leqq n+1$ . Make the induction assumption that $(P_{i})$ is

true for $i<n$ . Let $x$ be an arbitrary point of $R$ and $G$ an arbitrary open set

which contains $x$. Then there exists a $\lambda\in\Lambda$ with $S(x, \mathfrak{F}_{\lambda})\subset G$ .
Let $H$ be the open kernel of $S(x, \mathfrak{F}_{\lambda})$ . Since $H_{1}=R-U\{F_{a\}} ; x\not\in F_{\alpha}\in \mathfrak{F}_{\lambda}\}$

is an open set with $x\in H_{1}\subset S(x, \mathfrak{F}_{\lambda})$ , we have $x\in H\subset\overline{H}\subset G$ . Thus $R$ is a
regular space. Since $\overline{H}-H\subset R-H\subset R-H_{1},\overline{H}-H$ is covered by $\mathfrak{F}_{\lambda}^{\gamma}=\{F_{\alpha}$ ;
$\alpha\in B_{\lambda}\}$ where $B_{\lambda}=\{\alpha;x\not\in F_{\alpha}, \alpha\in A_{\lambda}\}$ . Let for every $\mu>\lambda,$ $B_{\mu}=\{\beta;\varphi_{\mu 4}(\beta)$

$\in B_{\lambda}\}$ . Then for every $\mu\in M=\{\nu;\nu>\lambda\},$ $\mathfrak{F}_{\alpha}^{\prime}=\{F_{\alpha} ; \alpha\in B_{\mu}\}$ covers $\overline{H}-H$

Let $\mathfrak{H}_{\mu}$ be the restriction of $\mathfrak{F}_{!^{\iota}}^{\prime}$ to $\overline{H}-H,$ $\mu\in M$. Since $\overline{H}\subset U\{F_{\alpha} ; \alpha\in A_{\lambda}-B_{\lambda}\}$ ,

$order\mathfrak{H}_{\mu}\leqq n$ for every $\mu\in M$. It can easily be seen that $H=\{\mathfrak{H}_{\rho} ; \mu\in j\psi\}$ is

a directed family with an inverse limiting system $\{B_{\mu}, \varphi_{\mu\nu}|B_{\mu} ; \mu>\nu>\lambda\}$ of

locally finite closed coverings of $\overline{H}-H$ which follows out $\overline{H}-H$ locally. Thus

we have $ind(\overline{H}-H)\leqq n-1$ by the induction assumption. Hence we have
ind $R\leqq n$ and the theorem is proved.

COROLLARY 4.2. If there exists a closed continuous mapping $f$, with order $ f\leqq$

$n+1$ , of a completely regular space $A$ , with ind $A=0$ , onto a topological space
$R$, then $R$ is a regular space with ind $R\leqq n$ .

This is a direct consequence of Theorems 3.2 and 4.1.
By a similar way used in the proof of Theorem 4.1 we get the following
THEOREM 4.3. If a topological space $R$ has a directed family of locally finite

closed coverings of order $\leqq n+1$ which follows out $R$ globally, then $R$ is a normal
space with $IndR\leqq n$ .

COROLLARY 4.4. If there exists a closed continuous mapping $f$, with order $ f\leqq$

$n+1$ , of a normal space $A$ , with $IndA=0$ , onto a topological space $R$, then $R$ is
a normal space with $IndR\leqq n$ .

This is a direct consequence of Theorems 3.3 and 4.3.
COROLLARY 4.5. If there exists a closed continuous mapping $f,$ $u$)$ith$ order $ f\leqq$
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$n+1$ , of a paracompact Hausdorff space $A$ , with $IndA=0$ , onfo a topological

space $R$ , then $R$ is a paracompact Hausdorff space with $IndR\leqq n$ .

This is a direct consequence of Corollary 4.4 and Lemma 3.4.

THEOREM 4.6. If a topological space $R$ has a directed family of locally $fi\uparrow\iota ite$

closed coverings of order $\leqq n+1$ which follows out $R$ fully, then $R$ is a para-
compact Hausdorff space with $IndR\leqq n$ .

This is an immediate consequence of Theorem 4.3 and Michael’s theorem

[10, Theorem 1]: A regular space is paracompact if every open covering can
be refined by a closure-preserving covering, where a covering $\{F_{a} ; \alpha\in A_{0}\}$ is

called closure-preserving if for any subset $B$ of $A_{0}$ we have $U\{\overline{F}_{\alpha} ; \alpha\in B\}=$

$\overline{\cup\{F_{a};\alpha\in B\}}$ .
REMARK 4.7. Corollaries 4.2 and 4.4 have been already essentially proved

by Morita in the proof of [13, Theorem 1]. Therefore Propositions 4.1 and

4.3 can also be obtained, with the aid of the results in \S 3, as consequences
of Corollaries 4.2 and 4.4. Professor Morita pointed out these remarks. Let

the author take this oppotunity to correct a misprint in the paper cited now.
For Morita [13, Remark] read i) if $f$ is a closed continuous mapping of a normal
space $X$ onto a totally normal space $Y$ such that the order of $f$ is at most $n+1$ ,

then $IndY\leqq IndX+n$ . According to C. H. Dowker [3], a topological space $X$

is called totally normal if it is normal and for any open set $G$ of $X$ there

exists a collection of open $F_{\sigma}$-sets of $X$ which is locally finite in $G$ and forms

a covering of $G$ .
On the other hand J. Nagata [20] proved that ii) if $f$ is a closed continuous

mapping of a normal space $X$ onto a perfectly normal space $Y$ such that for any
$y\in Y$ the boundary of $f^{-1}(y)$ consists of at most $n+1$ points, then $IndY\leqq$

