
MapReduce Performance Models for Hadoop 2.x

Daria Glushkova
Universitat Politècnica de

Catalunya
Barcelona, Spain

dglushkova@essi.upc.edu

Petar Jovanovic
Universitat Politècnica de

Catalunya
Barcelona, Spain

petar@essi.upc.edu

Alberto Abelló
Universitat Politècnica de

Catalunya
Barcelona, Spain

aabello@essi.upc.edu

ABSTRACT
MapReduce is a popular programming model for distributed
processing of large data sets. Apache Hadoop is one of the
most common open-source implementations of such paradigm.
Performance analysis of concurrent job executions has been
recognized as a challenging problem, at the same time, that
it may provide reasonably accurate job response time at sig-
nificantly lower cost than experimental evaluation of real
setups.

In this paper, we tackle the challenge of defining MapRe-
duce performance models for Hadoop 2.x. While there are
several efficient approaches for modeling the performance of
MapReduce workloads in Hadoop 1.x, the fundamental ar-
chitectural changes of Hadoop 2.x require that the cost mod-
els are also reconsidered. The proposed solution is based on
an existing performance model for Hadoop 1.x, but it takes
into consideration the architectural changes of Hadoop 2.x
and captures the execution flow of a MapReduce job by using
queuing network model. This way the cost model adheres
to the intra-job synchronization constraints that occur due
the contention at shared resources.

The accuracy of our solution is validated via comparison of
our model estimates against measurements in a real Hadoop
2.x setup. According to our evaluation results, the proposed
model produces estimates of average job response time with
error within the range of 11% - 13.5%.

CCS Concepts
•Information systems→MapReduce-based systems;
•Theory of computation→ Parallel computing mod-
els;

Keywords
MapReduce Performance Models; Hadoop 2.x; Queuing The-
ory; Mean Value Analysis

1. INTRODUCTION
MapReduce-based systems are increasingly being used for

2017, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2017 Joint Conference (March 21, 2017, Venice,
Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

large-scale data analysis applications. Minimizing the exe-
cution time is vital for MapReduce as well as for all data
processing applications, and accurate estimation of the ex-
ecution time is essential for optimizing. Therefore, we need
to build performance models that follow the programming
model of such data processing applications. Furthermore, a
clear understanding of system performance under different
circumstances is key to critical decision making in work-
load management and resource capacity planning. Analyt-
ical performance models are particularly attractive tools as
they might provide reasonably accurate job response time
at significantly lower cost than simulation and experimental
evaluation of real setups.

Programming in MapReduce requires adapting an algo-
rithm to two-stage processing model, i.e., Map and Reduce.
Programs written in this functional style are automatically
parallelized and executed on computing clusters. Apache
Hadoop is one of the most popular open-source implemen-
tations of MapReduce paradigm. In the first version of
Hadoop, the programming paradigm of MapReduce and the
resource management were tightly coupled. In order to im-
prove the overall performance as well as the usefulness and
compatibility with other distributed data processing appli-
cations, some requirements were added, such as high cluster
utilization, high level of reliability and availability, support
for programming model diversity, backward compatibility,
and flexible resource model [12]. Thus, the architecture of
the second version of Hadoop has undergone significant im-
provements, introducing YARN (Yet Another Resource Ne-
gotiator), a separate resource management module that no-
ticeably changes the Hadoop architecture. It decouples the
programming model from the resource management infras-
tructure and delegates many scheduling functions to per-
application components. The cluster resources are now be-
ing considered as continuous, hence there is no static parti-
tioning of resources per map and reduce tasks (i.e., a division
between map and reduce slots). Clearly, it is impossible to
apply the cost models relaying on such a static resource al-
location as in the first version of Hadoop, and hence it is
necessary to find other approaches.

In this paper, we address the challenges of defining accu-
rate performance models for estimating the execution time of
MapReduce workloads in Hadoop 2.x. We analyzed the ap-
proaches for Hadoop 1.x and also the architecture of Hadoop
2.x and we decided to base our model on performance model
proposed for the first version of Hadoop in [12]. This model
combines a precedence graph model, which allows to capture
dependencies between different tasks within a one job, and

queueing network model to capture the intra-job synchro-
nization constraints. Due to changes in the Hadoop archi-
tecture, we adapted that model for Hadoop 2.x.

Contributions. The main contributions of this paper
can be summarized as follows:

• By analyzing the architecture of Hadoop 2.x, we iden-
tify cost factors that can potentially affect the cost of
the MapReduce job execution.

• We theoretically define a MapReduce cost model for
Hadoop 2.x that captures the precedence of different
tasks of MapReduce jobs as well as the synchronization
delays due to shared resources.

• We evaluate the accuracy of our cost model by imple-
menting the cost estimation prototype and comparing
the obtained estimates with real MapReduce execu-
tions.

2. RELATED WORK
We observe two groups of approaches for analyzing the

performance of MapReduce job for the first version of Hadoop.
All performance models described in Subsection 2.1 are static,
they do not take into account the queuing delays due to con-
tention at shared resources and the synchronization delays
between different tasks. In Subsection 2.2, we introduce two
most common approaches for constructing dynamic perfor-
mance models for parallel applications and describe a per-
formance model proposed for Hadoop 1.x that takes into
consideration the queuing delays.

