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In this paper we present a study of the Marangoni boundary layer flow and heat

transfer of copper-water nanofluid over a porous medium disk. It is assumed that

the base fluid water and the nanoparticles copper are in thermal equilibrium and

that no slippage occurs between them. The governing partial differential equations

are transformed into a set of ordinary differential equations by generalized Kármán

transformation. The corresponding nonlinear two-point boundary value problem

is solved by the Homotopy analysis method and the shooting method. The ef-

fects of the solid volume fraction, the permeability parameter and the Marangoni

parameter on the velocity and temperature fields are presented graphically and

analyzed in detail. C 2015 Author(s). All article content, except where otherwise

noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4934932]

I. INTRODUCTION

Nanofluids, defined as suspended nanoparticles with the size of 1 to 100 nm inside fluids, have

drawn vast attention due to recently claimed high performance in heat transfer in the literature.1

Studies have shown that adding nanoparticles (copper, silver, iron, alumina, CuO, SiC, carbon nano-

tube, etc.) to base fluids (water, ethylene glycol, engine oil, acetone, etc.) can effectively improve

the thermal conductivity of the base fluids and enhance heat transfer performance of the liquids.

In recent years, the studies of boundary layer flow and heat mass transfer in porous medium with

nanofluids have attracted considerable attention in many industrial, engineering, geothermal and

technological fields because of its wide applications, such as polymer solutions and melts, micro-

gravity science and space processing, petroleum industry, rotating machineries like nuclear reactors,

thin polymer films flow, etc. Mahdi et al.2 presented an overview of the published articles in respect

to porosity, permeability, inertia coefficient and effective thermal conductivity for porous media,

also on the thermophysical properties of nanofluids and the studies on convection heat transfer and

fluid flow in porous media with nanofluids. Afterward, Pop and coworkers3–5 examined magnetic

field or convective boundary condition effects on mixed convection boundary layer flow and heat

transfer over a flat plate embedded in a porous medium filled with nanofluids. Furthermore, Pop and

coworkers6,7 considered the Buongiorno-Darcy model to describe the flow of nanofluids saturated

in porous media. Hady et al.8 investigated effect of heat generation or absorption on the natural

convection boundary-layer flow over a downward pointing vertical cone in porous medium with a

non-Newtonian nanofluid. Recently, Rashad et al.9 presented the steady mixed convection boundary

layer flow past a horizontal circular cylinder in a stream flowing vertically upwards embedded in

porous medium filled with a nanofluid taking into account the thermal convective boundary condi-

tion. Then, Zheng et al.10 had a discussion on the flow and radiation heat transfer of a nanofluid over

a stretching sheet with velocity slip and temperature jump in porous medium. Lately, Abbasi et al.11

aCorresponding author, E-mail: linyanhai999@hqu.edu.cn (Y. Lin) Tel: +86 0551 2269 3514 Fax: +86 0551 2269 3514

2158-3226/2015/5(10)/107225/15 5, 107225-1 ©Author(s) 2015

http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
http://dx.doi.org/10.1063/1.4934932
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
mailto:linyanhai999@hqu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4934932&domain=pdf&date_stamp=2015-10-27


107225-2 Y. Lin and L. Zheng AIP Advances 5, 107225 (2015)

examined the Peristaltic flow of copper-water through a porous medium using the two phase flow

model.

Marangoni convection flow induced by the surface tension appears in many practical projects

such as crystal growth melts, spreading of thin films, nucleation vapor bubbles, semiconductor

processing, welding, materials science, etc. For example, Arafune and Hirata12 developed the rect-

angular double-crucible system to study the velocity feature of surface tension driven flow caused

by temperature differences (thermal Marangoni convection) and concentration differences (solutal

Marangoni convection) in In-Ga-Sb melt. Experiments showed that the typical surface velocity of

solutal Marangoni convection is about 3-5 times higher than that of thermal Marangoni convection,

and the results of both thermal and solutal convection could be discussed using dimensionless

Reynolds, Marangoni and Prandtl numbers. Cazabat et al.13 studied the dynamics of spreading of

thin films driven by temperature gradients. It showed that the Marangoni film is formed by applying

a thermal gradient along the direction of the flow and the temperature variation of the surface

tension is fairly constant for many fluids far from the critical point, and therefore a constant temper-

ature gradient creates a constant Marangoni surface stress. In addition, the surface tension gradient

causes the interface current. Marangoni convection also occurs around vapor bubbles during nucle-

ation and the growth of vapor bubbles due to the surface tension variations caused by temperature

and/or concentration variations along the bubble surface.14,15

The basic mechanism of the Marangoni convection has been extensively investigated. Pear-

son16 created the initial model and criterion of the flow mechanism induced by the surface tension.

