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Abstract. Characterizations are obtained for Schur (Hadamard) multiplicative maps on com-
plex matrices preserving the spectral radius, numerical radius, or spectral norm. Similar results are
obtained for maps under weaker assumptions. Furthermore, a characterization is given for maps f
satisfying ‖A ◦ B‖ = ‖f(A) ◦ f(B)‖ for all matrices A and B.
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1. Introduction. LetMm,n be the set ofm×n complex matrices, and letMn =
Mn,n. There has been a great deal of interest in studying maps f : Mm,n → Mm,n

preserving a given function Φ on Mm,n, i.e.,

Φ(f(A)) = Φ(A) for all A ∈Mm,n.(1.1)

Early research on the topic focused mainly on linear maps f ; see [14] and its refer-
ences. Recently, researchers have also considered additive maps, multiplicative maps,
differentiable maps; see [18] and its references.

The Schur product (also known as the Hadamard product or the entrywise product)
of two matrices A = [aij ], B = [bij ] is defined by A ◦B = [aijbij ]. The study of Schur
product is related to many pure and applied areas; see [10]. A map f :Mm,n →Mm,n

is Schur multiplicative if

f(A ◦B) = f(A) ◦ f(B) for all A,B ∈Mm,n.

The structure of Schur multiplicative maps f : Mm,n → Mm,n can be quite com-
plicated. Nevertheless, if one imposes some mild additional assumptions on f , say,
f−1[{0m,n}] = {0m,n}, then (e.g., see [4]) f will satisfy the following condition.

(†) There is a map P : Mm,n → Mm,n such that P(A) is obtained from A by
permuting its entries in a fixed pattern, and a family of maps fij : C → C

such that

f([aij ]) = P ([fij(aij)]) .(1.2)
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The purpose of this paper is to study Schur multiplicative maps on complex matri-
ces which preserve the spectral radius, the numerical radius, or the spectral norm; see
the definitions below. It is worth pointing out that preservers of the spectral radius,
numerical radius, and the spectral norm have been studied under other assumptions
by researchers; see [1, 2, 3, 5, 6, 7, 8, 9, 13, 15, 16, 17, 19]. Even though the Schur
product is very different from the other algebraic operations on matrix spaces such as
linear combination and the usual product, the preservers are always real linear maps
as shown in the following discussion.

To describe our results, we introduce some notations and definitions. For A ∈
Mm,n, let

‖A‖ = max{(x∗A∗Ax)1/2 : x ∈ C
n, x∗x = 1}

be the spectral norm of A; if m = n let

w(A) = max{|x∗Ax| : x ∈ C
n, x∗x = 1} and r(A) = max{|λ| : det(A− λI) = 0}

be the numerical radius and spectral radius of A, respectively.
We prove that a Schur multiplicative map satisfies ‖A‖ = ‖f(A)‖ for all A ∈Mm,n

if and only if there are permutation matrices P ∈Mm and Q ∈Mn such that one of
the following holds.

(a) f has the form A �→ PAQ or A �→ PAQ.

(b) m = n and f has one of the forms A �→ PAtQ or A �→ PA∗Q.

We obtain a similar result under the weaker assumption that f has the form (†).
Moreover, we get similar characterizations for maps f :Mn →Mn satisfying w(A) =
w(f(A)) for all A ∈ Mn, or r(A) = r(f(A)) for all A ∈ Mn. Furthermore, we study
maps f such that Φ(f(A) ◦ f(B)) = Φ(A ◦ B) for Φ(A) = r(A), w(A) or ‖A‖. In
[15], a characterization was given for maps f : Mn → Mn satisfying w(A ◦ B) =
w(f(A) ◦ f(B)) for all A,B ∈ Mn. We characterize f : Mm,n → Mm,n such that
‖A ◦B‖ = ‖f(A) ◦ f(B)‖ for all A,B ∈ Mm,n. It is shown that maps f : Mn → Mn

satisfying r(A ◦B) = r(f(A) ◦ f(B)) for all A,B ∈Mn do not have nice structure.
In our discussion, let Jm,n denote the m × n matrix with all entries equal to

1, and let 0m,n be the m × n matrix with all entries equal to 0. Denote by B =
{E11, E12, . . . , Emn} the standard basis for Mm,n. When m = n, we use the notation
Jn, 0n, etc. A square matrix is a monomial matrix if it is a product of a permutation
matrix and a diagonal matrix.

2. Schur multiplicative preservers.

2.1. Spectral radius preservers.
Theorem 2.1. Let r(A) be the spectral radius of A ∈Mn. Suppose f :Mn →Mn

satisfies (†) with fij(0) = 0. Then r(f(A)) = r(A) for all A ∈Mn if and only if there
is a complex unit γ and an invertible monomial matrix Q such that f has one of the
following forms:

A �→ γQ−1AQ, A �→ γQ−1AtQ, A �→ γQ−1AQ, A �→ γQ−1A∗Q.(2.1)
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Proof. The sufficiency part is clear. We consider the necessity part. Since fij(0) =
0 for all (i, j) pairs, f(Ejj) has only one nonzero entry. As r(f(Ejj)) = r(Ejj) = 1,
we may assume that f(Ejj) = fjj(1)Esj ,sj for some permutation (s1, . . . , sn) of
(1, . . . , n). We may replace f by a map of the form A �→ Qtf(A)Q for a suitable
permutation matrix Q and assume that f(Ejj) = fjj(1)Ejj for j = 1, . . . , n. Evi-
dently,

|fjj(1)| = 1 for j = 1, . . . , n.(2.2)

We may replace f by the map A �→ f(A)/f11(1) and assume that f(E11) = 1. Now
for X = E11+E12−E21−E22 we have r(f(X)) = r(X) = 0. Note that f(X) = E11+
f12(1)Epq+f22(−1)E22+f21(−1)Euv. It is easy to check that r(f(X)) = 0 if and only
if f22(−1) = −1 and f(E12−E21) = µE12−µ−1E21 for some nonzero µ ∈ C. Similarly,
we can show that for each j > 1, fjj(−1) = −1 and f(E1j − Ej1) = µjE1j − µ−1

j Ej1
for some nonzero µj ∈ C for j = 2, . . . , n. Let D = diag (1, µ2, . . . , µn). We may
replace f by the map A �→ Df(A)D−1, and assume that f(E1j − Ej1) = E1j − Ej1
for all j = 1, . . . , n. So for each j > 1 we have two possibilities

(i) f(E1j) = E1j , f(−Ej1) = −Ej1, or (ii) f(E1j) = −Ej1, f(−Ej1) = E1j .(2.3)

Suppose j > 1. For any a ∈ C, we have r(f(E1j + aEj1)) = r(E1j + aEj1) = |a|1/2.
Similarly, r(f(aE1j − Ej1)) = r(aE1j − Ej1) = |a|1/2. Thus,

|f1j(a)| = |fj1(a)| = |a| for j = 2, . . . , n.(2.4)

Together with (2.2) and (2.3), we have f(X) = E11 + aE1j + bEj1 + cEjj , where
X = E11 + E1j + Ej1 + Ejj and 1 = |a| = |b| = |c| with either a = 1 or b = −1.
Furthermore, since r(f(X)) = r(X) = 2, which is the Frobenius norm of f(X), it
follows that f(X) is a rank one normal matrix with trace equal to 2. Hence, we have

fjj(1) = 1, f(E1j + Ej1) = aj(E1j + Ej1) for j = 2, . . . , n,(2.5)

where aj are real units. We may assume aj = 1 for all j; otherwise, replace f with
the map A→ Df(A)D, where D is the diagonal matrix with Djj = aj . We may also
assume f(E12) = E12 by replacing f with A→ f(A)t if needed.

