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Abstract. We present a framework for margin based active learning of linear
separators. We instantiate it for a few important cases, some of whiehbdesn
previously considered in the literature. We analyze the effectiveneas @fame-
work both in the realizable case and in a specific noisy setting related to the Tsy
bakov small noise condition.

1 Introduction

There has recently been substantial interest in using algddldata together with la-
beled data for machine learning. The motivation is that belled data can often be
much cheaper and more plentiful than labeled data, and seftilinformation can be
extracted from it that reduces dependence on labeled egairtpls can be a significant
benefit.

There are currently two settings that have been considenedaorporate unlabeled
data in the learning process. The first one is the so-c8l&di-supervised Learnirig,
5], where, in addition to a set of labeled examples drawnrataen from the underlying
data distribution, the learning algorithm can also use aglhglarger) set of unlabeled
examples from the same distribution. In this setting, uelkath data becomes informa-
tive underadditionalassumptions and beliefs about the learning problem. Exesrydl
such assumptions are the one used by Transductive SVM (patimed the target func-
tion should cut through low density regions of the spacejyo€o-training (hamely,
that the target should be self-consistent in some way).lbdidal data is then potentially
useful in this setting because it allows one to reduce sesgyabe from the whole set
of hypotheses, down to the set afpriori reasonable with respect to the underlying
distribution.

The second setting, an increasingly popular one for the feastears, isActive
Learning[2, 6, 8]. Here, the learning algorithm has both the capgtilf drawing ran-
dom unlabeled examples from the underlying distributiod #rat of asking for the
labels ofany of these examples, and the hope is that a good classifier ciatred
with significantly fewer labels bgctivelydirecting the queries tmformativeexamples.
As opposed to the Semi-supervised learning setting, anitbsiynto the classical su-
pervised learning settings (PAC and Statistical LearnihgdFy settings) the only prior



belief about the learning problem in the Active Learnindisgtis that the target func-
tion (or a good approximation of it) belongs to a given conadpss. Luckily, it turns
out that for simple concept classes such as linear sepai@idhe line one can achieve
anexponentiaimprovement (over the usual supervised learning settimtf)e labeled
data sample complexity, under no additional assumptioastahe learning problem [2,
6].* In general, however, for more complicated concept clashesspeed-ups achiev-
able in the active learning setting depend on the match setwiee distribution over
example-label pairs and the hypothesis class, and therefothe target hypothesis in
the class. Furthermore, there are simple examples wheave é&sarning does not help
at all, even if there in the realizable case (see, for exarffiile Recent interesting work
of Dasgupta [8] gives a nice generic characterization olsdraple complexity aspect
of active learning in the realizable case.

A few variants and restrictions of the general active leagrsetting have also been
considered lately. For instance the Query by Committeeyaisa]10] assumes realiz-
ability (i.e., there exists a perfect classifier in a knowt) aad a correct Bayesian prior
on the set of hypotheses [10]. The analysis of the activeep&an algorithm described
in [9] relies on an even stronger assumption, of known andlfdistribution.

In the general active learning setting, for the realizallge¢ Cohen, Atlas and Lad-
ner have introduced in [6] genericactive learning algorithm. This algorithm is a se-
quential algorithm that keeps track of two spaces — the atikrersion spaced;, de-
fined as the set of hypothesesih consistent with all labels revealed so far, and the
currentregion of uncertaintyR;, defined as the set of all in the instance spac¥,
for which there exists a pair of hypothesesHn that disagrees om. In roundi, the
algorithm picks a random unlabeled example frédnand queries it, eliminating all
hypotheses id; inconsistent with the received label. The algorithm themielates
thoser € R; on which all surviving hypotheses agree, and recursesalgisithm was
later analyzed and generalized to the non-realizable cefg,iand it was shown that
in certain cases it does provide a significant improvemetitérsample complexity.

In this paper we analyze a generic margin based active fepatgorithm for learn-
ing linear separators and instantiate it for a few importarges, some of which have
been previously considered in the literature. Specifictly generic procedure we an-
alyze is presented in Figure 1. To simplify calculation, wi# present and analyze a
few modifications of the algorithm as well.

Our Contributions: We present and analyze a framework for margin based active
learning and also instantiate it for a few important caspec8ically:

— We point out that in order to obtainsignificantimprovement in the labeled data
sample complexity we have to use a strategy which is ragggessivehan the one
proposed by Cohen, Atlas and Ladner in [6] and later analyzdd]. We point
out that this is true even in the special case when the datmicess are drawn uni-
formly from the the unit ball inR¢, and when the labels are consistent with a linear
separator going through the origin. Indeed, in order toiokaatruly exponential
improvement, and to be able to learn with oflyd log (1)) labeled examples, we
need, in each iteration, to sample our examples from a sigoregrefully chosen,

4 For this simple concept class one can achieve a pure exponential ienpeat [6] in the real-
izable case, while in the agnostic case the improvement depends upaidbeate [2].



and not from the entire region of uncertainty, which wouldlyna labeled data
sample complexity o) (d% log (%))

— We show that our algorithm and argument extend to the ndizadide case. A spe-
cific case we analyze here is again the setting where the mstemnices are drawn
uniformly from the the unit ball inR?, and a linear classifier* is the Bayes clas-
sifier. We additionally assume that our data satisfies theilpod sybakov small
noise condition along the decision boundary [14]. We caarsimbth a simple ver-
sion which leads t@xponentialimprovement similar to the item 1 above, and a
setting where we get only a polynomial improvement in the gancomplexity,
and where this is provably the best we can do [4].