It showed that the surface tension, in most fluids at most temperatures, is a monotone decreasing

function of temperature and in the case of two constituents, a function of relative concentration.

Mcconaghy and Finlayson17 studied surface tension driven oscillatory instability in a rotating fluid

layer. Based on the thin film equation derived from the basic hydrodynamic equations, Bestehorn

et al.18 presented 3D large scale surface deformations of a liquid film unstable due to the Marangoni

effect caused by external heating on a smooth and solid substrate. Then, Thiele and Knobloch19

considered the behavior of thin liquid film on a uniformly heated substrate by the weakly nonlinear

theory. They pointed out that once Marangoni effects are included, the resulting film is unstable.

In general, the surface was assumed to vary linearly with the temperature in Marangoni boundary

layer problem.14,15,20 Further, the surface also was assumed to vary linearly with the concentra-

tion and the thermosolutal surface tension radio parameter was introduced to describe the mass

transfer.21–25 Zheng et al.20 established the Marangoni convection over a liquid-vapor surface due

to an imposed temperature gradient by the Adomian analytical decomposition technique and the

Páde approximant technique. Chamkha and coworkers 21–23 considered the steady laminar MHD

thermosolutal Marangoni convection in the presence of a uniform applied magnetic field in the

boundary layer approximation. And exact analytical solutions for the velocity, temperature and

concentration boundary layers were reported. Later on, Zhang and Zheng24 studied MHD thermoso-

lutal Marangoni convection with the heat generation and a first-order chemical reaction by a new

method – double parameters transformation perturbation expansion method. Similarly, Zhang and

Zheng25 investigated similarity solutions of Marangoni convection boundary layer flow with gravity

and external pressure. Chen26 explored the influence of Marangoni convection on the flow and heat

transfer characteristics of a power-law liquid within a thin film over an unsteady stretching surface

by a standard finite difference technique based on central differences. Saravanan and Sivakumar27

considered exactly the appearance of Marangoni convective instability in a binary fluid layer in the

presence of though flow and Soret effect for both conducting and insulating bottom boundaries.

Saleem et al.28 examined entropy generation in Marangoni convection flow of heated fluid in an

open ended cavity. Zheng, Lin and coworkers29–31 investigated Marangoni convection flow and heat

transfer of power law fluids or nanofluids driven by the surface temperature gradient with vari-

able thermal conductivity. Then, Mahdy and Ahmed32 studied the Soret and Dufour effects on the

mechanical and thermal properties of steady MHD thermosolutal Marangoni boundary layer past

a vertical flat. Jiao et al.33 presented the magnetohydrodynamic (MHD) thermosolutal Marangoni

convection heat and mass transfer of power-law fluids driven by a power law temperature and a

power law concentration. Hayat et al.34 considered Marangoni mixed convection flow with Joule

heating and nonlinear radiation.
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Motivated by the above mentioned works,20–34 in this paper we have a study on Marangoni

boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk. The

temperature of the disk (the surface temperature of Cu-water nanofluid) is a quadratic function

of the radius. The cylindrical polar coordinate system of the boundary layer flow and heat trans-

fer35,36 is established to solve the Marangoni convection problem. The governing partial differential

equations are transformed into a set of ordinary differential equations by generalized Kármán

transformation35 and the solutions are presented analytically and numerically.