Now, we show that

f(E1j) = E1j for j = 3, . . . , n.(2.6)

By the fact that f(±Ejj) = ±Ejj for j = 2, . . . , n, and r(f(E22+E2j−Ej2−Ejj)) =
r(E22 + E2j − Ej2 − Ejj) = 0, we have f(E2j − Ej2) = µE2j − Ej2/µ for some
nonzero µ ∈ C. By (2.5), f(E1j) = E1j or f(E1j) = Ej1. If the latter holds, then for
Y = E12 + E1j + E22 + E2j − Ej2 − Ejj ,

r(Y ) = 0 �= |µ|1/3 = r(E12 + E22 + µE2j + Ej1 − Ej2/µ− Ejj) = r(f(Y )),
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which is a contradiction. Thus, (2.6) and (2.3i) hold (and so f(±Ej1) = ±Ej1 too).
Since 0 = r(X) = r(f(X)) for X = −E11 − E1j + Ej1 + Ejj , we see that f(−E11) =
−E11 and f(−E1j) = −E1j .

Next, we prove that if j �= k, then for any a ∈ C, f(aEjk) = bEjk with b ∈ {a, ā}.
Note that |a|1/3 = r(f(X)) = r(X) for X = E1j + aEjk + Ek1 (with j, k �= 1). So,
the first part of the assertion follows, i.e. f(aEjk) = bEjk with |b| = |a|. Now for
Y = E11 + E1j + E1k + Ej1 + Ejj + Ejk + Ek1 + Ekj + Ekk, r(f(Y )) = r(Y ) = 3
is the Frobenius norm of Y . So, f(Y ) is a rank one normal matrix. It follows that
f(Ejk) = Ejk and f(Ekj) = Ekj . Applying a similar argument to 3 = r(Z) =
r(f(Z)) for Z = E11 + E1j − E1k + Ej1 + Ejj − Ejk − Ek1 − Ekj + Ekk, we see
that f(−Ejk) = −Ejk and f(−Ekj) = −Ekj . For any complex a, since r(X) =
|1−a|1/2 = r(f(X)) and r(Y ) = |1+a|1/2 = r(f(Y )) for X = Ejj+aEjk−Ekj−Ekk
and Y = Ejj + aEjk + Ekj − Ekk, we conclude that fjk(a) = a or fjk(a) = ā.

Next, we show that fkj(a−1) = fjk(a)−1 for any nonzero a ∈ C. To see this, let
X = Ejj+Ekk+aEjk+a−1Ekj with r(X) = 2. Then f(X) = Ejj+Ekk+bEjk+cEkj
with |b| = |a| and |c| = |a|−1. Then f(X) has characteristic polynomial of the form
λ2 −2λ+(1− bc) so that r(f(X)) = max{|1±√

bc|}. Thus, r(f(X)) = 2 implies that
bc = 1.

We may assume that f12(i) = i. Otherwise, we may replace f by the map
A �→ f(A). It then follows that f21(−i) = −i by the argument in the preceding
paragraph. Consider now the matrix X = E11 − iE21 + E22 + aE12. We see that
f(X) = E11 − iE21+E22+ aE12 or E11 − iE21+E22+ āE12. However, if f12(a) = ā,
then r(f(X)) �= r(X). Therefore, f12(a) = a, and by the assertion in the preceding
paragraph, we have f21(a)−1 = a−1, i.e., f21(a) = a. Consider Y = aE11 + aE12 −
aE21 − aE22, with r(Y ) = 0, and note that f(Y ) = f11(a)E11 + aE12 − aE21 +
f22(−a)E22, also with r(f(Y )) = 0. So f11(a) + f22(−a) = 0 and f11(a)f22(−a) =
−a2. This gives (f11(a), f22(−a)) = ±(a,−a). Suppose f11(a) = −a. Consider
Zb = aE11+bE12+E21+E22. Then Zb has eigenvalues

{
(1 + a)± √

(1 − a)2 + 4b
}
/2

and f(Zb) has eigenvalues
{
(1 − a)± √

(1 + a)2 + 4b
}
/2. If |1 + a| > |1 − a|, let

b = −(1 + a)2/4 so that r(f(Zb)) = |1− a|/2 < r(Zb). If |1 + a| ≤ |1 − a| and a �= 0,
let b = −(1 − a)2/4 so that r(f(Zb)) > |1 + a|/2 = r(Zb). Therefore we must have
f11(a) = f22(a) = a.

We now consider indices of the form (1, j). Recall that fij(a) = a or ā; we can
see that f1j(i) = i, otherwise r(Y ) �= r(f(Y )) for the matrix Y = (1 + 2eiπ/4)E11 +
iE1j +Ej1+Ejj . Now, we can use the previous arguments to conclude that f1j(a) =
fj1(a) = a = fjj(a). Similarly, we can then prove that for arbitrary k, we have
fjk(a) = a for all a ∈ C.

Corollary 2.2. Suppose f : Mn → Mn satisfies (†). The following conditions
are equivalent.

(a) f(A) and A always have the same spectrum.
(b) f(A) and A always have the same eigenvalues counting multiplicities.
(c) f has one of the first two forms in (2.1) with γ = 1 and Q being an invertible

monomial matrix.
Next, we consider Schur multiplicative maps.
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Theorem 2.3. Suppose n ≥ 3 and f : Mn → Mn is Schur multiplicative. Then
r(f(A)) = r(A) for all A ∈ Mn if and only if f has one of the forms in (2.1) with
γ = 1 and Q being a permutation matrix.

Proof. The sufficiency part is clear. Consider the necessity part. We begin by
showing that the hypotheses imply f(0n) = 0n and f(B) = B, where B = {Eij : 1 ≤
i, j ≤ n}.

Note that if A◦A = A then f(A)◦f(A) = f(A), so 0-1 matrices are mapped into
0-1 matrices.

Let S = S1 ∪ S2 with

S1 = {Jn − Ejj : 1 ≤ j ≤ n} and S2 = {Jn − Epq : p �= q}.
If A ∈ S1 then A is unitarily similar to A1 = Jn − E11. If A ∈ S2 then A is

unitarily similar to A2 = Jn−E12. Recall that the k× k Fourier matrix Fk has (r, s)
entry equal to ei2π(r−1)(s−1)/k/

√
k for 1 ≤ r, s ≤ k. Let U = [1]⊕ Fn−1. Then

U∗A1U =
[

0
√
n− 1√

n− 1 n− 1

]
⊕ 0n−2

and

U∗A2U =
[

1
√
n− 1√

n− 1 n− 1

]
⊕ 0n−2 − U∗E12U

so that U∗A2U is unitarily similar to
 1 (n− 2)/

√
(n− 1)

√
(n− 2)/(n− 1)√

n− 1 n− 1 0
0 0 0


 ⊕ 0n−3.

