# MAPS OF MANIFOLDS WITH INDEFINITE METRICS PRESERVING CERTAIN GEOMETRICAL ENTITIES 

R. S. KULKARNI<br>Department of Mathematics<br>Indiana University<br>Bloomington, Indiana 47401<br>and<br>(Mathematics Department, Rutgers University)<br>(Received June 1, 1977)

ABSTRACT. It is shown that (i) a diffeomorphism of manifolds with indefinite metrics preserving degenerate $r$-plane sections is conformal, (ii) a sectional curvature-preserving diffeomorphism of manifolds with indefinite metrics of dimension $\geq 4$ is generically an isometry.

1. INTRODUCTION.

Let $\left(M^{n}, g\right)$, $\left(\overline{M^{n}}, \bar{g}\right)$ be pseudo-Riemannian manifolds. A diffeomorphism $f: M \rightarrow \bar{M}$ is said to be curvature-preserving if given $p \in M$ and a 2-dimensional plane section $\sigma$ at $p$ such that the sectional curvature $K(\sigma)$ is defined then at $f(p)$ the sectional curvature $\bar{K}\left(f_{*} \sigma\right)$ is defined and $K(\sigma)=\bar{K}\left(f_{*} \sigma\right)$. A point $p \varepsilon M$ is called isotropic if there exists a constant $c(p)$ such that $K(\sigma)=c(p)$ for any $2-p l a n e$ section $\sigma$ at $p$ for which $K$ is defined. I studied the notion of a curvature preserving map in the Riemannian case and showed

THEOREM 1. If $n \geq 4\left(M^{n}, g\right),\left(\bar{M}^{n}, \bar{g}\right)$ Riemannian manifolds and non-isotropic
points are dense in $M$ then a curvature-preserving map $f: M \rightarrow \bar{M}$ is an isometry.
cf. [1] and for this and other types of "Riemannian" analogues cf. [5], [6] [2], [3], [4]. The purpose of this note is to point out Theorem 2.

THEOREM 2. Theorem 1 is valid for pseudo-Riemannian manifolds.
Unlike certain local results in pseudo-Riemannian geometry Theorem 2 is not obtained from Theorem 1 by formal changes of signs. Its proof is actually simpler but for an entirely different reason which seems to be well worth pointing out. One of the main steps in Theorem 1 and its other analogues mentioned above is that a curvature-preserving map is necessarily conformal on the set of nonisotropic points. This step is automatic in the case of indefinite metrics due for the next result. Let us call a subspace $A$ of a tangent space at a point in $M$ degenerate (resp. nondegerate) if $\left.\mathrm{g}\right|_{\mathrm{A}}$ is degenerate (resp. nondegenerate). Sectional curvature is defined only for nondegenerate 2-plane sections. So by definition a curvature-preserving map carries degenerate $2-$ plane sections into degenerate 2plane sections.

THEOREM 3. Let $\left(M^{n}, g\right)$, ( $\left.\mathrm{M}^{\mathrm{n}}, \overline{\mathrm{g}}\right)$ be indefinite pseudo-Riemannian manifolds, $\mathrm{n} \geq 3$. Let $\mathrm{r} \geq 1$. Let $\mathrm{f}: \mathrm{M} \rightarrow \overline{\mathrm{M}}$ be a diffeomorphism which carries degenerate $\mathrm{r}-$ dimensional plane sections of $M$ into those of $\bar{M}$. Then $f$ is conformal. (i.e. there exists a nowhere vanishing smooth function $\Phi: M \rightarrow \mathbb{R}$ such that $f^{*-}=\Phi \cdot g$. )

Recall that a geodesic on ( $M, g$ ) whose tangent vector field $X$ satisfies $g(X, X)=0$ is called a light like geodesic.

COROLLARY 1. Let $\left(M^{n}, g\right)$, $\left(\bar{M}^{n}, \bar{g}\right)$ be indefinite pseudo-Riemannian manifolds. Then a diffeomorphism $f: M \rightarrow \bar{M}$ which preserves light-like geodesics is conformal.

This is the case $r=1$ of Theorem 3. Note that this corollary is an extension and "Geometrization" of $H$. Weyl's famous observation about the conformal invariance of Maxwell's equations.

## 2. PROOF OF THEOREMS 2 AND 3.

First we prove Theorem 3.
The case $r=2$ contains the essential ideas so we prove the theorem only in this case leaving the general case to the reader. Let $T_{p}(M)$ denote the tangent space to $M$ at $p$ etc. It clearly suffices to show that for each $p$ in $M$ $f_{t}: T_{p}(M) \rightarrow T_{f(p)}(\bar{M})$ is a homothety. Let $\left\{e_{i}, e_{j}, e_{\alpha}\right\}$ be an orthonormal set of vectors so that

$$
\left.\left\langle e_{i}, e_{i}\right\rangle=\left\langle e_{j}, e_{j}\right\rangle=-<e_{\alpha}, e_{\alpha}\right\rangle
$$

Let $f_{*} e_{i}=\overline{e_{i}}$ and $g$ or $<,>$ also denote the canonically induced metric in all tensor powers and similarly for $\bar{g}$. Let $x^{2}+y^{2}=1$. Then the 2-dimensional plane $\sigma=\operatorname{span}\left\{x e_{i}+y e_{j}+e_{\alpha},-y e_{i}+x e_{j}\right\}$ is degenerate. Hence by hypothesis $f_{*} \sigma$ is degenerate i.e.