2.1 Static MapReduce Performance Models
There are significant efforts and important results towards

modeling the task phases in order to estimate the execution
of a MapReduce job in Hadoop 1.x. Herodotou proposed
performance cost models for describing the execution of a
MapReduce job in Hadoop 1.x [3]. In his paper, perfor-
mance models describe dataflow and cost information at the
finer granularity of phases within the map and reduce tasks.
This model captures the following phases of Map task: read,
map, collect, spill and merge. For the reduce task there are
independent formulas for shuffle phase, merge phase and re-
duce and write phases. In terms of Herodotou’s model, the
overall job execution time is simply the sum of the costs
from all map and reduce phases. As we can see in these cost
formulas, there is a fix amount of slots per Map and Re-
duce tasks. Since in the first version of Hadoop, the number
of resources for Map and Reduce jobs is determined in ad-
vance and does not change. YARN completely departs from
the static partitioning of resources for maps and reduces,
and there is no slot configuration. Thus, we cannot apply
Herodotou’s cost formulas directly and it is necessary to find
other approaches.

There has also been an effort of defining the lower and up-
per bounds for job completion time and resource allocation
to a job so that it finishes within the required deadline. In
[11], the authors proposed a framework called ARIA (Au-
tomatic Resource Inference and Allocation for MapReduce
Envinronments) that for a given job completion deadline
could allocate the appropriate amount of resources required
for meeting the deadline. This framework consists of three
inter-related components. The first component is a Job Pro-
file that contains the performance characteristics of applica-
tion during map and reduce stages. The second compo-

nent constructs a MapReduce performance model, that for
a given job and its soft deadline estimates the amount of re-
sources required for job completion within a deadline. Pro-
vided performance model captures the following stages of
MapReduce job: map, shuffle/sort and reduce stages. The
last component is the scheduler itself that determines the
job ordering and the amount of resources required for job
completion within the deadline.

For estimating the job completion time authors applied
the Makespan Theorem for greedy task assignment, which
allows to identify the upper TUpJ and lower bounds TLowJ

for the task completion time as a function of the input
dataset size and allocated resources. According to the re-

search TAvgJ =
T

Up
J

+TLow
J

2
is the closest estimation of job

completion time T. It was observed that the relative error
between the predicted average time TAvgJ and the measured
job completion time is less than 15%, and hence, the pre-
dictions based on TAvgJ are well suited for ensuring the job
completion within the deadline. Nevertheless, this model
has significant limitations that do not allow us to apply it
to the second version of Hadoop. As in Herodotou’s cost
models, the proposed model uses a fixed amount of slots per
map and reduce tasks within one node.

There has also been an attempt of evaluating the impact
of task scheduling on system performance. However, current
schedulers neither pack tasks nor consider all their relevant
resource demands. This results in fragmentation and over-
allocation of resources and, as a consequence, it decreases
noticeably the overall performance. Robert Grandl et al.
present in [2] Tetris, a multi-resource cluster scheduler, that
packs tasks to nodes based on their requirements of all re-
source types, which allows to avoid the main limitations of
existing schedulers. The objective in packing is to max-
imize the task throughput and speed up job completion.
Thus, Tetris combines both heuristics - best packing and
shortest remaining job time - to reduce average job comple-
tion time. Authors proved that achieving desired amounts
of fairness can coexist with improving cluster performance.
This scheduler was implemented in YARN and showed gains
of over 30% in makespan and job completion time. Based
on new scheduler authors proposed a performance model
that has a number of shortcomings. First of all, fast solvers
are only known for a few special cases with non-linear con-
straints, meanwhile several of the constraints are non-linear:
resource malleability, task placement and how task dura-
tion relates to the resources allocated at multiple machines.
Finding the optimal allocation is computationally very ex-
pensive. Scheduling theory shows that even with elimination
the placement considerations, the problem of packing multi-
dimensional balls to minimal number of bins is APX-Hard
[13]. Secondly, ignoring dependencies between tasks is unac-
ceptable in case of MapReduce jobs, where the shuffle/sort
phase starts as the first map task is completed.

2.2 Dynamic MR Performance Models
The main challenge in developing the cost models for Map-

Reduce jobs is that they must capture, with reasonable ac-
curacy, the various sources of delays that job experiences.
In particular, tasks belonging to a job may experience two
types of delays: queuing delays due to contention at shared
resources, and synchronization delays due to precedence con-
straints among tasks that cooperate in the same job - map
and reduce phases. There are two main techniques to esti-

mate the performance of workloads of parallel applications
that do not take into account the synchronization delays.
One such technique is Mean Value Analysis (MVA)[14,15].
MVA technique takes into consideration only task queueing
delays due to sharing of common resources. Thus, MVA can-
not be directly applied to workloads that have precedence
constraints, such as the synchronization among map and
reduce tasks belonging to the same MapReduce job. Alter-
native classical solution is to jointly exploit Markov Chains
for representing the possible states of the system, and queu-
ing network models, to compute the transition rates between
states [16,17]. However, such approaches do not scale well
since the state space grows exponentially with the number
of tasks, making it impossible to be applied to model jobs
with many tasks, which is commonly the case of MapReduce
jobs.

