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S U M M A R Y

This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of

magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM)

data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using

a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids

are typically used due to their ease of construction. Unstructured grids provide significantly

more geometric flexibility and parameter efficiency than the structured rectangular grids

commonly used by most other inversion codes. Transmitter and receiver components located on

topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic

fields accurately reproduce the real survey geometry. The forward solution is implemented

with a goal-oriented adaptive finite-element method that automatically generates and refines

unstructured triangular element grids that conform to the inversion parameter grid, ensuring

accurate responses as the model conductivity changes. This dual-grid approach is significantly

more efficient than the conventional use of a single grid for both the forward and inverse meshes

since the more detailed finite-element meshes required for accurate responses do not increase

the memory requirements of the inverse problem. Forward solutions are computed in parallel

with a highly efficient scaling by partitioning the data into smaller independent modeling tasks

consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion

is carried out with a new Occam inversion approach that requires fewer forward calls. Dense

matrix operations are optimized for memory and parallel scalability using the ScaLAPACK

parallel library. Free parameters can be bounded using a new non-linear transformation that

leaves the transformed parameters nearly the same as the original parameters within the bounds,

thereby reducing non-linear smoothing effects. Data balancing normalization weights for the

joint inversion of two or more data sets encourages the inversion to fit each data type equally

well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm’s

performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from

the Middle America Trench offshore Nicaragua demonstrates a real world application. The

source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.

Key words: Numerical solutions; Inverse theory; Electromagnetic theory; Magnetotellurics;

Marine electromagnetics.

1 I N T RO D U C T I O N

The industrial investment in marine controlled-source electromag-

netic (CSEM) methods for offshore oil and gas exploration over

the past 15 yr has driven innovations in data acquisition leading to

a remarkable increase in the size of offshore data sets, with large

modern surveys consisting of a few hundred kilometres of CSEM

source tows and hundreds of EM receiver deployments that record

the transmitted electromagnetic fields (e.g. Constable 2010; Myer

et al. 2012; Pedersen & Hiner 2014). This large amount of data

presents a significant computational challenge for inverse modeling

(e.g. Commer et al. 2008). While some geometrically complex re-

gions may require full 3-D inversion, the faster computational times

possible with 2-D inversion make it an important practical tool for

CSEM modeling and interpretation of real data, as well as for model

feasibility and sensitivity studies.

The inline geometry of a typical CSEM survey is well suited for

2-D modeling, where the EM field generated by the dipole source is

primarily measured by receivers deployed along the towline, making

the data predominantly sensitive to subsurface conductivity varia-

tions in the region between the source and receivers (e.g. Weiss

& Constable 2006; Constable 2010). Even when 3-D inversion is
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needed due to complicated structures or the desire to model offline

receiver data, 2-D inversions computed from data along parallel

towlines can be combined to create a useful starting model for sub-

sequent 3-D inversion, ideally leading to faster convergence of the

3-D inversion. While 1-D inversion can be used for even more rapid

data analyses, it is prone to significant model biases since 1-D mod-

els are unable to reproduce the strong lateral edge effects from 2-D

and 3-D structures, particularly when the source and receiver are on

opposite sides of a lateral contact (e.g. Orange et al. 2009; Sasaki

& Meju 2009). In the context of offshore hydrocarbon exploration,

inline CSEM responses from thin, deeply buried 2-D reservoirs can

often closely match those from 3-D reservoirs whereas the corre-

sponding 1-D model responses are usually significantly different

(e.g. Tehrani & Slob 2013). Furthermore, 1-D models cannot repro-

duce the effects of seafloor topography that are possible with 2-D

modeling (Li & Constable 2007).

Regularized non-linear 2-D EM inversion for the magnetotel-

luric (MT) method and the significantly more computationally ex-

pensive CSEM method has been well developed for over the past

two decades (e.g. deGroot Hedlin & Constable 1990; Unsworth &

Oldenburg 1995; Lu et al. 1999; Rodi & Mackie 2001; Abubakar

et al. 2008), yet it is useful to revisit this topic given recent advances

in numerical modeling and parallel computing. In particular, three

independent developments present the opportunity for an improved

2-D inversion toolkit.

The first advance is the application of unstructured triangular

modeling grids in finite-element forward solvers for both MT and

CSEM problems (e.g. Key & Weiss 2006; Franke et al. 2007; Li &

Key 2007). These works showed that unstructured modeling grids

are able to accurately and efficiently discretize complex 2-D ge-

ometries including topography, sloping structural boundaries and

multiple-scale structures, all of which can be difficult and numeri-

cally expensive to incorporate into the structured rectangular mod-

eling grids used by traditional finite-element and finite-difference

modeling codes. By using unstructured grids for inversion param-

eters rather than the typical rectangular grids, these same benefits

could be applied to inverse modeling. Unstructured grids have al-

ready been shown to be useful for 3-D inversion with complex

seafloor topography (Schwarzbach & Haber 2013) and for 3-D for-

ward modeling (Ren et al. 2013; Jahandari & Farquharson 2014).

The second advance is automatic adaptive mesh refinement for

solving the forward problem (e.g. Key & Weiss 2006; Franke et al.

2007; Li & Key 2007; Key & Ovall 2011; Pardo et al. 2011). In

this approach, the forward problem is solved on iteratively refined

finite-element meshes until the solution meets a specified tolerance.

Mesh refinement is guided by a goal-oriented error estimator that is

used to select which elements should be refined, based on how the

error in each element influences the accuracy of the EM responses

at the receiver locations. Adaptive mesh refinement frees the user

from the burden of having to design an accurate forward modeling

grid, a task that can be cumbersome or uncertain for complicated

models, or may be beyond a user’s experience level.

In the context of inversion, adaptive mesh refinement could be

performed during each step of the inversion to ensure the forward

responses retain accuracy while the model conductivity parameters

change, rather than relying on a single fixed mesh for all steps of

the inversion, as is done in many existing codes. Since the adaptive

refinement leads to a variable number of elements in the forward

mesh, it can be decoupled from the static inversion parameter grid

by using a dual-grid approach where the adaptively generated finite-

element meshes conform to the parameter grid. Another reason to

use a dual-grid approach is so that the tiny finite elements required

around the transmitters and receivers for numerical accuracy of the

forward responses do not increase the size of the inverse problem.

A dual grid with a static finite-element mesh was shown to be

beneficial in one of the first 2-D MT inversion codes (deGroot

Hedlin & Constable 1990). An advance on this approach would be

to include adaptivity, so that the user only needs to define the inverse

parameter grid and the code would then automatically generate

and refine the finite-element meshes on the fly. An earlier forward

modeling code applied a similar approach where the model was

defined by arbitrary polygonal regions of constant conductivity and

all finite-element mesh generation and adaptive refinement was done

on the fly (Key & Ovall 2011).

Finally, all modern computing platforms have parallel processing

capabilities, ranging from a few processing cores on laptops, to a

dozen or more cores on workstations, to hundreds or thousands of

processing cores on commonly available networked cluster comput-

ers. Thus, a modern inversion code should leverage parallel com-

puting algorithms for both the forward and inverse components. The

EM forward problem is easily separated into many parallel calcula-

tions since each transmitter and frequency give rise to independent

linear systems, resulting in what is known in the parallel computing

community as an embarrasingly parallel problem where there is

little to no need for intercommunication between parallel processes

(e.g. Newman 2013). Since a typical data set may have 10 or more

frequencies and hundreds of transmitters, the parallel speedup can

be considerable when run on a cluster with as many processors as

independent tasks (e.g. Key & Ovall 2011). Previous forward mod-

eling work showed that additional parallel speedups are possible

by decomposing the data into small subsets of receivers and trans-

mitters and carrying out adaptive mesh refinement independently

on each subset, resulting in smaller finite-element systems and thus

faster forward solves for each reduced data subset (Key & Ovall

2011). Similar parallel speedups could be possible when computing

the sensitivity terms in the rows of the Jacobian matrix required by

inversion methods.

Parallel computing can also help solve problems that re-

quire more memory than is available on a single processor (e.g.

Newman & Alumbaugh 1997; Newman 2013). For the non-linear

Gauss–Newton inversion method considered in this work, the ob-

vious candidates for distributed memory efficiencies include stor-

ing the dense matrices for the Jacobian and the approximate Hes-

sian in parallel. Further, the dense matrix factorization required to

solve the model update equations could be sped-up using parallel

methods.

