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Abstract. The paper deals with a steady coupled dissipative layer, called Marangoni mixed convection

boundary layer, which can be formed along the interface of two immiscible fluids, in surface driven

flows. The mixed convection boundary layer is generated when besides the Marangoni effects there

are also buoyancy effects due to gravity and external pressure gradient effects. We shall use a model

proposed by Golia and Viviani (L’ Aerotecnica missili e Spazio 64 (1985) 29–35, Meccanica 21 (1986)

200–204) wherein the Marangoni coupling condition has been included into the boundary conditions

at the interface. The similarity equations are first determined, and the pertinent equations are solved

numerically for some values of the governing parameters and the features of the flow and temperature

fields as well as the interface velocity and heat transfer at the interface are analysed and discussed.

Key words: Coupled Marangoni boundary layer, Combined convection, Numerical solution, Immiscible

fluids, Fluid mechanics.

1. Introduction

The free surface of a viscous fluid is a source of convective flow, often called

Marangoni convection, if its surface tension is distributed non-uniformly (Thess et al.

[16]). Such a non-uniformity arises from the dependence of the surface tension on

a scalar quantity, either surfactant concentration or temperature. An indispensable

prerequisite for Marangoni convection is the dependence of the surface tension σ on

a scalar field φ, which can be the temperature, concentration or a combination of

both.

The existence of the steady dissipative layers along the liquid–liquid or liquid–

gas interfaces seem to have been first observed by Napolitano [5–7] and were

called Marangoni boundary layers or dissipative layers. These layers may exist on

both sides of a Marangoni interface, if the non-dimensional Reynolds, Re, and

Péclet, Pe, numbers are much larger than one. Since Re and Pe increase with

the reference length (i.e. the extension of the interface), in microgravity environ-

ment conditions may easily exist to establish a boundary layer regime, contrary

to what will happen on Earth (see Golia and Viviani [4]). Problems of this type

⋆Author for Correspondence: e-mail: h.s.takhar@mmu.ac.uk
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are of great importance due to their relevance in several fields of microgravity sci-

ences and space processing. Studies of these problems are also motivated by their

importance in terrestrial materials processing, and oceanography (see Skarda et al.

[14]). The surface tension gradients that are responsible for Marangoni convec-

tion can be due to gradients of temperature and/or concentration (thermal/or sur-

factant concentration). The significance of dissipative layers in liquid metal and

semiconductor processing is shown to be particularly strong and is a major fac-

tor in guiding the control of industrial processes. However, although much progress

has been made, especially in the study of the Marangoni convection, the state of

the art is still somewhat unsatisfactory, concerning questions of general and basic

nature.

It was shown by Napolitano [7] that, as in the classical steady boundary layers

(non-Marangoni layers), the field equations in the bulk fluids do not depend explic-

itly on the geometry of the interface when using as coordinates the arc length (X)

and the distance normal to the interface. This involves however the mean curva-

ture of its hydrostatic and dynamic shapes and, together with the other surface bal-

ance equations, introduces kinematic, thermal and pressure couplings for the flow

fields in the two fluids. Napolitano and Golia [8] have shown that the fields are

uncoupled when the momentum and energy resistance ratios of the two layers and

the viscosity ratio of the two fluids are much less than one. Similarly solutions of

the steady Marangoni boundary layers exist when the interface temperature gradi-

ent varies as a power of the interface arc length (X). The power laws for all other

variables, including the mean curvature, were determined. Numerical solutions were

found, analyzed and discussed for steady Marangoni boundary layers in some papers

by Napolitano and Russo [9], Golia and Viviani [3, 4], Napolitano et al. [10, 11],

Christopher and Wang [2], and Pop et al. [13]. On the other hand, Zeng et al.

[17–20] have analyzed very recently in a series of papers the oscillatory Marangoni

convection under microgravity by assumpting that σ decreases linearly with tem-

perature. However, the Marangoni coupling condition has been included in the

Navier-Stokes equations and in the boundary conditions at the interface.