Vianna et al. in their work [12] proposed a performance
model for MapReduce workloads, which is based on refer-
ence model [4]. Given a tree specifying the precedence con-
straints (i.e., precedence tree) among tasks of a parallel job
as input, the reference model applies an iterative approxi-
mate Mean Value Analysis (MVA) algorithm to predict per-
formance metrics (e.g., average job response time, resource
utilization, and throughput). The reference model allows
different types of precedence constraints among tasks of a
job, specified by simple task operators, such as parallel or se-
quential execution. However, this model cannot be directly
applied to MapReduce workload due to the fact that in a
MapReduce job the beginning of a shuffle phase in a reduce
task depends on the end of the first map task. The model
proposed in [12] enhances the reference model as follows:

• It explicitly addresses the synchronization delays due
to precedence constraints among tasks from the same
job;

• It takes into account queuing delays due to contention
at shared resources;

• It proposes an alternative strategy to estimate the av-
erage response time of subsets of the tasks belonging
to a MapReduce job, which leads to more accurate es-
timates of a job’s average response time.

According to the model validation results, the proposed
model produces estimates of average job response time that
deviate from measurements of a real execution by less than
15%.

Although this model does not capture the dynamic re-
source allocation and it assumes a fixed amount of threads
to process map and reduce tasks per node as one of the
input parameters, it has important advantages in compari-
son with previous models. First of all, unlike Herodotous’s
model that does not capture resource contention between
tasks, this model is taking into account the queuing delays
due to the contention at shared resources. Secondly, it is
able to capture the synchronization delays introduced by
the communication between map and reduce tasks (ARIA
and Tetris are not considering this property of MapReduce
job execution).

Figure 1: Job execution process in YARN [6]

3. ARCHITECTURE ANALYSIS
In this section, we analyze the architecture and compo-

nents of Hadoop 2.x in order to identify the architectural
changes that affect the cost of executing MapReduce jobs.

3.1 Running Example
To illustrate our approach and facilitate the explanations

throughout the paper, we introduce a running example. As-
sume that we have n = 3;m = 4; r = 1, where n - total
number of nodes, m - number of containers required for map
tasks, r - number of containers required for reduce tasks. All
nodes have the same capacity. Using this data, we will il-
lustrate the main steps of our approach.

3.2 Main components of YARN module
In the second version of Hadoop, the YARN module ap-

peared and changed the architecture significantly. It is re-
sponsible for managing cluster resources and job schedul-
ing. In the previous versions of Hadoop, this functional-
ity was integrated with the MapReduce module where it
was realized by the JobTracker component. The funda-
mental idea of YARN is to split the two major function-
alities of the JobTracker, resource management and task
scheduling/monitoring in order to have a global Resource-
Manager, and application-specific ApplicationMaster. By
separating resource management functions from the pro-
gramming model, YARN delegates many scheduling-related
tasks to per-job components and completely departs from
the static partitioning of resources for maps and reduces,
considering the cluster resources as a continuum, which brings
significant improvements to cluster utilization. The YARN
module consists of three main components:

• Global Resource Manager (RM) per cluster

• Node Manager (NM) per node

• Application Master (AM) per job

RM runs as a daemon on a dedicated machine and arbi-
trates all the available resources among various competing
applications. We will not go in detail of all components of
RM [1] and will focus on the most important ones:

• Scheduler, which is responsible for allocating resources
to the various applications that are running.

• Application Manager Service that negotiates the first
container (logical bundle of resources bound to a par-
ticular node) for the Application Master. AMs are

Number of
containers

Priority Size
Locality

constraints
Task type

2 20 x n1 map
2 20 x n2 map
1 10 x * reduce

Table 1: ResourceRequest Object

responsible for negotiating resources with the RM and
for working with the NMs to start, monitor, and stop
the containers.

Based on the core functionalities of YARN components, the
general schema of job execution process is presented in Fig-
ure 1. The process starts when an application submits a
request to the ResourceManager. The AM registers with
the RM through AM Service and is started in the container
that AM Service dedicated for it. Then, the AM requests
containers from the RM to perform actual work. Once the
AM obtains containers, it can proceed to launch of them by
communicating to a NM. Computation takes place in the
containers, which keep in contact with the AM. When the
application is complete, AM should unregister from the RM.

3.3 Resource management in Hadoop 2.x
For performance model construction it is necessary to un-

derstand in detail the resource request process. AM needs
to figure out its own resource requirements, which can be:

• Static. If the resource requirements are decided at
the time of application submission, and when the AM
starts running, there is no change to the resource re-
quirement that specification. In case of Hadoop MapRe-
duce, the number of map tasks is based on the input
splits (i.e., HDFS chunks), and the number of reducers
on user-defined parameter. Thus, the total number of
mappers and reducers is fixed before the application
submission.

• Dynamic. When dynamic resource requirements are
applied, the AM may choose how many resources to
request at run time based on criteria such as user hints,
availability of cluster resources, and business logic.