The aim of this work is to further describe these advances and oth-

ers that are part of the new inversion code MARE2DEM (Modeling

with Adaptively Refined Elements for 2-D EM), which is the suc-

cessor to an earlier CSEM and MT forward code with the same name

(Key & Ovall 2011). Although 2-D MT inversion codes have been

available for a few decades, this is the first freely available 2-D code

for anisotropic inversion of MT data and for isotropic or anisotropic

inversion of CSEM data. The main novel features of MARE2DEM

when compared to other 2-D EM inversion codes include the un-

structured model parametrization, automatic adaptive mesh refine-

ment, a highly scalable parallel data decomposition and parallel

matrix inversion that allow for faster run-times and the solution of

larger inverse problems when many processing cores are available,

and the new fast Occam inversion method described below. Addi-

tional features include joint inversion of MT and CSEM data and a

new non-linear transformation for bounding the range of permissi-

ble inverted resistivity values. Finally, all of the features described

in this manuscript as well as interactive user-interface programs
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for model construction and response plotting are freely available in

software packages distributed at http://mare2dem.ucsd.edu.

2 T R I A X I A L LY A N I S O T RO P I C

F O RWA R D M O D E L I N G

A previous 2-D finite-element solution that includes triaxial

anisotropy is given in Kong et al. (2008), while Li & Dai (2011)

offer a solution for the more complicated case of tilted anisotropy.

Here, the triaxially anisotropic formulation is given using the same

notation as the isotropic equations in Key & Ovall (2011). This

is followed by an overview of the goal-oriented adaptive finite-

element solution to the forward problem and a brief presentation of

the adjoint method used to compute the field component sensitivities

required by the non-linear inversion.

2.1 Problem statement

Consider the anisotropic 2-D electrical conductivity model ¯̄σ (y, z)

with strike direction x and imposed electric and magnetic sources Js

and Ms. Assuming the time variation e−iωt with angular frequency

ω, the governing equations for the frequency-domain electric field

E and magnetic field H are

∇ × E − iωμH = Ms, (1)

∇ × H − ¯̄σE = Js. (2)

The material electromagnetic properties are represented by the mag-

netic permeability μ and the symmetric second-rank electrical con-

ductivity tensor ¯̄σ , which in this work is restricted to be triaxial:

¯̄σ =

⎡

⎢
⎢
⎣

σx 0 0

0 σy 0

0 0 σz

⎤

⎥
⎥
⎦

. (3)

Each element of the tensor denotes the complex conductivity

σ = σ̂ − iωǫ, where σ̂ is the real component of electrical con-

ductivity and the imaginary component depends on the dielectric

permittivity ǫ. Since σ ≫ ωǫ for most low-frequency geophysical

applications, the imaginary term can usually be safely neglected

in what is known as the quasi-static approximation (e.g. Ward &

Hohmann 1987). The 3-D equations above are transferred into 2-D

by Fourier transformation with respect to x:

F̂(kx , y, z) =
∫ ∞

−∞
F(x, y, z)e−ikx x dx, (4)

where kx is the spatial wavenumber in the strike direction x and a

hat ( ˆ ) denotes the quantity in the wavenumber domain (kx, y, z).

After Fourier transformation and some tedious manipulations, the

coupled differential equations for the strike parallel electromagnetic

field components Êx and Ĥx can be found to be simply

−∇ · (A∇u) + Cu = f in � u = 0 on ∂�, (5)

where � denotes the model domain with outer boundary ∂� and

u = (Êx , Ĥx ). The gradient and divergence are interpreted compo-

nentwise:

∇u = (∇ Êx , ∇ Ĥx ),

∇ · A∇u = ∇ · w = (∇ · w1, ∇ · w2).

The coefficient matrices A and C are nearly the same as those given

in Key & Ovall (2011), but here have been extended for triaxial

anisotropy:

A =
(

λσt ikxλR

ikx Rλ iωμλ′

)

, C =
(

σx 0

0 iωμ

)

,

where

R =

(

0 −1

1 0

)

, σt =

(

σy 0

0 σz

)

,

λ−1 =

(

k2
x − iωμσy 0

0 k2
x − iωμσz

)

, λ′ = RT λR. (6)

The off-diagonal terms in matrix A couple the Êx and Ĥx fields

for CSEM sources; however, for MT sources kx = 0 since the 2-

D fields are uniform along the strike direction x and hence (5)

uncouples into two independent equations for the traverse electric

and magnetic modes. The source term f is

f = ∇ · (AQT st ) − sx (7)

where

Q =

(

0 R

R 0

)

, st = (Ĵs
t , M̂s

t ), sx = ( Ĵ s
x , M̂ s

x ). (8)

The numerical solution of (5) provides the strike parallel fields Êx

and Ĥx . The transverse field vectors in the (y, z) plane (Êt and Ĥt )

can then be found with a post-processing step using the relation

ut = Q A ∇u + QT AQ st (9)

where

ut = (Êt , Ĥt ). (10)

Finally, the 3-D spatial domain fields at position (x, y, z) are obtained

with the inverse Fourier transform:

F(x, y, z) =
1

2π

∫ ∞

−∞
F̂(kx , y, z)eikx x dkx . (11)

2.2 Solution using goal-oriented adaptive finite elements

By restating the strong form of the differential equations in (5) in

their weak form, the coupled variational problem is: find u ∈ H =
[H 1

0 (�)]2 such that
∫

�

(A∇u) : ∇v + (Cu) · v d�

︸ ︷︷ ︸

B(u,v)

=
∫

�

f · v d�

︸ ︷︷ ︸

F(v)

for all v ∈ H, (12)

where the double-dot notation describes the relation

(A∇u) : ∇v = w : ∇v = w1 · ∇v̄1 + w2 · ∇v̄2, (13)

w = (w1, w2) and the v and v notations denote complex conjugation.

H 1
0 (�) denotes the space of complex functions whose first-order

weak derivatives are square integrable and which vanish on the

boundary. The discrete version of (12) is:

B(un, v) = F(v) for all v ∈ Vn, (14)

where Vn is the space of piecewise linear functions used for the

finite-element basis and un is a vector of the strike parallel elec-

tric and magnetic field coefficients at the element vertices. Fur-

ther details of the discrete finite-element system are given in

Appendix A.
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Obtaining an accurate EM solution from the finite-element

method depends on using a properly designed mesh. While in prin-

ciple, the user of a finite-element code could a priori design a

suitable mesh based on extensive prior experience and rules-of-

thumb, a more reliable and convenient approach is to let the physics

of the problem automatically guide an iterative adaptive mesh re-

finement scheme until the mesh produces an EM field solution with

the desired numerical accuracy. This could be helpful for non-linear

inversion where the conductivity within the model domain, and thus

the coupling of the EM sources to structure and the spatial gradi-

ents of the EM fields, can change considerably during the inversion

iterations.

The basic recipe for adaptive finite-element methods is to first

compute the solution to the finite-element problem using a coarse

triangulation mesh. Some post-processing or other method is used

to estimate the error in the finite-element solution for each mesh

element. The elements with the largest estimated error are marked

for refinement, and the grid is subsequently refined in these re-

gions. This sequence is repeated until the solution is estimated to

be accurate to within a specified tolerance.

A variety of error estimation schemes have been proposed, but

goal-oriented error estimators have received considerable attention

since they seek to minimize the error in some linear functional of

the finite-element solution that is related to a practical quantity of

interest, rather than minimizing a global energy norm (Prudhomme

& Oden 1999). For example, the goal for EM geophysics forward

modeling is to produce accurate responses at the discrete locations

of the receivers, and therefore the goal functional can be specified to

be a functional form of the EM response. MARE2DEM uses a goal-

oriented error estimator following the hierarchical basis method

presented in Ovall (2006) and later applied to EM geophysics in

Key & Ovall (2011). The error in the finite-element solution is

approximated with u − un ≈ εn ∈ Wn , where Wn is an auxiliary

space of quadratic edge-bump functions that vanish at every vertex

but are continuous across the edges of the mesh. Together the spaces

Wn and Vn form a hierarchical basis since the space of globally

continuous quadratic functions Xn = Vn⊕Wn. Additional details of

Wn and Vn are given in Appendix A. Since CSEM responses can

span several orders of magnitude due to the rapid decay of the EM

fields, MARE2DEM uses a goal functional that approximates the

relative error in the electric and magnetic field responses at the

discrete locations of the EM receivers. Thus, the adaptive mesh

refinement iterations seek to minimize the relative error in the EM

responses. Further details are given in Appendix B.

2.3 Sensitivity calculations

The non-linear inversion method presented in the next section is

guided by the partial derivatives of the electric and magnetic fields

at each receiver with respect to the conductivity parameters of the

inverse model; these quantities are usually referred to as the field

sensitivities. While in principle these can be obtained directly by

taking the partial derivative of (5) with respect to each parameter

and then solving the corresponding finite-element system, this ap-

proach becomes inefficient when the number of model parameters

n exceeds the total number of receiver components. A more effi-

cient approach exploits the adjoint reciprocity of the problem (e.g.

