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Abstract. We present a framework for margin based active learning of linear
separators. We instantiate it for a few important cases, some of which have been
previously considered in the literature. We analyze the effectiveness ofour frame-
work both in the realizable case and in a specific noisy setting related to the Tsy-
bakov small noise condition.

1 Introduction

There has recently been substantial interest in using unlabeled data together with la-
beled data for machine learning. The motivation is that unlabeled data can often be
much cheaper and more plentiful than labeled data, and so if useful information can be
extracted from it that reduces dependence on labeled examples, this can be a significant
benefit.

There are currently two settings that have been considered to incorporate unlabeled
data in the learning process. The first one is the so-calledSemi-supervised Learning[3,
5], where, in addition to a set of labeled examples drawn at random from the underlying
data distribution, the learning algorithm can also use a (usually larger) set of unlabeled
examples from the same distribution. In this setting, unlabeled data becomes informa-
tive underadditionalassumptions and beliefs about the learning problem. Examples of
such assumptions are the one used by Transductive SVM (namely, that the target func-
tion should cut through low density regions of the space), orby Co-training (namely,
that the target should be self-consistent in some way). Unlabeled data is then potentially
useful in this setting because it allows one to reduce searchspace from the whole set
of hypotheses, down to the set ofa-priori reasonable with respect to the underlying
distribution.

The second setting, an increasingly popular one for the pastfew years, isActive
Learning[2, 6, 8]. Here, the learning algorithm has both the capability of drawing ran-
dom unlabeled examples from the underlying distribution and that of asking for the
labels ofany of these examples, and the hope is that a good classifier can belearned
with significantly fewer labels byactivelydirecting the queries toinformativeexamples.
As opposed to the Semi-supervised learning setting, and similarly to the classical su-
pervised learning settings (PAC and Statistical Learning Theory settings) the only prior



belief about the learning problem in the Active Learning setting is that the target func-
tion (or a good approximation of it) belongs to a given concept class. Luckily, it turns
out that for simple concept classes such as linear separators on the line one can achieve
anexponentialimprovement (over the usual supervised learning setting) in the labeled
data sample complexity, under no additional assumptions about the learning problem [2,
6].4 In general, however, for more complicated concept classes,the speed-ups achiev-
able in the active learning setting depend on the match between the distribution over
example-label pairs and the hypothesis class, and therefore on the target hypothesis in
the class. Furthermore, there are simple examples where active learning does not help
at all, even if there in the realizable case (see, for example, [8]). Recent interesting work
of Dasgupta [8] gives a nice generic characterization of thesample complexity aspect
of active learning in the realizable case.

A few variants and restrictions of the general active learning setting have also been
considered lately. For instance the Query by Committee analysis [10] assumes realiz-
ability (i.e., there exists a perfect classifier in a known set) and a correct Bayesian prior
on the set of hypotheses [10]. The analysis of the active Perceptron algorithm described
in [9] relies on an even stronger assumption, of known and fixed distribution.

In the general active learning setting, for the realizable case, Cohen, Atlas and Lad-
ner have introduced in [6] agenericactive learning algorithm. This algorithm is a se-
quential algorithm that keeps track of two spaces — the current version spaceHi, de-
fined as the set of hypotheses inH consistent with all labels revealed so far, and the
currentregion of uncertaintyRi, defined as the set of allx in the instance spaceX,
for which there exists a pair of hypotheses inHi that disagrees onx. In roundi, the
algorithm picks a random unlabeled example fromRi and queries it, eliminating all
hypotheses inHi inconsistent with the received label. The algorithm then eliminates
thosex ∈ Ri on which all surviving hypotheses agree, and recurses.Thisalgorithm was
later analyzed and generalized to the non-realizable case in [2], and it was shown that
in certain cases it does provide a significant improvement inthe sample complexity.

In this paper we analyze a generic margin based active learning algorithm for learn-
ing linear separators and instantiate it for a few importantcases, some of which have
been previously considered in the literature. Specifically, the generic procedure we an-
alyze is presented in Figure 1. To simplify calculation, we will present and analyze a
few modifications of the algorithm as well.

Our Contributions: We present and analyze a framework for margin based active
learning and also instantiate it for a few important cases. Specifically:

– We point out that in order to obtain asignificantimprovement in the labeled data
sample complexity we have to use a strategy which is moreaggressivethan the one
proposed by Cohen, Atlas and Ladner in [6] and later analyzedin [2]. We point
out that this is true even in the special case when the data instances are drawn uni-
formly from the the unit ball inRd, and when the labels are consistent with a linear
separator going through the origin. Indeed, in order to obtain a truly exponential
improvement, and to be able to learn with onlyÕ

(

d log
(

1
ε

))

labeled examples, we
need, in each iteration, to sample our examples from a subregion carefully chosen,

4 For this simple concept class one can achieve a pure exponential improvement [6] in the real-
izable case, while in the agnostic case the improvement depends upon the noise rate [2].



and not from the entire region of uncertainty, which would imply a labeled data

sample complexity of̃O
(

d
3
2 log

(

1
ε

)

)

.

– We show that our algorithm and argument extend to the non-realizable case. A spe-
cific case we analyze here is again the setting where the data instances are drawn
uniformly from the the unit ball inRd, and a linear classifierw∗ is the Bayes clas-
sifier. We additionally assume that our data satisfies the popular Tsybakov small
noise condition along the decision boundary [14]. We consider both a simple ver-
sion which leads toexponentialimprovement similar to the item 1 above, and a
setting where we get only a polynomial improvement in the sample complexity,
and where this is provably the best we can do [4].

– We analyze a “large margin” setting and show how active learning can dramatically
improve (the supervised learning) sample complexity; the bounds we obtain here
do not dependon the dimensionalityd.

– We provide a general and unified analysis of our main algorithm – Algorithm 1.

Structure of this paper: For clarity, we start by analyzing in Section 3 the special case
where the data instances are drawn uniformly from the the unit ball in Rd, and when
the labels are consistent with a linear separatorw∗ going through the origin. We then
analyze the noisy setting in Section 4, and give dimension independent bounds in a large
margin setting in Section 5. We present our generic Margin Based learning algorithm
and analysis in Section 6 and finish with a discussion and in Section 7.

2 Definitions and Notation

Consider the problem of predicting a binary labely based on its corresponding input
vectorx. As in the standard machine learning formulation, we assumethat the data
points(x, y) are drawn from an unknown underlying distributionP over X × Y ; X
is called theinstance spaceand Y is the label space. In this paper we assume that
Y = {±1}.

