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Abstract

Given a set of facility objects and a set of client objects, where each client is served by
her nearest facility and each facility is constrained by a service capacity, we study how
to find all the locations on which if a new facility with a given capacity is established,
the number of served clients is maximized (in other words, the utility of the facilities is
maximized). This problem is intrinsically difficult. An existing algorithm with an ex-
ponential complexity is not scalable and cannot handle this problem on large data sets.
Therefore, we propose to solve the problem through parallel computing, in particular
using MapReduce. We propose an arc-based method to divide the search space into
disjoint partitions. For load balancing, we propose a dynamic strategy to assign par-
titions to reduce tasks so that the estimated load difference is within a threshold. We
conduct extensive experiments using both real and synthetic data sets of large sizes.
The results demonstrate the efficiency and scalability of the algorithm.



Chapter 1

Introduction

Location selection is a classic problem in operational research and has wide applica-
tions in decision support systems. For example, a urban planner may need to decide
where to build a public car park or a hospital, a company executive may need to de-
cide where to open a new branch office. In recent years, with the widespread use of
Global Positioning Systems (GPS) and smartphones, location based social networks
have become popular and location selection has found a new area of application.

In this report, we study a new location selection problem that has traditional as well
as modern applications. Fig. 1.1(a) illustrates the problem. Let c1, c2, ..., c13 be a set of
office buildings and f1, f2, f3 be a set of car parks. People work in the office buildings
want to park their cars in their respective nearest vacant car parks. Since the number of
parking lots in a car park is limited, some people may have to park faraway. We study
where to build a new car park, so that after the new car park is built, the largest number
of people can park in their nearest car park.

Similarly, let us assume a location based social network scenario. Fig. 1.1(a) de-
notes a board game group where c1, c2, ..., c13 are group members while f1, f2, f3 are
the activity centers provided by the group organizers. The group members want to play
games in their nearest activity centers, but an activity center has a capacity and cannot
hold all group members. We study where to set up a new activity center, so that the
largest number of group members can play board games in their nearest activity cen-
ters. On social networks there are many interest groups. Thus, this problem may be
asked frequently and it needs an efficient solution.

The above motivating problems are modeled as the problem of location selection
for utility maximization (LSUM): given a set of points C as the clients and a set of
points F as the facilities, where each client c is served by her nearest facility and each
facility f is constrained by a service capacity v(f), the LSUM problem finds all the
locations in the space on which if a new facility with a given capacity is established,
the number of served clients by all facilities is maximized (in other words, the utility of
the facilities is maximized). Here, every client c is associated with a weight, denoted
by w(c), which can be thought of as the number of clients that reside at the same site.

In the example shown in Fig. 1.1(b), let the weight of each client be 1, and the
capabilities of f1, f2, f3 be 4, 3, 3, respectively. Then the current total service capacity,
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Figure 1.1: Problem examples

10, is less than the number of clients (a weighted sum), 13, and not all clients can be
served by their respective nearest facilities. If a new facility with a capacity of 3 is set
up on fn . Then it will be the nearest facility of c3, c9 and c10. Now the total capacity
becomes 15 and every client gets served by her nearest facility. As a result, fn is a
problem answer.

In a recent study[23], the LSUM problem is formalized as the LSUM query and
a branch-and-bound based algorithm is proposed to process the query. In the average

case, the algorithm has a time complexity of O(2θ|C|), where θ increases with
|C|
|F |

. In

real applications, |C| is usually very large and |F | is relatively small. In this case, θ can
get very large, which leads to prohibitively long query processing time. To overcome
the inefficiency, we propose to leverage the power of parallel processing, in particular,
the MapReduce framework, to achieve higher query processing efficiency.

There are two main challenges in applying the MapReduce framework for our prob-
lem: (i) How to disjointly divide the search space so that no area needs to be searched
for more than once? (ii) How to assign balanced loads among different reduce tasks?
In this report, we address these challenges and propose an efficient MapReduce based
algorithm for the LUSM query.

The remainder of the report is organized as follows. Chapter 2 reviews related
work. Chapter 3 describes preliminaries for the LUSM query. Chapter 4 gives an
overview of our MapReduce based algorithm. Chapter 5 discusses how to partition the
search space and Chapter 6 discusses load balancing. Experimental results are reported
in Chapter 7 and the report concludes in Chapter 8.

2



Chapter 2

Related Work

2.1 Location Optimization
Location selection belongs to the category of location optimization problem, which is
a classic problem in operational research. Various models [8, 9, 14, 15] have been pro-
posed to solve location optimization problems of different settings. Some [14, 15] have
taken the capacity constraints into consideration. However, in general, these models fo-
cus more on the demand and/or cost of setting up the facilities rather than maximizing
the facility utility. Thus, we will not discuss these models further. Interested readers
are refered to some recent reviews [5, 16, 21].

In the database community, studies in location optimization problems are mostly
based on the bichromatic reverse nearest neighbor (BRNN) query introduced by Korn
and Muthukrishnan [11]. Like many others [17, 18, 30, 33], the BRNN query is a
variant of the nearest neighbor (NN) query. Given two object sets C and F and a query
object from F , the BRNN query returns objects in C who perceive the query object as
their nearest neighbor in F . The BRNN set of an object is also called the influence set
of the object. Based on the influence set, Xia et al. [28], Wong et al. [26, 29], Zhou et
al. [35] and Huang et al. [6, 7] have studied how to find the maximum or top-t most
influential spatial sites. In addition, Zhan et al. [31] and Zheng et al. [34] considered
the uncertainty in the problem. Zhang et al. [32] and Qi et al. [19] investigated the
min-dist problem, which minimizes the average distance between the clients and the
facilities. These studies did not consider capacity constraints and their algorithms do
not apply.