$IndX+n$ .
It is to be noted that the following proposition is a generalization of both

i) and ii): iii) If $f$ is a closed continuous mapping of a normal space $X$ onto a
totally normal space $Y$ such that for any $y\in Y$ the boundary of $f^{-1}(x)$ consists

of at most $n+1$ points, then $IndY\leqq IndX+n$ . Since every perfectly normal
space is totally normal, it is evident that iii) implies ii). Let $f,$ $X,$ $Y$ be those
of iii). Let $Y_{1}$ be the aggregate of $y\in Y$ such that the boundary of $f^{-1}(y)$ is
empty. Let $X_{1}$ be the inverse image of $Y_{1}$ and $X_{2}$ the sum of boundaries of
$f^{-1}(y)$ with $y\not\in Y_{1}$ . Then $f|X_{2}$ is a closed continuous mapping of a normal
space $X_{2}$ onto a totally normal space $Y-Y_{1}$ such that the order of $f$ is
at most $n+1$ . Since $Y_{1}$ is discrete and $Y-Y_{1}$ is closed, we have $IndY=$

$\max(Ind(Y-Y_{1}), IndY_{1})$ by the hereditary normality of $Y[3]$ . By these obser-
vations iii) is a direct consequence of i).

THEOREM 4.8. Let $F=\{\mathfrak{F}_{\lambda}=\{F_{\alpha} ; \alpha\in A_{\lambda}\};\lambda\in\Lambda\}$ be a directed family of
locally finite closed coverings of a topological space $R$ with an inverse limiting
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system $\{A_{\lambda}, \varphi_{\lambda_{f}},\}$ . If $F$ satisfies the following two conditions:
(1) order $F\leqq n+1$ ,

(2) $F$ follows out $R$ locally,

then for any $\lambda\in\Lambda$ and any mutually different indices $\alpha_{1},$
$\cdots$ , $\alpha_{m}$ of $A_{\lambda},$ $ 1\leqq m\leqq$

$n+1$ , it holds that

ind $\bigcap_{i=1}^{m}F_{a_{i}}\leqq n-m+1$ .

PROOF. Let $\lambda$ be an arbitrary index of $\Lambda$ and $\alpha_{1},$
$\cdots$ , $\alpha_{m}$ be arbitrary

mutually different indices of $A_{i_{\backslash }},$ $1\leqq m\leqq n+1$ . Let $1\psi=\{\mu;\mu>\lambda\}$ and

$B_{u}=\{\beta;\varphi_{t\lambda},(\beta)\in A_{\lambda}-\{\alpha_{2}, \cdots, \alpha_{m}\}\}$ , $\mu\in 1\psi$ .

Let $\mathfrak{H}_{\mu}$ be the restriction of { $F_{a\}}$ ; a $\in B_{\mu}$ } to $F=\bigcap_{\uparrow=1}^{m}F_{a_{i}}$ . Then it can easily be

seen that $H=\{\mathfrak{H}_{\mu} ; \mu\in 1\psi\}$ is a directed family of locally finite closed cover-
ings of $F$ with an inverse limiting system $\{B_{\mu}, \varphi_{\mu\nu}|B_{\mu} ; \mu>\nu>\lambda\}$ which

satisfies the following two conditions:

(3) order $H\leqq n+1-(m-1)=n-m+2$ ,

(4) $H$ follows out $F$ locally.

Therefore we can conclude that ind $F\leqq n-m+1$ by Theorem 4.1 and the

proof is finished.

In a similar way employed in the above proof we have the following with
the aid of Theorem 4.3.

THEOREM 4.9. Let $F=\{\mathfrak{F}_{\lambda}=\{F_{a} ; \alpha\in A_{\lambda}\} ; \lambda\in\Lambda\}$ be a directed fanzily of
locally finite closed coverings of a topological space R. If $F$ satisfies the follow-
ing two conditions:

(5) $orderF\leqq n+1$ ,

(6) $F$ follows out $R$ globally, then for any $\lambda\in\Lambda$ and any mutually different
indices $\alpha_{1},$

$\cdots$ , $\alpha_{m}$ of $A_{\lambda},$ $1\leqq m\leqq n+1$ , it holds that

$Ind\bigcap_{i=1}^{m}F_{\alpha_{i}}\leqq n-m+1$ .

PROBLEM 4.10. It is a well-known Kat\v{e}tov-Morita’s theorem that the large

inductive dimension coincides with the covering dimension for metric spaces
(M. Kat\v{e}tov [5] and K. Morita [12]). It seems to the author an interesting

problem to construct, for a paracompact and perfectly normal space $R$ with
$\dim R\leqq n$ , a directed family of locally finite closed coverings of order $\leqq n+1$

which follows out $R$ globally. It is to be noted that every metric space is
paracompact and perfectly normal. If this could be done, we should have

$\dim R=IndR$ for a paracompact and perfectly normal space $R$ by Theorem 4.3.
It seems also an interesting problem to learn whether the converse of

Theorem 4.1 for a metric space $R$ is valid or not. This problem will penetrate

into the essence of the small inductive dimension, one of the most important
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but undeveloped region in dimension theory, of metric spaces.

