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Abstract

Impacting systems are found in a great variety of mechanical constructions

and they are intrinsically nonlinear. In this paper it is shown how near-grazing

systems, i.e. systems in which the impacts take place at low speed, can be

described by discrete mappings. The derivation of this mapping for a harmonic

oscillator with a stop is dealt with in detail. It is found that the resulting mapping

for rigid obstacles is somewhat different from those presented earlier in the

literature. The derivations are extended to systems with a compliant obstacle.

We find that the map for impacts with a compliant obstacle is very similar to

the one describing collisions with a rigid obstacle. A notable difference is a

change of scale of the bifurcation parameter. We illustrate our findings in the

limit of large damping, where the mechanism of period adding can be analysed

exactly. The relevance of our results to experiments on practical impact systems

is indicated.

1. Introduction

Impacting behaviour is found in a large number of mechanical systems. Examples are

gear rattle, ships colliding against fenders, loosely fitting joints, suspension bridges and ball

bearings. In atomic force microscopy, impacts occur on a mesoscopic scale and the interaction

forces may have an intricate form (Berg and Briggs 1998, van de Water and Molenaar 2000).

Although the dynamics in between impacts may be linear, the collision introduces an essential

nonlinearity. We believe that impacts are the principal source of nonlinearity in discrete

mechanical systems.

A special situation arises when the impacts are with zero velocity, so-called grazing

impacts. For impacts that are close to grazing, it is possible to condense the mathematical

description into a discrete mapping as was first done by Nordmark (1991, 1997); followed by

Frederiksson and Nordmark (1997) and Frederiksson (1998). As the bifurcation properties

of a mapping are analysed much more readily than those of a differential equation, the study
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of these mappings led to the discovery of important organizing principles in the dynamics of

impact oscillators.

The Nordmark map (Nordmark 1991) reads as

xn+1 = αxn + yn + ρ

yn+1 = −γ xn

}
if xn � 0 (1)

xn+1 = −√
xn + yn + ρ

yn+1 = −γ r2 xn

}
if xn > 0. (2)

Here, (xn, yn) are the transformed coordinates of the two-dimensional phase space of the

original impact oscillator taken at stroboscobic times t = n ∈ Z. Equation (1) describes the

non-impacting case with xn < 0, whereas (2) is applied when the xn-coordinate crosses the

position of the wall at x = 0. The parameters α and γ are related to the parameters of the

ordinary differential equation, whereas the restitution coefficient r gauges the energy loss at

impact. The bifurcation parameter ρ is proportional to the driving amplitude of the impact

oscillator. At large negative values of ρ no impacts occur, and equation (1) applies. When ρ is

increased in a quasi-stationary way from the non-impacting state, impacts first occur at ρ = 0.

These impacts may be with a relatively large velocity and the transition that has taken place

may be hysteretic, i.e. impacts may remain when ρ is subsequently smoothly decreased and

may only vanish at a negative value of ρ. The emergence of a square-root in (2) is characteristic

for grazing collisions. Because the Jacobian of the map behaves as x−1/2 at x = 0, we will

refer to it as a square-root singularity. In the vicinity of the line x = 0, the map stretches phase

space extremely.

Intimately tied to this square-root singularity is the phenomenon of period adding.

Depending on the value of the parameters α and γ , this can come either as an infinite series

of reverse period addings if ρ is increased from 0, or as a series of (non-impacting) period-1

to period-M , M = 1, 2, . . . , transitions at given values of α and γ . In all cases, the M-

periodic orbits reached are maximal periodic orbits that have a single impact per period. It is

tempting to draw an analogy with period-doubling bifurcations, which are found in systems

with a quadratic nonlinearity (Feigenbaum 1983). In both cases, the order of the nonlinearity

determines a characteristic bifurcation scenario.

Figure 1 illustrates these period addings when the bifurcation parameter is reduced from

a positive value downwards. As period addings are readily accessible in the experiment

(de Weger et al 2000) we will concentrate on this characteristic feature of impact oscillators

when we test the prediction of mappings.

The mapping (1) and (2) assumes that the wall is perfectly rigid so that impacts take place

instantaneously. This idealization will not be fulfilled in real experiments where collisions

occur with a more or less compliant wall which introduces a time delay at impact. The key

question then is whether a finite compliance will ‘smooth’ the square-root singularity, thus

essentially altering the typical bifurcation structure of grazing impact oscillators. The prime

motivation of this work is a derivation for grazing impact mappings in the case of collisions

with yielding obstacles. To this end we will first derive in sections 2 and 3 the mapping for a

harmonic oscillator which undergoes grazing impacts with a hard wall. We will use a lucid and

straightforward expansion that allows a precise association of the parameters of the resulting

map with those of the differential equation. We will argue that (2) needs to be altered slightly

but essentially. Having laid out our mathematical tools, the extension to the case of impacts

with a non-rigid wall in section 6 appears straightforward.

Our procedure is to split the dynamics into a map L which describes the effect of the

impact at stroboscopic times and a map which evolves the oscillator between collisions. Most
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Figure 1. Bifurcation diagram for (α, γ ) = (0.25, 0.01) and r = 0.9 showing a series of period

addings. We have used the mapping (37) and (38) with (48) which is derived for low-velocity

impacts with a yielding wall. As bifurcation parameter we used, instead of ρ, the physical parameter

σ = F/Fg − 1, where F is the driving strength of the harmonic oscillator (3) for which the map

was derived, and Fg the driving strength (5) where impacts first occur. The relation between ρ and

σ will be derived in this paper. Apart from a scale factor of the horizontal axis, the bifurcation

diagram is almost identical to figure 3(b) in Chin et al (1994) which was computed using the

Nordmark map (1) and (2).

of the work is the derivation of L. Such a procedure is not new (Frederikson and Nordmark

1997). In a recent paper Dankowicz and Nordmark (2000) discuss the general properties of a

‘discontinuity map’ (similar to L, but now taken at the collision time itself) in the presence of

a yielding wall.