Our goal is to find a classifierf with the property that its expected true loss oferr(f)
is as small as possible. Here we assumeerr(f) = E(x,y)∼P [`(f(x), y)], where we use
E(x,y)∼P to denote the expectation with respect to the true (but unknown) underlying
distributionP . Throughout the paper, without loss of generality, we assume thatf(x) is
a real-valued function, which induces a classification rule2I(f(x) ≥ 0)−1, whereI(·)
is the set indicator function. The decision atf(x) = 0 is not important in our analysis.
We consider in the following the classification error loss, defined as̀ (f(x), y) = 1 if
f(x)y ≤ 0 and`(f(x), y) = 0 otherwise. We denote by d(f, g) the probability that the
two classifiersf andg predict differently on an example coming at random fromP .
Furthermore, forα ∈ [0, 1] we denote by B(f, α) the set{g | d(f, g) ≤ α}.

In this paper, we are interested in linear classifiers of the formf(x) = w · x, where
w is the weight vector which we need to learn from training data. We are interested
in using active learning (selective sampling) algorithms to improve the performance of
linear classification methods under various assumptions. In particular, we are interested
in margin based selective sampling algorithms which have been widely used in practical
applications (see e.g. [13]). A general version of the type of algorithm we analyze here



Input : unlabeled data setU = {x1, x2, . . . , }
a learning algorithmA that learns a weight vector from labeled data
a sequence of sample sizes0 < m̃1 < m̃2 < . . . < m̃s = m̃s+1

a sequence of cut-off valuesbk > 0 (k = 1, . . . , s)
Output : classifierŵs.
Label data pointsx1, . . . , xm̃1

by a human expert
iterate k = 1, . . . , s

useA to learn weight vector̂wk from the firstm̃k labeled samples.
for j = m̃k + 1, . . . , m̃k+1

if |ŵk · xj | > bk then let yj = sign(ŵk · xj)
elselabel data pointxj by a human expert

end for
end iterate

Fig. 1.Margin-based Active Learning

is described in Figure 1. Specific choices for the learning algorithmA, sample sizes
mk, and cut-off valuesbk depends on various assumptions we will make about the data,
which we will investigate in details in the following sections.

3 The Realizable Case under the Uniform Distribution

We consider here a commonly studied setting in the active learning literature [7–9].
Specifically, we assume that the data instances are drawn uniformly from the the unit
ball in Rd, and that the labels are consistent with a linear separatorw∗ going through
the origin (that isP (w∗ · xy ≤ 0) = 0). We assume that‖w∗‖2 = 1. It is worth noting
that even in this seemingly simple looking scenario, there exists anΩ

(

1
ε

(

d + log 1
δ

))

lower bound on the PAC learning sample complexity [12].
We start by informally presenting why active learning is in principle possible, at

least whend is constant. We show it is not difficult to improve the labeleddata sample

complexity fromÕ
(

d
ε

)

to Õ
(

d
3
2 log

(

1
ε

)

)

. Specifically, let us consider Procedure 1,

whereA is a learning algorithm for finding a linear classifier consistent with the training
data. Assume that in each iterationk, A finds a linear separator̂wk, ‖ŵk‖2 = 1 which
is consistent with the first̃mk labeled examples. We want to ensure thaterr(ŵk) ≤
1
2k (with large probability), which (by standard VC bounds) requires a sample of size
m̃k = Õ

(

2kd
)

; note that this implies we need to add in each iteration aboutmk =

m̃k+1 − m̃k = Õ
(

2kd
)

new labeled examples. The desired result will follow if we can
show that by choosing appropriatebk, we only need to ask the human expert to label
Õ(d3/2) out of themk = Õ

(

2kd
)

data points and ensure that allmk data points are
correctly labeled (i.e. the examples labeled automatically are in fact correctly labeled).

Note that given our assumption about the data distribution the error rate of any
given separatorw is err(w) = θ(w,w∗)

π , whereθ(w,w∗) = arccos(w · w∗). Therefore
err(ŵk) ≤ 2−k implies that‖ŵk − w∗‖2 ≤ 2−kπ. This implies we cansafelylabel
all the points with|ŵk · x| ≥ 2−kπ becausew∗ and ŵk predict the same on those



examples. The probability ofx such that|ŵk ·x| ≤ 2−kπ is Õ(2−k
√

d) because in high
dimensions, the1-dimensional projection of uniform random variables in theunit ball
is approximately a Gaussian variable with variance1/d. Therefore if we letbk = 2−kπ
in the k-th iteration, and drawmk+1 − mk = Õ

(

2kd
)

new examples to achieve an
error rate of2−(k+1) for ŵk+1, the expected number of human labels needed is at most
Õ(d

3
2 ). This essentially implies the desired result. For a high probability statement, we

can use Procedure 2, which is a modification of Procedure 1.

Input : allowed error rateε, probab. of failureδ, a sampling oracle forPX , a labeling oracle
a sequence of sample sizesmk > 0, k ∈ Z+; a sequence of cut-off valuesbk > 0, k ∈ Z+

Output : weight vectorŵs of error at mostε with probability1 − δ

Drawm1 examples fromPX , label them and put into a working setW (1).
iterate k = 1, . . . , s

find a hypothesiŝwk (‖ŵk‖2 = 1) consistent with all labeled examples inW (k).
let W (k + 1) = W (k).
until mk+1 additional data points are labeled, draw samplex from PX

if |ŵk · x| ≥ bk, rejectx
otherwise, ask for label ofx, and put intoW (k + 1)

end iterate

Fig. 2.Margin-based Active Learning (separable case)

Note that we can apply our favorite algorithm for finding a consistent linear sepa-
rator (e.g., SVM for the realizable case, linear programming, etc.) at each iteration of
Procedure 2, and the overall procedure iscomputationally efficient.

Theorem 1. There exists a constantC, s. t. for anyε, δ > 0, using Procedure 2 with
bk = π

2k−1 and mk = Cd
1
2

(

d ln d + ln k
δ

)

, after s = dlog2
1
ε e iterations, we find a

separator of error at mostε with probability1 − δ.

Proof. The proof is a rigorous version of the informal one given earlier. We prove by
induction onk that at thek’th iteration, with probability1− δ(1− 1/(k + 1)), we have
err(ŵ) ≤ 2−k for all separatorŝw consistent with data in the setW (k); in particular,
err(ŵk) ≤ 2−k.