McGillivray et al. 1994, and references therein). If there are p total

measured electric and magnetic field components, the adjoint reci-

procity method requires only p additional solutions to the original

finite-element system using p new right-hand side loading vectors

(f in eq. A1), resulting in a large savings compared to the direct

sensitivity solution when n ≫ p. MARE2DEM exploits the direct

matrix factorization used for the finite-element system by reusing

the factorization when solving for the p adjoint sources, resulting

in a significant time savings compared to using an iterative solver

for both linear systems.

A concise derivation of the adjoint reciprocity formula for com-

puting EM sensitivities is provided in McGillivray et al. (1994)

and its application to various 2-D EM problems was previously

presented in Farquharson & Oldenburg (1996) and Unsworth &

Oldenburg (1995). Here, the formulation is extended for triaxial

anisotropy. The sensitivity of a given electric or magnetic field

component F to the anisotropic conductivity component σ j can be

found with the Fourier transform

∂ F

∂σ j

(x, y, z) =
1

2π

∫ ∞

−∞
Ŝ j (kx , y, z)eikx (xr −xs )dkx , (15)

where the Fourier kernel is defined as

Ŝ j (kx , y, z) =
∫

A j

Êa(−kx , y, z) ·
(

∂ ¯̄σ

∂σ j

Ê(kx , y, z)

)

d A j . (16)

Ê is the wavenumber domain electric field generated by a source at

the true source location, whereas Êa is an adjoint electric field gen-

erated by turning the particular receiver component F into an adjoint

source. Aj refers to the cross-sectional area of the cell containing pa-

rameter σ j and xr and xs are the along-strike positions of the receiver

and true sources. The tensor derivative ∂ ¯̄σ
∂σ j

is zero except where it

equals unity on the diagonal component (x, y or z) corresponding

to the anisotropic orientation of ∂σ j and thereby acts to extract the

corresponding parallel components of the electric fields Êa and Ê.

Thus, for anisotropic models, the sensitivity to a given conductivity

direction only depends on the component of the electric field (and

the associated electric current) parallel to that direction. Conversely,

for isotropic models, ∂ ¯̄σ
∂σ j

= 1 and the sensitivity depends on all three

components of the electric field. In summary, eq. (16) shows that the

sensitivity of a given field component to all model parameters can

be found with only a single additional finite-element solution for the

adjoint field Êa . For efficiency, MARE2DEM computes the adjoint

solutions using the same adaptively refined mesh that is generated

by the forward solution for Ê.

3 I N V E R S I O N F R A M E W O R K

3.1 Fast Occam inversion

Regularized EM inversion (e.g. Parker 1994; Zhdanov 2002) typi-

cally seeks to minimize an unconstrained functional of the form

U = ‖Rm‖2 + ‖P(m − m∗)‖2 + μ−1‖W(d − F(m))‖2 (17)

where m is the n dimensional vector of model parameters with units

log10(resistivity), the first term on the right-hand side measures the

model’s roughness, the second term measures the model’s deviation

from a prejudice m∗ and the third term is the fit of model’s forward

response F(m) to the observed data vector d weighted by the data’s

inverse standard errors in the diagonal matrix W. The prejudice

term is optional, and its diagonal weighting matrix P is usually set

to zero everywhere; if a user desires to bias a particular subset of the

model parameters, the corresponding diagonal elements can be set

to some positive weighting value and the desired resistivity can be

inserted into m∗. The Lagrange multiplier μ is used to balance the

trade-off between the data fit and the model roughness and model

prejudice, thereby stabilizing an otherwise ill-conditioned inverse
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Figure 1. Convergence of the regular Occam and fast Occam algorithms. Coloured dots show the misfit for each forward call during the line search minimization

of each Occam iteration. Numbers next to the coloured symbols and lines denote the iteration number. The fast Occam approach found an acceptable model at

rms 1.0 using much fewer forward calls.

problem. The precise form of the roughness operator matrix R is

discussed in a later section.

The Occam approach (Constable et al. 1987) is a variant of non-

linear Gauss–Newton minimization that is widely known for its

geophysical applications; it linearizes the functional about a starting

model mk and accomplishes the minimization iteratively using:

mk+1 =
[

μ
(

RT R + PT P
)

+ (WJk)T WJk

]−1

× [(WJk)T Wd̂ + μPT Pm∗] (18)

where the modified data vector

d̂ = d − F(mk) + Jkmk . (19)

The model Jacobian matrix J has entries

Ji j =
∂Fi (mk)

∂m j

=
∂Fi (mk)

∂ log10 ρ j

= −
ln (10)

ρ j

∂Fi (mk)

∂σ j

(20)

where sensitivities ∂Fi (mk)/∂σ j are efficiently computed using the

method discussed in the previous section.

Phase 1 of the Occam algorithm consists of a line search over eq.

(18) that seeks the value of μ that produces mk+1 with the lowest data

misfit, which at least initially will be larger than the target misfit.

In the original Occam implementation, this line search is carried

out efficiently by first bracketing a minimum using a golden-section

search, and then finding the minimum using Brent’s method (Press

et al. 2003). An illustrative example is shown on the left-hand

side of Fig. 1. Each iteration starts off with a Jacobian calculation

J(mk) in conjunction with a forward call F(mk) to determine the

misfit of the starting model, then the line search is carried out. In

the best case scenario where the minimum is bracketed and found

immediately, the algorithm requires four forward model evaluations.

In this particular example, up to six forward calls were needed for

some iterations, and in other cases it is not uncommon to see up to 9

or 10 forward calls during an Occam iteration. While this dynamic

search over μ gives Occam a robustness for finding better fitting

models, the number of forward calls has been considered costly and

has led to other inversion algorithms using a fixed μ value, which is

only modified when a better fitting model cannot be found (see e.g.

the discussions in Siripunvaraporn 2012; Egbert & Kelbert 2012).

Inspection of Fig. 1 shows that the minimum search during the

first three iterations results in model misfits which, although at the

local minimum, are still significantly larger than the target misfit.

This motivates a minor change to the algorithm that makes it a hybrid

that balances the speed of fixed μ algorithms and the robustness of

the Occam’s dynamically determined μ. The change, which here is

referred to as the fast Occam algorithm, is as follows. If at any given

step of the minimum search a model is found with a sufficient misfit

reduction compared to the staring model’s misfit, it is accepted and

the iteration is terminated; otherwise the complete minimum search

is carried out as normally done for the regular Occam algorithm.

Through trial and error, a root-mean-squared (rms) misfit reduction

threshold of about 15 per cent has been found to work well for

typical MT and CSEM inversions. A comparison example is shown

on the right-hand side of Fig. 1. Here, it took seven Occam iterations

to reach the target misfit, but each iteration only required one or two

forward calls, resulting in a significant time savings compared to

the regular Occam approach.

For both the regular Occam and fast Occam approaches, if the

minimum search fails to find a model with a lower misfit, a reduced

model step is taken and the line search is carried out again using

the model m′
k+1:

m′
k+1 = α mk+1 + (1 − α)mk . (21)

Initially, the step size α = 1 and α is successively cut in half each

time the line search fails to find a better fitting model.

Once a model with a misfit less than or equal to the target misfit

has been found, phase 2 of the Occam algorithm begins, where it

seeks the model at the target misfit that has the largest μ, and thus

the smallest roughness norm. This is accomplished by bracketing μ

about the target misfit and iteratively using interpolation to find the

largest value of μ at the target misfit.

3.2 Distributed dense matrix operations

A computational difficulty that Occam and other Gauss–Newton

style inversions encounter is dealing with the dense matrices in

eq. (18) when the model size grows large. For n model parameters,

(WJ)T WJ requires n2 values to be stored in memory. Furthermore,

the dense matrix–matrix multiplication and subsequent matrix fac-

torization for solving the linear system have operation counts that

scale as O(n3). For big models, the time spent on the matrix op-

erations can be orders of magnitude larger than the time spent

computing the forward response and the model Jacobian. This has

motivated the development of inversions using linear and non-linear
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576 K. Key

Figure 2. Runtime scaling (left) and relative speedup (right) of the ScaLAPACK routines used for the dense matrix operations in MARE2DEM. Solid lines

show the time to compute the dense matrix product (WJ)T WJ using the routine PDSYRK. Dashed lines show the time required to solve the linear system in

eq. (18) using the Cholesky factorization routines PDPOTRF and PDPOTRS. Relative speedup is here defined to be T8/Tp, where T8 is the time taken on eight

processors and Tp is the time required on p processors.

conjugate gradient methods that only require matrix-vector products

between J (or its transpose) and a vector, which can be computed

on-the-fly and do not require explicit storage of J in memory (e.g.

Mackie & Madden 1993; Newman & Alumbaugh 2000; Newman &

Boggs 2004). While these approaches are necessary for large-scale

3-D inversion due to their frugal use of memory (e.g. Commer &

Newman 2008), a disadvantage is that convergence is much slower

than Gauss–Newton style inversion, requiring significantly more

forward calls (e.g. Siripunvaraporn 2012).