In impacting systems there are two sources of discontinuity: the impact itself and the

energy loss upon impact. The loss of energy is a crucial ingredient of impact oscillators. In

an experimental study (de Weger et al 2000) of a mechanical oscillator we found collisions to

be almost completely inelastic.

The study of Dankowicz and Nordmark (2000) is for perfectly elastic collisions.

Depending on several small parameters, either a square-root (x
1/2
n ) behaviour, or a dependence

xn + c x
3/2
n of the impact map was found for generic systems that involve a yielding wall.

Consequently, for some choice of the relative ordering of the parameters the square-root

singularity of the Jacobian vanishes, thus essentially altering the dynamical properties of the

system.

Practical systems suggest a natural ordering of the several small quantities of Dankowicz

and Nordmark (2000), and a single parameter remains. Our conclusion will be that for most

systems involving a yielding wall, an effective square-root behaviour survives. An exception

is the case of perfectly elastic collisions where an effective square-root behaviour will only be

felt when the impact velocity is large enough. Period-adding bifurcations are thus expected

to also be found in experimental situations which involve compliant obstacles. In section 7

we will illustrate the predictive power of our mapping when we analyse period addings in the
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limit of large friction.

2. Harmonic oscillator

A sketch of the physical system is shown in figure 2. We consider a periodically driven

harmonic oscillator with mass m, friction coefficient c, spring constant k. The driving force

has angular velocity ω and amplitude f . At an obstacle is placed a distance ℓ > 0 from the

rest position of the oscillator. In non-dimensional form the equation of motion reads as

ü + νu̇ + 	2(u + 1) = F cos(2π t + ϕ) (3)

with

ν = 2πc/mω

	2 = 4π2k/mω2

F = 4π2 f/mω2ℓ.

The position has been scaled such that the rest position of the mass is at u = −1 and of the

obstacle at u = 0. So, the distance ℓ is the unit of length. Time has been scaled such that the

external forcing has frequency 2π . For later convenience a phase difference ϕ is introduced.

With these conventions, the particular solution of (3) has the elegant form

p(t) = (1 + σ) cos(2π t) − 1 (4)

with

σ = (F − Fg)/Fg

Fg =
√

(	2 − 4π2)2 + 4π2ν2 (5)

ϕ = arccos[(	2 − 4π2)/Fg].

For F = Fg the particular solution p(t) grazes the wall at times t = n ∈ Z when it collides

with zero velocity. We take the normalized excitation amplitude σ as the bifurcation parameter.

One of our tasks will be to derive the relation between σ and the bifurcation parameter ρ of

the mapping. If we denote points in phase space by u = (u, u̇)T , the solution u0(t) of the

undriven oscillator (3) with F = 0 and with the obstacle ignored, is given by

u0(t) = P(t − t0)u0(t0) (6)

forcing ∼ cos(t)

m

u=0u=-1

u

friction ∼ ν

Figure 2. The physical system studied in this paper. The mass m of the oscillator can collide

with a yielding wall. We assume that the massless wall is attached with frictionless springs to the

fixed world. The resilience of the wall is determined by the stiffness of the second spring. We

use normalized units with m = 1, the wall position at rest at u = 0, and the rest position of the

oscillating mass at u = −1.
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with the evolution matrix P(t) of the free system

P(t) = 1

s2 − s1

(
s2es1t − s1es2t es2t − es1t

s1s2(e
s1t − es2t ) s2es2t − s1es1t

)
(7)

where s1 = 1
2
(−ν +

√
ν2 − 4	2) and s2 = 1

2
(−ν −

√
ν2 − 4	2). For later convenience we

mention that P11 − νP12 = P22. Note that P(0) equals the unit matrix. Given the initial

conditions u(t0), the general solution of equation (3) is the sum of the solutions in (4) and (6)

and can be written as

u(t) = P(t − t0)[u(t0) − p(t0)] + p(t). (8)

Expression (8) holds as long as no impact takes place, thus if u < 0. The time-one operator

P ≡ P(1) connects states at successive periods of the driving; its eigenvalues are exp (s1)

and exp (s2). From this we directly conclude that p(t) is asymptotically stable in the case of

damping, i.e. if ν > 0. So, the system tends to p(t) in between impacts. In the overdamped case

ν2 > 4	2 this convergence is fast and without oscillations, whereas in the underdamped case

ν2 < 4	2 this approach is slow and u(t) will oscillate around p(t). The difference between

under- and overdamped oscillations may lead to essentially different maps, as discussed in

section 8. The trace α = Tr(P) and determinant γ = Det(P) will play an important role in

the following. They are given by the sum and the product of the eigenvalues:

α = es1 + es2 = 2e− 1
2
ν cosh

(
1
2

√
ν2 − 4	2

)

γ = es1 × es2 = e−ν .
(9)

3. Modelling the impact

To incorporate the effect of the obstacle, an impact model has to be introduced. We denote

the velocity and time at collision by (vc, tc) and the velocity and time at recoil by (vr , tr ). The

duration of the impact, i.e. the time spent in the region u > 0, is denoted by �t . An impact

model then must specify the relations

vr = vr (vc, tc) and tr = tc + �t (vc, tc). (10)

In the next sections we first derive expressions for the case of impacts with a perfectly rigid

wall when the recoil is instantaneous (�t = 0). After that the effect of a compliant wall is

studied. In our approach the energy loss upon collision is done through a simple restitution

model which allows for a useful comparison with the map derived by Nordmark (1991). Thus,

vr = −r vc 0 � r � 1. (11)

The case r = 1 corresponds to an elastic wall. If r < 1 energy is absorbed during the impact.