Wong et al. [27] studied the spatial matching problem with capacity constraints.
The study tries to assign each client to her nearest facility whose capacity has not
exhausted. Due to the capacity constraints of the facilities, a client may be assigned
to a facility very far away. U et al. [25] studied the problem further and proposed
algorithms that assigned each client to a facility with a capacity constraint while the
sum of the distance between each client and its assigned facility is minimized. Sun
et al. [22] studied finding the top-k locations from a candidate set that maximize the
total number of clients served by the locations. In another work [23], they proposed
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the problem studied in this report and a centralized algorithm for the problem. As we
will use the centralized algorithm as our baseline in the experiments, we will detail it
in Section 3.2.

2.2 MapReduce for Computation Intensive Problems
Since proposed, MapReduce has gained much popularity in studies to achieve effi-
ciency and scalability. For example, Lu et al. [13] investigated processing k nearest
neighbor joins using MapReduce. Tao et al. [24] studied the minimal MapReduce
algorithms that minimize the storage cost, CPU and I/O cost as well as communica-
tion cost simultaneously and proposed minimal algorithms for database problems like
ranking and spatial skyline queries.

Like in earlier parallel processing techniques such P2P computing [20] and Grid
computing [1], many efforts have been made in MapReduce for load balancing on
skewness input and complex, non-linear algorithms. For example, Kolb et al. [10] de-
signed methods to handle skewed data for entity resolution. Gufler et al. [3] addressed
the load balancing problem in processing MapReduce jobs with complex reducer tasks.
They proposed two load balancing approaches that can evenly distribute the workloads
on the reducers based on a cost model. They [4] achieved further performance gains
by improving the cost estimation through gathering statistics from the mappers. Kwon
et al. [12] presented a system that automatically mitigates skewness for user defined
MapReduce programs by redistributing the unprocessed input data of the task with the
largest expected remaining processing time.
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Chapter 3

Preliminaries

In this chapter, we first present some basic concepts and provide a formal definition of
the studied problem, and then briefly describe an existing centralized solution to the
problem and the MapReduce framework.

3.1 Problem Definition
We consider data objects (as points) in a 2-dimensional Euclidean space S. Given two
data objects p and q, |p, q| denotes the Euclidean distance between p and q in S.

Definition 1 (bichromatic reverse nearest neighbor (BRNN) query) Given two data
sets F and C and a query object f ∈ F , the BRNN query returns a subset of C, denoted
by B(f), such that ∀c ∈ B(f) and fi ∈ F , |c, f | ≤ |c, fi|

The returned subset is call the influence set or BRNN set of the query object, repre-
senting the set of client objects that share service from facility f . For example, in Fig.
3.1(a), the 4 black dots represent the client objects, the 2 small rectangles represent
the facility objects. The BRNN set of f1 and f2 is {c1, c2} and {c3, c4}, repectively.
Therefore, c1 and c2 (resp. c3 and c4) are served by f1 (resp. f2).

We use the nearest facility circle (NFC) [11] to help identify the BRNNs.

Definition 2 (nearest facility circle) Given a client object c, the nearest facility circle
of c, denoted as n(c), is a circle that centers at c and has a radius of |c, fc|, where fc
is the nearest facility of c.

In Fig. 3.1(b), the circles represent the NFC of the client objects in Fig. 3.1(a). We
denote the set of all points inside (outside) n(c) by c̄ (ĉ).

Definition 3 (consistent region) A consistent region R is an arbitrary set of locations
(points) that for any client c ∈ C, either all points in R are in c̄ or in ĉ, i.e., ∀c ∈ C,
pi, pj ∈ R, pi ̸= pj , either pi, pj ∈ c̄ or pi, pj ∈ ĉ
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It can be proved [23] that each location p in a consistent region R has the same
BRNN set, i.e., ∀pi, pj ∈ R, B(pi) = B(pj), thus when searching the optimal loca-
tions, the points in R can be considered as a whole and we call this set the BRNN set
of R, denoted by B(R). However, there can be infinite number of consistent regions
since every single point can form such a region. We combine all consistent regions that
have the same BRNN set to form the maximal region.

Definition 4 (maximal region) A consistent region R is a maximal region if ∀R′∩R ̸=
∅, which implies B(R′) = B(R), then R′ ⊆ R

The maximal regions in Fig. 3.1(b) are those parts represented by the different
shadows. In the following, we call a maximal region simply as a region.
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Figure 3.1: Definitions illustration: w(c1) = 4, w(c2) = 2, w(c3) = 2, w(c4) = 3,
v(f1) = 5, v(f2) = 3, v(fn) = 4

The served weight of a facility f is computed as min{v(f),
∑

c∈B(f) w(c)}. The
total weight of the served clients, denoted by ser(C,F ), is computed as the sum of the
served weights of all facilities, i.e.,

∑
f∈F min{v(f),

∑
c∈B(f) w(c)}. In the above

example, if the weight of c1, c2, c3 and c4 is 4, 2, 2 and 3, respectively, and the capacity
of f1 and f2 is 5 and 3, respectively. Then the served weight of f1 and f2 is 5 =
min{5, 4+2} and 3 = min{3, 2+3}, respectively, and hence ser(C,F ) = 5+3 = 8

Definition 5 Location Selection for Utility Maximization (LSUM)
Given the capacity v(fn) of a new facility fn, the location selection query for utility
maximization returns a set of locations M , which contains all points in the data space
S such that if fn is set up on any of these locations, the number of newly served clients,
i.e., the utility of fn denoted by u(M) is maximized. Here, u(M) = ser(C,F∪{fn})−
ser(C,F ).