Although the present work only considers 2-D models, the num-

ber of parameters for long 2-D profiles can easily grow large enough

that the above limitations become burdensome. For example, con-

sider a marine CSEM towline that is 100 km long; if the inversion

parameter grid has 25 m thick cells to 2 km beneath the seafloor and

50 m cell widths, the resulting grid will have 160 000 cells. For trans-

versely isotropic conductivity inversion where each cell has two free

parameters (i.e. vertical and horizontal conductivity), the inverse

problem will have 320 000 total parameters. To support the inversion

of such large data sets while still retaining the rapid convergence

and robustness of the Occam inversion approach, MARE2DEM

carries out the dense matrix operations in distributed form using

the ScaLAPACK library (Blackford et al. 1997). ScaLAPACK con-

tains a subset of LAPACK routines that have been redesigned for

distributed memory parallel computers using the message passing

interface (MPI) standard, making it highly portable for present-day

computing environments ranging from multicore laptops to small-

to large-scale cluster and cloud computing systems.

On a computer or cluster with p processors, a dense m × n

matrix can be stored in distributed form using only mn/p values per

processor. For example, if m = n = 2 × 105 and p = 100 then mn/p

= 4 × 108. When stored as double precision variables, the 320 GB

required to store the matrix on a single processor, which is near

the memory capacity of current high-end cluster nodes, reduces to

only 3.2 GB per processor in distributed form. For ScaLAPACK,

the processors are mapped into a virtual 2-D grid of dimensions p

= r × c where r is the number of virtual processor rows and c is the

number of virtual processor columns. The matrix is distributed in 2-

D block cyclic form where each processor has a local matrix of size

m/r × n/c. The block cyclic distribution has been shown to have

significant advantages over simple contiguous block distribution,

particularly for load balancing between processors and memory

hierarchy within a single processor (Blackford et al. 1997).

Fig. 2 shows examples of using the ScaLAPACK routine

PDSYRK to compute the dense matrix product (WJ)T WJ and rou-

tines PDPOTRF and PDPOTRS to solve eq. (18) using Cholesky

factorization. These computations were run on a medium-scale clus-

ter with dual-socket, 8-core, 2.6GHz Intel Xeon E5-2670 processors

connected with a quad data rate InfiniBand network. Test cases are

shown for m = n = 20 000, 40 000 and 80 000 when run on 8–

480 processors. Consider the 80 000 case where the matrix–matrix

multiplication took over 1 hr when carried out on eight processors,

yet was reduced to only 95 s when run on 480 processors. A similar

reduction is seen for the Cholesky factorization, which runs about

50 per cent faster than the matrix multiplication. To better illustrate

the scaling of the algorithm, Fig. 2 also shows the relative speedup

as a function of the number of processors; here the relative speedup

is defined to be T8/Tp where T8 is the time taken on eight processors

and Tp is the time required on p processors. An algorithm that scales

with perfect efficiency will have a speedup that falls along the grey

line where the speedup is p/8. As can be seen, both the matrix multi-

plication and Cholesky routines scale well for the large matrix case

(80 000), reaching speedups of about 50 and 40 when run on 480

processors, which is close to the optimum speedup of 60. For lower

number of processors (≪100), the 20 000 and 40 000 cases have

good speedups, but for larger number of processors the efficiency

drops down as the work load per processor becomes insignificant

compared to the interprocessor communication demands. However,

the overall run-times for these cases are only a few seconds so that

the less than ideal efficiency is not a concern.

3.3 Bounds on model parameters

The model update eq. (18) does not place any constraints on the

range of values that a parameter can take, yet often there are geo-

logical reasons or ancillary data sets that suggest the conductivity

will be within a certain range of values. When such inequality con-

straints are desired, they can be implemented simply by recasting

the inverse problem using a non-linear transformation of the model
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MARE2DEM inversion code 577

parameters so that the objective function and optimization algo-

rithm remain essentially the same as the unconstrained problem

(Box 1966). The model parameter m is bounded as

l < m(x) < u (22)

while the transformed parameter x is unbounded

−∞ < x(m) < ∞. (23)

With the transformed model vector x, the model update is accom-

plished with a modified version of eq. (18):

xk+1 =
[

μ
(

RT R
)

+
(

WJ∗
k

)T
WJ∗

k

]−1 [(

WJ∗
k

)T
Wd̂

]

(24)

where

d̂ = d − F(m(xk)) + J∗
k xk, (25)

J ∗
i j =

∂m j

∂x j

Ji j , (26)

and the model prejudice term has been omitted for brevity. In fact,

most EM inversion codes already use such a transform approach

by inverting for log10σ or log10ρ to avoid physically meaningless

negative conductivities, as shown by (20). While an infinite number

of transformations are possible for more restrictive double-sided in-

equality bounds, a commonly used one is the exponential transform

(Zhdanov 2002; Habashy & Abubakar 2004; Commer & Newman

2008):

m =
uex̃ + l

ex̃ + 1
where x̃ = x − (u + l)/2. (27)

In the variation shown here, the variable x̃ has been introduced

to keep the symmetry about the midpoint of the bounds at (u +
l)/2, which facilitates comparison with the bandpass transform in-

troduced later. For large positive x, m(x) asymptotes to u, while for

large negative x, m(x) asymptotes to l. The sensitivity transform is

found by taking the derivative of this expression, yielding:

∂m

∂x
=

(u − l)ex̃

(1 + ex̃ )2
. (28)

The transformed variable x(m) can be found from (27):

x = log(m − l) − log(u − m) + (u + l)/2, where l < m < u.

(29)

Fig. 3 shows examples of this transformation and the sensitivity

scaling for two different sets of bounds. For l = −1 < m < u = 5,

the bound parameters and the transform variable x are fairly close

to the original parameters. However, when the bounds are tighter, l

= −1 < m < u = 1, the transformed parameters are quite different

from the true parameters. This difference can also be seen in the

sensitivity scaling curves shown in Fig. 3. Functionally, this differ-

ence does not affect the ability of the transform to bound the model

parameters, and indeed the exponential transform has been shown

to be useful in practice (e.g. Commer & Newman 2008). However,

note that the roughness operator R in eq. (24) is operating on the

transformed parameter and not the original parameter; this could

have unintended consequences, for example, where the transforma-

tion significantly increases or decreases the spatial gradient in the

transformed model, effectively resulting in a non-linear roughness

operator that underpenalizes regions where the transform reduces

the model gradient and overpenalizes regions where the gradient is

increased.

Figure 3. Non-linear transforms used to bound model parameters during

inversion. The bound model parameter function m(x) (top) and the sensitivity

scaling ∂m
∂x

(bottom) are shown for the exponential transform (red and blue)

and the newly proposed bandpass transform (black).

This work proposes a new transformation that does not suffer

from this shortcoming. Consider a flat sensitivity scaling with unit

amplitude in the passband between b and a; this is ideal since it can

be used to make the transformed parameters nearly identical to the

original parameters within the range of the bounds. This suggests

that a bandpass filter response equation is a good candidate for the

transform’s sensitivity scaling:

∂m

∂x
=

1 − ec(l−u)

(1 + e−c(x−l))(1 + ec(x−u))
, (30)

where c is a constant that controls the decay of the scaling past the

bounds. By setting c to be a function of the extent of the bounds,

the shape of the transform shape can be made to be independent of

the specific bounds. c = 15/(u − l) has been found to work well

in practice. Integrating this equation yields the expression for the

bound model parameters:

m(x) =
1

c
log

(
1 + ec(l−x)

1 + ec(u−x)

)

+ u, (31)

and solving for x yields

x(m) =
1

c
log

(
ec(m−l) − 1

1 − ec(m−u)

)

+ l. (32)

Fig. 3 shows an example of this transform, which is here referred

to as the bandpass transform. Between the bounds, the transformed

parameters are identical to the original parameters, as desired, while

the sensitivity scaling is flat between the passband with steep drop-

offs beyond the bounds.

Both the exponential and bandpass transforms have been imple-

mented in MARE2DEM so that each model parameter can have
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578 K. Key

its own unique bounds specified. For some data sets, the user will

have a priori knowledge that can guide the use of a narrow range of

parameter bounds in certain localized regions, for example, where

nearby well logs provided independent constraints on conductivity.

Narrow bounds could also be prescribed to test hypotheses about

the range of permissible resistivity values that fit a given data set.

Yet in most cases the inversion will be run without any bounds.

However, experience has shown there to be a benefit from applying

global bounds on all model parameters so that extreme values are

excluded from the inversion. In particular, if the line search jumps

to very low μ values, the Occam model update can produce rough

models that have unrealistically high and low resistivity that usu-

ally produce poor misfit. Bounding all parameters to a plausible

range (such as 0.1–100 000 ohm m for marine models) alleviates

this situation. Another consequence is that unrealistically conduc-

tive regions can cause the adaptive mesh refinement scheme in the

forward code to spend excessive effort refining the mesh to produce

accurate responses in these regions; bounding all the model param-

eters to a plausible range avoids this computational time-wasting

situation.