It is interesting to note that relation (11) still has a firm physical meaning if r < 0. Then,

the mass does not bounce back, but penetrates the region u > 0 and instantaneously slows

down upon passing the boundary u = 0. For r = −1 the obstacle is totally ignored, and we

are effectively dealing with an unrestricted oscillator. The latter case can be conveniently used

to check the formulae to be derived in the following.

Any realistic description of collisions should involve energy losses and (11) is the simplest

thinkable model. We realize, however, that the choice (11) induces a discontinuity of the

velocity, other than the one which is inherent to the impact. In our analysis these two sources

of discontinuity remain entangled most of the time. As there are many ways to account for

energy loss during collisions, the choice of energy loss models must be guided by situations of
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practical interest. We believe that the model which is analysed here is relevant for macroscopic

experiments (de Weger et al 2000). In another collision model studied by us in the context

of atomic force microscopy (van de Water and Molenaar 2000), the energy loss is continuous.

However, it appeared that the singularity structure of the dynamical system survived. The

question of why this is so remains a subject of further study.

4. Instantaneous impacts

Since the dynamics between impacts (via (8)) and during impacts (via (10)) is explicitly

known, the orbits can, in principle, be calculated. The dynamical equations (8) and (10)

can be reduced to a discrete mapping for orbits which undergo near-grazing collisions. The

reduction is possible for orbits which remain close to the particular solutions p(t) in (4) with

σ ≈ 0. Possible impacts then occur in short time windows around t = n ∈ Z. In the literature

(Whiston 1987, 1992, Foale and Bishop 1992, Budd and Dux 1994, Budd et al 1995) one

usually studies mappings which connect states of the system at successive impacts. We found

it more convenient to focus on the Poincaré map connecting the states un = (un, vn)
T at

stroboscopic times t = n ∈ Z.

Figure 3. The impact map L. (a) If impacts occur before t = tn , L maps the virtual position un

onto the true position ûn . (b) If impacts occur after the stroboscopic time, L maps the true state

un onto the virtual state ûn .

A judicious choice of the state is a crucial step in the present derivation. For un and vn we

take the position and velocity the system would have at t = n if the obstacle had been removed

shortly before t = n. This is most conveniently understood from figure 3. If the impact takes

place (shortly) after t = n or if no impact occurs at all around t = n, the state involves the

real values of position and velocity. If an impact occurs (shortly) before t = n, un is a virtual

state with un > 0. We account for a possible impact near t = n through the local mapping L:

ûn = L(un). (12)

The action of L and the location of the points un and ûn are illustrated in figure 3. The

key idea is to calculate the orbit around t = n with and without accounting for the presence

of the obstacle. If an impact occurs before t = n (figure 3(a)), un represents the virtual state

at t = n obtained if no obstacle were present, while ûn represents the physical state obtained

by incorporating the impact. If the impact takes place after t = n, the roles of un and ûn are

reversed, as shown in figure 3(b). If there is no impact or if the impact is grazing, L is the

identity.

After application of L, the system is propagated from state ûn at t = n to state un+1 at

t = n + 1 without accounting for the obstacle, thus by applying the evolution given by (8).
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The full mapping is then given by

un+1 = P[L(un) − p(tn)] + p(tn+1). (13)

From (4) we have p(tn) = p(tn+1) = (p(n), ṗ(n))T = σ(1, 0)T ≡ σe1.

Using a parabolic approximation of the orbits around t = n ∈ Z, one finds that an impact

will take place if the quantity

χn = v2
n − 2A un (14)

is positive. Here, A is the acceleration of the grazing orbit, i.e. p̈(n) with σ = 0:

A = −4π2. (15)

If χn > 0 and un > 0, an impact has occurred shortly before t = n, whereas if χn > 0 and

un < 0 the oscillator will hit it shortly after t = n. Both cases can be dealt with on an equal

footing.

We now expand the dynamics of near-grazing orbits in terms of the small parameters

un, vn and σ , assuming that they are all of the same order of magnitude. We are interested

in a derivation up to and including the linear order, so terms involving (cross) products are

omitted1. To find L explicitly, we express ûn in terms of un . In the derivation we use the

impact characteristics (vc, tc) as intermediates. To find approximations for (vc, tc) that are

accurate up to linear order in (un, vn, σ ), the orbit u(t) is expanded up to and including third

order in time:

u(t) = un + vnt + 1
2
Ant2 + 1

6
Bnt3.

Here, we conveniently use t = n as the origin of the time axis and introduce the notation

An = ü(t = n) and Bn = d3u/dt3(t = n). Setting u(tc) = 0 we obtain the expression

tc = 1

An

(√
χn − vn +

Bn

3An

un

)
. (16)

Substitution of tc into the velocity v ≡ u̇ yields

vc = √
χn − 2Bn

3An

un. (17)

From these expressions we see that in lowest order, tc and vc scale with
√

un . This is due to

the parabolic character of the orbit near its maximum. According to (3) the acceleration of the

oscillator is given by

ü = −νv − 	2(u + 1) + (1 + σ)Fg cos(2π t + φ) (18)

which is a function of (u, v, σ, t). Substituting t = n we find that, in the linear approximation,