II. PHYSICAL MODEL AND MATHEMATIC EQUATIONS

Consider the steady, two-dimensional, laminar, boundary layer flow of a viscous, copper-water

(Cu-water) nanofluid over a porous medium infinite disk in the presence of surface tension due

to temperature gradient at the surface. The Cu-water nanofluid is assumed incompressible and the

flow is assumed to be axisymmetric. Thermophysical properties of Cu-water nanofluid are given

in Table I.31 It is also assumed that the base fluid water and the nanoparticle Cu are in thermal

equilibrium and no slippage occurs between then. No-slid and impermeability exist on the disk. The

cylindrical polar coordinate system and physical model are shown in Fig. 1. Unlike the Boussinesq

effect on the body force term in buoyancy-induced flow, the Marangoni surface tension effect acts

as a boundary condition on the governing equations of the flow field.21–23,29–31 The governing equa-

tions for this study are based on the balance laws of mass, momentum and energy species. Taking

the above assumptions into consideration, the boundary layer governing equations can be written in

dimensional form as:35,36

∂u

∂r
+

u

r
+
∂w

∂z
= 0, (1)

u
∂u

∂r
+ w

∂u

∂z
=

µnf

ρnf

∂2u

∂z2
−

µnf

ρnf

u

k
, (2)

u
∂T

∂r
+ v

∂T

∂z
= αnf

∂2T

∂z2
, (3)

The boundary conditions of this problem are given by:

µnf

∂u

∂z
|z=0 =

∂σ

∂r
|z=0, w |z=0 = 0,T |z=0 = T0 = T∞ + Tconstr

2, (4)

u|z→∞ = 0,T |z→∞ = T∞. (5)

where, u and w are the velocity components along the r and z directions, respectively. γ f is the

kinematic viscosity of water, and k is the permeability of the porous medium. µnf is the viscosity of

nanofluid, ρnf is the density of nanofluid and αnf is the thermal diffusivity of nanofluid. In addition,

T is the temperature of nanofluid, Tconst is a constant, T∞ is the temperature of nanofluid out of the

boundary layer and it is a const, T0 is the temperature of nanofluid on the disk and it is a quadratic

function of r . τ = µnf
∂u
∂z

is the shear stress, σ is the surface tension. Further, it is assumed that the

surface tension is linear with the temperature such that:14,15,20,29–31

σ = σ0 − γT(T − T∞), γT = −
∂σ

∂T
|T=T∞. (6)

TABLE I. Thermophysical properties of Cu-water nanofluid.

Cp (J/KgK) ρ (kg/m3) k (W/mK)

Cu 385 8933 400

water 4179 997.1 0.613
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FIG. 1. Schematic of the physical system.

where σ0 and γT are positive constant. The interfacial surface tension gradient which is caused by

the temperature gradient at the interface induced flow as: ∂σ/∂r = ∂σ/∂T · ∂T/∂r .

Further, µnf is approximated as viscosity of the base fluid water µ f containing dilute suspension

of fine spherical particles and is given by Brinkman:37

µnf = µ f (1 − φ)−2.5, (7)

The other parameters are given by:31

ρnf = (1 − φ)ρ f + φρs, (8)

(ρCp)nf = (1 − φ)(ρCp) f + φ(ρCp)s, (9)

αnf = knf/(ρCp)nf , (10)

knf

k f

=
(ks + 2k f ) − 2φ(k f − ks)

(ks + 2k f ) + φ(k f − ks)
. (11)

where φ is the solid volume fraction of the nanofluid, ρs is the density of the nanoparticle (Cu), ρ f

is the density of the base fluid (water). (ρCp)nf is the heat capacity of the nanofluid, (ρCp) f is the

heat capacity of the base fluid and (ρCp)s is the heat capacity of the nanoparticle. knf is the thermal

conductivity of the nanofluid, k f is the thermal conductivity of the base fluid and ks is the thermal

conductivity of the nanoparticle.

III. SIMILARITY TRANSFORMATION

The following generalized dimensionless Kármán similarity variable defined as:33

ξ = z



Ω/γ f , u = rΩF(ξ), w =



Ωγ f H(ξ), T = T∞ + Ar2θ(ξ), (12)

P =
γ f

kΩ
, Pr =

γ f (ρCp) f

k f

=
γ f

α f

, Ma =
Tconst

Ωµ f



γ f

Ω
, (13)

A = [(1 − φ) + φ
ρs

ρ f

](1 − φ)2.5, (14a)

B = [(1 − φ) + φ
(ρCp)s

(ρCp) f
]
(ks/k f + 2) + φ(1 − ks/k f )

(ks/k f + 2) − 2φ(1 − ks/k f )
, (14b)

C = (1 − φ)2.5. (14c)

where Ω is a unit [s−1], P is the permeability parameter, Pr is the Prandtl number of the base

fluid (water Pr = 7.0) and Ma is the Marangoni parameter. The governing equations (1)-(3) and the
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boundary layer conditions (4)-(5) can be written as:

2F(ξ) + H ′(ξ) = 0, (15)

F ′′(ξ) − PF(ξ) + A[F(ξ)2 + F ′(ξ)H(ξ)] = 0, (16)

θ ′′(ξ) − B Pr[2F(ξ)θ(ξ) + H(ξ)θ ′(ξ)] = 0, (17)

F ′(ξ)|ξ=0 = −2MaC, H(ξ)|ξ=0 = 0, F(ξ)|ξ→∞ = 0, (18)

θ(ξ)|ξ=0 = 1, θ(ξ)|ξ→∞ = 0. (19)

where F(ξ) is dimensionless velocity, τ(ξ) = − 1
2C

F ′(ξ) is dimensionless shear stress (It should be

noted that τ = µnf
∂u
∂z
= 1

C
Ωrµ f



Ω

γ f
F ′(ξ), τ(ξ)|ξ=0 = −Ma.) and θ(ξ) is dimensionless tempera-

ture.

IV. HOMOTOPY ANALYSIS SOLUTIONS

In this section, the nonlinear governing equations (15)-(17) and boundary conditions (18)-(19)

are solved by HAM.38,39 The functions H(ξ) (Note: 2F(ξ) + H ′(ξ) = 0) and θ(ξ) can be expressed

by the set of base functions:

{ξ i exp(−mξ)|i ≥ 0,m ≥ 0} (20)

in the forms

H(ξ) =

∞


i=0

∞


m=0

am, iξ
i exp(−mξ), (21)

θ(ξ) =

∞


i=0

∞


m=0

bm, iξ
i exp(−mξ). (22)

where am, i and bm, i are constant coefficients. According to the rule of solution expression denoted

by Liao and the boundary conditions, it is natural to choose:

H0(ξ) = −2CMa + 2CMa exp(−ξ), (23)

θ0(ξ) = exp(−ξ), (24)

as the initial guesses of the functions H(ξ) and θ(ξ). The auxiliary linear operators are selected as:

LH =
∂3H

∂ξ3
−
∂H

∂ξ
, Lθ =

∂2θ

∂ξ2
−

∂θ

∂ξ
, (25)

Satisfying the following properties:

LH[C1 + C2 exp(−ξ) + C3 exp(ξ)] = 0, Lθ[C4 + C5 exp(ξ)] = 0. (26)

where Cl (l = 1, . . . ,5) are the arbitrary constants. If q ∈ [0,1] and hH ,hθ indicate the embedding

and nonzero auxiliary parameters, then the 0th-order deformation problems are of the following

form

(1 − q)LH[Φ(ξ,q) − H0(ξ)] = qhHHH(ξ)NH[Φ(ξ,q),Θ(ξ,q)], (27)

(1 − q)Lθ[Θ(ξ,q) − θ0(ξ)] = qhθHθ(ξ)Nθ[Φ(ξ,q),Θ(ξ,q)], (28)

Subject to the boundary conditions

Φ(0,q) = 0,
∂2
Φ(ξ,q)

∂ξ2
|ξ=0 = CMa,

∂Φ(ξ,q)

∂q
|ξ→∞ = 0, (29)

Θ(0,q) = 1, Θ(ξ,q)|ξ→∞ = 0. (30)
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FIG. 2. The h–curves of H ′(0) for the 10th-order approximation.

where

NH =
∂3
Φ(ξ,q)

∂ξ3
+

A

2
[
∂Φ(ξ,q)

∂ξ

∂Φ(ξ,q)

∂ξ
− Φ(ξ,q)

∂2
Φ(ξ,q)

∂ξ2
− P

∂Φ(ξ,q)

∂ξ
], (31)

Nθ =
∂2
Θ(ξ,q)

∂ξ2
+ B Pr[

∂Φ(ξ,q)

∂ξ
Θ(ξ,q) − Φ(ξ,q)

∂Θ(ξ,q)

∂ξ
], (32)

where hH , hθ is chosen properly in such a way that these series are convergent at q = 1. Therefore,

we have through equations are solutions series

H(ξ) = H0(ξ) +

∞


m=1

Hm(ξ)q
m, θ(ξ) = θ0(ξ) +

∞


m=1

θm(ξ)q
m, (33)

in which

Hm(ξ) =
1

m!

∂m
Φ(ξ,q)

∂qm
|q=0, θm(ξ) =

1

m!