REMARK 4.11. We cannot expect that Hurewicz-Kuratowski’s theorem

cited in \S 1 may be valid even for the case when $R$ is a compact Hausdorff

space for the following reasons: Assume that if $R$ is a compact Hausdorff

space with $\dim R\leqq n$ , there exist a normal space $A$ with $\dim A=0$ and a
closed continuous mapping $f$ of $A$ onto $R$ such that the order of $f$ is at most

$n+1$ . Then we know that $IndR\leqq n$ by Corollary 4.4, since $\dim A=0$ if and

only if $IndA=0$ . Hence we have $IndR\leqq\dim R$, which contradicts to the

fact that there exists a compact Hausdorff space whose large inductive dimen-

sion is actually greater than its covering dimension (Lunz [9], Lokutsievski

[8], P. Vopenka [23]).

\S 5. Closed mappings of finite vague order.

DEFINISION 5.1. Let $f$ be a mapping of a topological space $A$ onto another

topological space $R$ . Then the vague order of $f$ is the minimum of the number
$n$ which has the following property: For an arbitrary finite open covering
$\mathfrak{U}$ of $R$ there exists an open covering $\mathfrak{B}$ of $A$ such that i) $f(\mathfrak{B})=\{f(V);V\in \mathfrak{B}\}$

refines $\mathfrak{U}$ , ii) for any point $x$ of $R$ the number of $V\in \mathfrak{B}$ with $ f^{-1}(x)\cap V\neq\phi$

is at most $n$ .
REMARK 5.2. It is almost evident that the vague order of $f$ is the same

with the minimum of the number $n$ which has the following property: For

an arbitrary finite open covering $\mathfrak{U}=\{U_{1}, \cdots , U_{m}\}$ of $R$ there exists an open

covering $\mathfrak{B}=\{V_{1}$ , $\cdot$ . , $V_{m}\}$ of $A$ such that i) $f(V_{i})\subset U_{i}$ for $i=1$ , $\cdot$ .. , $m$ , ii) for

any point $x$ of $R$ the number of $V_{i}\in \mathfrak{B}$ with $ f^{-1}(x)_{\cap}V_{t}\neq\phi$ is at most $n$ .
LEMMA 5.3. Let $f$ be a closed mapping of a normal space $A$ onto a normal

space R. If the vague order of $f$ is at most $n+1$ , then we have $\dim R\leqq n$ .
PROOF. Let $\mathfrak{U}=\{U_{1}, \cdots , U_{k}\}$ be an arbitrary finite open covering of $R$.

Since the vague order of $f$ is at most $n+1$ , there exists, by Remark 5.2, a
finite open covering $\mathfrak{B}=\{V_{1}, \cdots , V_{k}\}$ of A $such_{i}^{\tau}thati$) $f(V_{i})\subset U_{i}$ for $i=1,$ $\cdots$ , $k$ ,

ii) for any $x\in R$ the number of $V_{i}\in \mathfrak{B}$ with $ f^{-1}(x)\cap V_{i}\neq\phi$ is at most $n+1$ .
Since $A$ is normal, there exists a closed covering $\mathfrak{F}=\{F_{1}, \cdots , F_{k}\}$ of $A$ such

that $F_{i}\subset V_{i}$ for $i=1$ , , $k$ . Then $\{f(F_{1}), ,f(F_{k})\}$ is a closed covering of $R$

of order $\leqq n+1$ such that $f(F_{i})\subset U_{i_{A}}^{\prime}fori=1$ , $\cdot$ .. , $k$ . By [2, Theorem 6, p. 71]

there exists an open covering $\{W_{1}, \cdots , W_{k}\}$ of $R$ of order $\leqq n+1$ such that
$F_{i}\subset W_{i}\subset U_{i}$ for $i=1,$ $\cdots$ , $k$ . Thus we have $\dim R\leqq n$ and the lemma is proved.

LEMMA 5.4. Let $R$ be a non-empty paracompact Hausdorff space $wit/\iota\dim R$

$\leqq n$ . Then there exist a paracompact Hausdorff space $A$ with $\dim A=0$ and a
closed continuous onto mapping $f:A\rightarrow R$ of the vague order $\leqq n+1$ $s$zt $ch$ that
$f^{-1}(x)$ is compact for every point $x$ of $R$ .

PROOF. Let $\{\mathfrak{F}_{\lambda}=\{F_{a} ; \alpha\in A_{\alpha}\};\lambda\in\Lambda\}$ be the collection of all locally finite
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closed coverings of $R$ whose orders are at most $n+1$ . Let $A$ be the aggregate

of points $a=(\alpha_{\lambda} ; \lambda\in\Lambda)$ of the product space $\Pi\{A_{\lambda} ; \lambda\in\Lambda\}$ , where $A_{\lambda}$ are
topological spaces with the discrete topology, such that $\cap\{F_{a_{\lambda}} ; \lambda\in\Lambda\}\neq\phi$ .
Define $f;A\rightarrow R$ as $f(a)=\cap\{F_{\pi_{\lambda}(a)} ; \lambda\in\Lambda\}$ , where $\pi_{\lambda}$ ; $A\rightarrow A_{\lambda},$ $\lambda\in\Lambda$ , are the

projections. It can easily be seen that $f$ is continuous and onto. The follow-

ing argument is the same as is employed by the author in the proof of [19,

Theorem 2] but we state it here for the sake of completeness.