The present paper aims to study the steady boundary layers that can be formed

along the interface of two immiscible fluids in surface driven flows that may be gen-

erated when beside the Marangoni effects there are also buoyancy effects present due

to gravity and external pressure gradient. The corresponding similarity equations are

then solved numerically for some values of these parameters using a finite-difference

method proposed by Blottner [1]. The velocity and temperature profiles as well as the

interface velocity and heat transfer at the interface are obtained and discussed.

2. Basic Equations

Consider the steady coupled problem of thermal Marangoni boundary layer with

buoyancy effects due to gravity and an external pressure gradient which occurs along

an interface S of two immiscible fluids, as shown in Figure 1. It is assumed that the

gravity vector g is aligned with the fluid interface S and that the flow fields of the

two interfacing fluids are uncoupled. It is also assumed that the component normal



Marangoni Mixed Convection Boundary Layer Flow 221

Figure 1. Physical model with interface conditions and coordinate system.

to the interface of the gravity vector g is neglected, so that the curvature of the inter-

face can be ignored. Under these assumptions, along with the Boussinesq approxi-

mation, and neglecting the viscous dissipation, the basic equations for the coupled

Marangoni boundary layer are those derived by Golia and Viviani [3, 4], viz

∂U

∂X
+

∂V

∂Y
=0, (1)

U
∂U

∂X
+V

∂U

∂Y
=Ue

dUe

dX
+ν

∂2U

∂Y 2
−Ŵ g β (T −Tm), (2)

U
∂T

∂X
+V

∂T

∂Y
=

ν

P r

∂2T

∂Y 2
, (3)

subject to the boundary conditions

V =0, T =TS(X) at Y =0,

U →Ue(X), T →Tm as Y →∞
(4)

and the interface condition

µ
∂U

∂Y
=σT

∂T

∂X
. (5)

Here X and Y are the Cartesian coordinates along and normal to the interface S,

respectively, U and V are the velocity components parallel to the X and Y axes,

Ue(X) is the velocity outside boundary layer, g is the magnitude of the acceleration

due to gravity, β is the coefficient of thermal expansion, µ is the dynamic viscosity,

ν is the kinematic viscosity, Pr is the Prandtl number and the parameter Ŵ assumes

the values of Ŵ = ∓1 according as the buoyancy forces are favourable to the Ma-

rangoni flow (Ŵ = −1) or the buoyancy forces are opposing to the Marangoni flow

(Ŵ=+1), respectively. Further σT =−dσ/dX>0 where σ is the surface tension which

is assumed to be given by the linear relation

σ =σm −σT (T −Tm), (6)

where σm is the surface tension at a reference temperature Tm; both σm and Tm are

constants.
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The interface condition (5) can be obtained as follows. If t i and tij (i, j =1,2,3)

denote the stress vector and stress tensor, then we have (see Straughan [15])

t i = tij nj =σ bα
α ni +x;α aα γ σ;γ (7)

where bα
α is the mean curvature of the surface, x;α are tangential vectors, aαγ is the

first fundamental form of the surface, α denotes covariant differentiation with respect

to the surface coordinates and ni are the components of the outward unit normal to

the interface. Since

tij =−p δij +2 µdij , dij = 1
2
(ui,j +uj,i), (8)

where p is the pressure and δij is the Kronecker delta operator, relations (7) and (8)

give rise to the condition (5) for the component along the interface (i =1). Although

there are instances in which relation (5) is inappropriate (see, e.g. Oron and Rosenau

[12]), the majority of phenomena in Marangoni convection can be understood in the

framework of this simple relation.