An can be written as

An = A − 	2un − νvn + (	2 − 4π2)σ (19)

with the ‘grazing’ acceleration A introduced in (15). In a similar way we obtain

d3u

dt3
= −νü − 	2v − 2π(1 + σ)Fg sin(2π t + φ). (20)

1 Other assumptions about the relative ordering of un, vn and σ are possible (de Weger 1999), but they do not affect

our main conclusions.
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Substitution of (18) and t = n yields

Bn = ν	2un + (ν2 − 	2)vn − ν	2σ. (21)

We conclude that in (16) and (17) An and Bn can be replaced by their ‘grazing’ values A and

B ≡ 0, since terms of order higher than linear can be omitted:

tc(un, vn) = 1

A
(
√

χn − vn) vc(un, vn) = √
χn. (22)

Next, we expand u(t) around the (still unknown) quantities (̂un, v̂n):

u(t) = ûn + v̂nt + 1
2
Ânt2 + 1

6
B̂nt3. (23)

Substituting t = tc we obtain the equation

u(tc) = 0 = ûn + v̂ntc + 1
2
Ânt2

c + 1
6
B̂nt3

c . (24)

For the velocity we similarly find

v(tc) = −rvc = v̂n + Ântc + 1
2
B̂nt2

c . (25)

We note that Ân and B̂n are given by expressions (19) and (21) after replacement of (un, vn) by

(̂un, v̂n). If we substitute these expressions into (24) and (25) we meet with equations which

are linear in (̂un, v̂n). After solving these, we obtain (̂un, v̂n) in terms of (vc, tc). Substitution

of (22) then yields (̂un, v̂n) in terms of (un, vn):

ûn = −(1 + 2r)un − 1

A
(r + 1)vn

(
vn − √

χn

)
(26)

and

v̂n = vn − (r + 1)
(√

χn − 2νun

)
. (27)

The latter two expressions describe the action of the map L introduced in (12). The map

trivially reduces to the identity for the case r = −1 (no obstacle). Note that the second term

on the right-hand side of (26) may be of linear order, although it contains products. This is the

case if vn ≫ un , for which (26) reduces to ûn ≈ −run . We emphasize that the expressions also

yield the correct answer if the impact occurs after t = n. The second term on the right-hand

side in (26) then ensures that |̂un| < |un|, as is to be expected.

It is convenient to write the local map L in matrix notation:

L(un) = Nun + n(un) (28)

with

N(t) =
(

−(1 + 2r) 0

0 1

)
(29)

and

n(un) = −(1 + r)

⎛
⎝

1

A
vn

(
vn − √

χn

)

√
χn − 2ν un

⎞
⎠. (30)

The nonlinearity of L is contained in the vector n. Substitution of (28) into (13) yields for

χn � 0

un+1 = P(Nun + n) + σ(I − P)e1 (31)
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while for χn � 0 we have the no-collision case

un+1 = P un + σ(I − P) e1. (32)

With equations (31) and (32) we have brought the dynamics of the harmonic impact

oscillator to the form of a mapping. The mapping is approximate in that we have assumed

near-grazing orbits. The mapping is not yet very transparent: it still lacks an impact criterion

which depends on a single coordinate (such as the map (1) and (2)). In the next section we

will reshape the mapping via a nonlinear transformation in order to obtain similarity with the

map (1) and (2). It must be realized that this procedure might reduce the accuracy of the map

(31) and (32) which was derived as a linear approximation to the near-grazing dynamics.

5. Natural coordinates

The map (31) and (32) can be put into a more concise form by realizing that the factor χn ,

which we introduced in (14) and which discriminates between impacting and non-impacting

orbits, plays a crucial role. The curve χn = 0 in phase space represents the grazing orbit in

the vicinity of t = tn . This suggests choosing the family of curves given by χn = c with c

constant as level lines of the new coordinates:

x = l χ. (33)

Here and in the following equation the constant factor l > 0 is introduced for later convenience.

For the other new coordinate a convenient choice is the following linear combination of χ and

v:

y = −l
[
P22 χ + 2A P12 v + 2Aσ (P22 − γ )

]
. (34)

This combination is chosen such that the second component of the two-dimensional map (31)

and (32) gets the simple form given in (37) and (38). In figure 4 the level lines of the new

coordinates (x, y) are sketched. Inverting this transformation and retaining only terms linear

in (x, y, σ ), we obtain the expressions

u = x

l
v = − 1

2 l A P12

(y + P22 x + 2A l σ(P22 − γ )). (35)

The inverse transformation does not exist if P12 = 0, but this case corresponds to critical

damping and can be trivially accommodated by adjusting the propagator P(t) in equation (7).

u

v

x=0

increasing x

Figure 4. Level lines of the new x-coordinate, defined in (34). The level lines of the new y-

coordinate (34) have a similar shape, but with respect to a shifted origin.
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Applying (33) and (34) at t = n + 1 we obtain (xn+1, yn+1) as functions of (un+1, vn+1).

The latter are expressed in terms of (un, vn) via the map (31) and (32). Application of the

transformation (35) yields the map in transformed coordinates. As long as r �= −1, which

corresponds to the absence of the obstacle, an appropriate choice for the factor l is

l = 1

4A2 (1 + r)2 P2
12

. (36)

After lengthy algebra, in which terms of order higher than linear in (x, y, σ ) are omitted,

we find that the transformed map reads as

xn+1 = αxn + yn + ρ

yn+1 = −γ xn

}
if xn � 0 (37)

xn+1 = −c1

√
xn + c2xn + yn + ρ

yn+1 = c3xn

}
if xn � 0. (38)

The coefficients c1, c2 and c3, and the bifurcation parameter ρ, are given by

c1 = sign(P12)

c2 = α − 2(1 + r)P22 + (1 + r)2P2
22

c3 = (1 + 2r)γ − (1 + r)2P3
22

ρ = 1 − α + γ

2|A|(1 + r)2P2
12

σ.

