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Abstract

The interface of a droplet in an extensional flow moves both tangentially and
normally. When surfactants are adsorbed on the drop interface, Marangoni
stresses, which resist tangential shear, and Marangoni elasticities, which resist
surface dilatation, develop. In this paper, the dependence of these effects on
surfactant physical chemistry, and their impact on drop deformation are
probed. Repulsive or cohesive interactions between surfactant molecules
change the surface equation of state which dictates the sensitivity of the
surface tension to adsorbed surfactant. For example, cohesion decreases this
sensitivity, favoring strong surface concentration gradients. Boundary Element
results are presented for fluids of equal viscosities containing an insoluble
surfactant.

1 Introduction

An initially spherical drop of radius a, suspended in an immiscible, neutrally
buoyant, Newtonian fluid of equal viscosity y, is subject to an extensional
flow of strain rate G, causing it to elongate. (Taylor [1]) The surface tension
of the interface is given by +v,. In the absence of surfactant adsorption, the
capillary number Ca alone governs the drop deformation.

ca=bG2
This group is the ratio of characteristic viscous stresses to surface tension. For
weak flows, (small Ca), the drop deforms only slightly from a spherical
geometry. (Barthes-Biesel & Acrivos [2]) As Ca increases, the steady shapes
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are more elongated. For Ca in excess of a critical value Ca®, the drop
elongates, ultimately fragmenting into smaller drops. (Rallison & Acrivos [3])
When a non-ionic surfactant is in the outer phase at concentration Cg

it adsorbs on the quiescent drop interface, establishing a surface concentratxon
I'q and reducing the surface tension to y.,. When the extensional flow is
initiated, a stagnation ring develops at the drop equator, and stagnation points
appear at either pole.(see Fig. 1) Surface convection sweeps adsorbed
surfactant toward the poles, causing a non-uniform surface concentration T’
which alters the flow via the stress balance at the interface: (Levich [4])

[ (o] =-é—ai{,V,I‘+2Hy (Mo (1)
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Figure 1 Flow Geometry

where T is the Cauchy stress tensor, n is the surface normal, and the
bracketed term on the left hand side of eqn (1) represents the stress jump at
the interface. The local surface tension is denoted v, V, is the surface
gradient operator, and 2H is the mean curvature of the interface. The
interface pulls from the low surface tension zone at the poles toward the
elevated tension at the equator, exerting a Marangoni stress, which is the first
term on the right hand side of eqn (1). The normal stress balance is also
altered, since regions of low surface tension require higher curvatures to
balance the stress jump across the interface. This effect, the Marangoni
elasticity, is the last term in eqn (1).

The surface tension dependence on the surface concentration is
determined by the adsorption isotherm and its corresponding surface equation
of state. Non-ideal interactions between surfactants (e.g. cohesion/repulsion)
strongly impact the form of these expressions. (Lin et al. [5])

Numerical results on the impact of these interactions on deformation
are presented in this paper. Below, the surfactant physical chemistry and
dynamics, along with previous insoluble surfactant work in this flow are
reviewed. Thereafter, our results for insoluble surfactants are presented.

2 Surfactants and Surface Stresses

For an insoluble surfactant, I' is determined by the balance of surface
convection and surface dilatation, which disturb the distribution, to the surface
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diffusion flux, which tends to restore equilibrium: (Aris [6])

%*‘VS‘(FV,) _DsV.ZS‘P=O (2)
where t denotes time, D is the surface diffusivity, and v, is the surface
velocity. This velocity has a normal component which dilutes T' and a
tangential component which creates surface gradients in I'. The insoluble
limit corresponds to dilute bulk concentrations where the scale for diffusive
flux (DCeqle‘ , where D is the bulk diffusivity) is slow compared to the
surface convective/dilatational flux (GT¢y)-

Scaling T' with I'y; and t with G, eqn (2) in dimensionless form is:

/
g_zﬁvs-(r/v{,) —Piesvgmo (3)
where the primes indicate a dimensionless variable.

Scaling the Cauchy stress by uG, the curvature 2H by the inverse
drop radius a!, « by its clean interface value Yo, and dv/aT" by RTT /Ty,
(where I, is the maximum packing of surfactant, R is the ideal gas constant
and T is the temperature), eqn (1) becomes:

cal (o] =—Eg—lﬁvsrf+zﬂfy'<1*/) n (4)

In these expressions, two additional dimensionless groups appear:

_a%*G, ,_Ril.

s D Yo

s

Pe

® The surface Peclet number, Pe,, is the ratio of characteristic
convective to surface diffusive fluxes; this group determines the magnitude of
the surface concentration gradients.