We now introduce the following non-dimensional variables

x = (X −L0)/L, y =Re1/3 (Y/L), u=U/Ur , ν =Re1/3 (V/Ur)

ue(x)=Ue(X)/Ur , t = (T −Tm)/�T, Ur =Re−1/3 Um, Um = σT �T/µ,
(9)

where L0 determines the location of the origin of the curvilinear axis X, Y is the

extension of the interface S, �T is a positive temperature increment along the inter-

face (relative to the temperature gradient imposed along S), Um is the Marangoni

velocity, Ur is the reference velocity based upon Um and Re=UmL/υ is the Reynolds

number based on the Marangoni velocity Um.

Substituting (9) into equations (1)–(3), we obtain

∂u

∂x
+

∂v

∂y
=0, (10)

u
∂u

∂x
+v

∂u

∂y
= ue

due

dx
+

∂2u

∂y2
−Ŵ λ t, (11)

u
∂t

∂x
+v

∂t

∂y
=

1

Pr

∂2t

∂y2
(12)

and the boundary conditions (4) reduce to

∂ u

∂y
=

∂ t

∂x
, v =0, t = tS(x) at y =0

u→ue(x), t →0 as y →∞,

(13)

where, λ�0 is the Marangoni mixed convection parameter, which is defined as

λ=gβ �T L/U 2
r . (14)

We notice that λ = 0 corresponds to the case of Marangoni forced convection flow,

which has been studied by Golia and Viviani [4]. We assume now that equations
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(10)–(12) subject to the boundary conditions (13) have the following similarity

solution

u=u0 xm f ′(η), v =−u0 l0 xm−p−1 [(m−p)f (η) + p η f ′(η)]

t =− t0 xn θ(η), η=xp (y/ l0), ue(x)=u0 xm (15)

where m, n, p are constants and primes denote differentiation with respect to η, and

u0, l0, t0 are constant scale factors to be determined. If the variables (15) are substi-

tuted into equations (11) and (12), and using also the boundary conditions (13), we

obtain m=3, n=5 and p =1. Thus, we have

u=uox
3 f ′(η), v =−uoℓo (2f +η f ′), t =−to x5 θ(η), η=x (y/ℓo). (16)

This solution gives tS(x)=−t0x
5 for the non-dimensional interface temperature distri-

bution, where the minus sign is due to the orientation of the X-axis that is along the

direction of decreasing temperature (we have assumed that �T and σT are positive).

Using relations (16) in equations (11) and (12), we get the following ordinary

differential equations

f ′′′ +f f ′′ + 3
2
(1−f ′2)+Ŵλθ =0, (17)

θ ′′ +Pr
(

f θ ′ − 5
2
f ′θ

)

=0, (18)

subject to the boundary conditions (13), which now become

f (0)=0, f ′′(0)=−1, θ(0)=1,

f ′ →1, θ →0 as η→∞.
(19)

The scale factors u0, l0 and t0 are chosen in order to simplify the form of equations

(17) and (18) as well as the boundary conditions (19) and these have to satisfy the

following relations (see Golia and Viviani [3]),

uoℓ
2
o = 1

2
,

toℓ
2
o

uo

=1,
toℓo

uo

= 1
5
, (20)

which, determine the constants uo, ℓo and to.

The quantities of physical interest are the velocity component U(x, y) parallel to

the interface S, the temperature distribution T (x, y) as well as the interface velocity

U(x,0) and heat transfer at the interface ∂T
∂ y

(x,0), which are given by

U(x, y)=U ∗
r x3 f ′(η), T (x, y)=Tm − Tr x5 θ(η),

U(x,0)=U ∗
r x3f ′(0), ∂T

∂y
(x,0)=− (Tr/ℓo) x5 θ ′(0),

(21)

where, U ∗
r and �T are defined as U ∗

r =uo Ur and Tr = to �T .