(39)

If r = −1, the obstacle is ignored and the dynamics is described by the map in (37) only,

irrespective of the sign of xn . The association of the parameters α and γ in the collisionless

map (37) with the parameters of the ordinary differential equation (3) can also be made by

realizing that the eigenvalues of its Jacobian must be the same as those of the linear propagator

P, as was also noted by Chin et al (1994). The form of the remaining parameters, however,

can only be learned from a full nonlinear analysis as is done here.

In comparison with the Nordmark map (1) and (2), our map has several new features.

First, we emphasize that the sign of the square-root term in equation (38) depends on the linear

propagator P12 and is not fixed, as in (2). We will explain in section 8 that a fixed negative sign

prohibits period-1 maximal periodic orbits of the underdamped oscillator, in clear contradiction

with both experiment and numerical simulation. In de Weger et al (2000) we show that the term

proportional to xn in equation (38) is essential for a quantitative understanding of the destruction

of maximal periodic orbits through an additional impact. This term is absent in the Nordmark

map (1) and (2). Finally, we point out that the c3 parameter differs from the corresponding

prefactor in (2). In the next section we will demonstrate that with the groundwork now laid

out, the derivation of the map for the case of non-instantaneous impacts can be done readily.

6. Non-instantaneous impacts

If the obstacle is not rigid but compliant, the impacting mass will penetrate the region u > 0

for some time interval, �t say. For u < 0 the motion of the oscillator very near collision is

determined by the constant acceleration A defined in (15). For u > 0 the motion is described

by the dimensionless equation

ü + νu̇ + 	2(u + 1) + κ2u = F cos(2π t + φ). (40)

10



The wall repels the mass harmonically with spring constant κ2. The stiffness of the wall is

gauged by the ratio Ŵ = κ2/	2 of the spring constants of wall and oscillator. An infinitely stiff

wall has Ŵ = ∞. As was argued in section 3, we admit that energy may be instantaneously

absorbed by the wall at the moment of collision. The collision velocity vc is thus reduced by

a factor r with 0 � r � 12. Apart from this possibility of energy dissipation, energy may also

be lost through the linear friction term νu̇ in (40). The solution of (40) with initial conditions

u(tc) = 0 and v(tc) = r vc is known explicitly and the duration of the impact follows from the

condition

u(tc + �t) = 0. (41)

Whilst �t as a function of vc at a given value of κ may easily be computed numerically from

(41), more insight is gained from approximate analytical expressions for �t . These are most

appropriately found by exploiting the physical characteristics of the system. Since the impacts

are near grazing, the friction term νu̇ in (40) can be neglected in the first instance. As long as

the wall is relatively stiff, we have Ŵ ≫ 1 and thus κ2 ≫ 	2. Furthermore, we have �t ≪ 1

and the stiffer the wall, the shorter the impact will be. This suggests expanding �t in powers

of κ−1, with the result

�t = 1

κ
arccos

1 − β2

1 + β2
+ O(1/κ2) (42)

with the dimensionless factor β being given by

β = r vc κ

|Ã|
. (43)

The factor Ã is defined as Ã = (1 + σ)A + σ 	2, with the reduced excitation amplitude σ

defined in (5) and A in (15). From (42) and (43) it is seen that the product vc κ determines the

impact characteristics. In figure 5 �t is drawn as a function of β. Note that the time delay

behaves linearly for low collision velocities, but converges to a constant limiting value for

increasing values of vc.

Δt

π/κ

β

2β/κ

Figure 5. The general behaviour of the residence time �t as a function of β = rvcκ/|A|. For

small β the time delay grows linearly with β and the impacts are soft. For large β the time delay is

constant and the impacts are hard. In both limits a map with a square-root singularity is derived.

In the following we shall apply the result in (42) for the two limiting cases β ≪ 1 and

β ≫ 1. We refer to these as low- and high-velocity impacts, respectively. Whether the

collision velocity is low or high, not only depends on the collision velocity vc, but also on the

wall stiffness κ and on the restitution coefficient r . As the magnitude of the collision velocity

2 So, the minus sign present in equation (11) is not relevant in the case of a compliant wall. This implies that the role

of the factor r is slightly different now.
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depends on the dynamical state of the impact oscillator, it is not possible to give a priori criteria

for wall hardness, for example as a criterion on the value of Ŵ. From an experimental point of

view, an extremely interesting question is how the softness of the wall affects the bifurcation

scenarios which are characteristic for impact oscillators.

6.1. Low-velocity impacts

For low-velocity impacts, we assume β ≪ 1, i.e.

vc ≪ |A|
r κ

. (44)

To lowest order in β, the duration of the impact then is

�t = 2r

|A| vc = 2β

κ
. (45)

The stiffness of the wall has now dropped from (45), the orbit does penetrate the wall, but the

time delay �t could have been obtained by setting κ to zero in (40). The only remaining wall

parameter is the restitution coefficient r . For purely elastic low-velocity collisions (r = 1),

therefore, the presence of the wall can be ignored completely in our approximation. The

dynamics is then effectively also free in the region u > 0 and is described by the regular map

(37) everywhere. Our analysis does not go beyond terms which are first order in x , and in this

case the presence of the wall will only be felt in the next higher order x3/2. That this is indeed

the case was shown by Dankowicz and Nordmark (2000).