For k = 1, according to Theorem 7 in Appendix A, we only needm1 = O(d +
ln(1/δ)) examples to obtain the desired result. In particular, we have err(ŵ1) ≤ 1/2
with probability 1 − δ/2. Assume now the claim is true fork − 1. Then at thek-th
iteration, we can letS1 = {x : |ŵk−1 · x| ≤ bk−1} andS2 = {x : |ŵk−1 · x| > bk−1}.
Using the notationerr(w|S) = Prx((w · x)(w∗ · x) < 0|x ∈ S), for all ŵ we have:

err(ŵ) = err(ŵ|S1) Pr(S1) + err(ŵ|S2) Pr(S2).

Consider an arbitrarŷw consistent with the data inW (k− 1). By induction hypothesis,
we know that with probability at least1 − δ(1 − 1/k), both ŵk−1 andŵ have errors
at most21−k (because both are consistent withW (k − 1)). As discussed earlier, this
implies that‖ŵk−1 − w∗‖2 ≤ 21−kπ and‖ŵ − w∗‖2 ≤ 21−kπ. So,∀x ∈ S2, we have



(ŵk−1 · x)(ŵ · x) > 0 and(ŵk−1 · x)(w∗ · x) > 0. This implies thaterr(ŵ|S2) =
0. Now using the estimate provided in Lemma 4 withγ1 = bk−1 andγ2 = 0, we
obtainPrx(S1) ≤ bk−1

√

4d/π. Thereforeerr(ŵ) ≤ 22−k
√

4πd · err(ŵ|S1), for all ŵ
consistent withW (k − 1). Now, since we are labelingmk data points inS1 at iteration
k−1, it follows from Theorem 7 that we can findC s. t. with probability1−δ/(k2+k),
for all ŵ consistent with the data inW (k), err(ŵ|S1), the error ofŵ onS1, is no more
than1/(4

√
4πd). That is we haveerr(ŵ) ≤ 2−k with probability1 − δ((1 − 1/k) +

1/(k2 + k)) = 1 − δ(1 − 1/(k + 1)) for all ŵ consistent withW (k), and in particular
err(ŵk) ≤ 2−k, as desired. ut

The choice of rejection region in Theorem 1 essentially follows the idea in [6].
It was suggested there that one should not sample from a region (S2 in the proof) in
which all classifiers in the current version space (in our case, classifiers consistent with
the labeled examples inW (k)) predict the same label. A more general version, with
theoretical analysis, was considered in [2]. Here we have used a more a refined VC-
bound for the realizable case, e.g., Theorem 7, to get a better bound. However, the
strategy of choosingbk in Theorem 1 (thus the idea of [6]) is not optimal. This can be
seen from the proof, in which we showederr(ŵs|S2) = 0. If we enlargeS2 (using a
smallerbk), we can still ensure thaterr(ŵs|S2) is small; furthermore,Pr(S1) becomes
smaller, which allows us to use fewer labeled examples to achieve the same reduction
in error. Therefore in order to show that we can achieve an improvement fromÕ

(

d
ε

)

to
Õ

(

d log
(

1
ε

))

as in [9], we need a moreaggressivestrategy. Specifically, at roundk we

set as margin parameterbk = Õ
(

log (k)

2k
√

d

)

, and in consequence use fewer examples to

transition between rounds. In order to prove correctness weneed to refine the analysis
as follows:

Theorem 2. There exists a constantC s. t. for d ≥ 4, and for anyε, δ > 0, ε <
1/4, using Procedure 2 withmk = C

√

ln(1 + k)
(

d ln(1 + ln k) + ln k
δ

)

and bk =

21−kπd−1/2
√

5 + ln(1 + k), after s = dlog2
1
ε e − 2 iterations, we find a separator of

error ≤ ε with probability1 − δ.

Proof. As in Theorem 1, we prove by induction onk that at thek’s iteration, fork ≤ s,
with probability at least1− δ(1− 1/(k + 1)), weerr(ŵ) ≤ 2−k−2 for all choices ofŵ
consistent with data in the working setW (k); in particularerr(ŵk) ≤ 2−k−2.

Fork = 1, according to Theorem 7, we only needmk = O(d + ln(1/δ)) examples
to obtain the desired result; in particular, we haveerr(ŵ1) ≤ 2−k−2 with probability
1−δ/(k+1). Assume now the claim is true fork−1 (k > 1). Then at thek-th iteration,
we can letS1 = {x : |ŵk−1 · x| ≤ bk−1} andS2 = {x : |ŵk−1 · x| > bk−1}. Consider
an arbitraryŵ consistent with the data inW (k− 1). By induction hypothesis, we know
that with probability1 − δ(1 − 1/k), both ŵk−1 and ŵ have errors at most2−k−1,
implying θ(ŵk−1, w

∗) ≤ 2−k−1π andθ(ŵ, w∗) ≤ 2−k−1π. Thereforeθ(ŵ, ŵk−1) ≤
2−kπ. Let β̃ = 2−kπ and usingcos β̃/ sin β̃ ≤ 1/β̃ andsin β̃ ≤ β̃ it is easy to verify

thatbk−1 ≥ 2 sin β̃d−1/2

√

5 + ln

(

1 +
√

ln max(1, cos β̃/ sin β̃)

)

. By Lemma 7, we

have both



Prx [(ŵk−1 · x)(ŵ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤

√
2β̃

e5 and

Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤

√
2β̃

e5 .

Taking the sum, we obtainPrx [(ŵ · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃
e5 ≤ 2−(k+3). Us-

ing now Lemma 4 we get that for all̂w consistent with the data inW (k − 1) we have:

err(ŵ) ≤err(ŵ|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1

√

4d/π + 2−(k+3)

≤2−(k+2)
(

err(ŵ|S1)16
√

4π
√

5 + ln(1 + k) + 1/2
)

.

Since we are labellingmk points inS1 at iterationk−1, we know from Theorem 7 that
∃C s. t. with probability1− δ/(k + k2) we haveerr(ŵk|S1)16

√
4π

√

5 + ln(1 + k) ≤
0.5 for all ŵ consistent withW (k); so, with probability1−δ((1−1/k)+1/(k+k2)) =
1 − δ(1 − 1/(k + 1)), we haveerr(ŵ) ≤ 2−k−2 for all ŵ consistent withW (k). ut

The bound in Theorem 2 is generally better than the one in Theorem 1 due to the
improved dependency ond in mk. However,mk depends on

√
ln k ln ln k, for k ≤

dlog2
1
ε e − 2. Therefore whend � ln k(ln ln k)2, Theorem 1 offers a better bound.