Once a set of resource requirements is clearly defined, the
AM can begin sending the requests in a heartbeat message
to the RM. Based on the task requirements, AM calculates
how many containers it needs and requests them from the
RM via a list of ResourceRequest objects. ResourceRequest
object for running example from Subsection 3.1 is presented
in the Table 1. In the ResourceRequest object, contain-
ers can have different priorities. Higher-priority requests
of an application are served first by the RM. There is no
cross-application implication of priorities. According to the
source code of MapReduce AM (package org.apache.hadoop.
mapreduce.v2.app.rm; RMContainerAllocator class), MapRe-
duce AM assigns a higher priority to containers needed for
the Map tasks and a lower priority for the Reduce tasks’
containers, with default priorities values equal to 20 and 10
respectively.

One thing to note is that containers may not be imme-
diately allocated to the AM. This does not imply that the
AM should keep on asking the pending count of required
containers. Once an allocated request has been sent, the

Figure 2: Lifecycle of map task

Figure 3: Lifecycle of reduce task

AM will eventually allocate the containers based on clus-
ter capacity, priorities and the scheduling policy. The AM
should request for containers again if and only if its original
estimate changed and it needs additional containers.

3.4 Job scheduling in Hadoop 2.x
There is another differentiating characteristic in terms of

how the scheduling of those resources happens:

• Resource usage follows a static all-or-nothing model,
when all containers are required to run together. For
example, if AM asks for n containers, the job will start
when AM receives exactly n containers.

• Alternatively, resource usage may change elastically,
depending on the availability of resources. In this case,
the job starts even if AM receives less than required
number of containers.

For cost model construction, it is necessary to understand
the way to distribute containers for tasks within different
nodes. By analyzing the source code of MapReduce (pack-
age org.apache.hadoop.mapreduce.v2.app.rm; RMContain-
erAllocator.java class), we observed that map and reduce
tasks have different lifecycles that are presented in Figure 2
and Figure 3.

Vocabulary Used:
pending → requests which are not yet sent to RM
scheduled →requests which are sent to RM but not yet assigned
assigned → requests which are assigned to a container
completed → requests for which the container has completed the
execution

Furthermore, AM can do a second level of scheduling and
assign its containers to whichever task that is part of its
execution plan. Thus, resource allocation in YARN is late
binding. The AM is obligated only to use resources as pro-
vided by the container, it does not have to apply them to the
logical task for which it originally requested the resources.
Thus, the MapReduce AM takes advantage of the dynamic
two-level scheduling. When the AM receives a container, it
matches that container against the set of pending tasks, se-
lecting a task with input data closest to the container, first
trying data local tasks, and then falling back to rack locality.

4. PROPOSED SOLUTION
As a basis of our MapReduce performance model for

Hadoop 2.x, we decided to take the performance model for
MapReduce workloads proposed for Hadoop 1.x [12]. The
main challenges of adapting the existing performance model
to the architectural changes of Hadoop 2.x were: (1) the
construction of the precedence tree, taking into considera-
tion the dynamic resource allocation as opposed to the pre-
defined slot configuration per map and reduce tasks in the

Figure 4: The main steps of Modified MVA algorithm [4]

Notation Input Parameter
Configuration parameters

numNodes Number of Nodes
cpuPerNode Number of CPU per node
diskPerNode Number of disks per node

Workload Parameters

Si,k
Residence time for task of class i
in the service center k

AvgResponseT imei Response time for task of class i
m Number of map tasks
r Number of reduce tasks

MaxMapPerNode
Maximum number of
containers per node for
map tasks

MaxReducePerNode
Maximum number of
containers per node for
reduce tasks

Table 2: Input parameters

Hadoop 1.x, and (2) how to capture the synchronization de-
lays introduced by the pipeline that occur among maps and
shuffle phase of the reduce tasks.

4.1 Input Parameters
For the sake of simplicity, we consider a distributed clus-

ter with a set of computing nodes equal to numNodes, all of
them having the same technical characteristics. The work-
load is composed by N MapReduce jobs executing concur-
rently in the system. Each job has mi map tasks and ri
reduce tasks. We are not dividing the map task into phases.
As a partial sort is performed after each shuffle, we group
each pair of shuffle and sort in a single subtask called shuffle-
sort. After all partial sorts are finished, a final sort is exe-
cuted, followed by the final phase of reduce tasks that applies
the reduce function. We group the final sort and the reduce
function into one merge subtask. Thus, according to our
terminology, the reduce task is divided into two subtasks:
shuffle-sort and merge. The input parameters for our model
are presented in Table 2. We consider 2 types of service cen-
ters (resources): CPU&Memory and Network. The overall
number of task classes C is 3 (i.e., map, shuffle-sort, and
merge). We would like to emphasize the difference between
the residence and response time for a task. The average re-
sponse time is the total time that task spends in the cluster.
Meanwhile, the residence time of task class i on service cen-
ter k is the average amount of time that task spends using
the corresponding resource k during its execution.

4.2 Modified Mean Value Analysis (MVA) Al-
gorithm

To solve the queueing network model, we use the modified
Mean Value Analysis. An algorithm to solve the MVA for a
closed network system initially was proposed by Reiser and
Lavenberg [7] on top of which, we build our performance
model. Bellow we describe the main steps of the algorithm
and the assumptions we consider in our approach.

Suppose a system with C task classes and K service cen-
ters. Let ~N be a vector, i-th component of which indicates
the number of tasks of class i in the system; Sjk is the av-
erage demand of class j ∈ C task on service center k ∈ K
(i.e., the average amount of time).