To show the closedness of $f$, let $B$ be an arbitrary non-empty closed subset
of $A$ and $x$ an arbitrary point of the closure of $f(B)$ . Let $\lambda$ be an arbitrary

element of $\Lambda$ . Let
$B_{\lambda}=\{\alpha;x\in F_{\alpha}\in \mathfrak{F}_{\lambda}\}$ ;

then
$U_{\lambda}=R-\cup\{F_{\alpha} ; \alpha\in A_{\lambda}-B_{\lambda}\}$

is an open neighborhood of $x$ by the local finiteness of $\mathfrak{F}_{\lambda}$ . Since $ f(B)\cap U_{\lambda}\neq\phi$ ,

it holds that $ B\cap f^{-1}(U_{\lambda})\neq\phi$ . Since $f^{-1}(U_{\lambda})\subset U\{\pi_{\lambda}^{-1}(\alpha);\alpha\in B_{\lambda}\}$ , there exists

an index $\alpha(\lambda)\in B_{\lambda}$ with $\pi_{\lambda}^{-1}(\alpha(\lambda))B^{\prime}\phi$ .
Let $a=(\alpha(\lambda);\lambda\in\Lambda)$ ; then it is obvious that $f(a)=x$. Since, for any $\lambda$ ,

$\pi_{\lambda}^{-1}(\pi\backslash (a))_{\cap}B=\pi_{\overline{\lambda}^{1}}(a(\lambda))\cap B\neq\phi,$ $a$ is a point of $\overline{B}=B$ . Therefore we get

$x=f(a)\in f(B)$ and hence $f\overline{(B)}\subset f(B)$ . Thus the closedness of $f$ is proved.

Moreover $f^{-1}(x)$ is compact, since $f^{-1}(x)=\Pi\{B_{\lambda} ; \lambda\in\Lambda\}$ and $B_{\lambda}$ is finite for

every $\lambda\in\Lambda$ .
Next let us prove that $A$ is a paracompact Hausdorff space with $\dim A=0$ .

Let $\mathfrak{U}$ be an arbitrary open covering of $A$ ; then $\mathfrak{U}$ can be refined by a cover-
ing $\mathfrak{B}$ whose elements are open and closed, by the equality ind $A=0$ . Since,

for any $x\in R,$ $f^{-1}(x)$ is compact, there exist a finite number of elements
$V_{x,1},$ $\cdots$ , $V_{x,m(x)}$ of $\mathfrak{B}$ with $f^{-1}(x)\subset V_{x,1}\cup\cdots\cup V_{x,m(x)}=W_{x}$ , where we can put

$V_{x,1}=\phi,$ $x\in R$ , without loss of generality. Put $D(x)=R-f(A-W_{x})$ ; then

there exists an index $\lambda_{0}\in\Lambda$ such that $\mathfrak{F}_{\lambda_{0}}$ refines $\{D(x);x\in R\}$ . Since i)

$\{\pi_{\lambda_{0}}^{-1}(\alpha);\alpha\in A_{\lambda_{0}}\}$ refines $\{f^{-1}(D(x));x\in R\}$ and the latter refines $\{W_{x} ; x\in R\}$

and ii) the order of $\{\pi_{\lambda_{0}}^{-1}(\alpha);\alpha\in A_{\lambda_{0}}\}$ is 1, we can prove by an easy transfinite

induction on $x\in R$, with an arbitrary but fixed ordering, the existence of an
open covering $\{U_{x} ; x\in R\}$ of order 1 with $U_{x}\subset W_{x}$ for every $x\in R$ . Let

$\mathfrak{E}=\{U_{x}\cap(V_{x,i}-\bigcup_{j<i}V_{x,j});i=2, \cdots , m(x), x\in R\}$ ;

then ng is an open covering of $A$ of order 1 which refines U. Thus $A$ is a
paracompact Hausdorff space with $\dim A=0$ .

To prove the vague order $f$ of is at most $n+1$ , let $\mathfrak{U}$ be an arbitrary

finite open covering of $R$ . Since $\dim R\leqq n$ , there exists an index $\lambda\in\Lambda$ such

that $\mathfrak{F}_{\lambda}$ refines U. Let
$\mathfrak{B}=\{\pi_{\lambda}^{-1}(\alpha);\alpha\in A_{\lambda}\}$ .
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Since $f(\pi_{\lambda}^{-1}(\alpha))=F_{\alpha}$ for any $\alpha\in A_{\lambda},$ $f(\mathfrak{B})$ refines U. Let $x$ be an arbitrary point

of $R$ . Since the order of $\mathfrak{F}_{\lambda}$ is at most $n+1$ , the number of elements of $\mathfrak{F}_{\lambda}$

which contain $x$ is at most $n+1$ . Hence the number of indices $\alpha$ of $A_{\lambda}$ with
$x\in f(\pi_{\lambda}^{-1}(\alpha))$ is at most $n+1$ . Thus the vague order of $f$ is at most $n+1$ and

the proof is completed.

