
M
ANUSC

RIP
T

MAPS: Pathologist-level cell type annotation
from tissue images through machine learning

Muhammad Shaban1,2,3,4,*, Yunhao Bai5,*, Huaying Qiu6,*, Shulin Mao6, Jason Yeung6, Yao Yu Yeo6, Vignesh Shanmugam1,4,
Han Chen5, Bokai Zhu5, Garry P. Nolan5, Margaret A. Shipp7, Scott J. Rodig1,7, Sizun Jiang4,6,8,�, and Faisal Mahmood1,2,3,4,�

1Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
2Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

3Data Science Program, Dana-Farber Cancer Institute, Boston, MA, United States
4Broad Institute of Harvard and MIT, Cambridge, MA, United States

5Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
6Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

7Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
8Department of Pathology, Dana Farber Cancer Institute, Boston, MA, United States

*Those authors contributed equally to this paper
†Corresponding Authors

Highly multiplexed protein imaging is emerging as a potent1

technique for analyzing protein distribution within cells and2

tissues in their native context. However, existing cell an-3

notation methods utilizing high-plex spatial proteomics data4

are resource intensive and necessitate iterative expert input,5

thereby constraining their scalability and practicality for ex-6

tensive datasets. We introduce MAPS (Machine learning for7

Analysis of Proteomics in Spatial biology), a machine learning8

approach facilitating rapid and precise cell type identification9

with human-level accuracy from spatial proteomics data. Val-10

idated on multiple in-house and publicly available MIBI and11

CODEX datasets, MAPS outperforms current annotation tech-12

niques in terms of speed and accuracy, achieving pathologist-13

level precision even for challenging cell types, including tumor14

cells of immune origin. By democratizing rapidly deployable15

and scalable machine learning annotation, MAPS holds signifi-16

cant potential to expedite advances in tissue biology and disease17

comprehension.18
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Introduction22

The precise delineation of cellular subtypes is crucial for23

elucidating structural and functional intricacies of biologi-24

cal tissues, within their native context. Recent advances in25

high-plex spatial proteomics have facilitated the simultane-26

ous imaging of over 50 markers, thereby offering invaluable27

insights into protein expression and distribution within cellu-28

lar and tissue architectures for phenotypic and functional in-29

vestigations (1, 2). Nonetheless, accurate cellular annotation30

predicated on this wealth of data presents formidable chal-31

lenges, stemming primarily from constraints in highly precise32

cell segmentation (3), lateral spillover of markers in tightly33

packed tissues (4), presence of tissue-level and patient-level34

variability, and heterogeneous expression patterns (1, 2, 5) .35

Existing approaches for cell annotation are contingent upon36

unsupervised clustering techniques, necessitating subsequent37

manual curation, a process that can be markedly labor-38

intensive and requires domain-specific expertise. Achieving39

higher annotation accuracies can thus be an arduous process40

due to the iterative steps required (6). Therefore, there is41

a need for automated methods that can accurately classify42

cells based on their spatial proteomics data. Promising au-43

tomated approaches developed recently include probabilistic44

inferential approaches (7, 8), and convolutional neural net-45

works (9, 10). However, these approaches may be lower in46

accuracy, or be computationally expensive, requiring more47

memory and taking longer times to train and infer.48

Therefore, a computationally lightweight and fast automated49

cell classification method, while achieving human-level ac-50

curacy, is required to improve the efficiency and scalability51

of spatial proteomics data analysis. We present here MAPS52

(Machine learning for Analysis of Proteomics in Spatial bi-53

ology), a machine learning package that enables highly accu-54

rate and fast cell annotation with the highest in-class perfor-55

mance when benchmarked across multiple spatial proteomics56

platforms. MAPS can significantly enhance our understand-57

ing of complex biological systems and facilitate the discovery58

of novel biological processes in situ.59

Results60

Development of MAPS and initial application to an in-61

-house curated cHL MIBI dataset. Herein, we postulated62

that a feed-forward neural network would be an efficient and63

robust model for rapid and accurate cell phenotyping. This64

model, MAPS, predicts the cell class from a set of user-65

defined classes using the expression of a cell for N mark-66

ers, and its area in pixels (Fig. 1A). MAPS employs four67

fully connected hidden layers with ReLU activation function68

and dropout layers, followed by a classification layer with69

softmax function. MAPS accurately predicted the cell phe-70

notypes in healthy and diseased tissues, as exemplified by71

a MIBI dataset of canonical Hodgkin’s Lymphoma (cHL)72

[1669853 cells, 13 cell types] (Fig. 1B, Supp Fig. 1A).73

All ground truth annotation data was generated through tradi-74

tional iterative clustering and visual inspection, followed by75

final inspection by a board-certified pathologist (S.J.R.). All76

questionable clusters were subject to further clustering based77

on the key markers that were present, and difficult cell types,78
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Figure 1: Overview of MAPS architecture and its performance on cHL1 (MIBI) dataset across 5-folds cross validation. (A) Schematic of MAPS for machine learning
based cell phenotyping. MAPS takes a multiplex image as input and converts it into a cell expression matrix after preprocessing, which is then fed into a feedforward neural
network for cell type prediction from a predefined list of classes. (B) A representative FOV of a multiplexed image used for cell phenotyping. Cell phenotype maps generated
via manual annotation (Ground Truth) and MAPS (MAPS Prediction) are shown for visual comparison. (C) Confusion matrix of MAPS predictions. Numbers in parentheses
indicate the percentage of cells with respect to total cells in the corresponding row/class. (D) Average precision, recall, and F1-score of MAPS predictions across five folds.
Error bars represent ±1 standard deviation. (E) Average cell marker expression matrix for each cell type generated using ground truth labels (left) and MAPS prediction (right).