3.4 Roughness norm for an unstructured grid

The model roughness operator R stabilizes the inversion by provid-

ing a measure of the model variations so that its minimization will

steer the inversion away from producing spurious structures. While

a variety of norms are possible, the L2 norm of the model gradient

is a popular choice (e.g. Parker 1994; Zhdanov 2002):

‖R(m)‖2 =
∫

�

∇m · ∇m d�. (33)

Here, the gradient dot product is integrated over the model do-

main. On a structured grid, it is straightforward to form the discrete

approximation of this integral using distance weighted first differ-

ences between neighbouring parameters in the vertical and hori-

zontal directions. For unstructured grids, the situation is less clear.

Schwarzbach & Haber (2013) proposed a primal-dual mixed finite-

element formulation for discretizing this integral on unstructured

tetrahedral meshes but this solution is cumbersome to implement

and furthermore is limited to tetrahedral grids (and by extension

triangular grids in 2-D).

Here, the following weighted sum of squares approach has been

found to work well for both triangular and quadrilateral parameter

grids:

‖Rm‖2 =
m
∑

i=1

Ai

⎡

⎣

N (i)
∑

j=1

w j

(
�mi j

�ri j

)2

⎤

⎦ (34)

where

�mi j = mi − m j , (35)

�ri j =
√

(yi − y j )2 + (zi − z j )2, (36)

w j =
A j

∑N (i)

k=1 Ak

, (37)

Ai is the area of parameter i and accounts for the integration over the

parameter region and N(i) is the set of all parameters sharing a vertex

with parameter i. The term in brackets in eq. (34) approximates the

two-norm of the gradient at parameter i using an area weighted

average of differences between all parameters in a ring surrounding

parameter i (see Fig. 4). The distance between parameters �rij is

Figure 4. The roughness penalty for the central parameter (red triangle)

is computed using a weighted sum of first differences with the ring of

surrounding parameters (yellow triangles) according to eq. (34).

computed using the parameter centroids, as shown in Fig. 4. This

form is easily implemented using sparse arrays so that computing

RT R consumes an insignificant amount of time. A variant of the

formulation above was also tested where N(i) was reduced to the set

of all parameters sharing an edge with parameter i but this produced

rougher looking models.

A slight modification of the distance measure can be used to

preferentially bias the roughness operator so that model smoothness

is enhanced in either the horizontal or vertical directions:

�ri j =

√
(

yi − y j

whv

)2

+ (zi − z j )2. (38)

When the horizontal to vertical penalty weight whv > 1, the range

is reduced in the horizontal direction, resulting in a larger horizon-

tal gradient and corresponding horizontal roughness penalty; this

biases the inversion towards enhanced horizontal smoothness. Con-

versely, when whv < 1, the horizontal distance is expanded, resulting

in less horizontal smoothing and enhanced vertical smoothing.

An implicit assumption in the roughness formulation (34) is that

the parameters are fairly small compared to the structures of interest

so that they can be considered pixels in an image where the local

weighted sum is a good approximation to the gradient. For inversion

grids that have only a few large blocky parameters, the gradient

approximation can breakdown; a better roughness penalty in this

case is to use an unweighted norm of the first differences �mij

between all neighbouring parameters.

For triaxially anisotropic models, the roughness can be aug-

mented to be

‖Rm‖2 ≡ ‖Rmx‖2 + ‖Rmy‖2 + ‖Rmz‖2 + α‖m − m′‖2 (39)

where

m =

⎡

⎣

mx

my

mz

⎤

⎦ , m′ =

⎡

⎣

my

mz

mx

⎤

⎦ . (40)

The first three terms on the right side of eq. (39) measure the

spatial roughness of each anisotropic component while the last term

is a measures of the anisotropy. The anisotropy penalty weight α

controls the size of the penalty against anisotropy and can be dialed
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MARE2DEM inversion code 579

up or down at the user’s discretion. Transversely isotopic models

containing only two anisotropic components use a similar penalty

formulation that omits the third component.

3.5 Joint inversion normalization weights

Joint inversion of MT and CSEM data offers the possibility of

improved structural imaging for offshore exploration (e.g. Commer

& Newman 2009; Wiik et al. 2013). The goal is to harness the

resolving power of each data set to form a new image that is ideally

better than the union of the independent inversion models. However,

an issue for joint inversion is the ability to fit each data subset equally

well when there is a large difference in the number of data for each

subset. For example, consider the n dimensional data vector after

partitioning it into MT and CSEM subsets with dimensions n1 and

n2 according to

d =
[

d1

d2

]

. (41)

The misfit functional in (17) can then be expanded as

‖W(d − F(m))‖2 = ‖W1(d1 − F1(m))‖2 + ‖W2(d2 − F2(m))‖2

= χ 2 = χ 2
1 + χ 2

2 (42)

Assuming the data uncertainties in W are well known, a good fitting

model is characterized by χ 2 ≈ n (Parker 1994). Ideally, joint inver-

sion should produce a model that fits both data subsets equally well,

so that χ 2
1 ≈ n1 and χ 2

2 ≈ n2. However, consider the case where

one data set is significantly larger (i.e. n1 ≫ n2); a model that fits

both data sets well will have χ 2 ≈ χ 2
1 ≫ χ 2

2 . This implies that the

fit to d2 can be negligible to the overall data fit, so long as the fit

to d2 satisfies χ 2
2 ≪ χ 2

1 . In this situation, the joint inversion has no

benefit over the solo inversion of d1. More precisely, this problem

can be stated by defining the data density ratio p = n1/n2, where

p ≫ 1, and a misfit multiplier q that quantifies how much worse d2

is fit than its expected value of n2. A model that fits the joint data

set could satisfy the following relation:

χ 2 = χ 2
1 + χ 2

2 = n1 + qn2 = pn2 + qn2. (43)

Thus, when p ≫ q the fit to d2 can have negligible impact on the

overall misfit. For example, when p = 100 and q = 5, the misfit for

d2 can be five times worse than d1 yet the overall χ 2 misfit is only

increased by 5 per cent from the extremely poor fit to d2.

To alleviate this situation, the following normalized joint misfit

functional is proposed

‖α1W1(d1 − F1(m))‖2 + ‖α2W2(d2 − F2(m))‖2 =
χ 2

1

n1

+
χ 2

2

n2

,

(44)

where

αi =
√

1/ni (45)

is a data balancing weight that normalized each misfit functional

so that smaller data subsets will have as much influence as larger

subsets on the overall misfit budget. A model that fits both subsets

well will then have

χ 2
1

n1

+
χ 2

2

n2

≈ 1 + 1. (46)

This approach is essentially the same as the weighting formula that

Commer & Newman (2009) showed to be effective for joint MT

and CSEM inversion. In that work, the weighting is only applied

to d2 by specifying α1 = 1 and α2 =
√

n1/n2. The form presented

here can be further generalized to N subsets with the data vector

partitioned as

d =

⎡

⎢
⎢
⎣

d1

d2

· · ·
dN

⎤

⎥
⎥
⎦

(47)

and with the weighted joint misfit functional

‖W(d − F(m))‖2 =
N
∑

i=1

‖αi Wi (di − Fi (m))‖2. (48)

For example, this could be useful for joint inversion with three data

subsets consisting of marine MT data, seafloor receiver CSEM data

and towed-receiver CSEM data where the three subsets contains

significantly different numbers of data. This approach may also be

useful for joint inversion of MT and seismic data where the seis-

mic data volume greatly exceeds the MT volume (e.g. Bennington

et al. 2015). Another possible application is the solo inversion of

CSEM data that has a large frequency bandwidth, where typically

the higher frequencies have much fewer total number of data due to

the more rapid attenuation of the high-frequency fields; the data bal-

ancing weights proposed here could be used to weight the data misfit

functional so that the inversion is encouraged to fit each frequency

equally well.

4 M A R E 2 D E M I N V E R S I O N C O D E

The techniques described above have been implemented in

MARE2DEM, extending its functionality to include anisotropic

inversion for 2-D CSEM and MT data. The source code is written

in modern Fortran with parallel constructs implemented using the

MPI standard. Parallel forward computations are carried out using

the data decomposition scheme presented in Key & Ovall (2011),

where the input transmitter and receiver arrays are sliced into smaller

subsets that are each modeled in parallel using the goal-oriented

adaptive finite element; this results in significantly faster solutions

than possible when the adaptive method is applied to all transmitters

and receivers on a single mesh. Additional parallelization is imple-

mented across the requested data frequencies. A manager–worker

framework controls the parallel forward computations, where the

manager processor maintains a queue of all possible modeling tasks

and assigns the next available task to the next available worker pro-

cessor. Since the adaptive mesh refinement run-times can vary from

task to task depending on the particular frequency, transmitter and

receiver subsets, this dynamic task-queue-based approach offers

much better load balancing among the processors than if the tasks

were instead preassigned to each processor.