Now the following theorem is evident from Lemmas 3.4, 5.2 and 5.3.
THEOREM 5.5. In order that a non-empty topological space $R$ be a para $\cdot$

compact Hausdorff space with $\dim R\leqq n$ it is necessary and sufficient that there

exist a paracompact Hausdorff space $A$ with $\dim A=0$ and a closed continuous
onto mapping $f:A\rightarrow R$ of the vague order $\leqq n+1$ .

\S 6. Open mappings of finite vague order.

The following is to be compared with Theorem 5.5.
THEOREM 6.1. In order that a non-empty normal space $R$ be of the covering

dimension $\leqq n$ , it is necessary and sufficient that there exist a completely regular

space $A$ with ind $A=0$ and an open continuous mapping $f$ of $A$ onto $R$ such

that the vague order of $f$ is at most $n+1$ .
It is clear that the condition is sufficient. The necessity of the condition

is guaranteed by the following lemma.

LEMMA 6.2. For a normal space $R$ with $\dim R\leqq n$ there exist a completely

regular space $A$ with ind $A=0$ and an open continuous onto mapping $f:A\rightarrow R$

of the vague order $\leqq n+1$ such that $f^{-1}(x)$ is compact for every point $x$ of $R$ .
PROOF. Let $\{\mathfrak{U}_{\lambda}=\{U_{\alpha} ; \alpha\in A_{\lambda}\} ; \lambda\in\Lambda\}$ be the family of all finite open

coverings of $R$ of order $\leqq n+1$ . Let $A$ be the aggregate of points $a=\{\alpha_{\lambda}$ ;

$\lambda\in\Lambda)$ of the product space $\Pi\{A_{\lambda} ; \lambda\in\Lambda\}$ , where $A_{\lambda}$ are topological spaces

with the discrete topology, such that $\cap\{U_{o\}}\lambda;\lambda\in\Lambda\}\neq\phi$ . Let $f(a)=\cap\{U_{\pi_{\lambda}(a)}$ ;
$\lambda\in\Lambda\}$ , where $\pi_{\lambda}$ ; $A\rightarrow A_{\lambda},$ $\lambda\in\Lambda$ , are the projections. Then $A$ is a completely

regular space with ind $A=0$ and $f$ is a mapping of $A$ onto $R$ . Since for any
$\lambda\in\Lambda$ and any $\alpha\in A_{\lambda}$ we have $f(\pi_{\lambda}^{-1}(\alpha))=U_{\alpha},$ $f$ is an open continuous map-

ping. Let $x$ be an arbitrary point of $R$ and $B_{\lambda}=\{\alpha;x\in U_{\alpha}\in \mathfrak{U}_{\lambda}\},$ $\lambda\in\Lambda$ . Then
$f^{-1}(x)=\Pi B_{\lambda}$ and hence it is compact.

To compute the vague order of $f$, let $\mathfrak{U}$ be an arbitrary finite open cover-
ing of $R$ and $x$ an arbitrary point of $R$ . Then there exists a $\lambda\in\Lambda$ such that
$\mathfrak{U}_{\lambda}$ refines $\mathfrak{U}$ , since the covering dimension of $R$ is at most $n$ . Let $\mathfrak{B}=$

$\{\pi_{\lambda}^{-1}(\alpha);\alpha\in A_{\lambda}\}$ ; then $\mathfrak{B}$ is an open covering of $A$ such that $f(\mathfrak{B})<\mathfrak{U}_{\lambda}<\mathfrak{U}$ .
Since $\pi_{\lambda}^{-1}(\alpha)\cap f^{-1}(x)\neq\phi$ implies $f^{-1}(\pi_{\lambda}^{-1}(\alpha))=U_{\alpha}\ni x$, the number of indices $\alpha$

with $\pi_{\lambda}^{-1}(\alpha)_{\cap}f^{-1}(x)\neq\phi$ is at most the order of $\mathfrak{U}_{\lambda}$ . Since the order of $\mathfrak{U}_{\lambda}$ is

at most $n+1$ , the vague order of $f$ is at most $n+1$ , and the lemma is proved.

REMARK 6.3. In view of Hurewicz-Kuratowski’s theorem cited in \S 1 it is

natural to raise the question: When ‘ the vague order ‘ in Theorem 6.1 is



114 K. NAGAMI

replaced with ‘ the order ‘, does the theorem thus obtained remain valid 7 The

answer for this problem, as well as for the case when $f$ is closed (cf. Remark
4.11), is negative under some additional conditions imposed on $A$ and $R$, since
the following assertion [17, Theorem 4.1] is valid: A paracomact Hausdorff
space $R$ which is the image of a paracompact Hausdorff space $A$ with
$\dim A=0$ , under an open continuous mapping $f$ such that $f^{-1}(x)$ is finite for
every $x\in R$, is unable to be of positive covering dimension.

\S 7. An example.