such as Reed–Sternberg tumor cells in cHL, were then sub-79

ject to manual inspection and further annotation as needed80

to generate the “ground truth” reference (Supp Fig. 1B, fur-81

ther expanded in Material & Methods). Next, we evaluated82

MAPS performance using the following metrics: confusion83

matrix, precision, recall, and F1-scores from a 5-fold vali-84

dation (Figs. 1C & D; see Material & Methods for more de-85

tails). The mean cell expression matrix of various phenotypic86

markers for each cell type in the ground truth and predictions87

had high concordance (Fig. 1E). MAPS demonstrated con-88

sistently high accuracy in predicting the cell type from spatial89

proteomics datasets.90

Benchmarking comparisons of MAPS against other91

methods and on other spatial proteomics data. We92

sought next to demonstrate real world practicality of MAPS,93

and its performance against other state-of-the-art approaches,94

ASTIR (7) and CellSighter (10). We collected and anno-95

tated in-house data from 1) MIBI on cHL using a first cohort96

(cHL 1; 1669853 cells), 2) MIBI on cHL using a second co-97
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hort (cHL 2; 192795 cells), and 3) CODEX on cHL (14516198

cells). MAPS, ASTIR and CellSighter were trained on the99

same ground truth data generated on the aforementioned100

dataset in the same manner (see Material & Methods), and the101

resulting phenotype maps visualized (Fig. 2A and Supp Fig.102

2A). The analysis of the F1 scores across all cell types indi-103

cated the consistently highest performance of MAPS across104

all datasets, followed by CellSighter and ASTIR (Fig. 2B,105

Supp Fig. 2B & C). Given the high performance of MAPS106

and CellSighter, we next computed precision-recall curves107

and average precision per class to gain further insights on the108

model differences (Supp Fig. 2D). MAPS consistently out-109

performed CellSighter on all three datasets for all cell types,110

with average precision per class ranging from 0.82 to 0.99111

for MAPS, and 0.39 to 0.93 for CellSighter. MAPS demon-112

strated consistent performance across all datasets, while Cell-113

Sighter performed better on cHL (CODEX) than the other114

two datasets (cHL 1 MIBI and cHL 2 MIBI). We postulated115

that this performance difference could be attributed to the dif-116

ferent data-splitting strategies. The cHL (CODEX) dataset,117

consisting of a large single tissue image from one patient, was118

split at the cell level, which can lead to bias and overfitting119

in the machine learning model. This is because adjacent cells120

in the same image may have been split between the training121

and validation sets, potentially leading to high overlap in the122

distribution of cells in training and validation sets. This can123

artificially result in higher performance in the validation set,124

which may not generalize well to new samples. In contrast,125

the other two datasets consist of multiple regions and patient126

cases, and were split at the case level, which prevents this is-127

sue of information leakage, thus resulting in a more realistic128

real-world performance. Details of these datasets are further129

elaborated in the Material & Methods.130

Given potential differences in optimal hyperparameter selec-131

tion between models outside this study’s scope, we further132

benchmark MAPS performance on the same public dataset133

from a colorectal cancer (CRC) study using CODEX (11).134

We used the reported CellSighter results from this same CRC135

CODEX data. Quantification of the average F1 score across136

all cell types showed the highest performance for MAPS137

across all datasets, followed by CellSighter and ASTIR, re-138

spectively (Fig. 2B). Detailed delineation of F1 score on each139

cell type showed the same trend in performance level (Supp140

Fig. 2B and 2C).141

MAPS is highly efficient in computational resource us-142

age. Given how neural network models can be resource in-143

tensive, we next quantified the level of computational re-144

source usage between MAPS and CellSighter. Here, we145

used the cHL (CODEX) dataset due to its relatively small146

size yet diverse number of cell type representations. We ob-147

served comparable total run time and GPU memory utiliza-148

tion between MAPS and ASTIR, with substantially higher149

values for CellSighter. Memory utilization was similar be-150

tween MAPS and CellSighter, with lower values for ASTIR151

(Fig. 2C). Our results highlight the well-balanced computa-152

tional efficiency and rapid performance of MAPS, relative to153

its top-in-class accuracy for cell type annotation.154

Discussion155

In this study, we introduced a new method, MAPS, for156

pathologist-level accuracy in cell annotation from spatial pro-157

teomics data. Our results demonstrate that MAPS outper-158

forms existing state-of-the-art methods in terms of both ac-159

curacy and computational efficiency while showing cross-160

platform compatibility (MIBI and CODEX). Specifically,161

MAPS achieved a significantly higher F1-score, precision,162

and recall compared to other methods, demonstrating its abil-163

ity to accurately predict cell types from spatial proteomics164

data.165

One of the key strengths of MAPS is its use of a feed-forward166

neural network architecture, which allows for the efficient167