∂m
Θ(ξ,q)

∂qm
|q=0. (34)

FIG. 3. The h–curves of θ′(0) for the 10th-order approximation.
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TABLE II. Comparison of values of F(0), H (∞) and θ′(0) for different values of the solid volume fraction when P = 0.0,

Ma = 0.2 and Pr= 7.0.

F(0) H (∞) θ′(0)

φ HAM Numerical HAM Numerical HAM Numerical

0.0% 0.307593 0.3073370 -0.835982 -0.8316574 -2.42527 -2.428746

1.5% 0.292523 0.2922949 -0.785369 -0.7813209 -2.30518 -2.303730

3.0% 0.279196 0.2789964 -0.743459 -0.7397496 -2.19574 -2.190098

4.5% 0.267258 0.2670791 -0.708301 -0.7048761 -2.09460 -2.085970

TABLE III. Comparison of values of F(0), H (∞) and θ′(0) for different values of the permeability parameter when

φ = 5.0%, Ma = 0.4 and Pr= 7.0.

F(0) H (∞) θ′(0)

P HAM Numerical HAM Numerical HAM Numerical

0.0 0.418092 0.4180872 -0.876228 -0.8761853 -2.58911 -2.585104

0.2 0.375794 0.3757938 -0.733096 -0.7330574 -2.42692 -2.417631

0.4 0.341499 0.3414991 -0.619493 -0.6194746 -2.27837 -2.271026

0.6 0.313600 0.3136003 -0.530582 -0.5305725 -2.14587 -2.142935

0.8 0.290670 0.2906664 -0.460763 -0.4607524 -2.03045 -2.030408

TABLE IV. Comparison of values of F(0), H (∞) and θ′(0) for different values of the Marangoni parameter when φ = 5.0%,

P = 0.0 and Pr= 7.0.

F(0) H (∞) θ′(0)

M HAM Numerical HAM Numerical HAM Numerical

0.1 0.165779 0.1658662 -0.547885 -0.5480955 -1.62999 -1.630141

0.3 0.345094 0.3451200 -0.795323 -0.7958117 -2.35221 -2.349408

0.5 0.485152 0.4851480 -0.944018 -0.9439106 -2.78771 -2.784022

0.7 0.607148 0.6071480 -1.05609 -1.056096 -3.12053 -3.113166

0.9 0.717893 0.7178895 -1.14839 -1.148377 -3.39309 -3.384038

Differentiating m times the 0th-order deformation equations (27)-(28) about q, then setting

q = 0, and finally dividing by m!, we have the mth-order deformation equations

LH[Hm(ξ) − χmHm−1(η)] = hHHH(ξ)R
H
m (ξ), (35)

Lθ[θm(ξ) − χmθm−1(η)] = hθHθ(ξ)R
θ
m(ξ), (36)

with the following boundary conditions

Hm(0) = H ′′m(0) = H ′m(∞) = θm(0) = θm(∞) = 0, (37)

where

RH
m (ξ) = H ′′′m−1(ξ) +

A

2
[

m−1


l=0

H ′l (ξ)H
′

m−1−l(ξ) −

m−1


l=0

Hl(ξ)H
′′

m−1−l(ξ) − PH ′m−1], (38)

Rθ
m(ξ) = θ ′′m−1(ξ) + B Pr[

m−1


l=0

H ′l (ξ)θm−1−l(ξ) −

m−1


l=0

Hl(ξ)θ
′

m−1−l(ξ)], (39)

χm =


0, m = 1

1, m ≥ 2
, (40)
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Based on the initial guesses and the auxiliary linear operators, we set: HH(ξ) = Hθ(ξ) = exp(−ξ).

We obtain:

H1(ξ) =
1

3
hCMa[−ACMa exp(−2ξ)

+(6PA + 3PAξ + 8ACMa + 6ACMaξ − 6 − 3ξ) exp(−ξ) − (6PA + 9ACMa − 6)]
, (41)

θ1(ξ) =
1

3
h[(−14BCMa + 1) exp(−2ξ) − (−14BCMa + 1) exp(−ξ)]. (42)

In this way, the equations (35)-(37) can be solved by using Mathematica one after the other in

the order m = 2,3, . . . (See Appendix A. Supplementary material).