To within the order of our approximation, the obstacle is only felt when it absorbs energy,

thus if r < 1. To find the mapping for this case we derive the analogues of (26) and (27)

starting from the impact law (10) with (45). To that end the derivation steps (23)–(25) have to

be repeated. We eventually find that the local map L is still of the form (28)–(30), but with the

replacement r → −r . Thus in this case we have

L(un) = Nun + n(un) (46)

with

N(t) =
(

−(1 − 2r) 0

0 1

)
n(un) = −(1 − r)

⎛
⎝

1

A
vn

(
vn − √

χn

)

√
χn − 2ν un

⎞
⎠. (47)

Since equations (28)–(30) have the same structure as (46) and (47), the remainder of the

evaluation does not change. In conclusion, if r = 1 the dynamics is given by the map in (37),

irrespective of the sign of xn . If r �= 1, the map is given by equations (37) and (38) with the

coefficients

c1 = sign(P12)

c2 = α − 2(1 − r) P22 + (1 − r)2 P2
22

c3 = (1 − 2r) γ − (1 − r)2 P3
22

ρ = 1 − α + γ

2|A|(1 − r)2P2
12

σ.

(48)

It is a highly remarkable conclusion that for r < 1 the impact map is the same as the map for

an infinitely stiff wall, but for a sign change of r . The consequence is that soft collisions with a

soft wall at r < 1 should display the same bifurcation phenomena as collisions with a stiff wall,
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but for a scale change (1 + r)2/(1 − r)2 of the bifurcation parameter ρ. The renormalization

of the bifurcation parameter for soft collisions with energy loss is an important result of our

analysis in which the discontinuity of the vector field remains intertwined with that of the

velocity.

6.2. High-velocity impacts

High-velocity impacts correspond to the case β ≫ 1, i.e.

r κ vc

|A| ≫ 1. (49)

From equation (42) we conclude that for large enough β the impact duration �t is given

approximately by

�t ≈ π

κ
(50)

and is thus independent of the collision velocity vc. This fact has interesting consequences.

Combining equations (49) and (50) we find that for β ≫ 1

�t ≪ r π vc

|A| . (51)

Repeating steps (23)–(25), but with the collision rule

tr = tc +
π

κ
vr = −r vc (52)

we again arrive at (38) with (39), provided that terms which are much smaller than the terms

already included in (38) are ignored. Effectively, we are then dealing with the case �t = 0.

This implies that, in leading order, high-velocity impacts at a compliant wall are described by

the same map as instantaneous impacts at a rigid wall, i.e. by equations (37)–(39).

6.3. Summary and discussion

From the previous section we conclude the persistence of the square-root singularity in the

mapping in almost all cases, except that of low-velocity, perfectly elastic collisions with a

yielding wall. These elastic collisions highlight the discontinuity of the vector field, which for

compliant walls was shown to involve an x3/2 instead of a square-root behaviour of the map

(Dankowicz and Nordmark 2000). In contrast, we find an x1/2 behaviour for high-velocity

impacts (β ≫ 1). Using numerical simulations we will now show how this apparent paradox

is resolved. The simulations are based on the ordinary differential equation3

ü + νu̇ + K (u) = F cos(2π t + φ) (53)

where

K (u) =
{

	2(u + 1) u � 0

	2(u + 1) + κ2 u u > 0

3 An efficient numerical scheme for solving equation (53) in the presence of grazing impacts uses the analytical

solutions for the motion between impacts. The (exact) positions u(t) are computed in a small number of discrete

points t1, . . . , tk in each drive period. It is crucial not to miss boundary crossings of u(t). These crossings are detected

both directly by checking u(t1), . . . u(tk) and by computing the position u(t) at the turning points of the velocity u̇.

The number k of discrete points in the regions u < 0 and u > 0 is taken as being proportional to 	 and κ , respectively.
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Figure 6. (a) The (12) element of the Jacobian of a numerically computed map of an underdamped

oscillator (ν, 	) = (0.196, 7.368) that collides elastically (r = 1) with a yielding wall for stiffness

ratios Ŵ = 10, 102, 103 and 104, respectively. It was found from integrating the differential

equation (53). (b) Bifurcation diagram computed from (53) for Ŵ = 10. (c) Same as (b), but now

for Ŵ = 1000. The period-3 to period-1 transition at decreasing values of σ is characteristic of a

square-root singularity of the Jacobian.
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Figure 7. (a) Jacobian of a numerically computed map of an underdamped oscillator (ν, 	) =
(0.196, 7.368) that collides inelastically (r = 0.9) with a yielding wall for stiffness ratios

Ŵ = 10, 102, 103 and 104, respectively. It was found from integrating the differential equation (53).

(b) Bifurcation diagram computed from (53) for Ŵ = 10. (c) Same as (b), but now for Ŵ = 1000.

The horizontal scale of (b) has been expanded by a factor of 102. The backward transition period-

3 to period-1. The hysteretic period-3 to period-1 transition at decreasing values of σ that is

recognized in both cases is characteristic of a square-root singularity of the Jacobian.
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which combines (3) and (40). For any derived mapping, the central question is if it can

correctly predict bifurcation scenarios which are of practical relevance. One of those is the

phenomenon of period adding which is intimately tied to the square-root singularity of the

Jacobian. Inspired by the experiment of de Weger et al (2000) we have chosen the parameters

such that the dynamical state is a period-1 to period-3 transition which displays hysteresis.