Note that the strategy used in Theorem 2 is more aggressive than the strategy used in
the selective sampling algorithm of [2, 6]. Indeed, we do notsample from the entire
region of uncertainty – but we sample just from a subregion carefully chosen. This
helps us to get rid of the undesiredd1/2. Clearly, our analysis also holds with very small
modifications when the input distribution comes from a high dimensional Gaussian.

4 The Non-realizable Case under the Uniform Distribution

We show that a result similar to Theorem 2 can be obtained evenfor non-separable
problems. The non-realizable (noisy) case for active learning in the context of classi-
fication was recently explored in [2, 4]. We consider here a model which is related to
the simple one-dimensional problem in [4], which assumes that the data satisfy the in-
creasingly popular Tsybakov small noise condition along the decision boundary[14].
We first consider a simple version which still leads to exponential convergence similar
to Theorem 2. Specifically, we still assume that the data instances are drawn uniformly
from the the unit ball inRd, and a linear classifierw∗ is the Bayes classifier. However,
we do not assume that the Bayes error is zero. We consider the following low noise
condition: there exists a known parameterβ > 0 such that:

PX(|P (Y = 1|X) − P (Y = −1|X)| ≥ 4β) = 1.

In supervised learning, such a condition can lead to fast convergence rates. As we will
show in this section, the condition can also be used to quantify the effectiveness of
active-learning. The key point is that this assumption implies the stability condition
required for active learning:

β min
(

1, 4θ(w,w∗)
π

)1/(1−α)

≤ err(w) − err(w∗) (1)



with α = 0. We analyze here a more general setting withα ∈ [0, 1). As mentioned
already, the one dimensional setting was examined in [4]. Wecall err(w) − err(w∗)
theexcess errorof w. In this setting, Procedure 2 needs to be slightly modified, as in
Figure 3.

Input : allowed error rateε, probab. of failureδ, a sampling oracle forPX , and a labeling oracle
a sequence of sample sizesmk > 0, k ∈ Z+; a sequence of cut-off valuesbk > 0, k ∈ Z+

a sequence of hypothesis space radiirk > 0, k ∈ Z+;
a sequence of precision valuesεk > 0, k ∈ Z+

Output : weight vectorŵs of excess error at mostε with probability1 − δ

Pick randomŵ0: ‖ŵ0‖2 = 1.
Drawm1 examples fromPX , label them and put into a working setW .
iterate k = 1, . . . , s

find ŵk ∈ B(ŵk−1, rk) (‖ŵk‖2 = 1) to approximately minimize training error:
P

(x,y)∈W
I(ŵk · xy) ≤ minw∈B(ŵk−1,rk)

P

(x,y)∈W
I(w · xy) + mkεk.

clear the working setW
until mk+1 additional data points are labeled, draw samplex from PX

if |ŵk · x| ≥ bk, rejectx
otherwise, ask for label ofx, and put intoW

end iterate

Fig. 3.Margin-based Active Learning (non-separable case)

Theorem 3. Let d ≥ 4. Assume there exists a weight vectorw∗ s. t. the stability con-
dition (1) holds. Then there exists a constantC, s. t. for anyε, δ > 0, ε < β/8, us-
ing Procedure 3 withbk = 2−(1−α)kπd−1/2

√

5 + αk ln 2 − lnβ + ln(2 + k), rk =

2−(1−α)k−2π for k > 1, r1 = π, εk = 2−α(k−1)−4β/
√

5 + αk ln 2 − lnβ + ln(1+k),
andmk = Cε−2

k

(

d + ln k
δ

)

, afters = dlog2(β/ε)e iterations, we find a separator with
excess error≤ ε with probability1 − δ.

Proof. The proof is similar to that of Theorem 2. We prove by induction onk that after
k ≤ s iterations,err(ŵk) − err(w∗) ≤ 2−kβ with probability1 − δ(1 − 1/(k + 1)).

Fork = 1, according to Theorem 8, we only needmk = β−2O(d+ln(k/δ)) exam-
ples to obtain̂w1 with excess error2−kβ with probability1−δ/(k+1). Assume now the
claim is true fork − 1 (k ≥ 2). Then at thek-th iteration, we can letS1 = {x : |ŵk−1 ·
x| ≤ bk−1} andS2 = {x : |ŵk−1 · x| > bk−1}. By induction hypothesis, we know that
with probability at least1−δ(1−1/k), ŵk−1 has excess errors at most2−k+1β, imply-
ing θ(ŵk−1, w

∗) ≤ 2−(1−α)(k−1)π/4. By assumption,θ(ŵk−1, ŵk) ≤ 2−(1−α)k−2π.
Let β̃ = 2−(1−α)k−2π and usingcos β̃/ sin β̃ ≤ 1/β̃ andsin β̃ ≤ β̃, it is easy to verify

that bk−1 ≥ 2 sin β̃d−1/2

√

5 + αk ln 2 − lnβ + ln

(

1 +
√

ln(cos β̃/ sin β̃)

)

. From

Lemma 7, we have both

Prx [(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤

√
2β̃β

2αke5 and



Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤

√
2β̃β

2αke5 .

Taking the sum, we obtainPrx [(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃β
2αke5 ≤ 2−(k+1)β.

Therefore we have (using Lemma 4):

err(ŵk) − err(w∗) ≤(err(ŵk|S1) − err(w∗|S1)) Pr(S1) + 2−(k+1)β

≤(err(ŵk|S1) − err(w∗|S1))bk−1

√

4d/π + 2−(k+1)β

≤2−kβ
(

(err(ŵk|S1) − err(w∗|S1))
√

π/(4εk) + 1/2
)

.