V. NUMERICAL SOLUTIONS

The equations (15)-(17) and the corresponding boundary conditions (18)-(19) are solved by

the shooting method coupled with the Runge-Kutta scheme and the Newton method. The equa-

tions (15)-(16) and (18) are written as a system of three first-order equations in terms of the three

variables yn (n = 1,2,3). Denoting H(ξ), H ′(ξ) and H ′′(ξ) by using variables y1, y2 and y3 yields



y1
′ = y2

y2
′ = y3

y3
′ = Py2 + A(y1y3 − 0.5y2

2)

, (43)

y1(0) = 0, y2(0) = t, y3(0) = 4CMa. (44)

Introducing the shooting parameters t as y2(0) = t, then the equations (43)-(44) are converted

into the equations (45)-(46) as follow:



(
∂ y1

∂t
)′ =

∂ y1
′

∂t
=

∂ y2

∂t

(
∂ y2

∂t
)′ =

∂ y2
′

∂t
=

∂ y3

∂t

(
∂ y3

∂t
)′ =

∂ y3
′

∂t
= P

∂ y2

∂t
+ A(y3

∂ y1

∂t
+ y1

∂ y3

∂t
− y2

∂ y2

∂t
)

, (45)

∂ y1

∂t
|ξ=0 = 0,

∂ y2

∂t
|ξ=0 = 1,

∂ y3

∂t
|ξ=0 = 0. (46)

FIG. 4. Effects of the solid volume fraction on the velocity.
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FIG. 5. Effects of the solid volume fraction on the shear stress.

We use the shooting method coupled with the Runge-Kutta scheme and the Newton method to

solve the boundary value problem (15)-(16) with (18). The programming ideas as follows:

(1) Give initial values to the shooting parameter y2(0) = t0.

(2) Get the results of the equations (43)-(44)
�
y1

0, y2
0, y3

0
	

by the classical fourth-order Runge-

Kutta scheme.

(3) Judge the iteration condition |y2(∞) − 0| < ε, where ε is the iteration accuracy. If the results

of (2) meet the iteration conditions,
�
y1

0, y2
0, y3

0
	

is the solution of the equations (15)-(16)

with (17). The iteration loop is over. Otherwise, the next step is executed.

(4) Use the Newton method to revise the shooting parameters as

tk+1 = tk −
y2(tk) − 0

∂ y2(tk)/∂tk
. (47)

Equations (45)-(46) are used to obtain the item ∂ y2(tk)/∂tk in the fixed equation (47). The steps

(1)-(3) are re-executed until the new results of the step (2) meet the iteration conditions. In the same

way, we can obtain the solutions for the equation (17) with condition (19), we omitted here.

FIG. 6. Effects of the solid volume fraction on the temperature.
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FIG. 7. Effects of the permeability parameter on the velocity.

VI. RESULTS AND DISCUSSION

In the section ‘Homotopy analysis solutions’, we get the solutions of H(ξ) and θ(ξ) by the

Homotopy analysis method (HAM). As pointed by Liao,38 the convergence of these series strongly

depends upon the value of the auxiliary parameters hH and hθ. In order to seek the admissible

values of hH and hθ, we plot the h–curves at 10th-order approximation of them in Figs. 2-3.

Since the interval for the admissible values of hH and hθ correspond to the line segments nearly

parallel to the horizontal axis, then we know that the admissible for the parameters hH and hθ

are −2.0 ≤ hH ≤ −0.3 and −1.6 ≤ hθ ≤ −0.5 when φ = 5.0%, P = 0.0, Ma = 0.3 and Pr = 7.0. In

this situation, we choose h = −1.0 and get H ′(0) = −0.690188 (F(0) = −0.5H ′(0) = 0.345094) and

θ ′(0) = −2.35211. In the section ‘Numerical solutions’, we get the solutions of H(ξ) and θ(ξ) by the

shooting method. Tables 2-4 present different values of F(0), H(∞) and θ ′(0) for different values

of the solid volume fraction, the permeability parameter and the Marangoni parameter. From the

comparison listed in Tables 2-4 we can see that the analytical solutions (HAM) agree well with the

numerical solutions. Then the effects of the solid volume fraction, the permeability parameter and

the Marangoni parameter on the velocity and temperature fields are analyzed and discussed in detail

in this section.

FIG. 8. Effects of the permeability parameter on the shear stress.
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FIG. 9. Effects of the permeability parameter on the temperature.