® The elasticity number E is a measure of the sensitivity of the surface
tension to the surface concentration; this group couples the local surface
concentration to the local surface tension.
The adsorptive/desorptive flux of surfactant from an interface is given by:

~€a ~€q

"n‘.'l".d,=ﬁcsexpﬁ (T,-T) -aexp *° T (5)

where 8, («) is the characteristic kinetic constant for adsorption, (desorption),
and C, is the concentration in the sublayer immediately adjacent to the
interface. The energies ¢, and ¢4 are activation energies for adsorption and
desorption, respectively. At equilibrium, the adsorptive flux is zero,
establishing the adsorption isotherm. For long chain saturated surfactants
(e.g. the n-alcohols, [cf 5]), ¢, and ¢4 depend upon I' because of cohesive
interactions among the saturated chains. For bulky sidechains, repulsive
interactions have been observed. Keeping only linear terms, the energies are:
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€;=€;,+v,I’ (6)

where i =a,d respectively. The adsorption isotherm and corresponding
surface equation of state are the Frumkin equations:

Leg ke
L. (5153‘1 ) (7
e = +kg
Y -1+£(Int1-4-1-Z(r/To?) (8)
o r.” 2
where the adsorption constant k; and the interaction parameter K are:
~ Bceq ’(€u;;€do) ) (Va“’d) F_
Kee—g @ A T

K is negative for cohesion, positive for repulsion. These non-ideal
interactions strongly alter the partitioning of surfactant between the bulk and
interface, (see Fig. (2a)) (Lin et al. [5]). For a given Ceqr the Te/T', are
greater for cohesion, smaller for repulsion relative to the Langmuir case.

The surface equation of state, eqn (8) is assumed to relate v(I'(s)) even
when the interface is not at equilibrium. This relationship therefore dictates
the impact of the surfactant on the flow field. It is graphed in Fig. 2(b) as a
function of scaled area/molecule T'¢;'T',, for repulsion (K=2.52);
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Figure 2 (a) Frumkin adsorption isotherm (b) surface equation of state
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no interactions, (K=0, Langmuir); moderate cohesion (K=-2.52) and the
elevated cohesion (K=-4.0), for which a plateau appears in the graph over a
surface area range, indicating that the interface is approaching first-order
surface phase change. The implications of this plateau in dynamic fluid
particle systems is significant; an interface in this range of surface
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concentrations may have gradients in I' with negligible Marangoni effects.
3 Insoluble Surfactant Effects: Previous Results

The insoluble monolayer case has been studied at small Ca by Flummerfelt
[7] and Stone and Leal [8]. The latter authors also studied surfactant effects
at arbitrary Ca. The surfactant was assumed to obey a linear equation of state.
All deformations are compared to a case where the surface tension remains
constant at v, throughout the deformation process. Fixing the product
ET /T, Marangoni effects are found to be pronounced at elevated Pe /Ca.
Surfactant is swept to the drop tip and collects there, reducing the surface
tension. The tip stretches, becoming elongated and curved to balance the
normal stress jump. Greater deformations result for a given Ca, and reduced
critical Ca“" are realized. Conversely, at low Pe/Ca, near uniform I' are
maintained. Surface dilution causes v to increase over 7,4, strongly resisting
surface dilatation. Smaller deformations at a given Ca, and higher Ca® are
realized. At three fixed values of Pe/Ca, the parameter El. /T, is
increased. In general, as ET' /T, increases, larger Marangoni stresses retard
Vs, and smaller T' gradients result. Dilution of the interface dominates, so
deformations are smaller at a given Ca, and Ca® is higher. For Pe/Ca up
to 10, Ca®" increases monotonically with El‘eq/I‘w, and higher final
deformations result. However, for Pe/Ca of 1000, non-monotonic behavior
in El /T, in observed; Ca™ is less than the uniform v, case for small
values of ET', /T, (wWhere drop tip stretching dominates) and greater Ca®" are
found for larger values (where surface dilution dominates). This work was
extended by Milliken, et al.[9] who used eqn (8) with K fixed at 2.52 in a
finite drop deformation study. The deformations are compared to those found
with the linear equation of state at the same initial surface coverage I'g/T',.
Since eqn (8) gives lower v for a given I'. /', larger deformations result.

4 Fluid Dynamics Equations and Solution Method

Using the radius a to scale lengths, Ga to scale velocity v; in each phase, and
v,/ to scale pressures, the flow is described by Stokes’ equation:

caVRvi=Vpl; i=1,2 (9)

V-vi=0 (10)

where 1,2, indicates droplet and external fluid quantities, respectively. The
far-field boundary condition for v,’ is the imposed extensional flow:
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[ 2 0 o 1
limg vi=vl= 0 -1 0 -x! (11)
Lo o -1

where x’ is a position vector. The stream function for this flow is ¥’ =
-r"22’Ca, where 1’ and z’ are the cylindrical radial and axial coordinates of a
point in the fluid, respectively, as depicted in Fig. 1. The streamlines for this
flow are symmetric hyperbolae. The boundary conditions at the interface are
the stress balance, eqn (4), where 4’ (I (x,’)) is determined by eqns (8) and
(3), the continuity of velocity and the kinematic condition, given by:

v{(x,’) =v] (x}) =v](x])
/ (12)

l.n

w! (%) =
nv,(x,)—dt/

where x,’ is the position vector of a point on the interface. Stokes’ equations
are recast as boundary integral equations over the surfaces enclosing the
domains of flow. For an axisymmetric flow, the v’ at x;’ is [cf3]

vl (xl) =vl(x)) -8—1n [ M (x, T - (mln-mim) ds () (13)

where M’ is the axisymmetric Green’s function for Stokes’ flow, a
second-order tensor, s’ is the arclength and {’ is a position vector on the
interface, used as an integration variable.

