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ABSTRACT 

A new surface based approach to implicit surface polygo- 
nisation is introduced in this paper. This is applied to the 
reconstruction of 3D surface models of complex objects from 
multiple range images. Geometric fusion of multiple range 
images into an implicit surface representation was presented 
in previous work. This paper introduces an efficient algo- 
rithm to reconstruct a triangulated model of a manifold 
implicit surface. A local 3D constraint is derived which de- 
fines the Delaunay surface triangulation of a set of points 
on a manifold surface in 3D space. The ‘Marching Trian- 
gles’ algorithm uses the local 3D constraint to reconstruct 
a Delaunay triangulation of an arbitrary topology manifold 
surface. Computational and representational costs are both 
a factor of 3-5 lower than previous volumetric approaches 
such as marching cubes. 

1. INTRODUCTION 

Automatic reconstruction of integrated 3D models from 
multiple 2.5D range images is a primary goal of recent re- 
search [4, 7, 8, g]. A volumetric approach to geometric 
fusion based on an intermediate implicit surface represen- 
tation was recently introduced [3]. This provides a frame- 
work for reliable integration of multiple images to ensure 
consistent representation of the local surface geometry and 
topology based on measurement uncertainty. In previous 
work the Marching Cubes approach was used to reconstruct 
a triangulated model from the implicit surface represen- 
tation. This approach has four principal limitations: the 
surface is closed; all data are required a priori; the result- 
ing triangulation is highly non-uniform and the method is 
computationally expensive. The ‘Marching Triangles’ sur- 
face based implicit surface polygonisation algorithm is in- 
troduced in this paper to overcome these limitations. A 
local 3D constraint is derived which defines the Delaunay 
triangulation of a set of measurements on a manifold sur- 
face in 3D space. A procedure is introduced for growing a 
triangulation across an implicit surface based on the local 
3D constraint. Marching Triangles enables: polygonisation 
of open surfaces; dynamic integration of new data; efficient 
representation; reduced computational cost and correct re- 
construction of complex surface geometry in regions of high 
curvature and thin sections. 
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2. THEORETICAL BACKGROUND 

This section defines the theoretical basis of a local 3D pro- 
cedure for constructing a triangulated model, M ,  of an un- 
known object surface, S.  We define a 3D surface based 
constraint for the Delaunay triangulation of a set of mea- 
surements, X ,  on an arbitrary topology manifold surface, S.  

The 3D Delaunay triangulation of an arbitrary point 
set X = ( 2 1  ... x i . . . x ~ }  is composed of tetrahedral volumes, 
T(z i ,  xj, xk, zl), such that there exists a sphere which passes 
through each vertex, x, of T which does not contain any 
other interior points of X .  In the case where the points, 
X ,  lie on a manifold surface, S ,  Boissonnat [l] derives the 
following important property. The manifold surface trian- 
gulation represented in the 3D Delaunay triangulation is 
defined by the condition that it is composed of triangles 
T ( x i ,  xj, xk) such that there exists a circumsphere passing 
through each vertex, z, that does not contain any other 
interior point of X. This result defines a 3D triangulated 
manifold surface which correctly represents the measured 
surface geometry and topology. The manifold surface tri- 
angulation defines an optimal geometric structure which is 
symmetric, isotropic and closely related to the metric of the 
surface. In particular the triangulation maximises the min- 
imum angle of any triangle. This is the 3D analogue of the 
2D Delaunay triangulation of a point set where the points, 
X ,  lie on a manifold surface in R3 rather than R2. 

The above definition of the manifold surface approxima- 
tion can be used as the basis for deriving a ‘surface-based’ 
approach to model reconstruction. Given a partial model, 
Ad’, of the surface we define a local procedure for adding tri- 
angular elements to the model boundary. We define a local 
constraint based on the properties of the manifold surface 
triangulation represented in the 3D Delaunay triangulation: 

3D Delaunay Surface Constraint: A triangle, 
T(x , ,  xJ, znew), may only be added to the mesh 
boundary, at edge e ( x 2 , x 3 ) ,  if no part of the ex- 
isting model, M’, with the same surface orienta- 
tion is inside the sphere passing through the tri- 
angle vertices, x, about the center, C T .  Where 
CT is the circumcenter of the triangle vertices, 
(zz, x3, znew), in the plane of the triangle, T .  Sur- 
face points of the same orientation are defined by 
a positive normal dot product, ~ T . T I ~ ~  > 0. 



Figure 1: 3D Delaunay Surface Constraint 

This constraint is illustrated in Figure 1 This con- 
straint is sufficient to guarantee that each triangle, T ,  in 
the resulting model, M ,  uniquely defines the local surface. 
Hence, building a model using this constraint guarantees 
that the local surface does not over-fold or self-intersect. In 
addition by imposing a constraint that ensures the surface is 
locally Delaunay we ensure that the resulting triangulated 
model, M ,  is globally Delaunay, Fortune [a]. 