The main steps of the algorithm are presented in Figure
4, which consists of 6 main activities: A1-A6. We start
by initializing the average residence time of each type of
task at each service center and the average response time
of each task in the system. Then based on the average re-
sponse time of each individual task, the precedence tree is
constructed. The next step is to take into account the effects
of the queuing delays by factors representing the overlap in
the execution times of tasks belonging to the same job (intra-
job overlap) and tasks belonging to different jobs (inter-job
overlap). These overlap factors produce the new estimates
of task average response time. The final step is to apply the
convergence test on the new estimates of average response
time. In case that the convergence test fails, we return to
the construction of precedence tree step trying to build a
new, and more accurate precedence tree based on estimates
of task response time obtained during the previous iteration.
In case that current estimates are close enough to the previ-
ous ones, the algorithm finishes, and as a result, a final job
average response time is produced.

In the following subsections, we explain the activities of
the modified MVA algorithm. In particular, we extensively
explain our modification of precedence tree construction pro-
cedure in Subsection 4.2.2.

4.2.1 Initialization of task response time
Initialization process consists of two sub processes that

can run in parallel: initializing the average residence time
of each type of task at each service center and the average
response time of each task in the system. For initializing the
residence time, we take the average of residence time from
the history of corresponding real Hadoop job executions. To
initialize the tasks response time, we can apply the following
approaches:

• Using sample techniques - taking the average of task
response time from job profile.

• Obtaining from the existing static cost models, for ex-

ample, from Herodotou’s cost models [3] (we can as-
sume that first all map tasks will be executed then re-
duce tasks). Thus, we will give all available resources
to the map tasks and then to the reduce tasks.

The second approach leads to faster algorithm convergence
due to more accurate response time initialization and, as
consequence, less number of iterations of the algorithm. In
out model we use the second approach.

4.2.2 Building precedence tree
In a precedence tree, each leaf represents a task and each

internal node is an operator describing the constraints in the
execution of the tasks. We will consider a precedence binary
tree built from 2 types of primitive operators: serial (S) and
parallel-and (P). The S operator is used to connect tasks
that run sequentially, whereas the P operator connects tasks
that run in parallel. An example of the precedence tree is
presented on Figure 5.

Figure 5: Precedence Tree

The main goal of building the precedence tree is to cap-
ture the execution flow of the job, identifying the parallel or
serial order of execution of individual tasks and their inter-
dependencies. Based on new estimates for task response
time, we rebuild the precedence tree at each iteration of the
algorithm (the complexity analysis of building precedence
tree procedure can be found in Subsection 4.3).

The precedence tree depends on the response time of in-
dividual tasks and is built using a task response timeline.
Based on the obtained timeline, the precedence tree can be
constructed uniquely up to graph isomorphism. To be able
to distinguish the parallel and sequential task executions,
we have to identify the beginning of a new phase in a time-
line. By the phase we mean the maximum period of time,
during which all tasks are executed simultaneously. Thus,
tasks within the same phase are executed in parallel, while
tasks from different phases are executed sequentially.

Based on the architectural analysis (see Section 3), the
core assumptions and factors that influence the timeline con-
struction process can be divided into two subgroups: (1) re-
lated to the job scheduling, and (2) related to the resource
management system.

The first subgroup, related to the job scheduling, consists
of the following factors:

1. We assume that RM uses the Capacity scheduler which
is the default scheduler of the Hadoop YARN distribu-
tion. The fundamental unit of the Capacity scheduler
is a queue. We assume that we do not have any hierar-
chical queues and we have only one root queue. Thus,
resource allocation among applications will be in the
FIFO order, i.e., the priority will be given to the first
application requesting the resources.

2. Due to architectural changes, some responsibilities of
job scheduling are delegated to the AM. We have to

Algorithm 1 Timeline Construction

Input: M,R,N
Output: TL
{st->startTime; et->endTime; d->duration;
sd->shuffleDuration; an->assingedNode; }

1: for i := 1 to |N | do
2: TL[i] := ∅;
3: end for
4: for m ∈M do
5: i := min(TL);

m.an := i;
m.st := min(TL[i]);
m.et := m.st+m.d;
TL[i] := TL[i] ∪ {m};

6: end for
7: if (slow start) then
8: border := TL[min(TL)].et;
9: else

10: border := TL[max(TL)].et;
11: end if
12: for r ∈ R do
13: i := min(TL);

r.an = i;
r.st := max(TL[i].et, border);

14: for m ∈M do
15: if (m.an <> i) then
16: r.d := r.d+ m.sd

|R| ;

17: end if
18: end for
19: r.et := r.st+ r.d;
20: TL[i] := TL[i] ∪ {r};
21: end for
22: Return TL;

determine the way to distribute containers for tasks
within different nodes. According to findings in Sub-
section 3.4, map and reduce tasks have different life-
cycles that we need to take into account during the
timeline construction procedure.

3. We are assuming that AM will use requested containers
for the same type of tasks as originally requested, thus
we ignore the late binding functionality of AM.

Figure 6: Timeline example

The second subgroup, related to resource management, is
composed of the following factors and assumptions:

1. Considering the finding in Subsection 3.2 related to

Figure 7: Precedence Tree Example

different priorities for map and reduce tasks, we pro-
vide a container first to map task and after to reduce
task.