MARE2DEM is designed with the flexibility to meet a variety of

2-D EM modeling needs. Both electric and magnetic dipole sources

have been implemented in addition to MT plane-wave sources. The

receivers and transmitters can be located anywhere in the ground,

sea or seafloor, allowing for the simulation of various survey geome-

tries or investigating the physical behaviour of EM fields beneath the

subsurface. The conductivity can be isotropic, transversely isotropic

along one of the three axes or triaxially anisotropic, and each free

parameter can be given its own unique bounds and prejudice values,

if desired. In addition to the model roughness operator described

above, the code can optionally use the minimum-gradient-support

roughness norm (Portniaguine & Zhdanov 1999) when sharper
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580 K. Key

Figure 5. Offshore continental margin forward model used to demonstrate the performance of MARE2DEM for inversion. Labeled features include resistive

salt bodies (A, D, E and F), shallow resistive gas hydrate accumulations (B and elsewhere along the seafloor) and a thin resistive hydrocarbon layer about

2.5 km beneath the seafloor (C). White dots show the locations of the 55 seafloor EM receivers. For the forward calculations, the polygonal model shown here

is automatically meshed using unstructured triangular finite-element grids that exactly conform to the input node and line segments of the model.

structural boundaries are desired, yet this norm is more prone to

getting stuck in local minima and should be applied with care.

An optional MATLAB user interface allows users to easily cre-

ate forward models with complex surfaces and other polygonal

features, and also has tools for rapidly creating pixelated inversion

grids composed of either triangular or quadrilateral cells. The use

of quadrilateral cells can be advantageous when the station spacing

is much wider than the depth of investigation and hence the quadri-

laterals can be made to be thin and very wide, offering a fine depth

scale while limiting the number of free parameters between later-

ally adjacent stations. The MATLAB interface also allows users to

decrease or entirely remove the inversion’s roughness penalty along

any of the input surfaces or parameter boundaries, which allows the

inversion to recover sharp resistivity jumps (see e.g. Hoversten et al.

2015). A MATLAB tool for plotting the output inversion models

allows seismic reflection images and well logs to be overlain on the

resistivity. Other MATLAB tools allow for exploring the CSEM and

MT data, the model responses and the normalized residuals.

The next two sections present synthetic and real data inversion

examples that demonstrate the performance of MARE2DEM for

large CSEM and MT problems. Other real data applications of the

code include: anisotropic MT inversion to map mantle upwelling at

a mid-ocean ridge (Key et al. 2013) and melt along the lithosphere–

asthenosphere boundary (Naif et al. 2013), marine CSEM imaging

of the Scarborough gas field (Myer et al. 2015), marine MT and

CSEM for subbasalt exploration in the North Sea (Hoversten et al.

2015) and subsalt exploration in the Gulf of Mexico (Constable

et al. 2015).

5 S Y N T H E T I C E X A M P L E : J O I N T

C S E M – M T I N V E R S I O N

Here, the inversion aspects of MARE2DEM are demonstrated on

the isotropic forward model shown in Fig. 5. This model has seafloor

topography and significant resistivity variations inspired by the salt

tectonics dominated sedimentary margin in the northern Gulf of

Mexico. There are a few salt bodies (features A, D, E and F) with re-

sistivity 1000 times larger than the surrounding sedimentary strata,

resistive gas hydrates directly beneath the seafloor (feature B), a

thin resistive hydrocarbon reservoir (feature C) and a resistive low-

porosity basement.

CSEM and MT forward responses were generated for 55 re-

ceivers positioned every 500 m along the seafloor. The receiver

dipoles were tilted to be parallel to the sloping seafloor, with a max-

imum tilt angle of 20◦ along the steepest section. MT responses

were computed for the TE and TM modes at 22 frequencies loga-

rithmically spaced between 0.0001 and 0.1 Hz. For the CSEM data,

271 horizontal electric dipole transmitters were positioned every

100 m laterally with a 50 m tow height above the seafloor, as typi-

cal for real survey data. Inline CSEM electric field responses were

computed at four frequencies: 0.1, 0.3, 1.0 and 3.0 Hz, providing a

range of skin depths suitable for constraining shallow and deep fea-

tures. To simulate real data, both the MT and CSEM amplitude and

phase responses had 4 per cent random Gaussian noise added and

the CSEM data were limited to offsets with amplitudes above 10−15

VA−1 m−2. Since the forward calculations are more efficient for re-

ceivers than transmitters, the CSEM receiver and transmitter dipoles

were interchanged via the electromagnetic reciprocity theorem (e.g.

Parasnis 1988; Harrington 2001), resulting in 271 CSEM receivers

and 55 transmitters. Finally, both the MT apparent resistivity and

CSEM amplitude data were converted into their log10 forms since

recent work has shown this form to be more robust for inversion

and can lead to faster convergence (Wheelock et al. 2015). In total,

the synthetic data set consisted of 51 180 CSEM data and 4840 MT

data.

For inversion, a free parameter grid was designed by extending

the seafloor topography profile 500 km laterally on each side to

ensure the homogenous Dirichlet boundary conditions for the finite-

element method are satisfied. A semi-rectangular region of interest

was created beneath the seafloor, with its width slightly wider than

the receiver profile and its bottom depth at about 8 km (Fig. 6). This

region was then divided vertically into three subregions and each

was filled with an unstructured grid of conforming triangular model

parameters. The shallowest region immediately beneath the seafloor

(region 1 in Fig. 6) was filled with the smallest triangles since this is

where the data resolution is best, while the two deeper regions had

increasingly larger parameters to reflect the decrease in resolution

with distance from the transmitters and receivers. The outer region

(labeled 4 in Fig. 6) was filled with triangles that grow increasingly
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Figure 6. (a) Central portion of the unstructured inversion parameter grid.

Panel (b) shows a closeup of the region in the grey rectangle near the

seafloor on panel (a). Labels 1–3 show three levels of finer meshing within

the region of interest at 0–35 km position and to about 8 km depth. Label

4 shows the outside region where the parameter grid is significantly coarser

where resolution in the data is low.

larger with distance from the central region. This resulted in a total

of 24 408 free parameters.

A few features of the parameter grid are worth noting. The un-

structured triangles allow for a very efficient fine-scale parametriza-

tion along the seafloor boundary; this sloping boundary is also mod-

eled at the full resolution of the seafloor topography profile and is

not coarsely approximated using the stair-step approach required

by inversion codes restricted by fixed rectangular grids. This also

allows the receivers to be tilted parallel to the seafloor slope so that

they are modeled with the same geometry as the real survey, whereas

its not clear what tilt angle is best to use for the receivers when the

model grid uses a stair-step approximation for the topography. Us-

ing three regions of successively coarser triangular parameters is a

simple way to limit the total number of parameters while allowing

for detailed resolution where required by the data. An improvement

on this approach would be to create an automatic meshing algo-

rithm that allows the triangle size to vary smoothly both in depth

and lateral distance from the receivers and transmitters using some

heuristic measures, or it could be based on an a priori approxima-

tion of the data sensitivity and potential model resolution for the

expected conductivity. The coarse outer region of large triangles

contains less than 4 per cent of the total number of parameters and

thus is a very efficient padding of the parameter grid outside the

region of interest. The automatic meshing tools included with the

MATLAB graphical interface for MARE2DEM allows these types

of parameter grids to be designed with only a minute or two of

effort; likewise the graphical interface made it easy to draw the sed-

imentary strata and salt bodies of the original forward model shown

in Fig. 5.

Figure 7. Closeup view showing a portion of the inversion parameter grid

(thick lines) and an adaptively refined finite-element mesh (thin lines) created

using the goal-oriented error estimator for a particular frequency and subset

of the CSEM transmitters and receivers. Note the heavy refinement of the

finite-element mesh around the transmitters (spaced every 100 m) and the

receivers (spaced every 500 m) along the seafloor.

While users have to create the inversion parameter grid,

MARE2DEM automatically generates the conforming finite-

element meshes using goal-oriented adaptive refinement during

the forward calculations. Each parallel modeling task generates a

unique finite-element grid that ensures an accurate forward response

for that particular subset of transmitters, receivers and frequency.

Fig. 7 shows an example of an adaptively refined finite-element

mesh. Typically, the adaptive refinement creates very small ele-

ments around the transmitters and receivers while the finite elements

are larger further away. These meshes are generated on the fly in

memory only and are deallocated from memory after the forward

calculation for that subset is completed. During an Occam inver-

sion iteration, new adaptively refined meshes are generated for the

particular conductivity model of each forward call.