In a quasi-stationary upward scan of F from the non-impacting state, impacts occur first at

F = Fg (σ = 0). When σ is subsequently decreased, the non-impacting state is reached only

at a negative value σ = −σH . At this point the orbit is closest to grazing and we take the

downward transition period-3 → period-1 as indicative of an effective square-root behaviour

of the map.

The singularity structure of the map is most clearly seen in its Jacobian. Because the

numerical map is not in natural coordinates, all elements of the Jacobian display the same

qualitative behaviour and we arbitrarily select the element J12 = ∂un+1/∂ u̇n . In figure 6(a) we

show the Jacobian as a function of x = un of the stroboscopic map that was computed from

(53) for the case of perfectly elastic collisions (r = 1). For fairly compliant walls (Ŵ = 10), the

x3/2 behaviour of the map can be clearly recognized. Although the Jacobian is never singular

at x = 0, it starts to develop an effective x−1/2 behaviour for increasing Ŵ. This is in complete

agreement with our analysis and resolves the apparent paradox. Accordingly, for collisions

that are hard enough (β ≫ 1), the bifurcation scenario is that of the square-root map. This

is illustrated in figure 6(c) that shows the bifurcation diagram for Ŵ = 103, where indeed the

characteristic period-3 → period-1 transition can be seen for decreasing σ , whereas a different

scenario is observed at Ŵ = 10 in figure 6(b). In figure 6(a) the parameter which gauges the

hardness of the collision β = 21 at x = 0.02 for Ŵ = 103, but it must be emphasized that

β is not uniformly large as it varies as x1/2. The single parameter β, therefore, controls the

cross-over between the two behaviours that were recognized by Dankowicz and Nordmark

(2000).

For collisions with energy loss (r = 0.9) the numerically computed map is shown in

figure 7(a). In agreement with our analysis, the Jacobian now displays an x−1/2 behaviour

both for large and small β, but not for intermediate values. This is illustrated in the bifurcation

diagrams of figure 7(b) for Ŵ = 10 and 103. In both cases the period-3 to period-1 transitions

which are typical for a square-root map can be recognized. As in the elastic case, we must

realize that for Ŵ = 103 β is not uniformly large.

We recall that both cases are described by the same map, but for a sign reversal of r

in the coefficients. This leads to a scale change of σ with a factor of (1 + r)2/(1 − r)2 ≈
102. The σ -axis of the bifurcation diagram at Ŵ = 10 (figure 7(b)) has been scaled

accordingly.

For inelastic collisions r < 1 the discontinuity of the vector field and the jump of

the velocity upon collision are interleaved, such that for β ≫ 1 the map reflects that of

the vector field only and for β ≪ 1 the singularity is due to the velocity change upon

collision. It is a remarkable finding that both cases are related through the scale change

(r − 1)2/(r + 1)2. Incidentally, as can be seen from the behaviour at β = O(1), a

restitution-rule impact energy loss does not necessarily imply a square-root singularity of

the Jacobian.

7. Period-adding bifurcations

As mentioned in the introduction, one of the characteristic features of maps with a square-root

singularity is the phenomenon of period-adding bifurcations. The emergence of this type of
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bifurcation can be understood in an extremely simple way from the map in the limit of large

damping, ν ≫ 1. However, it will appear that this simplicity comes at a price, namely that the

number of addings is not as large as those in figure 1 which was computed from the mapping

(37), (38) and (48) for different parameter values. The analysis also allows us to highlight the

difference between our map and the Nordmark map (1) and (2) and to stress the importance

of wall-compliance.

In the case of a strongly damped oscillator we have in (37), (38) and (48) s1 ≈ 0, s2 ≈ −ν,

and accordingly α ≈ 1, γ ≈ 0, P11 ≈ 1, P12 ≈ 1/ν and P22 ≈ 0. The two-dimensional map

then tends to the one-dimensional map

xn+1 = xn + ρ if xn � 0. (54)

xn+1 = −√
xn + xn + ρ if xn � 0 (55)

with ρ given by

ρ ≈ ν	2

2|A|(1 − r)2
σ. (56)

The influence of the restitution coefficient r is now only felt through the scaling of the

bifurcation parameter. The reduced map resembles those analysed by Nusse and Yorke (1992),

Nusse et al (1994) and Lamba and Budd (1994).

u

t

t=1 2 .... M-1 M+1M

Figure 8. Sketch of a maximal period-M orbit with M = 6. At t = M − 1 the orbit grazes the

wall (position u > 0), so that this orbit will be destroyed as soon as the bifurcation parameter is

increased further.

The nature of maximal periodic orbits is illustrated in figure 8. Starting at some x1 < 0,

the orbit creeps in the direction of the origin with steps of size ρ according to (54) until it

collides and is thrown back onto the negative x-axis according to (55). Maximal M-periodic

orbits are stable only in a given interval of the bifurcation parameter ρ. For too large ρ, a given

M-periodic orbit is destroyed by an additional impact at time M − 1, whereas for too small

ρ, the cycle loses stability as the orbit is not sufficiently thrown back at impact. We will now

compute the stability interval [ρL
M , ρU

M ].

The cycle elements x1 . . . xM of a maximal periodic orbit satisfy

x1 < x2 < · · · < xM−1 < 0 < xM (57)

with xM mapped unto x1. Since xM+1 is found by applying (54) M − 1 times and (55) once,
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the orbit satisfies

xM+1 = −√
xM + xM + ρ

= −
√

x1 + (M − 1)ρ + x1 + (M − 1)ρ + ρ. (58)

At the upper boundary ρU
M of its existence interval, the M-periodic orbit grazes the wall at

t = M − 1, as is illustrated in figure 8. Then we have

x1 = −(M − 2)ρU
M xM−1 = 0 and xM = ρU

M . (59)

From the condition xM+1 = x1 it then follows that

ρU
M = 1

M2
. (60)

It can be seen that maximal periodic orbits with increasing periods M live at decreasing values

of the bifurcation parameter ρ.