2. Assigning containers for map tasks mainly depends on
whether we consider or not locality constraints (con-
figuration parameter).

In our model, we consider a node locality constraints
for map task and ignore locality constraints for reduce
tasks. In case of ignoring the locality constraints, we
distribute containers for tasks uniformly among nodes
with the highest remaining capacity. Assuming that
all nodes have the same capacity, we will take into
consideration the occupancy rate and assign containers
to the nodes with the lowest value.

Container allocation process for reduce tasks conform
to the following steps:

• Check for slow start: by default, schedulers wait
until 5% of the map tasks in a job have completed
before scheduling reduce tasks for the same job.

• Check if all maps are assigned: if not, schedule re-
duce tasks based on the percentage of completed
map tasks (conf. parameter). Otherwise, sched-
ule all reduce tasks (map output locality is not
taken into consideration, request asks for a con-
tainer on any host/rack).

The last rule that we have to consider is how to divide
the timeline into phases. All tasks within the same phase
are executed in parallel, and tasks that belong to different
phases are executed sequentially. It means that each start
or end of a task indicates the start of a new phase.

As a summary, we present below our algorithm for the
timeline construction, considering that map tasks have higher
priority than reduce tasks. We start in lines 1-6 distributing
containers for map tasks.In case the slow start is set, the be-
ginning of the shuffle-phase of reduce task will coincide with
the end of first map task on the node that has the lowest
occupancy rate. Thus, shuffling starts as earlier as possible.
In the opposite case, when we do not have a slow start, the
shuffle-phase of reduce task starts as late as possible (lines
7-11). Further, in lines 12-21 we distribute containers for
reduce tasks.

Then based on the timeline we build a binary precedence
tree. In order to reduce the maximal depth of precedence

tree, we apply a balancing procedure for each P-subtree of
it.

Example. Applying the above timeline construction al-
gorithm to example from Section 3, we obtain the timeline,
that is presented in Figure 6. Based on this timeline we are
able to construct the precedence tree (Figure 7)

4.2.3 Estimation of the Intra- and Inter- job overlap
factors

For a system with multiple classes of tasks the queueing
delay of task class i due to task class j is directly propor-
tional to their overlaps [5]. We are going to consider two
types of overlap factors: the intra-job overlap factor αij∀i, j
- taskID’s from the same job, and inter-job overlap factor
βkr∀k, r - taskID’s from different jobs. In Figure 8, we pro-
vide an example for intra- and inter-job overlap factors.

Figure 8: Intra- and inter-job overlap factors
The algorithm for estimating the overlap factors can be

found in [4].

4.2.4 Average Job Response Time Estimation
There are 2 alternative approaches to estimate the job

response time:

1. Tripathi-based [4]: To estimate the response time of
P-rooted ans S-rooted sub-trees, we approximate the
distribution of response time of each of its children by
either an Erlang or a Hyperexponential distribution
depending on the coefficient of variation (CV = µ

σ
) of

the response times associated with each child node [4],
[9]. We assume that the distribution of X of Erlang
type if its CV <= 1, and Hyperexponential distribu-
tion if CV >= 1. Knowing the distribution of leafs,
we can determine the distribution type (Erlang or Hy-
perexponential) and mean value of response time for
P and S [4].

2. Fork/join-based [12]: We consider the execution of
a parallel-phase as a fork-join block, and use previ-
ously adopted estimates of the average response time

of fork/joins. One such estimate is the product of the
k− th harmonic function by the maximum average re-
sponse time of k tasks [10].

Rik = Hk ·max(Ti, Tj),
where Hk =

∑s
i=1

1
i
,

s - is the number of child nodes

The precedence tree is a binary tree. Thus, Hk = 3
2
, ∀k

The intuition behind this formula is the response time
for a parent node equal to the biggest child response
time plus possible delay (multiplication by 3

2
).

4.2.5 Estimation of task response time
To solve the queuing network models we apply Mean Value

Analysis (MVA) [7]. MVA is based on the relation between
the mean waiting time and the mean queue size of a system
with one job less. The algorithm for estimating the task
response time consists of 5 main steps that are presented in
Figure 9, whose detailed explanation can be found in [4].

4.2.6 Applying convergence test
During the convergence test, we are comparing the Total

Response Time from the previous iteration with the Total
Response Time received in the current iteration. In case
they are close enough (i.e., |Rcurr − Rprev| ≤ ε), the algo-
rithm finishes. Otherwise, we return to the precedence tree
construction process and repeat activities A2-A6. We use
ε = 10−7, which is the recommended value for MVA [4].
Theoretically, this value provides a good trade-off between
the level of accuracy and the complexity of the algorithm
(number of iterations). Moreover, we performed empirical
tests and confirmed that ε = 10−7 gives a good trade-off
(with lower values of ε the job response time almost does
not change, meanwhile the number of iterations continues
to grow).

4.3 Complexity Analysis
We can find the complexity of the proposed performance

model by analyzing the complexity of the MVA algorithm
and the complexity of the precedence tree construction.

According to [4], the MVA algorithm is computationally
efficient, having the complexity – O(C2N2K), where C is
the number of task classes in the job, N is the number of
jobs, K is the number of service centers.