Figs. 4-6 (Figs. 7-9) present effects of the solid volume fraction (the permeability parameter)

on the velocity, the shear stress and the temperature. From these figures, we can see that the veloc-

ity, the shear stress and the temperature decrease and converged to zero as the location similarity

variable increases. The values of the shear stress are non-positive and there has a same value of

the dimensionless shear stress on the interface, i.e. τ(0) = −0.20 when P = 0.0, Ma = 0.2, Pr = 7.0

for all the solid volume fraction φ = 0.0%,1.5%,3.0%,4.5%, and τ(0) = −0.40 when φ = 4.5%,

Ma = 0.40, Pr = 7.0 for all the permeability parameter P = 0.0,0.2,0.4,0.6,0.8. These trends all

meet the features of the Marangoni boundary layer. The velocity and the shear stress decrease while

the temperature increases as the solid volume fraction (the permeability parameter) increases. In

other word, the velocity boundary layer thinner while the temperature boundary layer thicker as the

solid volume fraction (the permeability parameter) increases. It should be noted that the influences

of the permeability parameter on the velocity, the shear stress and the temperature are similar

to the results of the solid volume fraction, while the effects of permeability parameter are more

obvious. For example, the distribution profiles of the shear stress τ(ξ) ∼ ξ are obviously different

for different values of the permeability parameter in Fig. 5, while there is no obvious difference in

the distribution profiles of the shear stress τ(ξ) ∼ ξ for different values of the solid volume fraction

in Fig.8.

FIG. 10. Effects of the Marangoni parameter on the velocity.
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FIG. 11. Effects of the Marangoni parameter on the shear stress.

FIG. 12. Effects of the Marangoni parameter on the temperature.

Figs. 10-12 present effects of the Marangoni parameter on the velocity, the shear stress and the

temperature. We observe from Figs. 10-11 that the velocity and the shear stress in the outer part

of the velocity boundary layer decrease as the Marangoni parameter increases. Accordingly, the

velocity boundary layer thickness increases with reducing values of the Marangoni parameter. It is

interesting to see that the velocity profiles intersected each other in the near-surface region, where

these intersections are found to occur at about ξ ≈ 1.5 − 2.5 (the shear stress profiles: ξ ≈ 2.8 − 4.0)

when φ = 5.0%, P = 0.0 and Pr = 7.0. It also can be seen that the temperature and the temperature

boundary layer decrease as the Marangoni parameter increases.

VII. CONCLUSIONS

This paper presented an investigation for the Marangoni boundary layer flow and heat transfer

of copper-water nanofluid over a porous medium disk. The governing partial differential equations

were transformed into a two point boundary value problem using Kármán similarity transformation.

The nonlinear ordinary differential equations subject to boundary conditions were solved by the

Homotopy analysis method (HAM) and the shooting method coupled with Runge-Kutta scheme
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and Newton method. It was found that the flow and heat transfer behaviors were strongly depending

on the value of the solid volume fraction, the permeability parameter and the Maragoni parameter.

The velocity, the shear stress and the velocity boundary layer decrease while the temperature in-

creases as the solid volume fraction and the permeability parameter increase. The velocity (in the

outer part), the shear stress (in the outer part), the temperature, the velocity boundary layer and the

temperature boundary layer all decrease as the Marangoni parameter increases.
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APPENDIX

H2(ξ) =
1

12
h2CMa[A2C2Ma2 exp(−3ξ)

+2ACMa(5P + 6ACMa − 3) exp(−2ξ) + 4ACMa(P + 2ACMa − 1)ξ exp(−2ξ)

+3(8P2 + 30PACMa − 8P + 21A2C2Ma2
− 16ACMa) exp(−ξ)

+(15P2 + 64PACMa − 18P + 56A2C2Ma2
− 40ACMa + 3)ξ exp(−ξ)

+3(P2 + 4PACMa − 2P + 4A2C2Ma2
− 4ACMa + 1)ξ2 exp(−ξ)

+2(−12P2
− 45PACMa + 12P − 38A2C2Ma2 + 27ACMa)]

,

θ2(ξ) =
1

360
h2[−56BCMa(ACMa + 28BCMa − 2) exp(−4ξ)

+5(63PBCMa + 98ABC2Ma2 + 1176B2C2Ma2
− 343BCMa + 12) exp(−3ξ)