For this test, the parallel data decomposition divided the input

CSEM transmitters and receivers into subsets of 5 consecutive trans-

mitters, 10 consecutive receivers and 1 frequency, resulting in a total

of 1232 parallel CSEM modeling tasks; however the input data array

did not have all possible combinations of transmitters and receivers,

in particular for long offsets where the responses were below the

synthetic noise floor. Thus, only 658 of the tasks needed to be mod-

eled. The MT data were decomposed into two subsets of receivers

for each frequency, resulting in 44 parallel tasks. The total number

of modeling tasks was thus 702. Since each task is completely inde-

pendent, the fastest possible run-times for the forward computations

would seemingly require 703 processors, where the extra proces-

sor accounts for the manager process. However, some tasks can

be computed much faster than others depending on the particular

subset of transmitters and receivers and the frequency; additionally,

MT tasks usually consume only a fraction of the time required for

CSEM tasks since they are only computed for the zero wavenumber

and do not require the more expensive wavenumber domain Fourier

transforms. Experience with marine CSEM data sets has shown that

the forward calculations usually reach peak speed when the number

of processors is somewhere between 50 and 100 per cent of the total

number of tasks, but this is problem dependent.

Fig. 8 shows the scaling of the forward operator F(m) only

and Jacobian matrix operator J(m) (which includes a concur-

rent F(m) calculation) as a function of the number of processors
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Figure 8. (a) Scaling of the forward operator F(m) and the combined Jacobian operator J(m) plus F(m) as a function of the number of processors. The

parallel data decomposition divided the data into subsets of 5 consecutive transmitters and 10 consecutive receivers resulting in a total of 702 data subsets that

could be modeled in parallel. (b) The speedup relative to the time taken when run on eight processors.

used. J(m) takes nearly twice as long to compute as F(m). Al-

though MARE2DEM leverages the adjoint reciprocity approach to

efficiently compute the wavenumber domain data sensitivities, each

of these needs to be Fourier transformed to the spatial domain before

its scaling and insertion into the Jacobian matrix; for n data and m

parameters, mn Fourier transforms are required and this contributes

greatly to the longer run-times for the Jacobian calculations. The

overall speedup with increasing numbers of processors falls along

the optimum scaling maximum until more than 100 processors are

used and then begins to drop-off, showing that the manager–worker

paradigm used by MARE2DEM scales very efficiently. Investiga-

tion of the speedup drop-off with larger number of processors shows

that this is due to the variable run-time of each parallel modeling

task, with the slowest tasks being responsible for the scaling drop-

off as the number of processors approaches the total number of

tasks. It is clear that the parallel implementation is worthwhile as

the J(m) calls took 2 hr when using only eight processors, but scaled

rapidly down to only 3.3 min when using 480 processors.

Fig. 9 shows the resulting inversion models obtained by the MT-

only, CSEM-only and joint CSEM-MT data sets. All inversions

began with a uniform 1 ohm m starting model. The MT-only inver-

sion fit converged with a target rms misfit 1.0 after 14 iterations,

requiring a total run-time of about 24 min when run on 64 pro-

cessors. The joint CSEM-MT inversion converged at rms 1.0 after

18 iterations and took a total of 6 hr when run on 320 processors.

Fig. 10 shows joint inversion rms misfit shown as a function of

Occam iteration for the joint data set and the separate CSEM and

MT subsets.

Although this example was primarily intended for demonstrating

the performance of MARE2DEM, it also serves to illustrate the

potential of marine MT and CSEM data for mapping resistive bod-

ies. As expected, the MT inversion is able to recover an increase in

resistivity for the larger salt bodies and the basement, but does not

recover the thinner gas hydrates and oil reservoir. The resistivity of

the salt and basement is underestimated by a factor of 10–30 due

to the well-known saturation of MT responses from restive features

imbedded in conductive backgrounds; the geometry of the salt bod-

ies is also poorly recovered. The CSEM only inversion does a much

better job recovering the salt body geometry and resistivity, in par-

ticular for features D and F. It also images the shallow gas hydrates

near the seafloor and the deeper oil reservoir. The resistivity in the

basement is higher than for the MT only inversion but is still about

10 times lower than the true value; additionally, the basement depth

is poorly mapped, especially where it is within about 5 km from the

lateral edges of the receiver array, suggesting that CSEM mapping

of the depth to basement requires receiver arrays several kilometres

wider than the region of interest. The joint inversion is moderately

better than the CSEM-only inversion, with better recovery of salt

body A, which extends outside the receiver array, and salt body E,

which is a difficult target due to being laterally bounded by two

much larger and shallower salt bodies . None of the inversions were

able to recover the fine-scale resistivity changes due to the layering

of the background sediments, but all of them obtained background

resistivities that are fairly close to average sediment resistivity. Per-

haps the best sediment recovery can be seen in the joint inversion

around salt body F, where the inversion model hints that there is

increased sediment resistivity above and decreased resistivity be-

low. Overall, it appears that MT data have much less exploration

value than CSEM data, but nonetheless the joint inversion is clearly

better than the CSEM-only inversion, suggesting it is worthwhile to

continue using EM receivers that can record natural source MT data

simultaneously with the CSEM acquisition (e.g. Constable 2013).

6 R E A L E X A M P L E : C S E M DATA

F RO M T H E M I D D L E A M E R I C A T R E N C H

Here, MARE2DEM is applied to CSEM data from the SERPENT

project at the Middle America Trench offshore Nicaragua. The goals

of this 2010 survey were to study the fluid content of the subducting

plate and the forearc crust offshore Nicaragua using a combination

of MT and CSEM data collected along a trench crossing profile. A

brief summary of the main results is given here and further details

can be found in the cited references. 1-D CSEM interpretation

revealed a conductivity increase in the oceanic crust at the trench

outer rise that is consistent with water in the pore spaces created by

the abundant bending faults that form just prior to the subduction

of the Cocos plate (Key et al. 2012). More rigorous 2-D inversion
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Figure 9. Converged inversion models for the MT only, CSEM only and joint MT and CSEM data sets.

with MARE2DEM imaged a rich fabric of conductive faults on

the incoming oceanic plate, constraining a factor of two increase

in the crustal bulk water content due to the porosity created in the

fault damage zones (Naif et al. 2015). 2-D inversion also revealed a

continuous band of conductive sediments being subducted to at least

30 km from the trench axis, suggesting a high water content along

the shallow part of the plate interface, and also imaged an anomalous

high conductivity zone extending from the plate boundary into the

overlying forearc crust (Naif 2015).

As a demonstration, the entire trench crossing profile of CSEM

data is re-inverted here. The data consist of the topography parallel

component of the inline electric field recorded by 34 seafloor EM

receivers. The CSEM transmissions were stacked into 60 s time

bins, giving a transmitter spacing of about 80 m along the profile.

Frequencies of 0.25, 0.75 and 1.75 Hz were selected for inversion

since they correspond to the peak harmonics of the transmitter

waveform. A total of 30 908 data were inverted using an error floor

of only 2 per cent. Fig. 11 shows the 1 ohm m half-space starting

model and the central portion of the inversion grid with 20 004 total

free parameters. Here, a quadrilateral grid was used since given

the relatively wide station spacing it was desired to have thin but

wide parameters. Vertically thin parameters offer the possibility for

resolving finely detailed structured beneath each station where res-

olution is highest, while horizontally wide parameters are useful for
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Figure 10. Joint inversion rms misfit shown as a function of Occam iteration

for the joint misfit and the breakout for the CSEM and MT subsets.

keeping the total number of parameters from growing excessively

large. The starting model has an rms misfit of 187.

Fig. 11 shows the final rms 1.0 converged model found after 32

Occam iterations. The model contains the previously mentioned fea-

tures including conductive subvertical bending faults on the trench

outer rise at positions of about 70–125 km and a band of wet sedi-

ments being subducted at 125–150 km position. Fig. 12 shows the

data fit as a function of receiver position, source–receiver range and

frequency. Overall these metrics show a good fit to the data since

both the amplitude and phase are fit about equally well and there

are no significant outliers nor large biases in the fit as function of

any of these survey parameters.