For example in Fig. 3.1(b), if a new facility fn with capacity 4 is set up in the
dark-gray region, the BRNN set will be {c2, c3}. Thus, c2 and c3 will be served by fn
and c1 (resp. c4) is served f1 (resp. f2). The weight of newly served clients (or the
utility of fn) is 3 = min{5, 4}+min{3, 3}+min{4, 2+2}−8. The other shadowed
regions have different BRNN sets, which may lead to different utilities. To find optimal
locations, we only need search all such regions.
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3.2 Existing Centralized Algorithm
An existing centralized algorithm [23] processes the query as follows. Since the new
facility should serve at least one client object, the optimal locations must locate in the
NFC. Given the capacity of the new facility, the algorithm scans regions within each
NFC and calculates the weight of newly served clients. All regions within an NFC
are enumerated by the combinations of inside and outside its intersected NFCs. An
enumerated region may not exist. The algorithm checks and discards such a region.
The algorithm also prunes unpromising regions with the best results it has found so far.
For the sake of brevity, we omit the details of checking the existence of enumerated
regions and the pruning rules.

We illustrate the algorithm succinctly with the example in Fig. 3.1. To answer the
query, the algorithm only needs to search the different shadowed regions. However, a
challenge is to obtain all such shadowed regions. The algorithm adopts the approach
of enumerating. To enumerate all such regions, the algorithm scans one NFC after an-
other. First it enumerates regions within n(c1), since n(c1) only intersects with n(c2),
it obtains regions c̄1c̄2 and c̄1ĉ2 through enumerating inside and outside n(c2), the two
regions all exist and the utility is 1 and -1, respectively. Here -1 means less clients are
served (because fn shares too many weights from f1 and there is a pruning rule utiliz-
ing this property). Next, the algorithm enumerates within n(c2), n(c2) intersects with
n(c1) and n(c3), to avoid repeated search, it only enumerates the NFC that bears a big-
ger id and smaller id NFC is treated as outside without enumeration. Thus the obtained
regions are ĉ1c̄2c̄3 and ĉ1c̄2ĉ3 by enumerating inside and outside n(c3), again the two
regions exist and the utility is 1 and 3, respectively. Next NFC is n(c3), however, the
algorithm estimates that the upper utility of all regions inside n(c3) (outside n(c1) and
n(c2)) is 2, which is smaller than the current best result 3, thus n(c3) is skipped. The
same skipping happens to n(c4). No other NFC to scan, the search procedure ends.
And the dark-gray region is returned as the query result.

3.3 MapReduce Framework
MapReduce [2] is a programming framework exploiting the parallelism among a clus-
ter of computing nodes, which is widely used in both scientific and commercial ap-
plications for its simplicity, flexibility, fault tolerance and scalability. Hadoop1 is one
of the most popular implementations of MapReduce framework. The execution of
MapReduce algorithms in hadoop is known as job (or round). Each job consists of
three phases map, shuffle and reduce. To execute a job, the number of map tasks and
reduce tasks is pre-defined. Each processor in the cluster can execute one task at a
time. Data is represented as key-value pairs between phases.

Map Each map task takes the input (for each line, function map is called once)
and generates a list of key-value pairs ⟨k, v⟩. Usually key k is numeric, value v
represents information to be processed.

1http://hadoop.apache.org/
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Shuffle During the shuffle phase, the key-value list is distributed to reduce tasks
under the restriction that pairs of same key being delivered to the same task. In
hadoop, the function getPartition determines to which reduce task should key k
be assigned.

Reduce In the reduce phase, each reduce task is allocated a processor to exe-
cute. If the number of reduce tasks exceeds the number of processors, after a
task is completed, the next task is dispatched to the released processor with a
framework-specific scheduling mechanism. Within a reduce task, function re-
duce is called to process the values of a same key. The function is called several
times until all types of keys dispatched to the task are dealt with.
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Chapter 4

Overview of MapReduce Based
Algorithm for LSUM Query

To take advantage of parallelism, we divide the data space into partitions and search
the query result in each partition synchronously. We then merge the local results and
identify the final query result.

The whole process is achieved by 3 MapReduce jobs:

(i) Search space partitioning, where the search space is divided into partitions,

(ii) Local optimal region searching, where each partition is searched to find local
results, and

(iii) Local result merging, where the local results are merged to get the final result.