The circumcenter in the triangle plane, CT, is taken as 
the fourth point required to define a sphere for each triangu- 
lar element. A local 3D Delaunay manifold surface is guar- 
anteed provided the triangle, T ,  satisfies the condition that 
no part of the existing model is inside an arbitrary sphere 
passing through the three triangle vertices, [l] Defining the 
sphere about the equi-distant point in the element plane 
enables this constraint to be satisfied If different surface 
regions are in close proximity the sphere about the center, 
C T ,  may intersect another surface region but will still give 
a valid local triangulation The condition that parts of the 
existing model, M‘, with opposite orientation may intersect 
the sphere allows complex geometries to be modelled. 

3. MARCHING TRIANGLES ALGORITHM 

An implicit surface triangulation algorithm can now be de- 
veloped based on the local 3D constraint defined in the 
previous section An implicit surface is represented as the 
zero-set, f(x) = 0, of a field function, f(x), which defines 
the signed distance to the nearest point on the surface for 
any point in 3D space x. Representation of open manifold 
surfaces requires explicit representation of the boundary 
A boundary function b(x) is defined which is ‘false’ if the 
nearest point is internal to the surface and ‘true’ if the near- 
est point is on the boundary Integration of multiple range 
images into a single implicit surface representation was in- 
troduced in [3] Given an implicit surface representation, 
[f(x), b(z)] ,  of an arbitrary topology manifold surface the 
triangulation algorithm proceeds as follows Firstly an ini- 
tial seed model, M = M O ,  IS defined. This may be either a 
single triangular seed element or a previously constructed 
model to which we wish to incorporate new measurements 
The current model M is represented as a list of edges and 

1. 

2. 

3 

4. 

5. 

6 

7 

Estimate a new vertex position, xcpTo3, by projec- 
tion perpendicular to the mid-point of the bound- 
ary edge in the plane of the model boundary element 
T b o u n d ( X 3 ,  x 2 ,  x k ) ,  by a constant distance, lprod. 
Evaluate nearest point on the implicit surface to xproJ : 
xnew = x n e a r e s t  where f ( x n e a r , s t )  = 0. 
Terminate the mesh growing (7) for the edge if 

(a) Nearest point is on the boundary 

(b) Implicit surface orientation at xnew,  nneW, is 
b(xnew)  =‘true’. 

opposite to the model orientation nT of 
T(xt,2j,xnew): nz-.nneur < 0. 

Apply 3D Delaunay Surface Constraint to T,,, = 

If T,,, passes the 3D Delaunay Surface Constraint 
q x z ,  x3,xnew) 

(a) add xneW to M .  
(b) add T,,, to M .  
(c) add new edges e (x3 ,  xneW) & e(xneW,  xt). 

If T,,, fails the 3D Delaunay Surface Constraint ap- 
ply steps 4 &5 to adjacent boundary vertices, T,,, = 
T(x t ,  2 3 ,  x p r e v )  or Tnew = T ( x t ,  2 3 ,  xnezt) 

Testing of ebound terminates when one or no new el- 
ements, T,,,, have been added to the model, M .  

vertices. The algorithm is implemented as a single pass 
through the edge list. New edges introduced by the ad- 
dition of new elements to the model are appended to the 
end of the edge list. The algorithm does not terminate un- 
til all model edges have been tested once. The algorithm 
proceeds by testing each edge, ebozLnd = e ( x t , x 3 ) ,  on the 
current model boundary, M :  

The mesh growing algorithm defined above enables tri- 
angulation of manifold implicit surface of arbitrary topology 
and geometry. New mesh vertices must correspond to non- 
boundary points on the implicit surface, step (3a). This 
constraint ensures that the measured surface topology is 
correctly reconstructed. Step (3b) ensures that the local 
model geometry corresponds to the implicit surface geom- 
etry. This is required where the estimated vertex position, 
x p T o j ,  may erroneously correspond to a different part of the 
object surface. This may occur for thin object parts with 
the simple estimation scheme of step (1). Step (5) allows 
the local connection of existing model vertices to form a 
continuous surface representation. Marching triangles does 
not impose any constraint on the position of new vertices. 
In particular mesh vertices are not constrained to lie at mea- 
surement points unlike previous mesh growing procedures 
[l, 71. This facilitates adaptive mesh growing by evaluating 
the projected distance, Z p T o 3 ,  according to the local surface 
geometry. 

4. COMPLEXITY AND LIMITATIONS 

Defining a general form for the computational complexity of 
any range image integration algorithm is not possible as it is 
a function of the particular image set, [8, 31. The worst case 
computational complexity is approximated for integrating 
m images of N points assuming O ( N )  redundant measure- 
ments between each pair of images. S ta t ic  integration of 
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Object 

Sphere 
Torus 
Jack 
Telephone 
Rabbit 
Teapot 
Soldier 

m range images requires O ( m )  nearest point evaluations for 
each implicit surface function evaluation, f(z). Assuming 
the model is triangulated at approximately the same spa- 
tial resolution as the original measurements and using the 
Euler formula [5] the number of implicit surface function 
evaluations is O(mN).  Hence, the time complexity of the 
static Marching Triangles integration algorithm is O(m2N) .  
Dynamic integration of a single range image requires the 
evaluation of the implicit surface for a single mesh. Assum- 
ing no redundancy between the model and range image the 
worst case complexity for a single image is O ( N ) .  The time 
complexity of dynamic Marching Triangles integration of m 
range images of N points is O(mN).  