processing of high-dimensional spatial proteomics data. Ad-168

ditionally, the use of ReLU activation functions introduces169

non-linearity, improving the ability of the model to capture170

complex relationships between the input features and the cell171

types. The inclusion of dropout layers during training also172

helps to prevent overfitting and improves generalization per-173

formance.174

Another important feature of MAPS is its ability to handle175

imbalanced datasets, a common feature of spatial proteomics176

data due to the unequal distribution of cell types within tis-177

sues. Our results show that MAPS outperforms other meth-178

ods in terms of average precision, a metric that is particularly179

useful for imbalanced datasets.180

In addition to its superior performance, MAPS is also compu-181

tationally efficient, with a training time that is orders of mag-182

nitude faster than existing supervised methods. This makes it183

a valuable tool for large-scale analysis of spatial proteomics184

data, where computational efficiency is crucial. We designed185

MAPS to be incorporated into current spatial proteomics186

workflows, where it can accelerate the confident annotation187

process from a smaller, curated “ground truth” dataset (Supp188

Fig. 1B).189

In conclusion, our results demonstrate that MAPS is a highly190

accurate and computationally efficient method for cell anno-191

tation from spatial proteomics data. Its superior performance192

and efficiency make it a valuable tool for the analysis of large-193

scale spatial proteomics datasets, with potential applications194

in a wide range of biological and biomedical research ar-195

eas. We additionally release the MAPS package on github196

(https://github.com/mahmoodlab/MAPS), along with all the197

data generated for this paper, including the spatial proteomics198

data generated here and associated ground truth annotations.199

We are confident such a resource can be leveraged upon by200

the community to accelerate future approach for cell type an-201

notation in tissue spatial-omics, and beyond.202

Materials & Methods203

Section 1: dataset acquisition.204

Human Tissue Acquisition and Patient Consent.205

Formalin-fixed paraffin-embedded (FFPE) excisional biop-206

sies from 23 patients with newly diagnosed cHL, and one207

reactive lymph node were retrieved from the archives of208
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Figure 2: Visual and quantitative comparison of MAPS performance with its counterparts. (A) Comparison of MAPS and CellSighter performances across four multiplex
image datasets. The last column indicates differences in cell predictions between these two methods. Row 1: Representative cHL FOV from a cHL patient cohort (cHL 1)
acquired via the MIBI. Row 2: Representative cHL FOV from another cHL patient cohort (cHL 2) acquired via the MIBI. Row 3: Representative cHL FOV from a separate
cHL tissue acquired via the CODEX. (B) Comparison of three cell phenotyping methods across four datasets using average F1-score across 5-folds. Error bars represent ±1
standard deviation. For the publicly available CRC (CODEX) dataset, the CellSighter results were taken from the original publication (10). ASTIR was not applied to the CRC
dataset. (C) Evaluation of computational resources required for each of the models tested on the cHL (CODEX) dataset. Left: Total runtime (including model training and cell
type inference). Middle: Median memory (RAM) usage, the y-axis here is on a log logarithmic scale. Right: Median GPU memory usage.

Brigham and Women’s Hospital (Boston, MA) with institu-209

tional review board approval (IRB# 2010P002736). All tu-210

mor regions were annotated by V.S. and S.J.R.211

Antibody Conjugation and Panel. Lanthanides conju-212

gated antibodies for MIBI were acquired as previously de-213

scribed (12) using the Maxpar X8 Multimetal Labeling Kit214

(Fluidigm, 201300) and Ionpath Conjugation Kits (Ionpath,215

600XXX) with slight modifications to manufacturer proto-216

cols. In short, 100 µg BSA-free antibody was first washed217

with the conjugation buffer, then reduced using 4 µ M (final218

concentration) of TCEP (Thermo Fisher Scientific, 77720)219

to reduce the thiol groups for 30 min in a 37 ◦C water220

bath. The reduced antibody was mixed and incubated with221

Lanthanide-loaded polymers for 90 min in a 37 ◦C water222

bath, then washed for 5 times with an Amicon Ultra filter223

(Millipore Sigma, UFC505096). Resulting conjugated anti-224

bodies were then buffered with at least 30% v/v Candor An-225

tibody Stabilizer (Thermo Fisher Scientific, NC0414486) in-226

cluding 0.02% w/v of sodium azide, and stored at 4 ◦C until227

usage.228

Oligo conjugation to antibodies for CODEX was performed229

as previously described (5). In short, 100 µg BSA-free anti-230

body was reduced using 2.5 mM of TCEP at RT for 30 min231

to reduce the thiol groups. Maleimide-labeled oligos are re-232

suspended in High-salt Buffer C (1 M NaCl) and incubated233

with the reduced antibodies at RT for 2 h. The resulting con-234

jugated antibodies are then washed for 3 times in high salt235

PBS (0.9 M NaCl) in a 50 kDa centrifugal column (Sigma,236

UFC505096), buffered with at least 30% v/v Candor Anti-237
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body Stabilizer (Thermo Fisher Scientific, NC0414486) sup-238