By Theorem 7, we can chooseC s. t. with mk samples, we obtainerr(ŵk|S1) −
err(w∗|S1) ≤ 2εk/

√
π with probability1−δ/(k+k2). Thereforeerr(ŵk)−err(w∗) ≤

2−kβ with probability1 − δ((1 − 1/k) + 1/(k + k2)) = 1 − δ(1 − 1/(k + 1)). ut
If α = 0, then we can achieve exponential convergence similar to Theorem 2, even for
noisyproblems. However, forα ∈ (0, 1), we must label

∑

k mk = O(ε−2α ln(1/ε)(d+
ln(s/δ)) examples5 to achieve an error rate ofε That is, we only get a polynomial
improvement compared to the batch learning case (with sample complexity between
O(ε−2) andO(ε−1)). In general, onecannotimprove such polynomial behavior – see
[4] for some simple one-dimensional examples.
Note: Instead of rejectingx when |ŵk · x| ≥ bk, we can add them toW using the
automatic labels from̂wk. We can then remove the requirementŵk ∈ B(ŵk−1, rk)
(thus removing the parametersrk). The resulting procedure will have the same con-
vergence behavior as Theorem 3 because the probability of making error byŵk when
|ŵk · x| ≥ bk is no more than2−(k+2)β.

5 Dimension Independent Bounds

Although we showed that active learning can improve sample complexity, the bounds
depend on the dimensionalityd. In many practical problems, such dependency can be
removed if the classifier can separate the data with large margin. We consider the fol-
lowing simple case, withx drawn from ad-dimensional Gaussian with bounded total
variance:x ∼ N(0, Σ), Σ = diag(σ2

1 , . . . , σ2
d) andσ1 ≥ · · · ≥ σd > 0. Note that

Ex‖x‖2
2 =

∑

j σ2
j . The Gaussian assumption can also be replaced by other similar

assumptions such as uniform distribution in an ellipsoid. We employ the Gaussian as-
sumption for computational simplicity. We assume further that the label is consistent
with a weight vectorw∗ with ‖w∗‖2 = 1. However, if we do not impose any restric-
tions onw∗, then it is not possible to learnw∗ without thed-dependence. A standard
assumption that becomes popular in recent years is to assumethatw∗ achieves a good
margin distribution. In particular, we may impose the following margin distribution
condition∀γ > 0:

Px(|w∗ · x| ≤ γ) ≤ 2γ√
2πσ

(2)

Condition (2) says that the probability of small margin is small. Since the projection
w∗ · x is normal with varianceσ2 =

∑

j

σ2
j (w∗

j )2, the margin condition (2) can be

replaced by
5 We are ignoring dependence onβ here.



‖w∗‖Σ ≥ σ (3)

where‖ξ‖Σ =
√

∑

j ξ2
j σ2

j , which says that the variance ofx projected tow∗ is at least

σ. This condition restricts the hypothesis space containingw∗ so that we may develop
a learning bound that is independent ofd. Although one can explicitly impose a margin
constraint based on (3), for simplicity, we shall consider adifferent method here that
approximatesw∗ with a vector in a small dimensional space. Lemma 1 shows thatit is

possible. Forw,w′ ∈ Rd, we defineθΣ(w,w′) = arccos
P

j σ2
j wjw′

j

‖w‖Σ‖w′‖Σ
.

Lemma 1. If w∗ with ‖w∗‖2 = 1 satisfies (3) and letw∗[k] = [w∗
1 , . . . , w∗

k, 0, . . . , 0],
thensin θΣ(w∗, w∗[k]) ≤ σk+1/σ.

Proof. By assumption, we have:

sin(θΣ(w∗, w∗[k]))2 =
Pd

j=k+1
σj(w

∗

j )2
P

d
j=1

σ2
j (w∗

j )2
≤ σ2

k+1

Pd
j=k+1

(w∗

j )2
P

d
j=1

σ2
j (w∗

j )2
≤ σ2

k+1

P

j(w
∗

j )2
P

j σ2
j (w∗

j )2
=

(σk+1/σ)2, as desired. ut

Note that the error of classifierw is given byerr(w) = θΣ(w,w∗)
π . Therefore Lemma 1

shows that under the margin distribution condition (2), it is possible to approximatew∗

using a low dimensionalw∗[k] with small error. We can now prove that:

Theorem 4. Assume that the true separatorw∗ with ‖w∗‖2 = 1 satisfies (3). There
existsC s. t.∀ε, δ > 0, ε < 1/8, using Procedure 4 withbk = 21−kπ

√

5 + ln(1 + k),

b0 = 0, dk = inf{` : sin(2−(k+4)e−b2k−1/2π ≥ σ`+1/σ}, rk = 2−kπ for k > 1, r1 =
π, εk = 2−5/

√

5 + ln(1 + k), andmk = Cε−2
k

(

dk + ln k
δ

)

, afters = dlog2

(

1
ε

)

e − 2
iterations, we find a separator with excess error≤ ε with probability1 − δ.

Proof. We prove by induction onk that afterk ≤ s iterations,err(ŵk) − err(w∗) ≤
2−(k+2) with probability1 − δ(1 − 1/(k + 1)). Note that by Lemma 1, the choice of
dk ensures thatθΣ(w∗, w∗[dk]) ≤ 2−(k+3)π, and thuserr(w∗[dk]) ≤ 2−(k+3).

Fork = 1, according to Theorem 7, we only needmk = O(dk +ln(k/δ)) examples
to obtainŵ1 ∈ H[dk] with excess error2−(k+2) with probability1−δ/(k+1). Assume
now the claim is true fork − 1 (k ≥ 2). Then at thek-th iteration, we can letS1 =
{x : |ŵk−1 · x| ≤ bk−1} andS2 = {x : |ŵk−1 · x| > bk−1}. By induction hypothesis,
we know that with probability at least1 − δ(1 − 1/k), ŵk−1 has excess errors at most
2−(k+1), implying θ(ŵk−1, w

∗) ≤ 2−(k+1)π. By assumption,θ(ŵk−1, ŵk) ≤ 2−kπ.
Let β̃ = 2−kπ and usecos β̃/ sin β̃ ≤ 1/β̃ andsin β̃ ≤ β̃, it is easy to verify that the

following inequality holdsbk−1 ≥
√

2 sin β̃

√

5 + ln

(

1 +
√

ln(cos β̃/ sin β̃)

)

.

Let P = Prx [(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2], and let(ξ1, ξ2) ∼ N(0, I2×2) and
θ = θΣ(ŵk, ŵk−1). By Lemma 3, we have

P =2Pr
x

[ξ1 ≤ 0, ξ1 cos(θ) + ξ2 sin(θ) ≥ bk−1]

≤2Pr
x

[

ξ1 ≤ 0, ξ1 + ξ2 sin(β̃)/ cos(β̃) ≥ bk−1/ cos(β̃)
]

≤ sin β̃

cos β̃

(

1 +

√

ln(cos(β̃)/ sin(β̃))

)

e−b2k−1/(2 sin(β̃)2) ≤
√

2β̃

e5
.