Thus,

r1 = r(A1) =
n− 1
2

+
√
n2 + 2n− 3

2
and r2 = r(A2) =

n

2
+

√
n2 − 4
2

.

Now, we claim that all other A ∈ Mn satisfying A ◦ A = A with at least two zeros
will satisfy

r(A) < r2 < r1.

Suppose A ◦A = A with at least two zeros. We consider two cases.
Case 1. If A has a zero on the off-diagonal position, then by Theorem 8.4.5 in

[11], we see that r(A) < r(A2) < r(A1).
Case 2. Suppose A has two or more zeros on the diagonal positions. It suffices

to show that r(A3) < r2 for A3 = Jn − E11 − E22. To this end, let V = F2 ⊕ Fn−2.
Then

V ∗A3V =


 1 0

√
2(n− 2)

0 −1 0√
2(n− 2) 0 n− 2


 ⊕ 0n−3.
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Thus,

r(A3) =
n− 1
2

+
√
n2 + 2n− 7

2
< r2 < r1.

Note that the inequality above holds if and only if n ≥ 3. Since r(f(A)) = r(A)
for all A, we see that f(S) ⊆ S. Moreover, for any two X �= Y in S, we see that
f(X) �= f(Y ). Otherwise, r(f(X ◦ Y )) ≥ r2 > r(X ◦ Y ). So, f(S) = S.

Let Xij = Jn − Eij . Since f(S) = S, we have f(Xij) = Xp(i,j) for some permu-
tation p of {(i, j) : 1 ≤ i, j ≤ n}. Then

f(0n) = f(X11 ◦X12 ◦ · · · ◦Xnn) = f(X11) ◦ f(X12) ◦ · · · ◦ f(Xnn)
= Xp(1,1) ◦Xp(1,2) ◦ · · · ◦Xp(n,n) = 0n.

Similarly, for Eij , we have

f(Eij) = f


 ∏

(a,b) �=(i,j)

Xab


 =

∏
(a,b) �=(i,j)

Xp(a,b) = Ep(i,j),

where the product intended is the Schur product. Thus, we conclude that f(B) = B.
Now, for each (i, j) pair and for each a ∈ C,

f(aEij) = f(aEij ◦ Eij) = f(aEij) ◦ f(Eij) = bf(Eij)

for a certain b ∈ C. Define fij(a) = b using this relation. If A = (aij) and f(A) =
B = (bij), we see that

bijf(Eij) = B ◦ f(Eij) = f(A ◦ Eij) = f(aijEij).

Thus, bij = fij(aij). Hence, f has the form (†). We may apply Theorem 2.1 to
conclude that f has the asserted form. The assertion on Q is easy to verify in view
of the fact that f(B) = B.

Corollary 2.4. Suppose n ≥ 3 and f :Mn →Mn is Schur multiplicative. Then
the following are equivalent.

(a) f(A) and A always have the same spectrum.
(b) f(A) and A always have the same eigenvalues counting multiplicities.
(c) f has one of the first two forms in (2.1) with γ = 1 and Q being a permutation

matrix.
Note that Theorem 2.3 and Corollary 2.4 are not valid if n = 2. For example,

define f : M2 → M2 by f(A) = diag (a11, a22) if A = (aij) such that a21 = 0, and
f(A) = A otherwise. Then f(A) and A always have the same eigenvalues, but f is not
of any of the forms in (2.1). Actually, it is not hard to show that a Schur multiplicative
map f :M2 →M2 preserves the spectral radius or spectrum if and only if f(aE11 +
bE22) = aEjj+bEkk with {1, 2} = {j, k} and f(aE12+bE21) = c(a, b)E12+d(a, b)E21

such that c(a, b), d(a, b) are any multiplicative maps c, d : C × C → C satisfying
c(a, b)d(a, b) = ab.
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2.2. Numerical radius preservers. The numerical range of A ∈Mn is defined
by

W (A) = {x∗Ax : x ∈ C
n, x∗x = 1}.

Clearly, w(A) = max{|µ| : µ ∈ W (A)}. The following properties of the numerical
range and numerical radius will be used in our discussion; see for example [12, Chapter
1].

1. Suppose A ∈M2 has eigenvalues λ1, λ2. Then W (A) is an elliptical disk with
foci λ1, λ2 and minor axis of length

{
trA∗A− |λ1|2 − |λ2|2

}1/2
.

If A has real eigenvalues, then W (A) has major axis along the real axis and
consequently w(A) = r(A +A∗)/2.

2. Suppose A ∈ Mn is unitarily similar to A1 ⊕ A2. Then W (A) is the convex
hull of W (A1) ∪W (A2). Consequently, w(A) = max{w(A1), w(A2)}.

3. Suppose A ∈ Mn is unitarily similar to A0 ⊕ 0n−2. Then the following
conditions are equivalent:

(a) ‖A‖ = w(A), (b) ‖A‖ = r(A), (c) w(A) = r(A), (d) A is normal.

Moreover, ‖A‖ = 2w(A) if and only if A0 is nilpotent.

Theorem 2.5. Let w(A) be the numerical radius of A ∈Mn. Suppose f :Mn →
Mn satisfies (†). Then f satisfies w(f(A)) = w(A) for all A ∈ Mn if and only if
there is a complex unit γ and a unitary monomial matrix Q such that f has one of
the following forms:

A �→ γQ−1AQ, A �→ γQ−1AtQ, A �→ γQ−1AQ, A �→ γQ−1A∗Q.(2.7)

Consequently, g :Mn →Mn is a Schur multiplicative map satisfying w(g(A)) = w(A)
for all A ∈ Mn if and only if g has one of the forms in (2.7) with γ = 1 and Q a
permutation matrix.

Proof. The sufficiency part is clear. We divide the proof of the necessity part into
several assertions.

Assertion 1 There are complex units γ1, . . . , γn ∈ C and a permutation matrix P
such that f(Ejj) = γjPEjjP

t for j = 1, . . . , n.
Let f(Ejj) = γjErjsj . If rj = sj then |γj | = 1, else, |γj | = 2. Now, consider

f(I). Note that each row and each column of f(I) can have only one nonzero entry.
So, f(I) is permutationally similar to a direct sum of a diagonal unitary, and a
monomial matrix so that each row and each column has a nonzero entry with modulus
2. Since w(f(I)) = 1, the second part of the direct sum cannot exist. So, f(I) is a
diagonal unitary matrix. We may apply a permutation similarity so that Pf(I)P t =
diag (γ1, . . . , γn).

We may modify f by A �→ P tf(A)P/γ1 and assume the following.
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(A1) f(Ejj) = γjEjj for j = 1, . . . , n with γ1 = 1.