The time complexity to build the precedence tree is equal
to the complexity of timeline construction. The cost to con-
struct this timeline can be identified by the time required to
repeatedly search for the next task to finish until the termi-
nation of all the tasks.

Let C be the total number of tasks in the timeline and T
be the total number of containers in execution.

C = allMapTasks+ allShuffleSortTasks+ allMergeTasks;
T = n×max(pMaxMapsPerNode, pMaxReducePerNode),

where n - the number of nodes; pMaxMapsPerNode,
and pMaxReducePerNode - the maximum number of con-
tainers for map and reduce tasks correspondingly,

pMaxMapsPerNode =
⌊ TotalNodeCapacity

SizeOfContainerForMapTask

⌋

pMaxReducePerNode =
⌊ TotalNodeCapacity

SizeOfContainerForReduceTask

⌋

Thus, in the worst case, the time complexity to build a
precedence tree at each iteration is given by the search for
m + r(m + 1) tasks in T containers, that is O(C × T) =

O((m+ r(m+ 1))× (n×max(pMaxMapsPerNode,

pMaxReducePerNode))), where m, r -is the number of map
and reduce tasks in the job correspondingly. The computa-
tional cost of the whole solution: O(C2N2K)+O(((m+r(m+

1))×(n×max(pMaxMapsPerNode, pMaxReducePerNode)))×
numberOfIterations). As we can notice, the computational
cost of the whole solution is dominated by the MVA algo-
rithm that has quadratic complexity equal to O(C2N2K).

5. EVALUATION
This section presents the results of a set of experiments we

performed with the proposed performance model. We pro-
vide the validation results from a comparison of our model
(two approaches: Tripathi-based and fork/join-based) against
measurements of a Hadoop 2.x setup. For evaluation we de-
cided to use map-and-reduce-input heavy jobs (i.e., word-
count1) that process large amounts of input data and also
generate large intermediate data [8].

5.1 Experiments Setup
We performed a set of experiments analyzing the job re-

sponse time in terms of the following parameters:

• the number of nodes: 4,6,8;

• the size of input data: 1GB, 5GB;

• the number of jobs that are executed simultaneously
in the cluster: 1,2,3,4.

Each node in the cluster has the same technical charac-
teristics:

• 2x Intel Xeon E5-2630L v2 a 2.40 GHz

• 128 GB Memory RAM

• 1 hard disk TB SATA-3

• 4 Network Intel Gigabit Ethernet

For each experiment we analyze the job response time
fixing two out of three parameters. Each experiment we
repeated 5 times and then took the median of response time.

5.2 Results
First, we present the response time for different number

of jobs (1 and 4) that are executed simultaneously in the
cluster on different number of nodes (4,6,8) with a fixed
size of input data. In all graphs we use blue continuous
line to show results for the real Hadoop setup, red dashed
- for Fork/join based approach, green 2 dots 1 dash line
- for Tripathi based approach. Results for the input size
equal to 1 GB and 5GB are presented in Figures 10 and 11,
and Figures 12 and 13, respectively. Figure 14 shows the
response time depending on the number of jobs (from 1 to
4) that are executed simultaneously in the cluster with a
fixed size (i.e., 4 nodes).

We can notice that the Fork/join based approach provides
more accurate estimation of job response time with error
between 11% and 13,5%, meanwhile the Tripathi-based ap-
proach shows an error between 19% and 23%. For 5GB
input size, we obtain the bigger value of an error: 13.5%

1WordCount Example from the Hadoop distribution: https:
//wiki.apache.org/hadoop/WordCount

Figure 9: The main steps for task response time estimation [4]

30	

35	

40	

45	

50	

55	

60	

65	

70	

75	

4	
 5	
 6	
 7	
 8	

t.s
ec
	

number	
 of	
 nodes	

HadoopSetup

Fork/join

Tripathi

Figure 10: Input: 1GB; #jobs: 1

0	

50	

100	

150	

200	

250	

4	
 5	
 6	
 7	
 8	

t.s
ec
	

number	
 of	
 nodes	

HadoopSetup

Fork/join

Tripathi

Figure 11: Input: 1GB; #jobs: 4

and 23%, respectively. We observe that the accuracy of our
algorithm depends on the number of map tasks and not nec-
essarily on the size of input data. The bigger value of error
is connected with the complexity (the maximal depth) of the
precedence tree, which is increasing with the higher number
of map tasks. In order to prove this hypothesis, we increase
the number of map tasks without increasing the input data
size. Thus, we reduced the default block size for the map
task from 128MB to 64MB and repeated the experiments.
The results for the input data size equal to 5GB and number
of jobs equal to 1 are presented in the Figure 15. As showed
by these results, experiments confirm our supposition, as
we obtained the biggest values of errors: 17% and 25% for
fork/join and Tripathi-based approaches, respectively. For
reducing the maximal depth of the precedence tree and, as
consequence, for decreasing the error, we balance it.

The Fork/join approach in our model produces accuracy
improvements over the original model for Hadoop 1 [12], on
which we based our solution. For one job in the cluster we
received the error within 13.5% against 15% in [12].

In conclusion, we can notice that the Fork/join based ap-
proach provides more accurate results than Tripathi-based,
but with both approaches we overestimate the execution
time. The cost model can be further fine tuned for improving
the accuracy of the estimations by changing the calculation

the overlap factors.