Let $ K^{n}\neq\phi$ be a CW-complex given by J. H. C. Whitehead [24], where $n$

\’is the maximal dimensional number of cells contained in $K^{n}$ . $e^{i}$ denotes an
i-cell in $K^{n}$ , and $K^{m}$ denotes an m-section of $K^{n}$ . The main purpose of this

paragraph is to show the following

THEOREM 7.1. For any CW-complex $K^{n}$ there exists a directed family $F_{n}$ of
locally finite closed coverings $\mathfrak{F}_{\sigma},$ $\sigma\in 1\psi$, of $K^{n}$ such that $ F_{i}=F_{n}\Lambda K^{i}=\{\mathfrak{F}_{\sigma}\wedge$

$K_{i}$ ; $\sigma\in 1\psi$ } is a directed family with order $F_{i}\leqq i+1$ which follows out $K^{i}$ fully

for $i=0,1,$ $\cdots,$ $n$ .
PROOF. Let $(P_{m})$ be the assertion of the existence of spaces $A_{i},$ $i=0,$ $\cdots$ , $m$ ,

and of mappings $f_{i},$ $i=0,$ $\cdots$ , $m$ , which satisfy the following conditions:
i) $A_{i}$ is a paracompact Hausdorff space with $IndA_{i}\leqq 0$ for $i=0,$ $\cdots$ , $m$ .
ii) $f_{i}$ is a closed continuous mapping of $A_{i}$ onto $K^{i}$ with $orderf_{i}\leqq i+1$

for $i=0,$ $\cdots$ , $m$ .
iii) $f_{i+1}|A_{i}=f_{i}$ for $i=0,$ $\cdots$ , $m-1$ .
iv) $f_{i^{-1}}(\overline{e^{i}})$ is metrizable for any $e^{i}\subset K^{n}$ and for $i=0$ , $\cdot$ .. $m$ .
Since $K^{0}$ is discrete, $(P_{0})$ is clearly true. Make the induction assumption

that $(P_{m-1})$ is valid for $m>0$ and let us prove that $(P_{m})$ holds.

Let $\{e_{\xi}^{m} ; \xi\in X\}$ be the collection of all m-cells of $K^{n}$ . Fix an arbitrary

m-cell $e_{\xi}^{m}$ . Set

$B_{\xi}=f_{m-1}^{-1}(\overline{e_{\xi}^{m}}-e_{\xi}^{m})$

and

$f_{\xi}=f_{m-1}|B_{\xi}$ .
Since $B_{\xi}$ is closed in $A_{m-1},$ $f_{\xi}$ is a closed continuous mapping of $B_{\xi}$ onto a
compact space $\overline{e_{\xi}^{m}}-e_{\xi}^{m}$ such that, for every point $x\in\overline{e_{\xi}^{m}}-e_{\xi}^{m},$ $f_{\xi^{-1}}(x)$ is compact.

Hence $B_{\xi}$ is compact. Let $e_{J^{j}}^{i},$ $j=1,$ $\cdots$ , $t$ , be a finite number of cells of $K^{m-1}$

such that $\overline{e_{\xi}^{m}}-e_{\xi}^{m}\subset e_{1}^{i_{1}}U\cdots Ue_{t}^{i_{t}}$ . Since $B_{\xi}\subset U\{f_{m-1}^{-1}(e_{J^{j}}^{\overline{i}});j=1, \cdot.. t\}$ and each

summand $f_{m-1}^{-1}(\overline{e_{j}^{i_{j}}})$ is metrizable, $B_{\xi}$ is a compact metrizable space.
Since $IndB_{\xi}\leqq 0$, we can consider $B_{\xi}$ as the limit space of an inverse

limiting system $\{B_{i}, \varphi_{ij}\}$ , where $B_{i},$ $i=1,2,$ $\cdots$ , are finite discrete spaces, by

Nagami [17, \S 2]. Let $\pi_{i}$ be the projection of $B_{\xi}$ into $B_{i}$ for $i=1,2,$ $\cdots$ . Set
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$\mathfrak{H}_{i}=\{H_{\alpha}=f_{\xi}(\pi_{i^{-1}}(\alpha));\alpha\in B_{i}\}$ , $i=1,2,$ $\cdots$ ;

then this is a sequence of closed coverings of $e_{\xi}^{\overline{m}}-e_{\xi}^{m}$ of order $\leqq m$ . Let $\rho$ be
a metric of $e_{\xi}^{\overline{m}}$ agreeing with the preassigned topology of $e_{\xi}^{\overline{m}}$. There exists,

for every $\alpha\in B_{1}$ , an open set $G_{t}$ of $e_{\xi}^{\overline{m}}$ such that i) $S(H_{\alpha}, 1/2)=\{x;\rho(x, H_{\alpha})<$