The lower bound of ρL
M of the ρ-interval of existence of the maximal period M orbit

follows from the stability criterion
∣∣∣∣
∂xM+1

∂x1

∣∣∣∣ � 1. (61)

Using equation (58), the requirement becomes
∣∣∣∣−

1

2(x1 + (M − 1)ρ)1/2
+ 1

∣∣∣∣ < 1. (62)

With the period condition xM+1 = x1 we finally have

ρL
M = 1

4M
. (63)

In conclusion, for the strongly damped oscillator, maximal period-M orbits exist in parameter

intervals

ρM ∈
[

1

4M
,

1

M2

]
. (64)

Clearly, as M increases, the lower bound overtakes the upper bound and we conclude that

maximal periodic orbits only exist up until a maximum period Mmax = 3.

Our conclusion is beautifully illustrated in figure 9, where we compare iterations of the

map with numerical simulations of the differential equation (53) for collisions with a yielding

wall with stiffness ratio Ŵ = 10. In both cases a truncated period-adding sequence is seen

with stability intervals which agree well with the prediction (64). A similar comparison was

done for collisions with an infinitely hard wall. The appropriate map is the same as (54) and

(55), but for a sign reversal of r , which only affects the scale of the bifurcation parameter ρ

(56). At the restitution coefficient used is r = 0.9 in figure 9, the scale change is O(102).

In the differential equation this change moves the windows of maximal periodic orbits to

values of σ which are so large that the map is no longer a valid approximation. Accordingly,

no windows of periodic orbits were observed in the simulations of equation (53). The

striking agreement between the simple mapping and the simulation results for the differential

equation illustrates that allowance for a yielding wall is an essential ingredient of impact

maps.

The map (37) and (38) reduces to a one-dimensional map if γ = 0, in all other cases

the mapping is essentially two dimensional, which makes a bifurcation analysis much more
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Figure 9. Truncated series of inverse period addings for the strongly damped oscillator with

(α, γ ) = (0.99, 0.01) and r = 0.9. (a) Iterations of the map (37) and (38) with (48) which is

derived for low-velocity impacts with a yielding wall. The vertical lines indicate the stability

intervals given by equation (64). (b) Integration of the differential equation (53) using a stiffness

ratio Ŵ = κ2/	2 = 10. The scale of the position x is determined by the stroboscopic phase. In

both cases the horizontal axis is the physical bifurcation parameter σ = F/Fg − 1.
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technical. The frictionless oscillator is studied in Lamba and Budd (1994). For the Nordmark

map (1) and (2) an exhaustive analysis has been done by Chin et al (1994). We expect that

many results of their work will carry over to our mapping. The characteristics of maximal

periodic orbits in underdamped oscillators are compared with experimental results in de Weger

et al (2000).

8. Conclusion

In this paper we have devised a mapping for orbits of a harmonic impact oscillator which

are close to grazing. We have assumed that this occurs at small values of the control

parameter σ and small impact velocities. For period-adding bifurcations these quantities

may not both be small at the same time. When in a quasi-stationary upward scan of σ an

orbit first starts impacting at σ = 0, it may do so at a rather high velocity. The impacts

may remain at σ < 0 when σ is subsequently lowered, only to vanish at some negative value

σ = −σH . The transition therefore displays hysteresis. A quantitatively correct description

of this phenomenon is a challenge for the derived mapping. An additional complication is

that the collision velocity depends on the dynamical state of the impact oscillator, and it is

difficult to decide a priori whether collisions are hard or soft. The predictive power of the

maps (37)–(39) and (37), (38), (48) in situations of practical relevance is tested in de Weger

et al (2000).

A notable difference between the Nordmark map (1) and (2) and the present one (37)

and (38) is the presence of the sign factor in front of the square-root. In the overdamped

case ν2 − 4	2 > 0 the sign factor has a constant positive sign, but it may change sign for

underdamped oscillations since then

P12 = γ 1/2 sin ψ

ψ
with ψ = 1

2

√
4	2 − ν2.

We recall that the case ψ = 2π corresponds to the situation where the oscillator is driven

with a frequency that equals its own freely swinging frequency. It may readily be appreciated

from figure 8 that maximal M-periodic orbits need to be thrown back sufficiently at impact,

and therefore in general need a square-root term with a negative sign. The condition for the

existence of maximal periodic orbits of period M > 1 is then 2π < ψ < 3π (modulo 2π). It

can also be appreciated that a map with a positive square-root term can only support period-1

impacting orbits. Further, it appears that the combination of a negative square-root sign with

a negative α supports period-2 maximal periodic orbits. Since

α = 2γ 1/2 cos ψ

period-2 orbits occur in 5π/2 < ψ < 3π (modulo 2π). This simple observation agrees

with both experiment and numerical simulation of the differential equation. We note that both

the period-1 and the period-2 maximal periodic orbits were missed by Chin et al (1994) who

considered only negative square-root terms and the case α > 0.

A remarkable conclusion of this paper is that soft impacts with a yielding wall give

rise to an impact map which differs from the hard-wall case, roughly through a rescaling

of the bifurcation parameter ρ. For the compliant wall we have considered an admittedly

simple collision model, but we believe that our main conclusion, namely the persistence of the

square-root singularity in impact mappings, is robust.
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