4.1 Search Space Partitioning
The first job reads in all the initial input, answers the BRNN queries and draws the
NFCs to set up the search space. Then it divides the search space into a number of
partitions to be processed in parallel. To achieve load balancing, it also estimates the
workload of each partition and makes the workload as even as possible. The strategy to
partition the search space and to achieve load balancing will be discussed in Chapter 5
and 6, respectively. The map phase outputs each line of the initial input with the same
key k, so that the key-value pairs ⟨k, line⟩ are processed by one reduce task. In the
reduce phase, the output of partitions in the form of key-value pair is ⟨ti,mp⟩ (1 ≤ ti ≤
s), where the key ti indicates by which reduce task should a partition p be processed
and s denotes the number of reduce tasks of the next job, the value mp represents
message to rebuild the partition p. The massage contains the relevant facility and client
objects from the initial input and results to the BRNN (and intersection) query. The
facility and client objects can be output without modifications. The output of each
query result is a list of object IDs. Usually, the first job is within the computation
capability of one node in the cluster.
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The reason for the first job to use one reduce task to take in the whole initial input
and distribute the spatial query results to the next job is to reduce the cost of index
building. Since the LSUM problem is computation intensive, the cost of distributing
data in the cluster is relatively small. However, the cost of building a index and query-
ing on the index cannot be neglected, especially for some disk-based index like R-tree.
And our problem needs to leverage the spatial index, e.g. k-d tree, R-tree etc., to ef-
ficiently deal with some basic spatial queries such as BRNN queries and intersection
queries. It is not plausible to force all reduce tasks of the next job to build their own
index over the whole space but only issue queries corresponding to a small area. It is
beyond the scope of this report to determine how to separate the initial input such that
for each part one task can build a partial index that gives the same result as the entire
index. Considering the storage volume and network bandwidth of nowadays clusters
and the relatively small storage space occupied by the query results, such results can
be separated and distributed along with other data. In this way, the index only need to
be built once and all queries are conducted once.

4.2 Local Optimal Region Searching
The second job receives the intermediate data output by the space partitioning job,
gathers the partition information and searches optimal regions in the recovered parti-
tions. The map phase of this job writes the input key-value pairs ⟨ti,mp⟩ (1 ≤ ti ≤ s)
directly to output (Mapper class IdentityMapper can be used in hadoop). To control
workload distribution, each reduce task is designed to process only one type of key,
i.e., reduce task ti only processes key ti (overriding the function getPartition can ac-
complish this in hadoop). In reduce phase, reduce task ti is dispatched to an available
processor to execute. Reduce task ti processes the key-value pair ⟨ti, list[p]⟩. Incor-
porating all value fields of key ti, list[p] carries the information of a list of partitions.
Each partition p can be recovered from relevant messages mp. The core method to
search the regions within each partition is same to the centralized algorithm [23]. After
searching, each reduce task outputs the local result ⟨u,R⟩. Key u is the utility, and the
value is the information representing the corresponding region R. This task incurs a
big computation cost, so it shall be conducted in parallel among all available processors
in the cluster.

4.3 Local Result Merging
The local result output by each reduce task of the last job in just partially optimal.
Finally, the third job collects the result ⟨u,R⟩ output by each reduce task, picks out en-
tries with the maximum utility and outputs the final query result. This job is necessary
especially when there are a large amount of partial results. With rare exceptions, the
collected results can fit into the disk of a centralized server and the final result can fit
into the main memory. Therefore this job can be completed by one reduce task and no
extra selecting efforts are needed.
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Figure 4.1: Overview of the MapReduce based algorithm for LSUM query

The flowchart in Fig. 4.1 illustrates the jobs designing and data flow for the MapRe-
duce algorithm.
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Chapter 5

Search Space Partitioning

In this chapter, we focus on how to partition the search space to enable parallel process-
ing. We first describe a straightforward method of grid partitioning, then we propose
an improved partitioning strategy called the arc-based partitioning.

5.1 Grid Partitioning
A straightforward way to divide the search space is using a regular grid, where the
regions intersecting each cell form a partition. A a major drawback of the strategy is
that a region can intersect multiple cells and hence belongs to multiple partitions. For
example, in Fig. 5.1, the search space is divided into four cells. The gray region inter-

S

Figure 5.1: Grid partitioning

sects four cells, hence it will be assigned to 4 partitions. The above drawback results
in repeated searching in the later stages, which is a waste of the limited computation
resources. As the grid granularity gets finer, the problem gets worse because a region
can intersect more smaller cells. To avoid this drawback, we propose a partitioning
strategy based on the NFC arcs as follows.
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5.2 Arc-based Partitioning
To address the drawback of grid partitioning, we propose to use arcs from the NFCs to
divide the space and form the arc-based partitions. Since regions are already bounded
by arcs, arc-based partitions can separate the space disjointly. For instance, in Fig.
5.2, the above space is divided into four partitions, and the partitions do not share a
common region.

I

II
III

IV

c1

c2 c3

c4

c5

c6

c7

c8

S S

Figure 5.2: Arc-based partitioning

The method to achieve such partitions from the gird is as follows. For a cell g in
the grid, if g contains the center of a NFC n(ci), with the regions locating inside n(ci)
but outside n(cj) (1 ≤ j < i) being assigned to g, the bounded-arcs of such regions
(maybe with the boundaries of g) form an arc-based partition. If g does not contain the
center of any NFC, it is an empty partition. An empty partition does not need to search.
Assigning increasing id ci (1 ≤ i ≤ 8) to the NFC in Fig. 5.2, then applying the above
method, we are able to get the four arc-based partitions as shown.

This strategy removes the drawback, but it is very likely to lead to unbalanced load.
The number of regions in a partition that holds more small id NFCs is usually larger
than a partition that holds less. As shown in the Fig. 5.2, the northeast partition contains
only 3 regions since it holds two NFCs c6 and c8 that has relatively bigger id. How to
achieve load balancing is discussed in the next chapter.

13



Chapter 6

Load Balancing

In this chapter, we discuss how to balance the load of the second job (local optimal
region searching), which is the most time-consuming job. For simplicity, we assume
the nodes in the cluster are equipped with the same hardware, and hence with the same
computation capability. We focus on achieving a balanced load among the reduce tasks
of the second job.