$1/2\}\supset G_{\alpha}$, ii) order $\{G_{\alpha} ; \alpha\in B_{1}\}\leqq m$, by Alexandroff-Hopf [2, Theorem 6, $p$ .
71]. Let, for any point $x$ of $\overline{e_{\xi}^{m}}-U\{G_{a} ; \alpha\in B_{1}\},$ $V(x)$ be an open neighbor-

hood of $x$ such that i) $\overline{V(x)}\cap(\overline{e_{\xi}^{m}}-e_{\xi}^{m})=\emptyset$ , ii) $V(x)\subset S(x, 1/2)$ . Since $\dim\overline{e_{\xi}^{m}}\leqq m$,

an open covering

$\{G_{a}, V(x);\alpha\in B_{1}, x\in\overline{e_{\xi}^{m}}-U\{G_{\alpha} ; \alpha\in B_{1}\}\}$

of $e_{\xi}^{\overline{m}}$ can be refined by a finite open covering

$\mathfrak{G}_{1}^{\prime}=\{E_{\alpha^{\prime}}, E_{\alpha}, ; \alpha\in B_{1}, \alpha^{\prime}\in B_{1}^{\prime}\}$

such that i) $E_{\alpha}^{\prime}\subset G_{\alpha}$ for any $\alpha\in B_{1}$ , ii) $\overline{E_{\alpha’\cap}}(\overline{e_{\xi}^{m}}-e_{\xi}^{m})=\emptyset$ for any $\alpha^{\prime}\in B_{1}^{\prime}$ , iii)

$order\mathfrak{G}_{1}^{\prime}\leqq m+1$ . Set
$E_{a}=E_{\alpha^{\prime}}U(G_{\alpha}-\cup\{\overline{E_{\alpha},} ; \alpha^{\prime}\in B_{1}^{\prime}\})$ ;

then it is evident that

$\mathfrak{G}_{1}=\{E_{a}, E_{a}, ; \alpha\in B_{1}, \alpha^{\prime}\in B_{1}^{\prime}\}$

is an open covering of $\overline{e_{\overline{\sigma}}^{m}}$ with order $\mathfrak{G}_{1}\leqq m+1$ .
It is easy to construct, by a successive application of the same argument

as in the above, a sequence

$\mathfrak{G}_{i}=\{E_{\alpha}, E_{\alpha}, ;\alpha\in B_{i}, \alpha^{\prime}\in B_{t^{\prime}}\}$ , $i=1,2,$ $\cdots$ ,

of finite open coverings of $e_{\xi}^{\overline{m}}$ with order $\mathfrak{G}_{i}\leqq m+1$ for $i=1,2,$ $\cdots*$ which

satisfies the following conditions:

i) $\overline{\mathfrak{G}_{i+1}}$ refines $\mathfrak{G}_{i}$ for $i=1,2,$ $\cdots$ .
ii) For any $i$ and any $\alpha^{\prime}\in B_{i^{\prime}},\overline{E_{\alpha},}\cap(\overline{e_{\xi}^{m}}-e_{\xi}^{m})=\emptyset$ and dia $E_{a},$ ( $i$ . $e$ . the

diameter of $E_{\alpha},$) $<2^{-i+1}$ .
iii) For any $i$ and any $\alpha\in B_{i},$ $H_{\alpha}\subset E_{\alpha}\subset S(H_{\alpha}, 2^{-i})$ .
iv) For any $i$ and any a $\in B_{i+1},$ $E_{\alpha}\subset E_{\varphi_{i+1,i^{(\alpha)}}}$ .
Let $C_{i}$ be a finite discrete space which is the disjoint union of $B_{i}$ and $B_{i}^{\prime}$

for $i=1,$ $\cdots 2,$ $\cdots$ . Define $\psi_{i+1,i}:C_{i+1}\rightarrow C_{i}$ for $i=1,2,$ $\cdots$ , as follows: i) $\psi_{i+1,i}(\alpha)=$

$\varphi_{i+1,i}(\alpha)$ , if $\alpha\in B_{i+1}$ , ii) $\overline{E_{\alpha},}\subset E\psi_{i+1,t^{(\alpha’)}}$ , if $\alpha^{\prime}\in B_{i^{\prime}+1}$ . For any pair $i>j$ set
$\psi_{ij}=\psi_{j+1,j}\cdots\psi_{i,i-1}$ and let $C_{\xi}$ be the inverse limit of $\{C_{i}, \psi_{ij}\}$ . Then $C_{\xi}$ is

a compact metric space with $IndC_{\xi}\leqq 0$ which contains $B_{\xi}$ as a closed subset.

Define $g_{\xi}$ : $C_{\xi}\rightarrow\overline{e_{\xi}^{m}}$ in such a way that

$g_{\xi}((\alpha_{1}, \alpha_{2}, \cdots))=\bigcap_{i=1}E_{a_{i}}$ ;

then $g_{\xi}$ is a continuous mapping of $C_{\xi}$ onto $\overline{e_{\xi}^{m}}$ with order $g_{\xi}\leqq m+1$ such that
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$g_{\xi}|B_{\xi}=f_{\xi}$ .

Let $A_{m}$ be the disjoint sum of $A_{m-1}$ and $C_{\xi}-B_{\xi},$ $\xi\in X$ Define $f_{m}$ : $A_{m}\rightarrow K^{m}$

in such a way that i) $f_{m}|A_{m-1}=f_{m-1}$ , ii) $f_{m}|C_{\xi}-B_{\xi}=g_{\xi}|C_{\xi}-B_{\xi},$ $\xi\in X$. Define

the topology of $A_{m}$ as follows: A subset $F$ of $A_{m}$ is closed if and only if i)