plemented with 0.02% w/v of sodium azide, and stored at 4◦.239

The antibody panels can be found in Supplementary Table240

1.241

Gold Slide Preparation. The protocol of preparing gold242

slides has been described previously (13–15). In short, Su-243

perfrost Plus glass slides (Thermo Fisher Scientific, 12-550-244

15) were first soaked and briefly supersonicated in a ddH2O245

diluted with dish detergent, cleaned by using Microfiber246

Cleaning Cloths (Care Touch, BD11945) then rinsed in flow-247

ing water to remove any remaining detergent. After that, the248

slides were air-dried with a constant stream of air in the fume249

hood. The coating of 30 nm of Tantalum followed by 100250

nm of Gold was performed by the Microfab Shop of Stan-251

ford Nano Shared Facility (SNSF) and New Wave Thin Films252

(Newark, CA).253

Coverslip and Slides Vectabonding. To introduce posi-254

tive charges for better adhesion of tissue sections onto the sur-255

face, pre-cleaned 22x22 mm glass coverslips (VWR, 48366-256

067) or the e-beam coated gold slides were silanized by257

VECTABOND Reagent (Vector Labs, SP-1800-7) per the258

protocol from the manufacturer. The slides were first soaked259

in neat acetone for 5 min, then transferred into 1:50 diluted260

VECTABOND Reagent in acetone and incubated for 10 min.261

After that, slides were quickly dipped in ddH2O to quench262

and remove remaining reagents, then tapped on Kimwipe to263

remove remaining water, the resulting slides were air-dried264

then stored at room temperature.265

MIBI Retrieval and Staining Protocol . The procedure of266

a general MIBI staining is similar to previously described267

(6, 13, 16). The FFPE block was sectioned onto Vectabond-268

treated gold slides by 5 µm thickness. The sections then269

went through a standard deparaffinization and antigen re-270

trieval process. In brief, slides with FFPE sections were first271

baked in an oven (VWR, 10055-006) for 1 hour at 70 ◦, then272

were transferred into neat xylene and incubated for 2x 10273

min. Standard deparaffinization was performed with a lin-274

ear stainer (Leica Biosystems, ST4020) in the following se-275

quence: 3x neat xylene, 3x 100% EtOH, 2x 95% EtOH, 1x276

80% EtOH, 1x 70% EtOH, 3x ddH2O, 180 s each step with277

constant dipping, then rest in ddH2O. Antigen retrieval was278

then performed at 97 ◦ for 10 min with Target Retrieval So-279

lution (Agilent, S236784-2) on a PT Module (Thermo Fisher280

Scientific, A80400012).281

After PT Module processing, the cassette with slides and so-282

lution was left on the benchtop until it reached room tem-283

perature. After a quick 1x PBS rinse for 5 min, the sections284

were blocked by BBDG (5% NDS, 0.05% sodium azide in 1x285

TBS IHC wash buffer with Tween 20), then stained at 4 ◦ in286

an antibody cocktail for overnight (Supplementary Table 1).287

Subsequently, the samples were quickly rinsed with 1x PBS,288

then fixed by the Post-fixation buffer (4% PFA + 2% GA in289

1x PBS buffer) for 10 min, then quenched with 100 mM Tris290

HCl pH 7.5, before undergoing a series of dehydration steps291

on the linear stainer (3x 100 mM Tris pH 7.5, 3x ddH2O, 1x292

70% EtOH, 1x 80% EtOH, 2x 95% EtOH, 3x 100% EtOH,293

60 s for each step), before store in a vacuum desiccator until294

acquisition.295

CODEX Retrieval and Staining Protocol . The procedure296

for CODEX staining is similar to previously described (17).297

A cHL FFPE section was mounted on a No.1 glass cover-298

slip pre-treated with VECTABOND Reagent (Vector labora-299

tories, SP-1800-7) as described above, and deparaffinized by300

heating at 70 ◦C for 1 hour, followed by two 15-min soaks in301

a xylene bath. The tissue was then manually rehydrated in 6-302

well plates by incubating in 2x 100% EtOH, 2x 95% EtOH,303

1x 80% EtOH, 1x 70% EtOH, and 3x ddH2O, for 3 min each304

with gentle rocking. Heat-induced antigen retrieval (HIER)305

was performed in a coverslip jar containing 1x Dako pH 9306

Antigen Retrieval Buffer (Agilent, S2375) while using a PT307

module filled with 1x PBS; the PT module was set to pre-308

warm to 75 ◦C, heat to 97 ◦C for 20 min, before cooling to309

65 ◦C. After HIER, the tissue was washed in CODEX hydra-310

tion buffer (Akoya Biosciences, 232105) 2x for 2 min and311

incubated in CODEX staining buffer (Akoya Biosciences,312

232106) for 20 min. The tissue was then transferred to a hu-313

midity chamber to block with 200 µL of BBDG while being314

photobleached with a custom LED array for 2 hours (see be-315

low), then stained at 4 ◦C in an antibody cocktail overnight.316

The blocking buffer was prepared by combining 180 µL of317

BBDG block, 10 µL of oligo block, and 10 µL of sheared318

salmon sperm DNA. The BBDG block was prepared by319

mixing 5% donkey serum, 0.1% Triton X-100, and 0.05%320

sodium azide in 1x TBS IHC Wash buffer with Tween 20321

(Cell Marque, 935B-09). The oligo block was prepared by322

mixing 57 different custom oligos (IDT) to create a master323

mix with a final concentration of 0.5 µM per oligo. The324

sheared salmon sperm DNA was used directly from its orig-325

inal 10 mg/ml stock (ThermoFisher, AM9680). To create a326

humidity chamber, an empty pipette tip box was filled with327

ddH2O and wet paper towels and then placed on top of a328

cool box (Corning, 432021) containing an ice block. Two329

happy lights (Best Buy, 6460231) were leaned against either330

side of the humidity chamber, and an LED grow light (Ama-331

zon, B07C68N7PC) was positioned above. Staining antibod-332

ies (Supplementary Table 1) were prepared while blocking.333

After overnight antibody staining, the tissue was washed 2x334

in CODEX staining buffer for 2 min each. Subsequently,335

it was fixed with 1.6% paraformaldehyde (PFA) with gentle336

rocking for 10 min; the PFA solution was made by diluting337

16% PFA with CODEX storage buffer (Akoya Biosciences,338

232107). The tissue was then washed 3x in 1x PBS, incu-339

bated in cold 100% methanol for 5 min on ice, and washed340

3x with 1x PBS again. All steps except the methanol incuba-341

tion were performed in 6 well plates with gentle rocking. The342

tissue was then fixed with CODEX final fixative for 20 min at343

RT in a humidity chamber; the final fixative was prepared by344

mixing 20 µL of CODEX final fixative (Akoya Biosciences,345

232112) in 1000 µ L of 1x PBS. Finally, the tissue was rinsed346

3x in 1x PBS and stored in 1x PBS at 4 ◦ until CODEX image347

acquisition.348
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MIBI-TOF Imaging. Datasets were acquired on a commer-349