6.1 Partition Cost Estimation
As discussed above, the arc-based partitioning is associated with the NFC. So to esti-
mate the cost of searching local optimal regions in a partition, we can use the maximum
number of enumerations associated with the NFCs in the partition. With the arc-based
partitioning strategy, the finest granularity is one partition containing only one NFC. If
we adopt the finest granularity, then the maximum number of enumerations associated
with the NFC contained by a partition can be used as the estimated cost of the partition.
Particularly, if the contained NFC intersects with n NFCs that have a bigger id, then
the cost of this partition is 2n because there are at most 2n combinations (inside and
outside the n NFCs) to enumerate.

Admittedly, this is an estimated cost only considering the worst case. The first
disturbing factor is in reality there can be much less real regions on average. For
example, in Fig. 6.1, the left side sketches the contours of the partition, the right side
displays the corresponding NFC and contained regions. In the right side, NFC n(c2)
intersects with four NFCs, three NFCs n(c3), n(c4) and n(c5) having a bigger id, so
the estimated cost for the associated partition is 23 = 8. However, since n(c3) and
n(c4) does not intersect, regions in both n(c3) and n(c4) (c̄3c̄4c̄5 and c̄3c̄4ĉ5) will not
be enumerated, for region c̄3c̄4 does not exist and there is no need to do subsequent
enumeration on n(c5). So the real cost of the partition will be 6, not estimated 8. The
second disturbing factor is the pruning techniques in the searching algorithm. As the
query needs to find the optimal regions, during the search, the algorithm maintains the
best result found so far and uses it to prune unpromising search branches. Recall the
example illustrating the searching algorithm in Section 3.2, n(c3) and n(c4) are pruned
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Figure 6.1: Partition cost estimation

without searching.
Both the above factors have an uncertain impact on the estimated cost. Neverthe-

less, such estimation can still work as an indicator for the load assignment. During the
real search procedure, a partition with much bigger estimated cost rarely occupies less
computation resources than one with a much smaller cost, for they are both affected
by the above factors. Therefore, we utilize such estimation to balance the load among
reduce tasks.

6.2 Partition Assignment
Recall that there are |C| client objects and we set the number of reduce tasks for the
second job to s. The |C| clients leads to |C| NFCs. Adopting the finest granularity, we
have |C| partitions with each one carrying an estimated cost.

Since s ≪ |C|, each reduce task would process a bundle of partitions. Regardless
of the disturbing factors, the load of a reduce task is the sum of the cost of the assigned
partitions. In this chapter, we focus on strategies of assigning partitions to reduce tasks
to achieve load balancing.

6.2.1 Round-robin Assignment
A straightforward way to assign these partitions is the round-robin strategy. Specif-
ically, we arrange the s reduce tasks in a row and the ith partition is assigned to the
i mod sth reduce task. For example, in Fig. 6.2(a), we have five partitions whose
cost is 32, 64, 16, 32 and 8, respectively, and two reduce tasks A and B. With the
round-robin strategy, the first, third and fifth partition goes to task A and the second
and fourth goes to task B, which results in the estimated load of A and B is 56 and 96,
respectively.

At first sight, this strategy rarely leads to a balanced assignment. However, due to
the disturbing factors, the estimated load is merely an indicator, not the exact running
time. Though the estimated load seems unbalanced, in reality, especially when there
are a large number of partitions, the real workload may be balanced.

The round-robin strategy can work as an indicator to the effectiveness of our cost
estimation method and a baseline comparing to other strategies.
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Figure 6.2: Basic assignment strategies

6.2.2 Least-load Assignment
In this strategy, we adopt the greedy assignment approach proposed by Gufler et al. [3]
and we call it least-load assignment. The strategy picks the most expensive partition
not yet allocated, and assigns it to the reduce task that has the least total load. The
above steps repeat until all partitions have been assigned. For illustration, let us use the
above example again with least-load assignment strategy in Fig. 6.2(b).

In this figure, all the partitions have been decreasingly sorted. At first, 64 is al-
located to A, then 32 to B. Next, the second 32 is also assigned to B, since B at
present has less load than A. Then 16 is allocated to A and 8 to B according to the load
priority as well. After assignment, A and B has a total estimated load of 80 and 72,
respectively. The following Algorithm 1 gives the details of the least-load assignment
strategy.

Algorithm 1: LeastloadAssignment
Input: Qp /∗partition queue∗/

PQr /∗reduce task priority queue∗/
Output: PQr /∗reduce task queue with assigned partitions∗/

1 while Qp is not empty do
2 p← head(Qp) /∗remove the head of Qp to p∗/
3 r ← head(PQr)
4 r.addPartition(p) /∗assign partition p to reduce task r∗/
5 r.load← r.load+ p.cost
6 PQr.insert(r) /∗reinsert r∗/
7 return PQr

However, when very few largest partitions dominate all the other partitions, the
strategy will fail to work. Here dominating means the sum of the cost of the other
partitions is still smaller than the cost of a huge partition. In such a situation, the reduce
tasks processing the few largest partitions become the bottleneck and slow down the
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speed of the query processing. For example, when the partition costs are as Fig. 6.3
shows, the dominating situation would occur. If we have two reduce tasks to process I
or three tasks to process II, the assigned load distribution will be 1024, 120 for I and
1024, 512, 56 for II, respectively, which is very skew and the advantage of parallelism
will not be fully utilized. To effectively deal with all possible cost distribution, we
propose the next dynamic assignment strategy.
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Figure 6.3: Dominating situations

6.2.3 Dynamic Assignment
The ideal strategy would assign every reduce task the same amount of load, regardless
of the cost distribution. So in this strategy, we try to make the estimated load of every
reduce task as close to the average as possible and name it dynamic strategy.