Similarly, we also havePrx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤
√

2β̃
e5 . This implies that

Prx [(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃
e5 ≤ 2−(k+3). Now using Lemma 2, we have

err(ŵk) ≤err(ŵk|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1/
√

2π + 2−(k+3)

≤2−(k+2)
(

err(ŵk|S1)8
√

5 + ln(1 + k) + 1/2
)

.

Our choice ofdk ensures thaterr(w∗[dk]|S1) ≤ 2−6/
√

5 + ln k. From Theorem 8,
we know it is possible to choose a constantC such that withmk samples we have
err(ŵk|S1)8

√

5 + ln(1 + k) ≤ 0.5 with probability1− δ/(k + k2). Henceerr(ŵk) ≤
2−k−2 with probability1 − δ((1 − 1/k) + 1/(k + k2)) = 1 − δ(1 − 1/(k + 1)). ut

Input : allowed error rateε, probab. of failureδ, a sampling oracle forPX , and a labeling oracle
Σ = diag(σ2

1 , . . . , σ2
d), a sequence of sample sizesmk > 0, k ∈ Z+

a sequence of cut-off valuesbk > 0, k ∈ Z+ and one of hypothesis space radiirk > 0, k ∈ Z+

a sequence of hypothesis space dimensionsdk > 0, k ∈ Z+

a sequence precision valuesεk > 0, k ∈ Z+.
Output : weight vectorŵs of excess error at mostε with probability1 − δ

Pick randomŵ0: ‖ŵ0‖Σ = 1.
Drawm1 examples fromPX , label them and put into a working setW .
iterate k = 1, . . . , s

find ŵk ∈ H[dk] (‖ŵk‖Σ = 1, ‖ŵk − ŵk−1‖Σ ≤ 2(1 − cos(rk))) such that
P

(x,y)∈W
I(ŵk · xy) ≤ mkεk,

whereH[dk] = {w ∈ Rd : wdk+1 = · · · = wd = 0}
clear the working setW
until mk+1 additional data points are labeled, draw samplex from PX

if |ŵk · x| ≥ bk, rejectx
otherwise, ask for label ofx, and put intoW

end iterate

Fig. 4.Margin-based Active Learning (with low-dimensional approximation)

Using a more refined ratio VC-bound, one can easily improve the choice ofmk =
Cε−2

k (dk +ln(k/δ)) to mk = Cε−1
k (dk ln ε−1+ln(k/δ) in Theorem 4. In Algorithm 4,

instead of putting constraint of̂wk usingrk, one can also usêwk−1 to label datax and
put them into the working setW such that|ŵk−1 ·x| ≥ bk−1, which introduces error at
most2−(k+3). One may then train âwk using labeled data inW without the constraint
‖ŵk − ŵk−1‖Σ ≤ 2(1 − cos(rk)); the results will be similar.
The sample complexity of Procedure 4 depends ondk which is determined by the decay
of σk instead ofd. In particular we can consider a few possible decays withd = ∞:

– Assumeσk ≤ O(2−βk) with constantβ > 0, which is the eigenvalue decaying
behavior for exponential kernels. In this casedk is O(k/β). Therefore we only
needmk = O(k2 ln k) examples at each iterationk.



– Assumeσk ≤ O(k−β) with constantβ > 0, which is the eigenvalue decaying
behavior for spline kernels. In this casedk is O(2k/β). Therefore we needmk =
Õ(2k/β) examples at each iterationk. The total samples needed to achieve accuracy
ε is Õ(ε−1/β). Note that whenβ > 1, we achieve faster thanO(1/ε).

– When the total variation is bounded:
∑

j σ2
j ≤ 1, which means that‖x‖2 is bounded

on average (corresponding to standard large margin kernel methods with bounded
‖x‖2), thenσk ≤ 1/

√
k. Therefore we can takedk = O(22k) andmk = Õ(22k).

The total sample size needed to achieve accuracyε is Õ(ε−2). The constant will

depend on the marginσ/
√

∑

j σ2
j but independent of the dimensionalityd which

is infinity.

6 A General Analysis for Margin Based Active Learning

We show here a general bound for Algorithm 1 based on assumptions about the algo-
rithm A, the sample sizesmk, and the thresholdsbk. This is a more abstract version of
the same underlying idea used in proving the results presented earlier in the paper.

Theorem 5. Consider Algorithm 1. LetA be empirical risk minimization algorithm
with respect to the hypothesis spaceH and assume that givenε, δ > 0, with m ≥
M(H, ε, δ) samples, we have distribution free uniform convergence bound. I.e.:

P
[

supw∈H
∣

∣EI(w · xy ≤ 0) − 1
m

∑m
i=1 I(w · xiyi ≤ 0)

∣

∣ ≤ ε
]

≥ 1 − δ. (4)

Let δ ∈ (0, 1) be the probability of failure. Assume that we ensure that at each stagek:

– Choose margin thresholdbk−1 such that with probability1− 0.5δ/(k + k2), ∃ŵ∗:
P ((ŵk−1 · x)(ŵ∗ · x) ≤ 0, |ŵk−1 · x| > bk−1) ≤ 2−(k+2) andP (ŵ∗ · xy ≤ 0) ≤
infw∈H err(w) + 2−(k+2).

– Takemk = m̃k − m̃k−1 = M(H, 2−(k+3), 0.5δ/(k + k2)).

Then afters iterations,err(ŵs) ≤ infw∈H err(w)+2−s with probability at least1− δ.

Proof Sketch: By the assumption onmk, with probability1 − δ/(k + k2), we have:
err(ŵk) ≤ P (ŵk · xy ≤ 0, x ∈ S1) + P ((ŵk · x)(ŵ∗ · x) ≤ 0, x ∈ S2) + P (ŵ∗ · xy ≤
0, x ∈ S2) ≤ P (ŵk ·xy ≤ 0, x ∈ S1)+P ((ŵk ·x)(ŵk−1·x) ≤ 0, x ∈ S2)+P (ŵ∗·xy ≤
0, x ∈ S2)+2−(k+2) ≤ P (ŵ∗ ·xy ≤ 0, x ∈ S1)+P ((ŵ∗ ·x)(ŵk−1 ·x) ≤ 0, x ∈ S2)+
P (ŵ∗ ·xy ≤ 0, x ∈ S2)+2 ·2−(k+2) ≤ err(ŵ∗)+3 ·2−(k+2) ≤ infw∈H err(w)+2−k.

ut

In order to obtain a robust active learning algorithm that does not depend on the
underlying data generation assumptions, one can estimateM(H, ε, δ) using sample
complexity bounds. For example, we have used standard bounds such as Theorem 8
in earlier sections. A similar approach is taken in [2]. One can also replace (4) with
a ratio uniform convergence bound such similar to the realizable case VC bound in
Theorem 7. For some problems, this may lead to improvements.