−10(168PBCMa + 252ABC2Ma2 + 784B2C2Ma2
− 175BCMa + 4) exp(−2ξ)

+(1365PBCMa + 1946ABC2Ma2 + 3528B2C2Ma2
− 1337BCMa − 20) exp(−ξ)]

,

H3(ξ) =
h3CMa

216
[5A3C3Ma3 exp(−4ξ) + 3A2C2Ma2(24P + 29ACMa + 18ACMaξ − 12A) exp(−3ξ)

+9P2ACMa(35 + 22ξ + 4ξ2) exp(−2ξ) + 144PA2C2Ma2(6 + 5ξ + ξ2) exp(−2ξ)

−18PACMa(15 + 14ξ + 4ξ2) exp(−2ξ) + 2A3C3Ma3(289 + 288ξ + 72ξ2) exp(−2ξ)

−144A2C2Ma2(3 + 3ξ + ξ2) exp(−2ξ) + 9ACMa(3 + 6ξ + 4ξ2) exp(−2ξ)

+9P3(48 + 33ξ + 9ξ2 + ξ3) exp(−ξ) + 18P2ACMa(140 + 116ξ + 31ξ2 + 3ξ3) exp(−ξ)

+27P2(16 + 13ξ + 5ξ2 + ξ3) exp(−ξ) + 9PA2C2Ma2(504 + 455ξ + 128ξ2 + 12ξ3) exp(−ξ)

+36PACMa(60 + 52ξ + 19ξ2 + 3ξ3) exp(−ξ) + 18ACMa(12 + 12ξ + 7ξ2 + 3ξ3) exp(−ξ)

+27P(ξ + ξ2 + ξ3) exp(−ξ) + 9A2C2Ma2(252 + 231ξ + 80ξ2 + 12ξ3) exp(−ξ)

+A3C3Ma3(2585 + 2430ξ + 720ξ2 + 72ξ3) exp(−ξ) + 9(3ξ + 3ξ2
− ξ3) exp(−ξ)

+(432P2 + 2430PACMa + 2736A2C2Ma2
− 243ACMa)]

,

θ3(ξ) =
1

43200
h3[−8064B2C2Ma2(−2 + ACMa + 28BCMa) exp(−6ξ)

+140BCMa(−15A2C2Ma2 + 9016B2C2Ma2
− 2695BCMa + 124) exp(−5ξ)

+140BC2Ma2(315PB + 742A2BCMa − 32A) exp(−5ξ)

+224ABC2Ma2(61P + 30Pξ + 62ACMa + 60Aξ) exp(−4ξ)

+1568AB2C3Ma3(679 + 120ξ) exp(−4ξ) − 336ABC2Ma2(277 + 60ξ) exp(−4ξ)

+784B2C2Ma2(799P + 120Pξ − 2039 − 120ξ) exp(−4ξ)

+56BCMa(2889 + 120ξ − 829P − 120Pξ) exp(−4ξ) + 160(17836B3C3Ma3
− 27) exp(−4ξ)

+1575BCMa(39P2 + 164PACMa + 148A2C2Ma2) exp(−3ξ)

+18900BCMa(P2 + 4PACMa + 4A2C2Ma2)ξ exp(−3ξ)



107225-14 Y. Lin and L. Zheng AIP Advances 5, 107225 (2015)

−3150PBCMa(79 + 12ξ) exp(−3ξ) − 18900ABC2Ma2(23 + 4ξ) exp(−3ξ)

+58800B2C2Ma2(27P + 42ACMa + 56BCMa − 43) exp(−3ξ)

+75(3619BCMa + 252BCMaξ − 32) exp(−3ξ)

−16800BCMa(12P2 + 45PACMa + 38A2C2Ma2) exp(−2ξ)

−280BCMa(1155P + 2258ACMa) exp(−2ξ) − 40(2737BCMa + 20) exp(−2ξ)

−3920B2C2Ma2(435P + 638ACMa + 504BCMa − 467) exp(−2ξ)

+7BCMa(20025P2 + 73052PACMa + 60184A2C2Ma2) exp(−ξ)

+28B2C2Ma2(24997P + 35722ACMa + 17864BCMa − 19273) exp(−ξ)

−2BCMa(8641P + 20438ACMa) exp(−ξ) − 7(2503BCMa + 160) exp(−ξ)],

. . . ,
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