cially available MIBIscopeT M System from Ionpath (Pro-350

duction) equipped with a Xenon ion source (Hyperion, Ore-351

gon Physics). The typical running parameters on instruments352

are listed as following:353

• Pixel dwell time: 2 ms354

• Pixel dwell time: 2 ms355

• Image area: 400 µm x 400 µm356

• Image size: 512 x 512 pixels357

• Probe size: 400 nm358

• Primary ion current: 4.9 nA on a builtin Faraday cup359

(or the “Fine” imaging mode)360

• Number of depths: 1 depth361

After acquisition, images were extracted with the toffy pack-362

age (toffy notebook 3b). Detailed pre-processing is men-363

tioned in the sections below.364

CODEX Imaging. A black flat bottom 96-well plate (Corn-365

ing, 07-200-762) was used for the reporter plate, where each366

well represented an imaging cycle. Each well was filled367

with 240 µL of plate master mix, containing DAPI nuclear368

stain (7000003, Akoya) (1:600) and CODEX assay reagent369

(Akoya Biosciences, 7000002) (0.5 mg/ml), as well as two370

fluorescent oligonucleotides (5 µL each) on the Cy3 and Cy5371

channels. Blank channels were also included in the first and372

last wells, with plate master mix substituted for fluorescent373

oligonucleotides. The plate was then sealed with aluminum374

film and stored at 4 ◦C until CODEX image acquisition.375

Prior to CODEX image acquisition, the tissue coverslip and376

reporter plate were placed into the CODEX microfluidics in-377

strument. The coverslip was stained with 750 µL nuclear378

stain solution for 3 min before being washed by the fluidics379

device; the nuclear stain solution was prepared by mixing 1380

µL of DAPI nuclear stain in 1500 µL of 1x CODEX buffer.381

CODEX imaging was operated under a 20x/0.75 objective382

(CFI Plan Apo λ, Nikon) mounted to an inverted fluorescence383

microscope (Keyence, BZ-X810) connected to the CODEX384

microfluidics instrument and CODEX driver software, and385

the DAPI stain was used to set up imaging areas and z planes.386

Each imaging cycle contained three channels - DAPI, Cy3,387

Cy5 - and images taken on the first and last cycles were388

used as blanks for background correction. Multiplexed im-389

ages were stitched and background corrected using the Singer390

software (v1.0.7) from Akoya.391

Section 2: Dataset Pre-processing.392

Channel Crosstalk Removal. Similar to fluorescence393

imaging, mass-spectrometry imaging such as MIBI also has394

channel crosstalk due to the formation of adducts (14) or iso-395

topic impurity of the elemental labels used. Thus, Rosetta396

algorithm was applied to extracted raw images to remove397

noise from channel crosstalk in a manner similar to flow-398

cytometry data (toffy notebook 4a). In addition to that, as399

background signals from bare slides and organic fragments400

can be partially reflected by gold and “Noodle” background401

channels, those counts were also removed with a fine-tuned402

coefficient matrix along with channel crosstalk. This step was403

performed with a local implementation of toffy package with404

minor modification.405

Image Denoising. Image noise in multiplex images is a406

well-known issue caused by various factors such as in-407

strumentation, tissue quality, and non-specific binding of408

antibodies. To tackle this challenge, a deep learning-409

based method is proposed that poses image denoising as a410

background-foreground segmentation problem. In this ap-411

proach, the real signal is considered as foreground, while the412

noise is considered as background. The proposed method413

uses a supervised deep learning-based segmentation model,414

UNET (18), to segment the foreground from the given image.415

To train the model, ground truth is generated using a semi-416

supervised kNN-based clustering method (19). The kNN-417

based clustering method helps to generate reliable ground418

truth for the model training. Once the model is trained, it is419

applied to all markers in all images to obtain predicted fore-420

ground segmentation maps. These segmentation maps are421

then multiplied with the original images to get rid of noise422

and obtain clean images.423

Cell segmentation. Cell segmentation of the MIBI cHL424

datasets was performed with a local implementation of425

deepcell-tf 0.6.0 as described (3, 20). Histone H3 channel426

was used for the nucleus, while the summation of HLA-DR,427

HLA1, Na-K-ATPase, CD45RA, CD11c, CD3, CD20, and428

CD68 was used as the membrane feature. Signals from these429

channels were first capped at the 99.7th percentile before in-430

put into the model.431

Cell segmentation of the CODEX cHL dataset was performed432

using a local implementation of deepcell-tf 0.12.2. Seg-433

mentation was done using DAPI as the nuclear channel and434

a summation of CD4, CD7, CD15, CD30, CD11b, CD20,435

CD45RA, CD45RO, CD31, Podoplanin, and HLA-DR as the436

membrane features to ensure ideal segmentation of all cell437

types in the singular field of view.438

The deepcell-tf version used to generate the final segmenta-439

tion mask, along with the detailed parameters for cell seg-440

mentation are summarized in Supplementary Table 2.441

Image Intensity Normalization. Due to instrumental limi-442

tation, the FOV that MIBI routinely acquired is only 400x400443

µm size, stitching to achieve large tissue acquisition, and444

thus the across FOV difference is unavoidable. To compen-445

sate for the inter FOV difference, a set of scripts were devel-446

oped and integrated into the data processing pipeline. Briefly,447

in a stitched run, the average Histone H3 counts under cell448

segmentation masks of each FOV were calculated, then, all449

FOVs Histone H3 counts were normalized towards the high-450

est counts, while other channels were multiplied by the same451

coefficient. Additional flattening based on the Histone H3452

counts were also used to avoid boundary effects and image453

biases. The code and parameters used are available in the454

analysis pipeline section.455
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Image to Cell Expression Matrix and across-runs nor-456