We first get the average of total cost, then subdivide the dominating partitions that
are larger than the average (the subdividing result is also called partitions). After that,
we assign the partitions with the least-load assignment strategy. If the estimated load
of a reduce task is beyond the average over a threshold, the most expensive partition in
the task is subdivided. The above procedure repeats until the load difference between
each task and the average is within the threshold.

Subdividing a partition. If there are r regions in a partition, then the partition can
be subdivided into at most r new partitions. However, without searching it is unable
to measure the exact number of regions in a partition. The information we have is the
partition’s intersected NFC list. From the list, we can pick a bigger id NFC to divide
the partition into two new partitions. The two new partitions contain regions inside and
outside the NFC, which can be encoded as 1 and 0, respectively.

Generally, if we need to subdivide a partition into 2t new partitions, we can exploit
the first t bigger id elements of the intersected NFC list, and the 2t new partitions are
derived from pre-enumeration of the t NFCs.

For example, in Fig. 6.4 left side I, there is an NFC and the corresponding partition,
the shadowed parts belong to other partitions, the three dashed arcs a1, a2 and a3
are from the first three bigger id elements n(ci1), n(ci2) and n(ci3) in the list (arcs
from other elements are omitted). We can subdivide the partition into 23 = 8 new
partitions by pre-enumerating inside and outside the three elements. The result is the
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eight new partitions encoded into 000, 001, 010, 011, 100, 101, 110, 111, respectively.
Here partition 000 means ĉi1 ĉi2 ĉi3 , 001 means ĉi1 ĉi2 c̄i3 , and so on.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

I

a1
a2

a3 100110

111
011

010 101

000

001

II

a1
a2

a3
000

100110

010

001

Figure 6.4: Subdividing a partition

The new partitions have equal estimated cost. If the cost of the original partition is
2n, then each new partition has an estimated cost of 2n−t.

Artificial new partitions. It happens that some new partitions may not exist but
merely come from the enumeration. As Fig. 6.4 right side II shows, when a3 does not
intersect with a1 or a2, new partitions in both n(ci1) and n(ci3) or n(ci2) and n(ci3)
(011, 101, 111) are artificial and they do no actually exist. So when we subdivide a
partition, all the new partitions will be checked. If a partition is not real, it will be
discarded. A byproduct of checking the new partitions is refining the cost estimation
for the original partition. Take the Fig. 6.4 right side II as an example, originally the
estimated cost of the partition is 2n. After subdividing and 3 artificial partitions being
discarded, the total cost of the new partitions becomes (23 − 3) × 2(n−3), which is
smaller than 2n and more precise. The more new partitions we produce, the more pre-
cise the estimation become, but also needs more additional subdividing and checking
operations. A more precise estimation also changes the average we calculate before,
which requires the average to be kept updating.

Strategy details. The dynamic assignment strategy works as follows. Given an
input parameter ε, first it calculates the average cost ave of all partitions, subdivides
the partitions whose cost is larger than (1+ε)×ave and discards the artificial partitions.
Then it adopts the same method to assign these partitions as the least-load assignment
strategy. After assigning all partitions and calculating the new average ave′, if the load
of a reduce task is larger than (1 + ε) × ave′, then it subdivides the most expensive
partition in the task, and repeats from the first step until the load of every reduce task
is within the threshold.

When we subdivide a partition, the number of new partitions is determined by
the number of reduce tasks s. We subdivide a partition into 2t new partitions with
2t−1 < s ≤ 2t. So that after dividing, the cost of a new partition which is 2n−t will be
no larger than 2n/s.

The dynamic assignment strategy is detailed in Algorithm 2.
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Algorithm 2: DynamicAssignment
Input: Lp /∗List of partitions∗/

PQr /∗reduce task priority queue∗/
ε /∗threshold ε ≥ 0∗/

Output: PQr /∗reduce task queue with assigned partitions∗/
1 even← false
2 t← first integer that makes 2t ≥ PQr.size
3 while true do
4 ave← average(Lp) /∗get the average cost∗/
5 for each p ∈ Lp do
6 if p.cost > (1 + ε)× ave then
7 /∗subdivide partition p into 2t subparts and return the existing ones∗/
8 subparts[2t]← subdivide(p, 2t)
9 Lp.insertAll(subparts) /∗insert all sub-parts into partition list∗/

10 LeastloadAssignment⟨Lp, PQr⟩ /∗use same strategy as least-load
assignment∗/

11 ave← average(Lp) /∗get the new average cost∗/
12 even← true
13 for each r ∈ PQr do
14 if r.load > (1 + ε)× ave then
15 even← false /∗load of reduce task r is too large∗/
16 ep← expPartition(r) /∗return the most expensive partition∗/
17 subparts[2t]← subdivide(ep, 2t)
18 Lp.insertAll(subparts)

19 Lp.insertAll(r.partitions) /∗reinsert all partitions in r to repeat∗/
20 if even then
21 break
22 return PQr
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6.3 Determine the Number of Reduce tasks
In this section, we discuss how to determine the number of reduce tasks s in the sec-
ond job. For each reduce task, the framework-specific scheduler allocates the task to
an available processor to execute. And s should be equal to the number of available
processors if the processors have the same computation capability and the real load of
every task is the same, then. And it will be most efficient if all processors start pro-
cessing the allocated task at once. However, in reality, due to various reasons (such as
hardware dissimilarities, unbalanced load assignment et al.), some processors would
end earlier and wait the others to complete. It is better to launch a second round of
reduce tasks for them.