Assertion 2 Assume (A1). Then for j = 1, . . . , n and for any a > 0, f(aEjj) = aEjj .
Moreover, for any (i, j) pairs with i �= j and for any µ ∈ C, there is ν ∈ C with
|µ| = |ν| such that f(µEij + µ̄Eji) = νEij + ν̄Eji.

Note that for any Eij with i �= j and µ ∈ C, we have f(µEij) = νErs for some
r �= s and ν ∈ C such that |µ| = |ν|.

For any a > 0, let X = E11 + aEjj +
√
a(E1j + Ej1). Then w(f(X)) = w(X) =

1 + a equals the Frobenius norm of f(X), so f(X) is normaloid, which implies that
f(X) = E11 + aEjj +

√
a(eitE1j + e−itEj1). So, for j = 2, . . . , n, we have fjj(a) = a

for all a > 0. Consider f(X) for X = aE11 + Ejj +
√
a(E1j + Ej1). We see that

f11(a) = a for all a > 0.
For any µ ∈ C and i �= j, let |µ| = a and X = a(Eii + Ejj) + µEij + µ̄Eji.

Again w(f(X)) = w(X) = 2a equals the Frobenius norm of f(X), so we have f(X) =
a(Eii +Ejj) + νEij + ν̄Eji and hence f(µEij + µ̄Eji) = νEij + ν̄Eji, where |ν| = |µ|.

Replace f by A �→ Df(A)D∗ with D a diagonal unitary matrix so that f(E1j +
Ej1) = E1j + Ej1 for j = 2, . . . , n. Furthermore, we may assume that f(X) = X for
X ∈ {E12, E21}. Otherwise, replace f by A �→ f(A)t.

In the rest of the proof, we assume the following.

(A2) The conclusion of Assertion 2 holds, and f(X) = X for X = E12, E21 or
E1j + Ej1 with j = 3, . . . , n.

Assertion 3 Assume (A2) holds. Then f(Epq) = Epq and f(−Epq) = −Epq for any
(p, q) pairs.

Suppose j ∈ {2, . . . , n}. Since f(E1j + Ej1) = E1j + Ej1, we see that f(X) = X
or Xt for X ∈ {E1j , Ej1}. Thus, for X = E11 + E1j − Ej1 − Ejj , with w(X) = 1,
there are some complex units µ, ν ∈ C such that f(X) = E11 +E1j − µEj1 − νEjj or
f(X) = E11 +Ej1 −µE1j − νEjj . In both cases, we must have µ = 1. Otherwise, for
Y = f(X) we have w(Y ) ≥ w(Y +Y ∗)/2 > 1, which is a contradiction. Furthermore,
we have ν = ±1. Otherwise, for Z = f(X)/ν, we have w(Z) ≥ w(Z + Z∗)/2 > 1,
which is a contradiction. For ν = −1, we have w(f(X)) = √

2, a contradiction, so
ν = 1. Thus f(−Ejj) = −Ejj for all j (consider f(−X) for the case j = 1).

Now, for any 2 ≤ p < q ≤ n, consider X = E11 +E1p +E1q +Ep1 +Epp +Epq +
Eq1+Eqp+Eqq. Then f(X) = E11+E1p+E1q+Ep1+Epp+νEpq+Eq1+ ν̄Eqp+Eqq.
Since w(f(X)) = w(X) = 3 equals the Frobenius norm of f(X), f(X) is normaloid
and we see that ν = 1. So, f(X) = X or Xt for X ∈ {Epq, Eqp}.

Let X = −I+E12+E2j+Ej1 for j > 2. Then w(X) = ‖X‖ = |3− i√3|/2 = √
3.

Assume one or both of the following holds: f(E2j) = Ej2, f(Ej1) = E1j . Then f(X)
is not normal. Let f(X) = H + iG, where H = H∗, G = G∗. Then ‖H‖ = 3/2 and
‖G‖ = √

3/2, and there is no unit vector x such that |x∗Hx| = 3/2 and |x∗Gx| =√
3/2. Thus,

|x∗(H + iG)x| < {(3/2)2 + (
√
3/2)2}1/2 =

√
3 = w(X),
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which is a contradiction. Thus, we have f(E2j) = E2j and f(Ej1) = Ej1. It will then
follow that f(Y ) = Y for Y ∈ {Ej2, E1j}.

Suppose 1 < j < k. Then we can use X = −I + E1j + Ejk + Ek1 to prove that
f(Ejk) = Ejk. It follows that f(Ekj) = Ekj and hence f(Epq) = Epq for all (p, q)
pairs.

Now, by the first part of the proof of this assertion, we see that f(−Epq) = −Epq.
Assertion 4 Assume (A2) and the conclusion of Assertion 3 hold. Then

(1) f(µEpq) = µEpq for all (p, q) pairs and for any µ ∈ C, or
(2) f(µEpq) = µ̄Epq for all (p, q) pairs and for any µ ∈ C.

Let X = i(E11 − E22) + E12 + E21. Then f(X) = µE11 + νE22 + E12 + E21 for
some complex units µ, ν. Since 1 = w(Y ) ≥ w(Y + Y ∗)/2 for Y = f(X), it follows
that (µ, ν) = ±(i,−i). We may assume that µ = i. Otherwise, replace f by the map
A �→ f(A). Under this assumption, we can consider X = i(E11 − Ejj) + E1j + Ej1
and conclude that f(−iEjj) = −iEjj for j > 1. If Y = −i(E11 + E1j + Ej1 + Ejj),
then w(f(Y )) = 2 is the Frobenius norm of f(Y ), so the trace of f(Y ) has modulus
2 and thus f(−iE11) = −iE11. Now, repeating the above arguments to X = i(Ejj −
E11) + E1j + Ej1, we see that f(iEjj) = iEjj .

Suppose j ∈ {2, . . . , n}. For any a > 0, let X = a(E11 + E1j − Ej1 −Ejj). Then
f(X) = a(E11 + bE1j + cEj1 + dEjj) for some norm one b, c, d ∈ C. Using the same
argument as that following assertion 3, it follows that d = −1, and bc = −1. Hence,
f(−aEjj) = −aEjj . Now, consider X = −a(E11+E1j−Ej1 −Ejj). Similarly, we see
that f(−aE11) = −aE11. In summary, we have f(aEjj) = aEjj for all j = 1, . . . , n,
and for all a ∈ R.

(A4) At this point, we have f(aEjj) = aEjj for all a ∈ R and a = ±i. Also, we have
f(±Epq) = ±Epq for all (p, q) pairs.

Now, suppose p �= q. For any a > 0, let X =
√
a(Epp − Eqq) ± (aEpq − Eqp).

Then f(X) =
√
a(Epp − Eqq) ± (µEpq − Eqp) for some µ ∈ C with |µ| = a. Since

w(f(X)) = w(X) = (1 + a)/2, we conclude that f(±aEpq) = ±aEpq.
Next, let z = |z|γ ∈ C and consider the matrix X = zEpp + |z|(Eqp + Eqq) =

|z|(γEpp + Eqp + Eqq). We see that f(X) = |z|(δEpp + Eqp + Eqq) for some complex
unit δ, and thus f(zEpp) = zEpp or z̄Epp by [15, Lemma 2.3]. Let Y = |z|(Epp +
Epq) + zEqp, so f(Y ) = |z|(Epp +Epq + δEqp) and hence f(zEqp) = zEqp or z̄Eqp by
[15, Lemma 2.4].