malization. The counts of each channel inside each cell seg-457

mented mask were summed up and then divided by the cell458

size to create the cell expression matrix based on normalized459

stitched TIFs along with their segmentation mask. To avoid460

the across-runs derivation, the median value of per cell His-461

tone H3 of each run was calculated, then all runs medians of462

Histone H3, along with all other channels counts were nor-463

malized towards the highest Histone H3 median value of that464

MIBI dataset. The code and parameters used are available in465

the analysis pipeline section.466

Generation of Cell Phenotyping Ground Truth. Cell467

phenotyping on the cHL MIBI datasets was accomplished468

through an iterative clustering and annotating process. The469

clustering was performed with FlowSOM (21) on the cHL470

1 dataset and Leiden (22) on the cHL 2 dataset. The cHL471

1 dataset was initially clustered with CD11c, CD14, CD15,472

CD153, CD16, CD163, CD20, CD3, CD30, CD4, CD56,473

CD57, CD68, CD8, FoxP3, GATA3, Granzyme B, and Pax-5474

to capture most of the cell types present in the data. The re-475

sulting clusters were then manually annotated by examining476

the predominantly enriched markers of each cluster, which477

was done by plotting Z-score and mean expression heatmaps478

across all clusters and the phenotypic markers used. Clus-479

ters with a clear enrichment pattern were annotated. Next,480

with Mantis Viewer (23), the assigned annotation was con-481

firmed by mapping the annotation to each cell and overlaying482

the raw images of the enriched markers for visual inspec-483

tion. Due to noise in the data, there were certain clusters with484

unclear enrichment patterns. These clusters were assessed485

based on the phenotype marker enrichment patterns and sub-486

jected to further clustering and visual inspection. This inter-487

active process was repeated until no useful information could488

be further extracted, and the remaining cells with no clear en-489

richment pattern were assigned as "Others". For the cHL 1490

dataset, 1538433 out of 1669853 cells (92.2%) were assigned491

a final annotation.492

Cell phenotyping on the cHL CODEX dataset was performed493

through an iterative process using Rphenoannoy (R imple-494

mentation of PhenoGraph) and FlowSOM (21, 22) to cluster495

on CD30, CD20, CD2, CD7, CD8, CD57, CD4, Granzyme496

B, CD56, FoxP3, CD11c, CD16, CD206, CD163, CD68,497

CD15, CD11b, Cytokeratin, Podoplanin, CD31, MCT, and498

a-SMA. The resulting stratified cell clusters and correspond-499

ing enriched phenotypic markers were then visualized with500

Z-score and mean expression heatmaps. Cells were then indi-501

vidually mapped back to the original tissue images in QuPath502

0.2.0-m1 to validate marker enrichment. Clusters with clear503

enrichment patterns for a particular cell type were annotated504

accordingly. Clusters with unclear or partially correct enrich-505

ment patterns were further clustered using FlowSOM based506

on a curated subset of phenotypic markers present on these507

unclear populations. Multiple iterations of clustering and508

annotation were performed until signal-noise ratio was too509

low to confidently distinguish the phenotype of the remain-510

ing cells, which were assigned as “Others”. 140,053 out of511

145,161 cells (96.5%) were assigned a final annotation.512

All final annotations were assessed by S.J. and S.J.R (a board513

certified hematopathologist).514

Section 3: Datasets Overview.515

516

Our study utilized four different datasets for cell phenotyping517

in Classical Hodgkin’s lymphoma and CRC. The cHL 1 and518

cHL 2 datasets were acquired using Multiplexed Ion Beam519

Imaging (MIBI) and contained cells from 13 and 12 differ-520

ent phenotypes, respectively. The cHL CODEX and CRC521

CODEX datasets were acquired using Co-detection by Index-522

ing (CODEX) and contained cells from 16 and 14 different523

phenotypes, respectively. The datasets had varying numbers524