7 C O N C LU S I O N S

This work demonstrated the benefits of using adaptive finite ele-

ments with unstructured grids for the 2-D inversion of CSEM and

MT data. The most important practical advantage is the ease of

building models and running inversions with this approach. Un-

structured grids accurately represent seafloor topography and other

a priori known geological boundaries in the inversion model. This

removes any question of how to best simulate the data; the topog-

raphy can be included as precisely as it is known and the electric

field receiver dipoles can be set to be parallel to the local slope (or

perpendicular to the slope for the nominally vertical component);

this is in contrast to codes using structured rectangular grids where

topography must be represented by a more subjective stair-step

approximation. The unstructured parameter grid allows inversion

parameters to be concentrated where needed while the outer re-

gions of the model can be much more coarsely discretized, unlike

structured grids where thin or narrow parameters in the region of

interest extend out to the model sides. The goal-oriented adaptive

mesh refinement method automatically computes accurate EM re-

sponses for a given model, freeing the user from the burden of

designing an accurate forward modeling grid. Other features in-

cluded in MARE2DEM such as anisotropy, the fast Occam method,

bounds on model parameters and its highly scalable parallel imple-

mentation allow it to efficiently handle a diversity of EM modeling

needs for both offshore and onshore EM exploration.
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Figure 12. Breakdown of the rms 1.0 data fit. The misfit is shown separately for the amplitude and phase as a function of (a) receiver position, (b) source–receiver

range and (c) frequency.
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A P P E N D I X A : F I N I T E - E L E M E N T

D E TA I L S

For a triangulation Tn of the model domain with n vertices, eq. (14)

can be written as a 2n × 2n sparse linear system:

Bu = f. (A1)

This can be expanded to
(

B11 B12

B21 B22

)(

u1

u2

)

=
(

f1

f2

)

, (A2)

where u1 and u2 are vectors of the strike parallel electric and mag-

netic field coefficients at the triangulation mesh vertices. The entries

of the n × n submatrices in matrix B have the form:

B11 :

∫

�

(σtλ∇vi · ∇v j + σx viv j ) d�, (A3)

B12 = −BT
21 :

∫

�

ikx (λR∇vi ) · ∇v j d�, (A4)

B22 :

∫

�

iωμ(λ′∇vi · ∇v j + viv j ) d�. (A5)

The entries of the source vector f have the form:

f1 :

∫

�

[

−
(

ikxλĴs
t − σtλRM̂s

t

)

· ∇v j − Ĵxv j

]

d�, (A6)

f2 :

∫

�

[

−
(

−iωμRλĴs
t − ikxλ

′M̂s
t

)

· ∇v j − M̂xv j

]

d�. (A7)

The integrals of the basis function products in eqs (A3)–(A5) can be

evaluated exactly with either numerical quadrature or formulae for

polynomial integration; the latter are provided below. The discrete

electric and magnetic sources Js and Ms are implemented using

vector delta functions. For example, a point electric dipole source
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is represented as Ĵs = ( Ĵ s
x , Ĵs

t ) = δ(x − xs)x̂ + δ(y − ys, z − zs)t̂,

where t̂ defines a unit vector in the (y, z) plane. Here, the sources

are decomposed into separate x̂ and t̂ aligned sources. This de-

composition produces electric and magnetic field components that

are either symmetric or antisymmetric along the x axis, depending

on the direction of the source direction and the field component.

Thus, the Fourier transform integrals in eqs (11) and (16) can be

converted into either cosine or sine transforms that only require the

kernel function at positive kx, with the significant benefit that the rel-

atively expensive finite-element system only needs to be solved for

positive kx. Further details on the implementation of the transforms

are discussed in Key & Ovall (2011).

In the finite-element method, the integral expressions (A3)–(A7)

are broken up into a sum of integrals evaluated over each element

(e.g. Zhu & Cangellaris 2006). Since the conductivity coefficients

are restricted to be piecewise continuous across the elements, these

integrals can be evaluated through direct integration of the polyno-

mial basis (e.g. Eisenberg & Malvern 1973). For a given triangular

element τ with corner vertices (yi, zi, i = 1, 2, 3) and edges ei

opposite of vertex i, the area of the triangle |τ | is defined by

2|τ | = (ai + bi yi + ci zi ), (A8)

where

ai = y j zk − yk z j , (A9)

bi = z j − zk, (A10)

ci = yk − y j , (A11)

with cyclic permutation of i, j, k. For the linear space Vn, the basis

vectors are vi = li, where

li =
1

2|τ |
(ai + bi y + ci z). (A12)

li varies from unity at vertex i to 0 at the vertices j and k. For the

hierarchical basis of space Wn, the basis vectors are vi = qi, where

the quadratic bump functions associated with edge i is

qi = 4l j lk, (A13)

with cyclic permutation of i, j, k. The bump function qi is zero at all

three vertices and has a quadratic shape along the edge opposite of

vertex i. Defining the diagonal coefficient matrix

D =
(

d1 0

0 d2

)

, (A14)

and using the linear basis functions vi = li and vj = lj, the integrals

in expressions (A3)–(A5) for element τ can be shown to be

∫

τ

D∇li · ∇l j =
1

4|τ |
(

d1bi b j + d2ci c j

)

, (A15)

∫

τ

li l j =

{ |τ |
6

, i = j

|τ |
12

, i �= j
, (A16)

∫

τ

(DR∇li ) · ∇l j =
1

4|τ |
(

d2bi c j − d1b j ci

)

. (A17)

For the quadratic basis functions vi = qi and vj = qj, the integrals

can be shown to be:
∫

τ

D∇qi · ∇q j

=

{
2

3|τ |

(

d1

(

b2
i − b j bk

)

+ d2

(

c2
i − c j ck

))

, i = j

2
3|τ |

(

d1bi b j + d2ci c j

)

, i �= j
,

(A18)

∫

τ

qi q j =
{

8
45

|τ |, i = j
4

45
|τ |, i �= j

, (A19)

∫

τ

DR∇qi · ∇q j =

{

(d2 − d1) 1
3|τ |

(

bi ci +b j c j +bkck

)

, i = j

(d2 − d1) 1
3|τ |

(

bi c j + b j ci

)

, i �= j
.

(A20)

For the isotropic conductivity the last integral vanishes, allowing for

the bump systems to be solved separately for Êx and Ĥx . The right-

hand sides of (B2), (B4) and (B5) require the integral formulae
∫

τ

D∇li · ∇q j = −
1

3|τ |
(

d1bi b j + d2ci c j

)

, (A21)

∫

τ

li q j =

{
2|τ |
15

, i �= j

|τ |
15

, i = j
, (A22)

∫

τ

(DR∇li ) · ∇q j =
1

3|τ |
(

d1b j ci − d2bi c j

)

. (A23)

A P P E N D I X B : G OA L - O R I E N T E D

A DA P T I V E M E S H R E F I N E M E N T

D E TA I L S

Given a triangulation Tn and the spaces Wn and Vn described in

Appendix A, the goal-oriented error estimator is obtained by solving

a sequence of linear systems:

B(un, v) = F(v) for all v ∈ Vn, (B1)

B(εn, v) = F(v) − B(un, v) for all v ∈ Wn, (B2)

B(v, wn) = G(v) for all v ∈ Vn, (B3)

B(v, δn) = G(v) − B(v, wn) for all v ∈ Wn . (B4)

Eq. (B1) is the primal problem; the error in its solution is approxi-

mated with the residual eq. (B2), which represents a 2m × 2m linear

system of edge bump functions associated with the m edges in Tn .

Eq. (B3) is a dual problem and the error in its solution is similarly

approximated with the residual eq. (B4). The dual problem is linked

to the primal problem by incorporating its error estimator εn in the

goal function:

G(v) ≡ a0

∫

τs

εn · v dV + a1

∫

τs

∇εn : ∇v dV, (B5)

where

a0 =
1

∫

τs

(

|un + εn|2 + e2
0

)

dV
, (B6)

a1 =
1

∫

τs

(

|∇(un + εn)|2 + e2
1

)

dV
, (B7)
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τ s is the subdomain of elements containing the measurement

locations and e0 and e1 are small constants to ensure the de-

nominator is non-zero when un and εn are vanishingly small.

Thus, it can be seen that the goal function is a relative

measure of the solution error at each measurement location (i.e.

at the positions of the EM receivers). After the dual problem’s

error approximation, δn has been calculated with (B4), the goal-

oriented error estimator (i.e. the error in the goal function) is

then :

G(u − un) ≈ F(δn) − B(un, δn), (B8)

and the local element error indicator for triangle τ is:

Gτ = |F(δn)τ − B(un, δn)τ |. (B9)

Additionally, the solution to the primal problem can be im-

proved by incorporating the estimated error using the expression

u ≈ un + εn .

At first glance eqs (B2)–(B4) appear to be quite expensive since

they require the solution of three additional linear systems. How-

ever, note that the primary and dual problems share the same system

matrix due to symmetry. Since MARE2DEM uses a sparse direct

factorization routine to solve the primary problem (B1), this factor-

ization is reused for the dual problem (B3); thus solving the dual

problem only requires a new sequence of forward and backward

substitutions of the factored matrix, which can be done in a fraction

of the time required to factor the matrix. The sparse 2 m × 2 m

systems for the primal error (B2) and dual error (B4) appear to

be drastically more expensive since m ≈ 3n. However, these sys-

tems are well conditioned due to the limited support of the edge

bump functions and thus they can be solved efficiently using only a

few iterations of the Gauss–Seidel method. In all cases, the system

matrices are stored in compressed-sparse row format with less than

about 20–30 non-zero terms per row, depending on the unstructured

mesh topology, and thus do not require significant storage.
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