Now, for a > 0, let Y = iaEpp − Epq + aEqp + iEqq with w(Y ) = (1 + a)/2 +√
(1 + a2)/2. From the above discussion, we have f(iaEpp) = iaEpp or −iaEpp. If

the latter case holds, then f(Y ) = −iaEpp−Epq + aEqp + iEqq is unitarily similar to
i(−aEpp +Epq + aEqp +Eqq) with numerical radius equal to |1− a|/2 + (1 + a)/√2,
which is a contradiction. Thus, we see that f(Y ) = Y and f(iaEpp) = iaEpp for all
a > 0. We can also consider −Y and conclude that f(−iaEpp) = −iaEpp.

Up to now we have shown that fpq(z) = z or z̄, and fpp(ia) = ia for all real a.
Now for any z = |z|γ ∈ C \ R and any p �= q, let X = −i|z|Epp + |z|Epq + zEqq,

so f(X) = |z|(−iEpp + Epq + δEqq), where δ = γ or γ̄. If δ = γ̄ then w(f(X)) =
w(if(X)) = |z|w(Epp + Epq + iγ̄Eqq), while w(X) = w(iX) = |z|w(Epp + Epq +
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iγEqq). By [15, Lemma 2.3], iγ = iγ̄ or −iγ, which is a contradiction. It follows that
f(zEqq) = zEqq for all z ∈ C.

Let Y = |z|(e−iπ/4Epp + Epq + γEqp), so w(Y ) = w(eiπ/4Y ) = |z|w(Epp + Epq +
iγEqp). If f(zEqp) = z̄Eqp we have w(f(Y )) = |z|w(Epp + Epq + iγ̄Eqp), so by [15,
Lemma 2.4], iγ = iγ̄ or −iγ, which is a contradiction. It follows that f(zEqp) = zEqp
for all z ∈ C. Thus the assertion is proved, and we have f(zEpq) = zEpq for any
z ∈ C and for any (p, q) pairs. This completes the proof, as the function f now has
the asserted form.

For a Schur multiplicative map g : Mn → Mn satisfying w(g(A)) = w(A) for all
A, we see that g(A) = 0 if and only if A = 0. Thus, g has the form (†). It is then
easy to deduce the conclusion.

We have the following corollary concerning numerical range preservers.
Corollary 2.6. Let f : Mn → Mn satisfy (†). Then f satisfies W (f(A)) =

W (A) for all A ∈ Mn if and only if f has one of the first two forms in (2.7) with
γ = 1 and Q being a unitary monomial matrix. Consequently, g : Mn → Mn is a
Schur multiplicative map satisfying W (g(A)) =W (A) for all A ∈Mn if and only if g
has one of the first two forms in (2.7) with γ = 1 and Q being a permutation matrix.

2.3. Norm preservers. In this subsection, we study maps preserving the spec-
tral norm

‖A‖ = max{(v∗A∗Av)1/2 : v∗v ≤ 1} =
√
λ1(A∗A),

where λ1(H) denotes the largest eigenvalue of a Hermitian matrix H ∈Mn.
Theorem 2.7. Let ‖A‖ denote the spectral norm of A ∈ Mm,n. Suppose f :

Mm,n → Mm,n satisfies (†). Then ‖f(A)‖ = ‖A‖ for all A ∈ Mm,n if and only
if there are diagonal unitary matrices P ∈ Mm and Q ∈ Mn such that one of the
following holds.

(a) f has the form A �→ PAQ or A �→ PAQ,

(b) m = n and f has the form A �→ PAtQ or A �→ PA∗Q.

Consequently, a Schur multiplicative map g : Mm,n → Mm,n satisfies ‖g(A)‖ = ‖A‖
for all A ∈Mm,n if and only if g has one of the forms in (a) or (b) such that P and
Q are permutation matrices.

Proof. The sufficiency part is clear. Consider the necessity part. Without loss
of generality, assume n ≥ m. Note that f(Ejk) = fjk(1)Epq for some (p, q) and
|fjk(1)| = 1. For X = Ejj + Ekk with j �= k, we have ‖f(X)‖ = ‖X‖ = 1, and
hence f(Ejj +Ekk) = fjj(1)Epq + fkk(1)Ers with {p, q}∩{r, s} = ∅. We may assume
f(Ejj) = fjj(1)Ejj for 1 ≤ j ≤ m, otherwise replace f by the map A→ Pf(A)Q for
some permutations P,Q. By considering the matrices E11 + E1j and Ejj + E1j we
see that

(i) f(E1j) = γjE1j with |γj | = 1 for j = 2, . . . ,m, or
(ii) f(E1j) = γjEj1 with |γj | = 1 for j = 2, . . . ,m.
(Consideration of E11 + E12 + E1j shows that ‘mixed’ conditions cannot occur.)
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If n > m, then we can consider f(E1,m+1) and show that condition (ii) cannot hold.
If m = n and case (ii) holds, we may replace f by the map A �→ f(A)t and assume
that condition (i) holds.

If j > m, we can use a similar argument to prove that f(E1j) = f1j(1)E1p for
some p > m. We may then replace f by a map of the form A �→ f(A)(Im ⊕Q0) for
some permutation Q0 ∈Mn−m and assume that f(E1j) = f1j(1)E1j for j > m. Now,
replace f by the map A �→ f(A)/f11(1). We may assume that f(E11) = E11. Next,
let D1 = diag (1, f21(1), . . . , fm1(1)) and D2 = diag (1, f12(1), . . . , f1n(1)). Replacing
f by the map A �→ D−1

1 f(A)D−1
2 , we may assume that f(X) = X for

X ∈ {E11} ∪ {Ej1 : 2 ≤ j ≤ m} ∪ {E1j : 2 ≤ j ≤ n}.
Since ‖f(X)‖ = ‖X‖ = 2 for X = E11 + E1k + Ej1 + Ejk, we see that f(Ejk) = Ejk
for all (j, k) pairs.

Recall that |fjk(a)| = |a| for all complex numbers a and all (j, k) pairs. Now
‖f(X)‖ = ‖X‖ =

√
2 + 2|a|2 for X = aE11 + aE1k + Ej1 + Ejk.

If f(X) = f11(a)E11 + f1k(a)E1k +Ej1 +Ejk, we have f11(a) = f1k(a). Similarly, by
the fact that

‖f(Y )‖ = ‖Y ‖ for Y = aE11 + E1k + aEj1 + Ejk,

we see that f11(a) = fj1(a). Finally, consider ‖f(Z)‖ = ‖Z‖ for Z = E11 + E1k +
aEj1+ aEjk, we see that fj1(a) = fjk(a). Consequently, f11(a) = fjk(a) for all a ∈ C

and all (j, k) pairs. From this we can conclude that there is some function τ such
that for any (j, k), fjk(a) = τ(a).