The location of the drop interface is not known a priori. A
time-marching numerical scheme is employed starting from an initially
spherical drop. The initial conditions are that I'’ is unity, the tangential stress
jump at the interface is zero, and the normal stress jump is given by 2vy.g/v,.
The flow is initiated at a small capillary number Ca. Using the initial stress
jump in egn (13), v¢’ is calculated at the first time step. The interface
location is updated using eqn (12), and I" is updated using v, and eqn (3) in
an explicit Euler scheme. The stress jump is then updated using eqn (4), and
the process is reiterated until n- v, <.0005/Ca, indicating that a steady shape
has been attained. For all steady drop deformations, volume changes were
less than 5%, and the total surfactant mass changed by less than .01%. The
Ca is then incremented, and the process is repeated until n-v;’ fails to
approach the convergence criterion or the drop volume increases by more than
10%, indicating drop fragmentation.

5 Results and Discussion

In Fig. 3(a), the surface concentration profile I'’(s’) and surface tension
gradients Vy’ are presented for the steady shapes at Ca=0.024, where s’ is
normalized with the drop half-arc length. In order to compare with previous
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results, we chose the conditions studied by Milliken et al. [9] (F Ty =0.2,
Pe/Ca=1000 and E=1.5), who held K fixed at 2.52, i. e repulsive
interactions. This case, repeated by us, is shown, with the cases of no
interaction (K=0), cohesion (K=-2.52), and strong cohesion (K=-4). In Fig.
3(b), deformation, defined in terms of drop length L and breadth B, is
reported.

The insoluble monolayer limit corresponds to low C,,. Referring to
Fig. 2(a), these results correspond to different C,, (or k;, a dimensionless
bulk concentration). For cohesion, (K=-4, k;=.106; K-2.52, k; =.155) low
concentrations give I‘cq/I‘c,° of 0.2, when compared to the cases of no
interactions (K=0, ky=.242) or repulsion, (K=2.52, k;=.349).

The I'” profiles in Fig. 3(a) are not symmetric about the K=0 case;
cohesive interactions allow stronger I' gradients to develop. Since v is less
sensitive to T' for cohesion, smaller Marangoni stresses develop. Thus,
surface convective flux remains strong, sweeping surfactant toward the tip.

The Marangoni stresses realized for K greater than -4 have the same
general form; the stresses increase from the drop tip, reach a maximum and
then decrease monotonically toward the equator. The strong cohesion case
where K=-4 shows unusual behavior: the Marangoni stress approaches zero
when the surface concentration is within the plateau region in Fig. 2(b).

Drop deformations as a function of Ca increase monotonically with K,
because of reduced Yeq- These data are presented in Fig. 3(b), inset, as a
function of Ca,, defined in terms of the Yeq at €ach K. Referrmg to this inset,
all deformations are higher than a reference case where v is fixed throughout
the deformation process at Yeq corresponding to K=0. In Stone and Leal [8],
deformation is discussed in terms of ‘the competition of surface dilution
resisting deformation and tip-stretching increasing it. These normal stress
arguments explain much of the data. Since our results correspond to high
Pe,/Ca, v is strongly reduced at the drop tip and tip-stretching dominates. In
the inset to Fig. 3(b), the curves separate for Ca, q> .025. The deformation
decreases with increasing cohesion, a result of decreased surface tension
gradients and diminished tip- stretchmg For ease of comparison, Ay’, the
difference between vy at the drop equator and drop tip normalized by Veqr i
reported in Fig. 3(a) at Ca=.024. This difference monotonically decreases
with increased cohesion at constant surface coverage.

For the case of moderate cohesion (K=-2.52) the deformation at
higher surface coverage, I'.(/T',=0.5, is reported in Fig. 3(b) as the dotted
line (where E and Pe/Ca are held fixed). In terms of Ca, higher
deformations develop because v, is lower. However, when reported in terms
of Ca.g, (see inset) smaller deformations develop relative to the low coverage
case. This occurs despite the strong Ay’ of 0.45, greater than that for
Ieg/T'=0.2. This result is nor explained by tip-stretching or dilution.
Rather, tangential Marangoni stresses compete with the normal stresses and
reduce the deformation.



5?:?’ Transactions on Modelling and Simulation vol 10, © 1995 WIT Press, www.witpress.com, ISSN 1743-355X

628 Boundary Elements XVII

0.8
— K AY ]
2.5 VAP —— 2.52 0.376;
o 1 --- o 0.322]
. N — -2.52 0-27% *©
21 r /) Ne— -4 0.172
[ / ’ N
1.7 ¢ / A 4 o.a
) oy i V.Y
1.3 ll_:__ iy 2N >
roy - = —==-X 4 0.2
oo [/ —_—— — = —
[/ =\l
)
o
°%o.0 N o.s
S

(L-B)/(L+B)

D=

Figure 3: (a) Surface concentration and Marangoni stress profiles;
(b) Steady deformations vs. Ca; inset: Steady deformations vs. Caeq
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