$$
\begin{aligned}
o & =\bar{g}\left(\left(x \overline{e_{i}}+y \overline{e_{j}}+\overline{e_{\alpha}}\right) \wedge\left(-y \overline{e_{i}}+x \overline{e_{j}}\right),\left(x \overline{e_{i}}+y \overline{e_{j}}+\overline{e_{\alpha}}\right) \wedge\left(-y \overline{e_{i}}+x \overline{e_{j}}\right)\right) \\
& =\bar{g}\left(\overline{e_{i}} \wedge \overline{e_{j}}+x \overline{e_{\alpha}} \wedge \overline{e_{j}}-y \overline{e_{\alpha}} \wedge \overline{e_{i}}, \overline{e_{i}} \wedge \overline{e_{j}}+x \overline{e_{\alpha}} \wedge \overline{e_{j}}-y \overline{e_{\alpha}} \wedge \overline{e_{i}}\right) \\
& =\left\{\bar{g}\left(\overline{e_{i}} \wedge \overline{e_{j}}, \overline{e_{i}} \wedge \overline{e_{j}}\right)+x^{2} \bar{g}\left(\overline{e_{\alpha}} \wedge \overline{e_{j}}, \overline{e_{\alpha}} \wedge \overline{e_{j}}\right)+y^{2} \bar{g}\left(\overline{e_{\alpha}} \wedge \overline{e_{i}}, \overline{e_{\alpha}} \wedge \overline{e_{i}}\right)-\right. \\
& \left.\left.-2 x y \bar{g}\left(\overline{e_{\alpha}} \wedge \overline{e_{i}}, \overline{e_{\alpha}} \wedge \overline{e_{j}}\right)\right\}+\left\{2 x \bar{g}\left(\overline{e_{i}} \wedge \overline{e_{j}}, \overline{e_{\alpha}} \wedge \overline{e_{j}}\right)-2 y \overline{( }_{i} \wedge \overline{e_{j}}, \overline{e_{\alpha}} \wedge \overline{e_{i}}\right)\right\}
\end{aligned}
$$

A similar expression with ( $x, y$ ) replaced by $(-x,-y)$ is also true. Hence each $\{$, is separately zero and since $(x, y)$ are subject to the only relation $x^{2}+y^{2}=1$ it follows that

$$
o=\bar{g}\left(\overline{e_{i}} \wedge \overline{e_{j}}, \overline{e_{\alpha}} \wedge \overline{e_{i}}\right)=\bar{g}\left(\overline{e_{i}} \wedge \overline{e_{j}}, \overline{e_{\alpha}} \wedge \overline{e_{j}}\right)=\bar{g}\left(\overline{e_{i}} \wedge \overline{e_{\alpha}}, \overline{e_{j}} \wedge \overline{e_{\alpha}}\right)
$$

and

$$
\bar{g}\left(\overline{e_{i}} \wedge \overline{e_{j}}, \overline{e_{i}} \wedge \overline{e_{j}}\right)=-\bar{g}\left(\overline{e_{i}} \wedge \overline{e_{\alpha}}, \overline{e_{i}} \wedge \overline{e_{\alpha}}\right)=-\bar{g}\left(\overline{e_{j}} \wedge \overline{e_{\alpha}}, \overline{e_{j}} \wedge \overline{e_{\alpha}}\right)
$$

i.e. $\left\{\overline{e_{i}} \wedge \overline{e_{j}}, \overline{e_{i}} \wedge \overline{e_{\alpha}}, \overline{e_{j}} \wedge \overline{e_{\alpha}}\right\}$ is an orthogonal basis of the second exterior power $\Lambda^{2}\left(\operatorname{span}\left\{\overline{\mathbf{e}_{i}}, \overline{\mathbf{e}_{j}}, \overline{\mathbf{e}_{\alpha}}\right\}\right)$. This means that $f$ induces a homothetic map of $\Lambda^{2}\left(\operatorname{span}\left\{e_{i}, e_{j}, e_{\alpha}\right\}\right)$ onto $\Lambda^{2}\left(\operatorname{span}\left\{\overline{e_{i}}, \overline{e_{j}}, \overline{e_{\alpha}}\right\}\right)$. It is then easy to see that $f$ induces a homothety of $\operatorname{span}\left\{e_{i}, e_{j}, e_{\alpha}\right\}$ onto span $\left\{e_{i}, e_{j}, e_{\alpha}\right\}$. By varying the set $\left\{e_{i}, e_{j}, e_{\alpha}\right\}$ it is clear that $f_{k}$ is a homothety. This finishes the proof. QED PROOF OF THEOREM 2. By Theorem 3 we have $f^{\star-} \bar{g}=\Phi \cdot g$ where $\Phi$ is a nowhere vanishing function on $M$. Now the proof that $f$ is an isometry i.e. $\Phi=1$ is exactly as in [1] or [4] 57. QED

ACKNOWLEDGMENT. This work was partially supported by NSF Grant MPS - 71-03442.

## REFERENCES

1. Kulkarni, R. S. Curvature and Metric, Ann. of Math. 91 (1970) 311-331.
2. Kulkarni, R. S. Congruence of Hypersurfaces, J. Differential Geometry 8 (1973) 95-102.
3. Kulkarni, R. S. Equivalence of Kähler Manifolds, J. Differential Geometry 9 (1974) 401-408.
4. Kulkarni, R. S. On the Bianchi Identities, Math. Ann. 199 (1972) 175-204.
5. Nasu, T. Curvature and Metric in Riemannian 3-Manifolds, J. Math. Soc. Japan 27 (1975) 194-206.
6. Yau, S. T. Curvature Preserving Diffeomorphisms, Ann. of Math. 100 (1974) 121-130.

KEY WORDS AND PHRASES. Riemannian and pseudo-Riemannian manifolds, diffeomorphism of manifolds.

AMS (MOS) SUBJECT CLASSIFICATIONS (1970). 53C20, 53 C 25.