Let Y = E11 + E12 + E21 + aE22. Then Y ∗Y has eigenvalues 1
2 (3 + |a|2 ±√

(|a|2 − 1)2 + 4|1 + a|2). Here ‖Y ‖ = ‖f(Y )‖ requires that τ(a) = a or ā. Now
suppose τ(i) = i. Otherwise, replace the map f(A) with A → f(A). For a ∈ C with
Re (a) �= 0, let

Z = E11 + aE12 + aE21 + iE22 with ‖Z‖ =
√
|a|2 + 1 +

√
2|Re (a) + Im (a)|.

Since ‖Z‖ = ‖f(Z)‖, we see that τ(a) = a. For a purely imaginary, that is a = ic
with c ∈ R \ {0}, consider Z = E11 + cE12 + iE21 + icE22, with ‖Z‖ = √

2 + 2c2.
If τ(ic) = −ic, then ‖f(Z)‖ = max(

√
2,
√
2|c|) < ‖Z‖, which is a contradiction. So

τ(a) = a for a purely imaginary. Combining with the previous case we obtain τ(a) = a
for all a ∈ C.

The proof for Schur multiplicative maps is similar and simpler. See the proof of
Theorem 2.5.

3. Maps without the algebraic assumption. In this section, we consider
maps satisfying Φ(A◦B) = Φ(f(A)◦f(B)) for all A,B ∈Mm,n for Φ(A) = r(A), w(A),
or ‖A‖.

First, there is no good result for Φ(A) = r(A). For instance, let f(A) = A if
A is not in triangular form, otherwise let f(A) = diag (a11, . . . , ann). The result for
Φ(A) = w(A) was done in [15]. For Φ(A) = ‖A‖, we will prove the following result.
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Theorem 3.1. Let f :Mm,n →Mm,n. Then

‖A ◦B‖ = ‖f(A) ◦ f(B)‖(3.1)

for all A,B ∈Mm,n if and only if there exist
(a) permutation matrices P ∈Mm and Q ∈Mn,
(b) Θ ∈Mm,n such that |Θij | = 1 for all i, j and Θ ◦Θ has rank one,
(c) diagonal unitaries UX ∈Mm and VX ∈Mn for each X ∈Mm,n,

such that

f(X) = Θ ◦ (UXPXQVX) or f(X) = Θ ◦ (UXPXQVX)(3.2)

or, if m = n,

f(X) = Θ ◦ (UXPXtQVX) or f(X) = Θ ◦ (UXPX∗QVX).(3.3)

Note that if R ∈Mm,n has rank 1 and is unimodular (that is, |Rij | = 1 for all i, j)
then R = uv∗ for some unimodular vectors u ∈ Cm, v ∈ Cn. Then R ◦ A = UAV ∗,
where U = diag (u1, . . . , um) and V = diag (v1, . . . , vn) are diagonal unitaries.

We will find it convenient to define the Schur-inverse of A as the matrix A(−1)

having (i, j)-entry equal to (Aij)−1. The support of a matrix A will denote the set of
positions (i, j) for which Aij �= 0.

Recall that the Schatten p-norm of A is defined by

‖A‖p =

 n∑
j=1

sj(A)p




1/p

, ‖A‖∞ = ‖A‖ = s1(A),

where s1(A) ≥ · · · ≥ sn(A) are the singular values of A. We believe Theorem 3.1 is
probably valid if the spectral norm is replaced by certain Schatten p-norms, and so
our proof will proceed in this more general context until the last step. We begin with
three preliminary lemmas and a proposition giving some basic structure.

Lemma 3.2. Let A,B ∈Mm,n and suppose each has at most two nonzero singular
values. If ‖A‖2 = ‖B‖2 and ‖A‖p = ‖B‖p for some p �= 2, then A and B have the
same singular values.

Proof. Let r = ‖A‖2, so we may write the singular values of A (respectively, B)
as r cosα and r sinα (respectively, r cosβ and r sinβ) for some α, β ∈ [0, π/4]. The
r = 0 case is trivial, so suppose r �= 0. If p = ∞ we have α = β; otherwise, let
f(θ) = rp(cosp θ + sinp θ), so f(α) = f(β). Elementary calculus shows that f(θ) is
strictly monotone on [0, π/4], so α = β as desired.

Lemma 3.3. Suppose ‖A‖p = ‖A‖2 �= 0 for some p �= 2. Then rank A = 1.
Proof. Suppose A has nonzero singular values s1, . . . , sk. Let f(p) = ‖A‖p =[∑k
j=1 s

p
j

]1/p

. If k > 1, then f is strictly decreasing on [1,∞]. Thus A has at most 1
nonzero singular value and the result follows.
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Lemma 3.4. Suppose |w| = |z| �= 0 and p �= 2. Then
∥∥∥∥
[
1 1
1 w

]∥∥∥∥
p

=
∥∥∥∥
[
1 1
1 z

]∥∥∥∥
p

⇐⇒ w = z or w = z.

Proof. The singular values ofX(θ) =
[
1 1
1 reiθ

]
are given by the positive square

roots of 1
2 (K ± y(θ)), where K = 3 + r2 and y(θ) =

√
5 + 2r2 + r4 + 8r cos θ. Let

f(θ) = ‖X(θ)‖pp = 2−p/2[(K + y(θ))p/2 + (K − y(θ))p/2].

Since y(θ) is strictly decreasing on [0, π], some calculus shows that f(θ) is strictly
monotone on [0, π]. Since f(−θ) = f(θ), the result follows.

Proposition 3.5. Suppose

‖A ◦B‖p = ‖f(A) ◦ f(B)‖p(3.4)

for all A,B ∈Mm,n. Then there exist a permutation σ of {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤
n} and a map X �→ ΓX from Mm,n to the set of unimodular matrices in Mm,n such
that

f(X) = Xσ ◦ ΓX ,(3.5)

where (Xσ)ij = Xσ(i,j). (Clearly if p = 2 the converse is true.)
Proof. This result is probably known to experts; we include a proof for complete-

ness. For (i, j) �= (r, s), 0 = ‖Eij ◦Ers‖p = ‖f(Eij)◦f(Ers)‖p, so f(Eij)◦f(Ers) = 0.
Hence, f(Eij) and f(Ers) have disjoint support (they cannot both have nonzero en-
tries at the same position). Since f(Eij) �= 0, it follows by the pigeonhole principle
that f(Eij) = cijEσ(i,j) for some permutation σ of {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Since

1 = ‖Eij ◦ Eij‖p = ‖f(Eij) ◦ f(Eij)‖p = ‖c2ijEσ(i,j)‖p = |cij |2,

we have |cij | = 1. Thus, for each X ∈Mm,n,

|Xij | = ‖X ◦ Eij‖p = ‖f(X) ◦ f(Eij)‖p = ‖f(X) ◦ cijEσ(i,j)‖p = |f(X)σ(i,j)|

and so there is some unimodular ΓX such that

f(X) =
∑
i,j

Xij(ΓX)σ(i,j)Eσ(i,j) =
∑
i,j

Xσ−1(i,j)(ΓX)ijEij = ΓX ◦Xσ−1 .