In principle, it is also possible to estimatebk using theoretical analysis. We only
need to findbk such that when̂wk · x > bk, no weight vectorw can disagree with



ŵk with probability more than2−(k+3) if err(w) is within 2−k of the optimal value.
However, the computation is more complicated, and requiresthat we know the under-
lying distribution ofx. Note that in the theorems proved in earlier sections, we were
able to estimatebk because specific distributions ofx were considered. Without such
knowledge, practitioners often pickbk by heuristics. Picking the rightbk is necessary
for achieving good performance in our analysis. One practical solution is to perturb̂wk

(e.g. using bootstrap samples) and findbk such that the perturbed vectors agrees with
ŵk with large probability when̂wk · x > bk. Another possibility is to use a procedure
that tests for the bestbk. This is relatively easy to do for realizable problems, as shown
in Figure 5. We can then prove that:

Theorem 6. Consider Algorithm 5. LetA be the empirical risk minimization algo-
rithm with respect to the hypothesis spaceH, and assume that∀ε, δ > 0, with m ≥
M(H, ε, δ) samples we have distribution free uniform convergence bound: i.e. with
probability1 − δ, ∀w ∈ H, we have both

EI(w · xy ≤ 0) ≤ 2
m

∑m
i=1 I(w · xiyi ≤ 0) + ε and

1
m

∑m
i=1 I(w · xiyi ≤ 0) ≤ 2EI(w · xy ≤ 0) + ε.

Let N(ε, δ) be a distribution free convergence bound for the binary random variables
ξ ∈ {0, 1}: i. e. for m ≥ N(ε, δ) with probability1 − δ we have both

Eξ ≤ 1.5
m

∑m
i=1 ξi + ε and 1

m

∑m
i=1 ξi ≤ 1.5Eξ + ε.

Letmk = M(H, 2−(k+5), 0.5δ/(k+k2)), nk = N(2−(k+3), 0.25δ/(`k(k+k2))), and
εk = 2−(k+1). Assume also we takebk,`k

s.t.P (ŵk−1 · x ≥ bk,`k
) ≤ 2−(k+5).

If infw∈H I(w · xy ≤ 0) = 0, then afters iterations, with probability1 − δ, we have:

– At each iterationk ≤ s, before the for loop overq stops:∀ŵ∗ ∈ H such that
P (ŵ∗·xy ≤ 0) > 2−(k+6): P ((ŵk−1·x)(ŵ∗·x) ≤ 0, |ŵk−1·x| > bk,q) > 2−(k+6).

– The final error iserr(ŵs) ≤ 2−s.

We omit the proof here due to lack of space. Note that Theorem 6implies that we only
need to label a portion of data, with marginsbk,qk

, whereqk is the smallestq such that
∃ŵ∗ ∈ H with P (ŵ∗ · xy ≤ 0) ≤ 2−(k+6) andP ((ŵk−1 · x)(ŵ∗ · x) ≤ 0, |ŵk−1 · x| >
bk,q) ≤ 2−(k+6). It does not require us to estimatebk as in earlier theorems. However, it
requires an extrank labeled data at each iteration to select the optimal marginbk,q. This
penalty is usually small because the testing sample sizenk is often significantly smaller
thanmk. For example, ford dimensional linear classifiers consider earlier,mk needs to
depend ond butnk can bed-independent. Therefore it is possible to achieve significant
improvement with this testing procedure. Its advantage is that we can choosebk based
on data, and thus the procedure can be applied to distributions that are not uniform.



Input : a learning algorithmA that learns a weight vector from labeled data
a sequence of training sample sizesm1, . . . , ms;
a sequence of validation sample sizesn1, . . . , ns and one of acceptance thresholdsε1, . . . , εs

a sequence of cut-off points{−1 = bk,0 < bk,1 < · · · < bk,`k
} (k = 1, . . . , s)

Output : classifierŵs

label data pointsx1, . . . , xm1
by a human expert and useA to learn weight vector̂w1.

iterate k = 2, . . . , s

generate and labelnk samples(x′

1, y
′

1), . . . , (x
′

nk
, y′

nk
)

generatemk samplesxj with labelsyj = sign(ŵk−1 · xj) (j = 1, . . . , mk)
for q = 1, . . . , `k

labelyj by a human expert if|ŵk−1 · xj | ∈ (bk,q−1, bk,q] (j = 1, . . . , mk)
useA to learn weight vector̂wk from examples(xj , yj) (j = 1, . . . , mk)
if (error ofŵk on (x′

j , y
′

j) (j = 1, . . . , nk) is less thanεk) break
end for

end iterate

Fig. 5.Margin-based Active Learning with Testing

7 Discussion and Open Problems

While our procedure is computationally efficient in the realizable case, it remains an
open problem to make it efficient in the general case. It is conceivable that for some
special cases (e.g. the marginal distribution over the instance space is uniform, as in
section 4) one could use the recent results of Kalai et. al. for Agnostically Learning
Halfspaces [11]. In fact, it would be interesting to derive precise bounds for the more
general of class of log-concave distributions.
Acknowledgements.We thank Alina Beygelzimer, Sanjoy Dasgupta, Adam Kalai, and
John Langford for a number of useful discussions. Part of this work was done while the
first author was visiting Yahoo! Research.
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A Useful Facts

We state here two standard Sample Complexity bounds [1] and afew useful probability
bounds for standard normal variable.

Theorem 7. Let H be a set of functions fromX to {−1, 1} with finite VC-dimension
V ≥ 1. LetP be an arbitrary, but fixed probability distribution overX × {−1, 1}. For
anyε, δ > 0, if we draw a sample fromP of sizeN(ε, δ) = 1

ε

(

4V log
(

1
ε

)

+ 2 log
(

2
δ

))

,
then with probability1−δ, all hypotheses with error≥ ε are inconsistent with the data.