3. Results and Discussion

The non-linear system of ordinary differential equations (17) and (18) subject to

the boundary conditions (19) has been solved numerically for various values of the

Prandtl number Pr = 0.13,0.25,0.5,0.74,1.0,1.5,2.0,2.8,3.0,3.53,5.0,8.0,10.1,12.5
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and 15.4 when λ = 0 (Marangoni forced convection), 1, 2, 4, 6, 8 and 10 using

the implicit finite-difference method discussed by Blottner [1]. Both favourable (aid-

ing Marangoni effect, Ŵ = −1) and contrary (opposing Marangoni effect, Ŵ = +1)

flow cases were considered. The equations are discretized using three-point cen-

tral-difference quotients and, as a consequence, of which a set of algebraic equa-

tions results. The algebraic equations are then solved by using the well-known

tri-diagonal Thomas algorithm. The computational domain was divided into 196

points and variable step sizes with initial step size of 0.001 and a growth fac-

tor of 1.04 were utilised. These step sizes were found to give accurate grid-inde-

pendent results as verified by the comparison of the reduced interface velocity,

f ′(0), and the reduced temperature gradient normal to the interface, −θ ′(0), for

some values of the Prandtl number Pr when the Marangoni mixed convection

parameter λ = 1 and the pressure gradient is absent (−dp/dx = ue(x) due/dx = 0)

as shown in Table 1. Results obtained by Golia and Viviani [4] using a shoot-

ing technique based upon a quasi-linearization algorithm are also included in this

table. This method has shown that convergence is not sensitive to the particular

choice of the initial guess, thus confirming the good convergence of this method.

It is seen that the present results are in very good agreement with those of

Golia and Viviani [4]. We are, therefore, confident that the present results are very

accurate.

To provide concrete knowledge about the flow and heat transfer characteristics,

the numerical results for the reduced velocity f ′(η) and temperature θ(η) profiles

as well as for the interface velocity f ′(0) and heat transfer −θ ′(0) are presented

Table 1. Comparison of the values of f ′(0) and −θ ′(0) for some values of Pr and λ=1 for the Ma-

rangoni-buoyant boundary layer case (uedue/dx =0)

Opposing case (Ŵ =+1) Favourable case (Ŵ =−1)

Present Golia and Viviani [4] Present Golia and Viviani [4]

Pr f ′(0) −θ ′(0) f ′(0) −θ ′(0) Pr f ′(0) −θ ′(0) f ′(0) −θ ′(0)

0.13 1.2311 0.5371 1.230 0.535

0.25 1.1973 0.7627 1.196 0.762

0.5 1.1556 1.1064 1.155 1.106

0.74 1.1301 1.3636 1.130 1.363

1.0 1.1109 1.5996 1.111 1.599

1.5 1.0855 1.9799 1.085 1.979 2.8 0.6993 2.0900 0.698 2.087

2.0 1.0686 2.3002 1.068 2.299 3.0 0.7122 2.2095 0.711 2.201

3.53 1.0386 3.0844 1.038 3.084 3.53 0.7349 2.4840 0.734 2.482

5.0 1.0223 3.6860 1.022 3.687 5.0 0.7689 3.1119 0.768 3.109

8.0 1.0031 4.6805 1.003 4.679 8.0 0.8012 4.1199 0.800 4.075

10.1 0.9947 5.2664 0.994 5.265 10.1 0.8137 4.7083 0.813 4.706

12.5 0.9874 5.8651 0.987 5.864 12.5 0.8239 5.3079 0.823 5.305

15.4 0.9810 6.5159 0.981 6.514 15.4 0.8329 5.9598 0.832 5.956
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Figure 2. Effects of Pr on velocity profiles for opposing case (Ŵ =+1).

Figure 3. Effects of Pr on temperature profiles for opposing case (Ŵ =+1).

in Figures 2–13 for both opposing (Ŵ = +1) and favourable (Ŵ = −1) cases, respec-

tively. Figures 2–5 show the velocity and temperature profiles for λ = 1 and some

values of the Prandtl number Pr. It is seen that for the opposing case, both the

velocity and temperature profiles decrease as Pr increases, while for the favour-

able case the velocity profiles increase and the temperature profiles decrease with

an increase of Pr. However, Figures 3 and 5 show that the temperature profiles

are steeper when the flow is opposing and flatter when it is favourable. It should
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Figure 4. Effects of Pr on velocity profiles for favourable case (Ŵ =−1).