A reasonable approach is creating more reduce tasks than the number of processors.
Suppose m processors are available, with m < s, the s tasks form a waiting list. Once
a processor completes a task and becomes available, the scheduler allocates it the next
task from the waiting list.

Due to the dominating situations, the above approach may have little effect on the
round-robin and least-load assignment strategy. It may work well with the dynamic
strategy for the reason that although the estimated load of each task is almost the same,
the real running time may be different because of the disturbing factors or hardware
difference.

Then how much should s be larger than m. If the partitions within a task is com-
pletely independent, then theoretically the larger s, the more balanced the load. How-
ever, in our problem, the pruning rules make the partitions correlated. A larger s means
more reduce tasks and smaller partitions in each task. And smaller partitions has rela-
tively weak pruning power. So a larger s may lead to more overall computation because
of less pruned search branches. A larger s also means more communication cost and
task setup cost. According to our experiments, setting s between 1.0×m and 4.0×m
is a sound choice.
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Chapter 7

Experimental Study

We evaluate the performance of the proposed algorithm on an in-house cluster. The
cluster consists of 4 computing nodes. Two are equipped with Intel i7-3770 3.4GHz
4-core processors and the other two with Intel i7-2600 3.4GHz 4-core processors. One
node has 32GB main memory, the other three each has 16GB of memory. Each node
has one 3TB SATA hard disk, gigabit ethernet and is installed CentOS 6.0 operating
system, Java 1.7.0 with a 64-bit server VM and Hadoop 2.0.0-cdh4.2.1. For the Hadoop
environment, the replication factor is set to 2 and the size of virtual memory for each
map and reduce task is set to 4GB.

We evaluate the following approaches in the experiments.

1. Centralized is the centralized algorithm introduced in Section 3. Particularly,
when evaluating its performance, in the second job we allocate only one reduce
task to process it.

2. Round-robin is the round-robin assignment strategy that assigns the partitions
according to their positions in a list.

3. Least-load is the least-load assignment strategy that utilizes the load balancing
assignment method proposed by Gufler et al.[3].

4. Dynamic is the dynamic assignment strategy we propose. It takes the dominat-
ing situation into consideration and controls the load difference among reduce
tasks within a threshold, no matter how many reduce tasks are created.

Both real data sets and synthetic data sets are used in all experiments. Three real
data sets NA, NE and US are retrieved from the Rtree Portal1. These data sets are
preprocessed to remove duplicate points and some small parts. Table 7.1 lists the details
of the real data sets. When using a real dataset, we uniformly sample from it to generate
C and F . For the synthetic dataset SN, to simulate real-world scenarios, we generate
C and F with the Zipfian distribution and the skew coefficient is set to 0.2 in a space
domain of 104×104. We set the weight of client object to one and generate the capacity

1http://www.chorochronos.org/
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of facility object using Gaussian distribution with mean and standard deviation set to
2 × |C|/|F | and 0.4 × |C|/|F |, respectively. We leverage spatial index R-tree to answer
the nearest neighbor query and the intersection query.

Table 7.1: Real Datasets
Dataset Cardinality Description

NA 24,360 locations in North America apart from Hawaii
NE 119,898 addresses of north east of U.S.
US 14,478 locations in U.S apart from Hawaii and Alaska

By default, all 16 processors are used, the number of reduce tasks of the second
job is set equal to the the number of processors for the three assignment strategies,
threshold ε is set to 10−6 for the dynamic assignment strategy.

7.1 Effect of |C|/|F |
The ratio |C|/|F | has a significant effect on the searching algorithm. In this set of exper-
iments, the value of |C|/|F | is varied from 10 to 50. It is time-consuming when the ratio
is large, so the experiments are conducted on small and medium data sets with |C| no
more than 3k. The results on four data sets are presented in Fig. 7.1. The left column
illustrates the running time for different algorithms and different partition assignment
strategies, the right column presents the corresponding variance of running time on the
16 reduce tasks for the three assignment strategies.

From the running time aspect, the centralized algorithm, referred as baseline hence-
forth, is slowest in most cases, especially when the ratio is large. The round-robin as-
signment strategies performs better than the baseline on majority points. The least-load
strategy behaves similar to round-robin strategy, but fails to outperform the centralized
algorithm on more points and in the case |C|/|F | = 40 in Fig. 7.1(g), it is beaten by
the baseline by a wide margin. While the dynamic assignment strategy is considerably
faster than the baseline in all settings except for a single case |C|/|F | = 10 on the US
dataset, and it also consistently surpasses the other two strategies.

From the time variance aspect, the value reflects the real load difference among
reduce tasks. The right column reinforces the superior of the dynamic assignment
strategy to the other two strategies. The variance of the dynamic strategy is the smallest
in all cases. In the case |C|/|F | = 30 in Fig. 7.1(e), though the running time of the
dynamic strategy is the similar to the round-robin strategy, the corresponding variance
in 7.1(f) is still smaller than the round-robin strategy. The reason behind is the other
two strategies are unable to tackle the dominating situation.