$F_{\cap}A_{m-1}$ is closed in $A_{m-1}$ , ii) $F_{\cap}C_{\xi}$ is closed in $C_{\xi}$ for every $\xi\in X$ Then
$A_{m}$ is a topological space and $f_{m}$ is a closed continuous mapping of $A_{m}$ onto
$K^{m}$ such that $orderf_{m}\leqq m+1$ . Let $\mathfrak{U}=\{U_{\delta};\delta\in\Delta\}$ be an arbitrary open

covering of $A_{m}$ . Then U A $A_{m-1}$ can be refined by a relatively open covering
$\mathfrak{B}=\{V_{\delta} ; \delta\in\Delta\}$ of $A_{m-1}$ which is locally finite in $A_{m-1}$ such that i) order $\mathfrak{B}\leqq 1$ ,

ii) $V_{\delta}\subset U_{\delta}$ for every $\delta\in\Delta$ . For every $\xi\in X,$ $\mathfrak{B}\Lambda B_{\xi}$ is a finite relatively open
covering of $B_{\xi}$ with order $\mathfrak{V}\wedge B_{\xi}\leqq 1$ . Hence we can find a relatively open
covering $\mathfrak{B}_{\xi}=\{V_{\xi\delta} ; \delta\in\Delta\}$ of $A_{m-1}\cup C_{\xi}$ with order $\mathfrak{B}_{\xi}\leqq 1$ such that $V_{\xi\delta}\subset U_{\delta}$

and $V_{\xi\delta}\cap A_{m-1}=V_{\delta}$ for every $\delta\in\Delta$ . Then it can easily be seen that

$\mathfrak{W}=\{W_{\delta}=U\{V_{\xi\delta} ; \xi\in X\} ; \delta\in\Delta\}$

is an open covering of $A_{m}$ such that i) $order\mathfrak{W}\leqq 1$ , ii) $W_{\delta}\subset U_{\delta}$ for every
$\delta\in\Delta$ . Thus $A_{m}$ is a paracompact space with $IndA_{m}\leqq 0$ . To prove that $A_{m}$

is a Hausdorff space, let $x$ and $y$ be arbitrary different points of $A_{m}$ . Since

$x$ and $y$ are closed subsets of $A_{m},$ { $A_{m}-x$, A. $-y$ } is an open covering of $A_{m}$ .
Hence we can find, by the same way as is stated in the above, an open cover-
ing $\{W_{1}, W_{2}\}$ of $A_{m}$ such that i) $W_{1}\subset A_{m}-x$ and $7V_{2}\subset A_{m}-y$ , ii) $ W_{1}\cap W_{2}=\emptyset$ .
It is evident that $y\in W_{1}$ and $x\in W_{2}$ , which shows that $A_{m}$ is a Hausdorff

space.

On the other hand it is evident that $f_{m}|A_{m-1}=f_{m-1}$ and $f_{m}^{-1}(e_{\overline{\sigma}}^{\overline{m}})=C_{\xi}$ is

metrizable for any $\xi\in X$. Therefore the validity of $(P_{m})$ is established and

the induction is completed.

Thus we know that $(P_{n})$ is valid by the induction. By Lemma 3.5 $A_{n}$ is

the limit space of an inverse limiting full system $\{D_{\sigma}, \pi_{\sigma\tau} ; \sigma\in M\}$ of discrete
spaces $D_{\sigma}$ . Let

$F_{n}=\{\mathfrak{F}_{\sigma}=\{f(\pi_{\sigma}^{-1}(\alpha));\alpha\in D_{\sigma}\}, \sigma\in 1M\}$ ,

where $\pi_{\sigma}$ ; $A_{n}\rightarrow D_{\sigma},$ $\sigma\in M$, are the projections. Then it can easily be seen
that $F_{n}$ satisfies all of the requirements of the theorem, and the proof is
completed.

By an analogous argument to this proof we have the following.

COROLLARY 7.2. Any infinite dimensional CW-complex $K$ admits a directed
family $F$ of locally finite closed coverings which follows out $K$ fully such that i)
$F\wedge K^{i}$ follows out $K^{i}$ fully, ii) order $F\wedge K^{i}\leqq i+1$ , for $i=0,1$ , $\cdot$ .. .

COROLLARY 7.3. For any CW-complex $K^{n}$ we have

$\dim K^{n}=indK^{n}=IndK^{n}=n$ .
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PROOF. By Theorems 4.3 and 7.1 we have $IndK^{n}\leqq n$ . It is well known
that $\dim K^{n}\leqq IndK^{n}$ and ind $K^{n}\leqq IndK^{n}$ . Let $e^{n}$ be an arbitrary n-cell of
$K^{n}$ . Then it is evident that $n=ind\overline{e^{n}}\leqq indK^{n}$ and $n=\dim\overline{e^{n}}\leqq\dim K^{n}$ .
Thus we have the equalities $\dim K^{n}=indK^{n}=IndK^{n}=n$ and the proof is
completed.

REMARK 7.4. It is to be noted that the equality $\dim K^{n}=n$ has already

been proved by H. Miyazaki [11] and K. Morita [15, Theorem 2]. Recently

B. Pasynkov [22] proved that, for any locally compact group $G$ , the equalities

$\dim G=indG=IndG$ hold. It seems to the author an interesting problem to
study whether any n-dimensional locally compact group $G$ admits a directed
family of locally finite closed coverings of order $\leqq n+1$ which follows out $G$

fully or not.

Ehime University
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