Theorem 8. Let H be a set of functions fromX to {−1, 1} with finite VC-dimension
V ≥ 1. LetP be an arbitrary, but fixed probability distribution overX×{−1, 1}. There
exists a universal constantC, such that for anyε, δ > 0, if we draw a sample((xi, yi))i

from P of sizeN = N(ε, δ) = C
ε2

(

V + log
(

1
δ

))

, then with probability1 − δ, for all

h ∈ H, we have
∣

∣

∣

1
N

∑N
i=1 I(h(xi) 6= yi) − E(X,Y )I(h(X) 6= Y )

∣

∣

∣
≤ ε.

Lemma 2. Assumex = [x1, x2] ∼ N(0, I2×2), then any givenγ1, γ2 ≥ 0, we have
Prx((x1, x2) ∈ [0, γ1] × [γ2, 1]) ≤ γ1

2
√

2π
e−γ2

2/2.

Lemma 3. Assumex = [x1, x2] ∼ N(0, I2×2). For any givenγ, β > 0, the following

holds:Prx(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β
2

(

1 +
√

− ln [min(1, β)]
)

e−γ2/(2β2).

B Probability estimation in high dimensional ball

Considerx = [x1, . . . , xd] ∼ Px uniformly distributed on unit ball inRd. Let A be an
arbitrary set inR2; we are interested in estimating the probabilityPrx((x1, x2) ∈ A).
Let Vd be the volume ofd-dimensional ball; we knowVd = πd/2/Γ (1 + d/2) whereΓ
is the Gamma-function. In particularVd−2/Vd = d/(2π). It follows:

Pr
x

((x1, x2) ∈ A) =
Vd−2

Vd

∫

(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 =

d

2π

∫

(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2.

where we use the inequality(1 − z) ≤ e−z.



Lemma 4. Let d ≥ 2 and let x = [x1, . . . , xd] be uniformly distributed in thed-
dimensional unit ball. Givenγ1 ∈ [0, 1], γ2 ∈ [0, 1], we have:

Prx((x1, x2) ∈ [0, γ1] × [γ2, 1]) ≤ γ1

√
d

2
√

π
e−(d−2)γ2

2/2.

Proof. Let A = [0, γ1] × [γ2, 1]. We have
Prx((x1, x2)∈A) ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2 ≤ γ1d
2π

∫

x2∈[γ2,1]

e−(d−2)x2
2/2dx2

≤ γ1d
2π e−(d−2)γ2

2/2
∫

x∈[0,1−γ2)

e−(d−2)x2/2dx ≤ γ1d
2π e−(d−2)γ2

2/2 min

[

1 − γ2,
√

π
2(d−2)

]

.

Note that whend ≥ 2, min(1,
√

π/(2(d − 2))) ≤
√

π/d. ut
Lemma 5. Assumex = [x1, . . . , xd] is uniformly distributed in thed-dimensional unit
ball. Givenγ1 ∈ [0, 1], we havePrx(x1 ≥ γ1) ≤ 1

2e−dγ2
1/2.

Proof. Let A = [γ1, 1] × [−1, 1]. Using a polar coordinate transform, we have:
Prx((x1, x2) ∈ A) = d

2π

∫

(x1,x2)∈A
(1 − x2

1 − x2
2)

(d−2)/2dx1dx2 =

d
2π

∫

(r,r cos θ)∈[0,1]×[γ1,1]
(1 − r2)

d−2

2 rdrdθ = 1
2π

∫

(r,r cos θ)∈[0,1]×[γ1,1]
dθd(1 − r2)

d
2

≤ 1
2π

∫

(r,θ)∈[γ1,1]×[−π/2,π/2]
dθd(1 − r2)d/2 = 0.5(1 − γ2

1)d/2 ≤ 1
2e−dγ2

1/2. ut
Lemma 6. Let d ≥ 4 and let x = [x1, . . . , xd] be uniformly distributed in thed-
dimensional unit ball. Givenγ, β > 0, we have:

Prx(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β
2 (1 +

√

− ln min(1, β))e−dγ2/(4β2).

Proof. Let α = β
√

−2d−1 ln min(1, β), we have:
Prx(x1 ≤ 0, x1 + βx2 ≥ γ)

≤ Prx(x1 ≤ −α, x1 + βx2 ≥ γ) + Prx(x1 ∈ [−α, 0], x1 + βx2 ≥ γ)
≤ Prx(x1 ≤ −α, x2 ≥ (α + γ)/β) + Prx(x1 ∈ [−α, 0], x2 ≥ γ/β)
≤ 1

2 Prx(x2 ≥ (α + γ)/β) + Prx(x1 ∈ [0, α], x2 ≥ γ/β)

≤ 1
4e−d(α+γ)2/(2β2) + α

√
d

2
√

π
e−dγ2/(4β2)

≤
[

1
4e

− dα2

2β2 + α
√

d
2
√

π

]

e
− dγ2

4β2 =

[

min(1,β)
4 +

β
√

−2 ln min(1,β)

2
√

π

]

e
− dγ2

4β2 . ut

Lemma 7. Letu andw be two unit vectors inRd, and assume thatθ(u,w) ≤ β̃ < π/2.
Let d ≥ 4 and letx = [x1, . . . , xd] be uniformly distributed in thed-dimensional unit

ball. ConsiderC > 0, let γ = 2 sin β̃√
d

√

lnC + ln

(

1 +
√

ln max(1, cos β̃/ sin β̃)

)

.

ThenPrx [(u · x)(w · x) < 0, |w · x| ≥ γ] ≤ sin β̃

C cos β̃
.

Proof. We rewrite the desired probability as2Prx [w · x ≥ γ, u · x < 0] . W.l.g., let
u = (1, 0, 0, ..., 0) andw = (cos(θ), sin(θ), 0, 0, ..., 0). For x = [x1, x2, ..., xd] we
haveu·x = x1 andw·x = cos(θ)x1+sin(θ)x2. Using this representation and Lemma 6,
we obtainPrx [w · x ≥ γ, u · x < 0] = Prx[cos(θ)x1 + sin(θ)x2 ≥ γ, x1 < 0] ≤
Prx

[

x1 + sin(β̃)

cos(β̃)
x2 ≥ γ

cos(β̃)
, x1 < 0

]

≤ sin β̃

2 cos β̃

(

1 +
√

ln max(1, cos β̃

sin β̃

)

e
− dγ2

4 sin2 β̃ =

sin β̃

2 cos β̃
C−1, as desired. ut