Proof of Theorem 3.1. Clearly if f has form (3.2) or (3.3), then (3.4) holds. Now
assume (3.4) holds, so f has form (3.5) by Proposition 3.5. Since

‖ΓJ ◦ ΓJ‖p = ‖f(J) ◦ f(J)‖p = ‖J ◦ J‖p =
√
mn
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and ‖ΓJ ◦ ΓJ‖2 =
√
mn, ΓJ ◦ ΓJ has rank one by Lemma 3.3. Let Θ = ΓJ ; by

replacing X �→ f(X) with X �→ f(X) ◦ Θ(−1) (where Θ(−1) is the Schur-inverse), we
may suppose f(J) = J . Then

‖A‖p = ‖A ◦ J‖p = ‖f(A) ◦ f(J)‖p = ‖f(A)‖p(3.6)

for any A ∈ Mm,n, so f is both a ‖ · ‖p and a ‖ · ‖2 isometry. In particular, if rank
A = 1, then

‖f(A)‖p = ‖A‖p = ‖A‖2 = ‖f(A)‖2,

so rank f(A) = 1 by Lemma 3.3. We shall often use this fact in what follows.

Step 1. We show that, modulo permutations and transposition, f fixes Eij .
By replacing X �→ f(X) by X �→ Pf(X)Q for some permutations P ∈ Mm and

Q ∈Mn, we may assume f maps E11 back to a multiple of E11; that is, σ(1, 1) = (1, 1).
Without loss of generality, assume m ≤ n. Let A =

∑n
j=1 pjE1j , where pj denotes

the jth prime. Since rank A = 1, rank f(A) = 1 and so all nonzero entries of f(A)
must lie in the first row or column. If m < n, the nonzero entries of f(A) must lie in
the first row. If m = n and the nonzero entries of f(A) lie in the first column, replace
X �→ f(X) by X �→ f(X)t so that the nonzero entries of f(A) lie in the first row. By
replacing f(X) with f(X)Q′ for an appropriate permutation Q′, we may assume that
σ(1, j) = (1, j) for all j. Applying a similar argument to B =

∑m
i=1 piEi1 we may

assume that σ(i, 1) = (i, 1) for all i. Let C = E11 + 2E1j + 2Ei1 + 4Eij . Since rank
C = 1, we have rank f(C) = 1, which implies σ(i, j) = (i, j) for all i, j. In summary,
we may assume that f(X) = X ◦ ΓX , where |(ΓX)ij | = 1 for all i, j.

Define an equivalence relation A ∼ B if A = UBV for some diagonal unitaries U
and V . Note that A ∼ B if and only if A = Γ ◦ B for some rank one matrix Γ with
unimodular entries. Three properties of this equivalence relation are:

(a) A ∼ B ⇒ ‖A‖p = ‖B‖p for all p
(b) A ∼ B ⇐⇒ A ∼ B
(c) If A1 ∼ B1 and A2 ∼ B2, then A1 ◦A2 ∼ B1 ◦B2.

We shall freely make use of these properties in what follows.

Step 2. We show that f(A) ∼ A ∼ A if rank A = 1.
If A is a rank one matrix, then so is f(A). We can write A =

∑
i,j xiyjEij and

f(A) =
∑

i,j xiyjΓijEij . Let r (respectively, s) be the index corresponding to the
first nonzero row (respectively, column) of A. Let

V =
n∑
j=1

Γ−1
rj Ejj and U = Err +

∑
i�=r

Γ−1
is Eii,

so that Uf(A)V has the same first nonzero row and column as A. Since rank Uf(A)V
= 1 and Uf(A)V has the same support as A, Uf(A)V = A, so f(A) ∼ A. Note also
that A ∼ A since A = (

∑m
i=1 g(xi)Eii)A(

∑n
j=1 g(yj)Ejj) where g(x) = x/x if x �= 0

and g(0) = 1.
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Step 3. We show that f(A) ∼ A or A if A is supported on a 2× 2 matrix.
To simplify notation, we write all matrices as if they were 2× 2. Let

A =
[
a11 a12

a21 a22

]
and f(A) = A ◦ ΓA.

If any aij is zero, then f(A) ∼ A ∼ A, so suppose all aij are nonzero.
Let B be the rank one matrix a−1

11 E11+ a−1
12 E12+ a−1

21 E21+ a−1
12 a11a

−1
21 E22. Since

f(B) ∼ B,

‖A ◦B‖p = ‖f(A) ◦ f(B)‖p = ‖f(A) ◦B‖p.
Let d = a22a

−1
12 a11a

−1
21 , so

A ◦B =
[
1 1
1 d

]
and f(A) ◦B ∼

[
1 1
1 deiψ

]

for some ψ ∈ [−π, π]. By Lemma 3.4, f(A) ◦B ∼ A ◦B or f(A) ◦B ∼ A ◦B ∼ A ◦B
(since rank B = 1, B ∼ B). Taking the Schur product with the Schur-inverse B(−1),
we have f(A) ∼ A or A as desired.

Step 4. Let C = E11 + E12 + E21 + iE22. If f(C) ∼ C, replace X �→ f(X) by
X �→ f(X), so we may assume f(C) ∼ C. We show f(A) ∼ A for any A supported
on a 2× 2 matrix.

Let B be a rank one matrix supported on the same 2× 2 matrix as C. By Step
3, f(C ◦B) ∼ C ◦B or C ◦B. In the latter case,

‖C ◦ (C ◦B)‖p = ‖f(C) ◦ f(C ◦B)‖p = ‖C ◦ C ◦B‖p = ‖B‖p = ‖B‖p,
so by Lemma 3.2, C ◦ C ◦B and B have the same singular values. Since B has rank
one, so must C ◦ C ◦B, which is a contradiction if B has four nonzero entries. Thus
we must have f(C ◦B) ∼ C ◦B whenever B has rank one, four nonzero entries, and
is supported on the same 2× 2 matrix as C.

Suppose A is supported on the same 2× 2 matrix as C. To show that f(A) ∼ A,
suppose, by way of contradiction, f(A) ∼ A and A �∼ A (so A has four nonzero
entries). Let B be a rank one matrix supported on the same 2× 2 matrix as C such
that A ◦B = E11 + E12 + E21 + dE22, d �= 0. Since

∥∥∥∥
[
1 1
1 di

]∥∥∥∥
p

= ‖A ◦B ◦ C‖p = ‖f(A) ◦ f(B ◦ C)‖p

= ‖A ◦B ◦ C‖p = ‖A ◦B ◦ C‖p =
∥∥∥∥
[
1 1
1 di

]∥∥∥∥
p

,

Lemma 3.4 implies d = d. But this implies A ◦ B = A ◦ B ∼ A ◦ B, whence A ∼ A
which is a contradiction. Thus, f(A) ∼ A as desired.