The Marching Triangles algorithm reconstructs the cor- 
rect topology of implicit surface features greater than the 
constant projection distance, Z p r o J .  Assuming the implicit 
surface correctly represents the local topology then the lower 
limit for correct topology reconstruction is the projection 
distance. The 3D Delaunay Surface Constraint does not im- 
pose any limitations on the distance between adjacent sur- 
faces. The use of this constraint enables correct reconstruc- 
tion of arbitrarily thin object parts and crease edges. The 
Marching Triangles algorithm eliminates limitations on sur- 
face geometry inherent in previous integration algorithms. 

Model Size Time(s) 
MT MC MT MC 
1498 11272 4 12 
1198 8744 4 13 
4533 13032 226 574 
6178 41759 43 824 
9817 26792 106 1180 

33728 78507 795 2785 
49922 82877 1087 4191 

5. RESULTS 

Direct comparison of the representational and computa- 
tional efficiency of the Marching Triangles and Marching 
Cubes implicit surface polygonisation algorithms has been 
performed for both synthetic and real data. Throughout 
this comparison the marching triangles projection distance, 
Zpr,,j, is equal to the marching cubes voxel size. Results 
for three simple implicit surfaces derived from algebraic ex- 
pressions for a sphere, torus and jack are given in Table 1. 
R.esults illustrate that both the representation and compu- 
tational cost are significantly lower for the Marching Trian- 
gles approach. 

Results of implicit surface based fusion of multiple range 
images using Marching Triangles approach are illustrated in 
Figure 2. Each data sets contains approximately 10 range 
images. Integration times correspond to a SUN Sparc 20 
workstation. The telephone and bunny' images were pre- 
viously used to demonstrate the mesh zippering integration 

Figure 2: Marching Triangle Reconstruction of 3D Models 

'Cyberware range scanner data [9] 
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(a) Marching Triangles 

Figure 3 Comparison of Representation Efficiency 

algorithm, [9]. The teapot' and soldier' data sets were pre- 
viously used to  demonstrate the integration algorithm of 
Soucy et al. [8]. The teapot and soldier data sets are taken 
from multiple viewpoints in the horizontal plane, resulting 
in regions of no data for horizontal surface and occluded 
regions. Results demonstrate the reliable reconstruction of 
both surface geometry and topology using the implicit sur- 
face based fusion algorithm. Thin surface regions, crease 
edges and regions of high curvature are correctly recon- 
structed. Figure 3 provides a comparison of the triangu- 
lation obtained with the volumetric and surface based ap- 
proaches. Statistics of the model reconstruction are sum- 
marised in Table 1. The results demonstrate that the use 
of the Marching Triangles algorithm results in significant 
reduction in both computation and representation costs. 

6. CONCLUSIONS 

In this paper we have presented a new method for model 
reconstruction from multiple range images. Integration con- 
sists of two stages. Geometric fusion of multiple range im- 
ages into a single implicit surface representation which de- 
fines the local surface topology and geometry, as presented 
in previous work [3]. Model reconstruction is then achieved 
by implicit surface polygonisation. A surface based ap- 
proach for implicit surface polygonisation has been intro- 
duced in this paper and is refered to as 'Marching Trian- 
gles'. Previous implicit surface polygonisation algorithms 
such as marching cubes use volumetric primitives (cubes 
or tetrahedra). This results in a non-uniform distribution 
of triangle shape independent of the surface geometry. The 
Marching Triangles algorithm uses triangular surface primi- 

"RCC laser range images [6] registered using InnovMetric 
software [SI 

tives resulting in an efficient uniform distribution of triangle 
shape based on surface geometry. The algorithm is based on 
a 3D Delaunay Surface Constraint which defines the Delau- 
nay triangulation of a manifold surface in 3D space. This 
constraint ensures correct reconstruction of the local sur- 
face geometry. The resulting triangulation is locally and 
therefore globally Delaunay. Triangulation is performed by 
operations in 3D space only. This eliminates constraints on 
local surface geometry associated with previous mesh grow- 
ing algorithms which require local 2D projection [4, 7, 8, 91. 
Unlike previous integration algorithms model vertices are 
not constrained to lie at the original measurement posi- 
tions. Previous volume based implicit surface polygonisa- 
tion algorithms, such as marching cubes, result in a rela- 
tively inefficient representation due to non-uniform triangle 
shape. Dynamic integration of new measurements into an 
existing model is also enabled which was not possible with 
previous polygonisation algorithms. Results demonstrate 
the reliable reconstruction of surface models of complex ob- 
jects. Marching Triangles reduces both the computational 
and representational cost of implicit surface polygonisation 
by a factor of 3-5 compared to previous approaches. Fu- 
ture work should address the use of Marching Triangles for 
adaptive implicit surface polygonisation according to the 
local surface geometry. 
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