6. CONCLUSIONS AND FUTURE WORK
In this work, we tackled the challenge of creating a MapRe-

duce performance model for Hadoop 2.x, which takes into
consideration queuing delays due to contention at shared re-
sources, and synchronization delays due to precedence con-
straints among tasks that cooperate in the same job (map
and reduce phases). The modeling approach extends the
solution proposed for Hadoop 1.x in [12], where the execu-
tion flow of a job was presented by a precedence tree and
the contention at the physical resources were captured by
a closed queuing network. Our main contributions are the
deep analysis of the Hadoop 2.x internals, identifying the
main architectural changes in Hadoop, and the creation of
the MapReduce performance model for Hadoop 2.x. In par-
ticular, considering the identified changes in the architecture
of Hadoop 2.x and taking into account the dynamic resource
allocation, we created the method for timeline construction,
based on which the precedence tree is built.

We validated our model against the measurements ob-
tained from a real Hadoop setup for different number of jobs
that were executed simultaneously. Our experiments showed
the effectiveness of our approach: the average error of job re-
sponse time estimation for standard block size is in the range
of 11% and 13.5%. Our model can be used for theoretically
estimating of the jobs response time at a significantly lower
cost than simulation and experimental evaluation of real se-
tups. It can also be useful for critical decision making in
workload management and resource capacity planning.

Our future plans focus on the tuning of provided perfor-
mance model in order to decrease the error of job response
time estimation. Furthermore, we are planning to extend
our model to be able to estimate the amount of consumed
resources for each task and the whole job.

7. ACKNOWLEDGMENTS
This research has been funded by the European Commis-

sion through the Erasmus Mundus Joint Doctorate ”Infor-
mation Technologies for Business Intelligence - Doctoral Col-
lege” (IT4BI-DC).

The research has been partially supported by the Spanish
Ministerio de Economı́a, Industria y competitividad, grant
TIN2016-79269-R.

8. REFERENCES
[1] http://hortonworks.com/blog/

apache-hadoop-yarn-resourcemanager/. Accessed:
2016-11-16.

[2] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella. Multi-resource packing for cluster
schedulers. In ACM SIGCOMM Computer

50	

100	

150	

200	

250	

300	

4	
 5	
 6	
 7	
 8	

t.s
ec
	

number	
 of	
 nodes	

HadoopSetup

Fork/join

Tripathi

Figure 12: Input: 5GB; #jobs: 1

50	

250	

450	

650	

850	

1050	

1250	

1450	

4	
 5	
 6	
 7	
 8	

t.s
ec
	

number	
 of	
 nodes	

HadoopSetup

Fork/join

Tripathi

Figure 13: Input: 5GB; #jobs: 4

0	

200	

400	

600	

800	

1000	

1200	

1400	

1	
 2	
 3	
 4	

t,s
ec
	

number	
 of	
 jobs	

HadoopSetup
Fork/join
Tripathi

Figure 14: #Nodes: 4; Input: 5GB

Figure 15: Block: 64MB; Input:5GB; #jobs: 1

Communication Review, volume 44, pages 455–466.
ACM, 2014.

[3] H. Herodotou. Hadoop performance models. arXiv
preprint arXiv:1106.0940, 2011.

[4] D.-R. Liang and S. K. Tripathi. On performance
prediction of parallel computations with precedent
constraints. IEEE Transactions on Parallel and
Distributed Systems, 11(5):491–508, 2000.

[5] V. W. Mak and S. F. Lundstrom. Predicting
performance of parallel computations. IEEE
Transactions on Parallel and Distributed Systems,
1(3):257–270, 1990.

[6] A. C. Murthy, V. K. Vavilapalli, D. Eadline,
J. Niemiec, and J. Markham. Apache Hadoop YARN:
Moving Beyond MapReduce and Batch Processing with
Apache Hadoop 2. Pearson Education, 2013.

[7] M. Reiser and S. S. Lavenberg. Mean-value analysis of
closed multichain queuing networks. Journal of the
ACM (JACM), 27(2):313–322, 1980.

[8] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang,
B. Reinwald, and F. Özcan. Clash of the titans:
Mapreduce vs. spark for large scale data analytics.
Proceedings of the VLDB Endowment,
8(13):2110–2121, 2015.

[9] K. S. Trivedi. Probability & statistics with reliability,
queuing and computer science applications. John
Wiley & Sons, 2008.

[10] E. Varki. Mean value technique for closed fork-join
networks. In ACM SIGMETRICS Performance
Evaluation Review, volume 27, pages 103–112. ACM,
1999.

[11] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA:
automatic resource inference and allocation for
mapreduce environments. In Proceedings of the 8th
ACM international conference on Autonomic
computing, pages 235–244. ACM, 2011.

[12] E. Vianna, G. Comarela, T. Pontes, J. Almeida,
V. Almeida, K. Wilkinson, H. Kuno, and U. Dayal.
Analytical performance models for MapReduce
workloads. International Journal of Parallel
Programming, 41(4):495–525, 2013.

[13] G. J. Woeginger. There is no asymptotic PTAS for
two-dimensional vector packing. Information
Processing Letters, 64(6):293–297, 1997.