of cells, protein/functional markers, and levels of class imbal-525

ance, and were split into five-folds for cross-validation with526

the mentioned method.527

cHL 1 and cHL 2 (MIBI) Dataset. The cHL 1 and cHL528

2 (MIBI) Datasets are two in-house datasets used in our529

study for cell phenotyping in cHL. Both sets of sam-530

ples were stained with the same batch of antibody cock-531

tail (Supplementary Table 1) with 46 protein/functional532

markers, and acquired using Multiplexed Ion Beam Imaging533

(MIBI). cHL 1 Dataset contains 1,669,853 cells from 18 cHL534

patients and 1 control rLN, while cHL 2 Dataset has over535

230,000 cells from six FOVs - five from cHL patients and536

one from a control rLN. When training the proposed method,537

5 markers from the cHL 1 dataset were dropped due to poor538

staining quality, while all 46 markers remained in the training539

set of cHL 2. To evaluate the performance of our proposed540

method, both datasets were split into 5 folds for multi-fold541

training and validation of the proposed method, and under542

both cases, the FOVs of the control cases were part of the543

training set in each fold.544

cHL (CODEX) Dataset. The cHL (CODEX) dataset is an-545

other in-house dataset that was acquired using Co-Detection546

by Indexing (CODEX), a multiplex imaging technique that547

allows for simultaneous detection of over 50 markers. The548

dataset consists of a single large FOV containing over549

143,000 cells. The cells in the cHL (CODEX) dataset are550

classified into 16 different cell phenotypes, and each class551

has an average of 8000+ cells. The multiplex FOV in this552

dataset consists of 49 markers, which include different mark-553

ers than those used in the cHL 1 (MIBI) and cHL 2 (MIBI)554

datasets (see Supplementary Table 1 for more details). To555

evaluate the performance of MAPS, we randomly split the556

cells in the cHL (CODEX) dataset into five folds using strat-557

ified sampling to ensure a balanced number of cells in each558

fold for each class.559

CRC CODEX Dataset. The CRC CODEX dataset (DOI:560

10.17632/mpjzbtfgfr.1) is a public dataset that we used in our561

study to evaluate our proposed method for cell phenotyping562

(11). It consists of more than 200,000 cells from 14 different563

classes, with a large variation in the number of cells per class,564

ranging from as low as 323 cells to as high as >47,000 cells.565
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For our study, we used the same markers and classes as de-566

scribed in the CellSighter paper to ensure a fair head-to-head567

comparison with MAPS. As there was no information avail-568

able about the training and validation split in the dataset, we569

adopted the same five-fold cross-validation approach that we570

used for the above datasets in our study.571

Section 4: MAPS model, training and evaluation.572

Model architecture. The proposed cell phenotyping method573

used a feed-forward neural network to predict the cell class574

from a set of predefined classes (K). Let x ∈ RN+1 be the575

input data, which consists of the expression of a cell for N576

markers and its area in pixels. The neural network processes577

this input data to generate a predicted cell class y. The neural578

network used in the proposed method consists of four fully579

connected hidden layers, denoted by h1, h2, h3, and h4. Each580

hidden layer is followed by a ReLU activation function and a581

dropout layer, denoted by g1, g2, g3, and g4. The output of582

the last hidden layer, h4, is fed into the classification layer,583

which generates the predicted cell class y. The classification584

layer uses a softmax function to convert the output of the neu-585

ral network into a probability distribution over the predefined586

classes. Let Wi and bi denote the weights and biases of the587

ith layer of the neural network, respectively. Then the output588

hi of the ith hidden layer can be written as:589

hi = gi(Wihi−1 + bi)