Suppose f(X) ∼ X for all X supported on {(i, j) : i = p, q; j = r, s}, and
f(X) ∼ X for all X supported on {(i, j) : i = p, q and j = s, t}. We show this gives
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a contradiction. Without loss of generality, we take p = r = 1, q = s = 2, and t = 3,
and write all matrices as 2× 3.

Let w = e2πi/3, A =
[
1 1 1
1 w w

]
, X =

[
1 1 0
1 w 0

]
, and Y =

[
0 1 1
0 w w

]
.

We may write f(A) ∼
[
1 1 1
1 wα wβ

]
, where |α| = |β| = 1. Using Lemma 3.4 and

∥∥∥∥
[
1 1 0
1 1 0

]∥∥∥∥
p

= ‖A ◦X‖p = ‖f(A) ◦ f(X)‖p =
∥∥∥∥
[
1 1 0
1 α 0

]∥∥∥∥
p

,

we have α = 1. Using Lemma 3.4 and∥∥∥∥
[
0 1 1
0 1 1

]∥∥∥∥
p

= ‖A ◦ Y ‖p = ‖f(A) ◦ f(Y )‖p

=
∥∥∥∥
[
0 1 1
0 w2 w2β

]∥∥∥∥
p

=
∥∥∥∥
[
0 1 1
0 1 w4β

]∥∥∥∥
p

,

we have β = w4. Thus f(A) has singular values
√
3 +

√
3,

√
3−√

3, whereas A has
singular values

√
3,
√
3. But ‖A‖p = ‖f(A)‖p so, by Lemma 3.2, A and f(A) have

the same singular values, giving a contradiction.
It follows that f(X) ∼ X for any X supported on a 2 × 2 matrix lying in the

first two rows. By taking transposes in the preceding argument, we can conclude that
f(X) ∼ X for any X supported on a 2× 2 matrix lying in the first two columns, and
hence for any X supported on any 2× 2 matrix.

Step 5. Suppose Xij �= 0 ⇐⇒ i ∈ I and j ∈ J for some I ⊂ {1, . . . ,m} and
J ⊂ {1, . . . , n}. We shall show f(X) ∼ X .

Given any 2 × 2 submatrix of X with row and column indices in I and J re-
spectively, choose a matrix B supported on the same 2 × 2 submatrix such that

B ◦X =
[
1 1
1 1

]
on that 2× 2 submatrix. Then

‖B ◦X‖p = ‖f(B) ◦ f(X)‖p = ‖B ◦X ◦ ΓX‖p.
By Lemma 3.2, B ◦X ◦ ΓX has rank one, and hence the corresponding submatrix of
ΓX has rank one. Thus every 2 × 2 submatrix of ΓX with row and column indices
in I and J respectively has rank one, so the submatrix of ΓX with row indices in I
and column indices in J has rank one. By redefining, if necessary, the entries of ΓX
which lie outside this submatrix, we have rank ΓX = 1, as desired.

Step 6. We now restrict to the spectral norm (p =∞), and show f(X) ∼ X for
all X .

First suppose A is an m× n matrix such that |A|t|A| is irreducible (the absolute
value is entry-wise). Let x ∈ Rn+ be the positive unit eigenvector (from Perron-
Frobenius theory) such that ‖|A|‖2 = xt|A|t|A|x. Let Bij = |Aij |/Aij if Aij �= 0 and
Bij = 1 otherwise. Then

‖|A|‖ = ‖A ◦B‖ = ‖f(A) ◦ f(B)‖ = ‖f(A) ◦B‖ = ‖A ◦B ◦ ΓA‖ = ‖|A| ◦ ΓA‖.
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Write Ã = |A| ◦ ΓA, and let v ∈ Cn be a unit vector such that ‖Ã‖ = ‖Ãv‖. Let D
be a diagonal unitary such that D|v| = v. Then

‖|A|‖ = ‖Ã‖ = ‖Ãv‖ = ‖ÃD|v|‖ ≤ ‖|A||v|‖ ≤ ‖|A|x‖ = ‖|A|‖,

so all the inequalities are in fact equalities. Equality in the second inequality implies
|v| = x has strictly positive entries. Equality in the first inequality implies, for each
i,

∣∣∣∣∣∣
∑
j

(ÃD)ijxj

∣∣∣∣∣∣ =
∑
j

|Aij |xj ,

so (ÃD)ij has the same argument for each j such that Aij �= 0. By redefining,
if necessary, the entries of ΓA corresponding to Aij = 0, we may conclude that
ÃD = |A| ◦R for some unimodular rank one matrix R. Hence, rank ΓA = 1, whence
f(A) ∼ A.

Finally, let A be an arbitrary m × n matrix. There exist permutations P and
Q so that PAQ is a direct sum of matrices A1, . . . , Ak with |Aj |t|Aj | irreducible for
j = 1 . . . k. Apply the argument in the preceding paragraph to each Aj to conclude
that the submatrix of ΓA corresponding to the supporting submatrix for Aj has rank
1. We can then redefine, if necessary, the entries of ΓA not supported on any of the
submatrices Aj so that rank ΓA = 1, whence f(A) ∼ A.

We have shown for any p that, if f satisfies (3.4), then f(X) has the form (3.2)
or (3.3) whenever X has no zero entries (or more generally, if X is permutationally

equivalent to
[
A 0
0 0

]
for some A with no zero entries). We conjecture that Theorem

3.1 holds if ‖ · ‖ is replaced by ‖ · ‖p if p is not even.
What if p is even? Obviously p = 2 is an exceptional case, but consider the

following map: Fix any complex unit eiθ and define f :M3 →M3 by

f(A) = A if any of A13, A22, A31 are nonzero,

and

f





 a b 0
c 0 d
0 e g




 =


 a b 0
c 0 d
0 e geiθ


 otherwise.

Note that if A =


 a b 0
c 0 d
0 e g


, then

A∗A =


 |a|2 + |c|2 ab cd

ab |b|2 + |e|2 eg

cd eg |d|2 + |g|2
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has Frobenius norm independent of the argument of g, so ‖f(A)‖4 = ‖A‖4 regardless
of which eiθ we choose. Thus f satisfies (3.4) when p = 4, yet for almost any choice
of eiθ, f does not satisfy the conclusion of Theorem 3.1.

More generally, it seems that, for sufficiently large matrices A with a given zero
pattern, ‖A‖pp = tr (A∗A)p/2 will not depend on the arguments of certain entries for
certain even values of p. An interesting open problem is to determine exactly which
zero patterns give rise to these counterexamples for a given even p ≥ 4.

Acknowledgment. The authors thank the referee for some very useful remarks,
in particular for pointing out that a general Schur-multiplicative map f : Mm,n →
Mm,n must have the form

f([ai,j ]) =


 ∏

1≤p≤m,1≤q≤n
fp,qi,j (ap,q)


 ,

where fp,qi,j : C → C is the multiplicative map defined by

fp,qi,j (λ) = (i, j)-entry of f(Jm,n + (λ − 1)Ep,q).

This comment inspired us to improve Theorem 2.3 and Corollary 2.4 by removing the
unnecessary condition f(0) = 0 from an earlier version of the paper.
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