Comparing the round-robin and least-load strategy in the right column, the least-
load strategy is more sensitive to the dominating situation because when there is a
dominating partition, the least-load strategy makes a reduce task only contain the dom-
inating partition, in which case the pruning power may be further reduced.
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7.2 Effect of Cardinality
The second set of experiments studies the effects of cardinality of input data sets on
the centralized algorithm and MapReduce based algorithms with different assignment
strategies. The ratio of |C|/|F | is fixed to 25. For NA and US, we use them as medium
data sets and vary the cardinality of |C| from 3k to 20k and 1k to 13k, respectively. For
NE and SN, they are used as large data sets and the cardinality of |C| is varied from
20k to 100k.

The left column of Fig. 7.2 shows the performance on four data sets. The round-
robin and least-load strategies behaves unsteady, half cases are better than baseline,
half are worse. While the dynamic assignment strategy consistently uses less time
than the baseline and the other two strategies in all settings. When the search space is
separated, the pruning power is weakened on each reduce task, thus the entire searching
computation increases. Due to dominating situations, The round-robin and least-load
strategy fail to utilize the available computation resources to address the increasing.
Therefore, in some cases, they even spend more time than the centralized algorithm.

The pattern of lines in the figures suggests the relationship between the running
time and the cardinality is not monotonic. The inflection points are due to the differ-
ent possible sampling distributions of facilities and clients, and the density of clients
around facilities (reflected by θ ∝ |C|/|F |) mainly determines the searching cost.

From the time variance column on the right side of Fig. 7.2, the time variance of
the least-load assignment strategy is largest on nearly all points, which suggests the
real load distribution is quite unbalanced among reduce tasks. Round-robin strategy
is marginally better than the least-load strategy. While the variance of dynamic as-
signment strategy is smaller than the other two strategies by a factor of an order of
magnitude. On data sets NA and US, the time variance of dynamic assignment strategy
increases with cardinality, while in NE and SN, it goes slightly opposite to the growing
of cardinality, which suggests that a large cardinality may help the strategy to achieve
a more balanced load.

7.3 Fine Tuning of the Dynamic Assignment Strategy
In the next two sets of experiments, we fix the ratio |C|/|F | as well as the cardinality
and focus on studying the parameters that affect the dynamic assignment strategy.

Fig. 7.3 illustrates the effect of the number of reduce tasks s using four data sets.
We vary the number of reduce tasks from 1 to 256, which is sixteen times of the num-
ber of processors. The results are shown in Fig. 7.3. Fig. 7.3(a) shows that on every
dataset, with the increasing of s, the running time decreases rapidly then moderately
increases and all the lines reach the nadir around s = 64. When the reduce task num-
ber is 1, it is equal to the centralized algorithm which takes more time without parallel
processing. When the number of reduce tasks is much larger than the number of avail-
able processors, the increased computation (plotted in 7.3(d)) prevails the parallelism.
There are also additional cost of dispatching and starting more tasks. Hence at point
s = 256, the running time slightly increase.
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The time variance presented in Fig. 7.3(b) decreases monotonically with the grow-
ing of s on all data sets, which means creating more reduce tasks makes the processing
time of each task tend to be uniform. The reason behind is the number of partitions
in a reduce task is lessened, causing the effect of disturbing factors being weakened.
An extreme case is each task containing only one region, then the processing time
would be the same. However, Fig. 7.3(c) tells creating more reduce tasks means more
partitioning cost, for a skewed dataset like SN, the cost increases dramatically. We
add up all the processing time of the s reduce tasks and treat the sum as the indicator
for the total computation of the MapReduce based algorithm, which is plotted in Fig.
7.3(d). Without exception, more reduce tasks leads to larger total computation on every
dataset, which helps explain the line patten in Fig. 7.3(a).

Then, we study the effect of the threshold ε on the strategy. We vary the threshold
value from 10−3 to 10−7 and measure the same metrics as the number of reduce tasks.
Fig. 7.4(a) shows similar line pattern to that of the number of reduce tasks but due to
different reasons and we will explain it shortly. Fig. 7.4(b) illustrates the time variance
of the 16 reduce tasks. The variance decreases along with the decreasing of ε, which
is reasonable since the threshold ε controls the load difference among the reduce tasks.
As expected, a smaller ε means more balanced load distribution. But in Fig. 7.4(a), all
lines (except for SN) do not reach the nadir when ε is the smallest (10−7). The reason
lies in Fig. 7.4(c), ε = 10−7 leads to much more partitioning time (except for SN) due
to more checking and iteration. The cost increases significantly on dataset NA, NE and
US when ε = 10−7, which leads to lengthened running time. Fig. 7.4(d) illustrates that
ε has a undetermined effect on the total computation. On dataset NE, SN and US, the
total computation varies marginally with ε. While on dataset NA, it fluctuates roughly
between 0.9ks and 2ks. With nothing else altered, the difference mainly comes from
the variation of pruning power due to the changed distribution of partitions in each
reduce task.
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Figure 7.1: Effect of the ratio |C|/|F | on the search algorithms and assignment strategies
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Figure 7.2: Effect of the cardinality on the search algorithms and assignment strategies
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Figure 7.3: Effect of number of reduce tasks s on the dynamic assignment strategy
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Figure 7.4: Effect of ε on the dynamic assignment strategy
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Chapter 8

Conclusions

In this report, we studied a MapReduce based algorithm for the problem of location se-
lection for utility maximization. By arc-based partitioning, we divide the search space
into a number of disjoint partitions. To achieve load balancing, we propose the dy-
namic assignment strategy. The strategy effectively handles the dominating situation
and controls the estimated load difference among reduce tasks within a threshold. Ex-
tensive experiments are performed using both real and synthetic data sets and the results
demonstrate our proposed MapReduce based algorithm is efficient and scalable.
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