where hi−1 ∈ R512 is the output of the (i−1)th hidden layer590

or the input x for i = 1, and gi is the activation function for591

the ith layer, which is the ReLU function in this case. The592

dropout layers are not included in this equation, as they only593

modify the output of the hidden layers during training, and do594

not affect the final output of the neural network. The classifi-595

cation layer computes the predicted cell class y as follows:596

y = argmax
k

softmax(Wch4 + bc)k

where Wc and bc are the weights and biases of the classifica-597

tion layer, and softmax is the softmax function that converts598

the kth output into a probability distribution over the prede-599

fined classes (K). The predicted cell class y is the class with600

the highest probability.601

Training details. For the training of the proposed method,602

the Adam optimizer with a learning rate of 0.001, batch size603

of 128 and a dropout probability of 0.10 was used for all604

datasets. The number of training epochs varied for each605

dataset due to the varying sizes of the datasets. The larger606

datasets, such as cHL 1 (MIBI) dataset, have more opti-607

mization steps in each epoch as compared to the smaller608

datasets. Specifically, the model was trained for 100 epochs609

on the cHL 1 (MIBI) dataset, and for 500 epochs on all610

other datasets. During training, if the validation loss did not611

decrease for a certain number of epochs, the training was612

stopped to save time and the model with lowest validation613

loss was selected as the best model for inference.614

Section 5: Evaluation Across Methods.615

616

To evaluate the performance of the proposed method,617

we employed several evaluation methods. Firstly, we used618

the confusion matrix to visualize the performance of the619

model. The confusion matrix displays the number of true620

positive, false positive, true negative, and false negative621

predictions made by the model. From the confusion matrix,622

we calculated the precision, recall, and F1-score metrics.623

Precision measures the proportion of true positive predic-624

tions made by the model out of all the positive predictions625

made, while recall measures the proportion of true positive626

predictions made out of all the actual positive instances in627

the dataset. The F1-score is the harmonic mean of precision628

and recall and is a balanced measure of both metrics.629

Additionally, we used the average precision metric, which630

measures the area under the precision-recall curve. This met-631

ric is particularly useful for imbalanced datasets, where there632

are more negative instances than positive ones. The average633

precision metric takes into account the precision and recall634

values at various thresholds and provides a summary of the635

model’s overall performance.636

Finally, we also used the mean cell expression matrix to visu-637

alize the expression levels of different markers in the differ-638

ent cell types predicted by the model. This matrix provides639

a summary of the mean expression levels of each marker in640

each cell type and can help to identify differences in marker641

expression between different cell types when compared with642

the cell expression matrix generated using ground truth la-643

bels.644

Comparisons With Other Methods. We compared our645

proposed method with two existing cell phenotyping meth-646

ods, namely ASTIR and CellSighter. The code for both647

ASTIR and CellSighter methods is publicly available for re-648

producibility and comparison purposes.649

ASTIR. ASTIR is a probabilistic model for cell phenotyp-650

ing that uses deep recognition neural networks to predict651

cell types without requiring labels for each cell (7). Instead,652

ASTIR only requires a list of protein markers for each ex-653

pected cell type within a dataset. The method is based on654

the assumption that each cell type can be characterized by655

a unique combination of protein markers, and that the ex-656

pression levels of these markers can be used to classify cells657

into their respective types. We reported results of the ASTIR658

method on three in-house datasets. For each dataset, our ex-659

perts defined the list of protein markers for each cell type.660

We evaluated the results using five-fold cross-validation, us-661

ing exactly the same folds as in the proposed method, for a662

fair head-to-head comparison.663

CellSighter. The CellSighter is a deep learning based super-664

vised cell classification method (10). Unlike ASTIR and the665

proposed method which works on cell expression matrices,666

CellSighter takes image, cell segmentation mask, and cell to667

class mapping as input. To evaluate the performance of Cell-668

Sighter, we re-trained it on the same three in-house datasets669
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using the same 5-fold cross validation splits as in the pro-670

posed method. This ensures a fair comparison between the671

methods. We obtained the CellSighter results on the publicly672

available CRC CODEX dataset from the paper to avoid any673

re-training bias while comparing it with the MAPS results on674

the same dataset.675

Computation Resource Evaluation across Methods. To676

evaluate the computation resource usage of each method,677

we ran the three methods on a Linux platform (2x Intel678

Xeon 6334 ‘Ice Lake-SP’ 3.6 GHz 8-core 10nm CPUs; 4x679

NVIDIA “Ampere” RTX A5000 PCI-E+NVLink 24GB ECC680

GPU Accelerator / Graphics Cards; 1TB DDR4 memory @681

3200MHz) using the cHL (CODEX) dataset. During model682

training and cell type inference of each method, we tracked683

their CPU, GPU, and memory (RAM) usage using “top”, “ps684

-ef”, and “nvidia-smi” commands. For the parallel methods,685

we recorded the resource usage of all its processes and mul-686

tiplied it by the number of cores used in parallel.687

Data Visualization. Single channel and multi-color images688

were assembled and visually inspected with either ImageJ689

(24), Qupath (25), and Mantis Viewer (23). Visualizations690

of the analysis results were either produced using Excel, or R691

packages ‘ggplot2’ and ‘pheatmap’.692

Data & Code Availability. All the data described in this693

work, including channel images and segmentation will be694

publiclly available on Mendeley Data upon publication. The695

code for anchoring analysis and data visualization can be696

downloaded at https://github.com/mahmoodlab/MAPS.697
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Figure S1: Performance of MAPS on rLN and scheme of the MAPS workflow, related to Figure 1. (A) Representative FOV of a multiplexed image of rLN used for cell
phenotyping. Cell phenotype maps generated via manual annotation (Ground Truth) or MAPS (MAPS Prediction) are shown for visual comparison. (B) Schematic of the
workflow for spatial proteomics cell phenotyping accelerated by MAPS.
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Figure S2: Visual and quantitative comparison of MAPS performance with its counterparts, related to Figure 2. (A) Comparison of ground truth and Astir performances
across four multiplex image datasets. (B) Performance comparison at class level F1-score of three cell phenotyping methods across all four datasets with average F1-score
across 5-folds. Error bars represent ±1 standard deviation.
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Figure S2 continued: Visual and quantitative comparison of MAPS performance with its counterparts, related to Figure 2. (C) Confusion matrix of MAPS prediction
along with CellSighter and Astir on three dataset similar to Figure 1C. Numbers in parentheses indicate the percentage of cells that are correctly predicted by the correspond-
ing method.
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Figure S2 continued: Visual and quantitative comparison of MAPS performance with its counterparts, related to Figure 2. (D) Precision and recall curves of MAPS
and CellSighter based on the prediction for each dataset. Each plot presents not only the overall precision and recall curve of the model but also the curves for each cell type.
Each curve shows the precision and recall trade-off for different thresholds.

14 | bioRχiv Shaban, Bai & Qiu et al. | MAPS

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.25.546474doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.25.546474
http://creativecommons.org/licenses/by-nc-nd/4.0/