Figure 5. Effects of Pr on temperature profiles for favourable case (Ŵ =−1).

also be noticed that in the opposing case, the numerical procedure converges for

any value of Pr, whereas in the favourable case, the solution scheme does not con-

verge for Pr less that 2.8. This is in agreement with the results reported by Golia

and Viviani [4]. Figures 6–9 represent the variation of the velocity and tempera-

ture profiles for Pr = 3.53 and several values of λ. It can be noticed from Fig-

ures 6 and 8 that the velocity profiles increase for the opposing case (Ŵ =+1) while

they decrease for the favourable case (Ŵ = −1), when the parameter λ increases.
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Figure 6. Effects of λ on velocity profiles for opposing case (Ŵ =+1).

Figure 7. Effects of λ on temperature profiles for opposing case (Ŵ =+1).

Furthermore, for the favourable case, these profiles have a minimum close to the

interface for λ in the range 4 � λ � 6, as can be seen from Figure 8. This fig-

ure also shows the substantial influence of the buoyancy forces (λ �= 0) on the

velocity profiles and that these profiles goes to one at the end of the boundary

layer. On the other hand, the temperature profiles decrease for the opposing flow

case and increase for the favourable flow case when λ is increased, as can be
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Figure 8. Effects of λ on velocity profiles for favourable case (Ŵ =−1).

Figure 9. Effects of λ on temperature profiles for favourable case (Ŵ =−1).
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Figure 10. Effects of Pr and λ on the interface velocity for opposing case (Ŵ =+1).

Figure 11. Effects of Pr and λ on the heat flux for opposing case (Ŵ =+1).
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Figure 12. Effects of Pr and λ on the interface velocity for favourable case (Ŵ =−1).

Figure 13. Effects of Pr and λ on the heat flux for favourable case (Ŵ =−1).
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seen from Figures 7 and 9. All the profiles displayed in Figures 2–7 and 9 tend

to zero at the end of the boundary layer, i.e. the thicknesses of the momentum

and thermal boundary layers decrease to zero. Finally, Figures 10–13 display the

variation with λ of the interface velocity f ′(0) and heat transfer at the interface

−θ ′(0) for some values of Pr in the range 0.13 � Pr � 15.4. One can see that the

variation of f ′(0) and −θ ′(0) is almost linear with the increase of λ except for

f ′(0) in the case of favourable flow. It is to be noticed again that the values of

f ′(0) and −θ ′(0) can be obtained only for Pr � 2.8 when the Marangoni flow is

favourable.

4. Conclusion

A detailed numerical solution is carried out for the steady coupled Marangoni

boundary layer flow. The normal component of the gravity vector has been neglected

so that the interface curvature has not been considered. This problem differs

from that of Golia and Viviani [4] by including the longitudinal pressure gradi-

ent term, −dp/dx = uedue/dx, into the momentum equation (2), which transforms

it into a Marangoni mixed convection boundary layer flow problem. The con-

ditions for the existence of similarity solutions were found and the full bound-

ary layer equations are reduced to similarity or ordinary differential equations.

These equations were integrated numerically using a very efficient numerical scheme

developed by Blottner [1]. The velocity and temperature profiles as well as the

interface velocity and heat transfer at the interface are determined and

discussed in detail. It is concluded that the Marangoni mixed convection param-

eter λ has a substantial effect on the flow and heat transfer characteristics. The

contribution of the present study is shown graphically in Figures 2–13. As argued

in the Introduction, it is important to know the picture of the Marangoni flow

and heat transfer for a large range of values of the parameters λ and Pr because

for λ �= 0 and some values of Pr this flow model eventually breaks down. More

extensive numerical experiments are necessary in an attempt to resolve this

situation.
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