— We analyze a “large margin” setting and show how active iegroan dramatically
improve (the supervised learning) sample complexity; therlls we obtain here
do not dependn the dimensionality.

— We provide a general and unified analysis of our main algaerithAlgorithm 1.

Structure of this paper: For clarity, we start by analyzing in Section 3 the speciakca
where the data instances are drawn uniformly from the thehadi in B¢, and when
the labels are consistent with a linear separatoigoing through the origin. We then
analyze the noisy setting in Section 4, and give dimensidependent bounds in a large
margin setting in Section 5. We present our generic MargiseBdearning algorithm
and analysis in Section 6 and finish with a discussion and ¢tiGe?7.

2 Definitions and Notation

Consider the problem of predicting a binary lalpdbased on its corresponding input
vectorz. As in the standard machine learning formulation, we asstiraethe data
points (x,y) are drawn from an unknown underlying distributiéhover X x Y; X
is called theinstance spacandY is thelabel space In this paper we assume that
Y = {£1}.

Our goal is to find a classifigf with the property that its expected true lossof( 1)
is as small as possible. Here we assuméf) = E, ,)~p [¢(f(z),y)], where we use
E(, ,)~p to denote the expectation with respect to the true (but unkihainderlying
distributionP. Throughout the paper, without loss of generality, we agstiatf (x) is
areal-valued function, which induces a classification 2ulgf (z) > 0) — 1, wherel(-)
is the set indicator function. The decisionfdt:) = 0 is not important in our analysis.
We consider in the following the classification error lossfimed ad/(f(z),y) = 1 if
f(x)y <0and((f(x),y) = 0 otherwise. We denote by(d, g) the probability that the
two classifiersf and g predict differently on an example coming at random fréin
Furthermore, fory € [0, 1] we denote by Bf, ) the set{g | d(f,g) < a}.

In this paper, we are interested in linear classifiers of tnenff (x) = w - x, where
w is the weight vector which we need to learn from training d&e are interested
in using active learning (selective sampling) algorithm#prove the performance of
linear classification methods under various assumptionzaiticular, we are interested
in margin based selective sampling algorithms which haea lbédely used in practical
applications (see e.g. [13]). A general version of the tyjp@gorithm we analyze here



Input: unlabeled data sét = {z1,z2,...,}
a learning algorithmd4 that learns a weight vector from labeled data
a sequence of sample sizest M1 < M2 < ... < Ms = Mst1

a sequence of cut-off valués > 0 (k =1,...,5)
Output: classifier;.
Label data pointsy, ..., zs, by a human expert
iteratek =1,...,s
useA to learn weight vectoti,, from the firstmy, labeled samples.
forj:rhk+1,...,fnk+1

if ‘ﬁ)k . .CL‘]“ > bi then let Y; = sign(wk . :L‘j)
elselabel data point:; by a human expert
end for
end iterate

Fig. 1. Margin-based Active Learning

is described in Figure 1. Specific choices for the learnimgrthm A, sample sizes
my, and cut-off value$;, depends on various assumptions we will make about the data,
which we will investigate in details in the following seati

3 The Realizable Case under the Uniform Distribution

We consider here a commonly studied setting in the activenileg literature [7-9].
Specifically, we assume that the data instances are draormty from the the unit
ball in R?, and that the labels are consistent with a linear sepaatayoing through
the origin (that isP(w* - zy < 0) = 0). We assume thdtw*||» = 1. It is worth noting
that even in this seemingly simple looking scenario, theisteans2 (1 (d + log §))
lower bound on the PAC learning sample complexity [12].

We start by informally presenting why active learning is iinpiple possible, at
least wheni is constant. We show it is not difficult to improve the labetkda sample

complexity fromO(¢) to O(d% log (%)) Specifically, let us consider Procedure 1,

whereA is a learning algorithm for finding a linear classifier cotesis with the training
data. Assume that in each iteratibnA4 finds a linear separataby, ||w||2 = 1 which
is consistent with the firsf;, labeled examples. We want to ensure thatw;) <
% (with large probability), which (by standard VC bounds)uigs a sample of size
iy, = O(2*d); note that this implies we need to add in each iteration about=
Mpp1 — My = O(2kd) new labeled examples. The desired result will follow if we ca
show that by choosing appropridig, we only need to ask the human expert to label
O(d®/?) out of them,;, = O(Q’“d) data points and ensure that at}, data points are
correctly labeled (i.e. the examples labeled automagicatt in fact correctly labeled).
Note that given our assumption about the data distributiendrror rate of any
given separatow is err(w) = @, wheref(w, w*) = arccos(w - w*). Therefore
err(iy) < 27% implies that||w), — w*|| < 2~ *x. This implies we carsafelylabel
all the points with|wy, - #| > 27*7 becausev* and;, predict the same on those



examples. The probability af such thatiy, - z| < 2~%7 is O(2~*+/d) because in high
dimensions, thé-dimensional projection of uniform random variables in thmét ball

is approximately a Gaussian variable with variah¢é. Therefore if we leb, = 2= %7

in the k-th iteration, and drawn , — ms = O(?’“d) new examples to achieve an
error rate o2~ (1) for 4y, 1, the expected number of human labels needed is at most
O(d% ). This essentially implies the desired result. For a higlbphility statement, we
can use Procedure 2, which is a modification of Procedure 1.

Input: allowed error rate, probab. of failurey, a sampling oracle foPx, a labeling oracle
a sequence of sample sizes, > 0, k € ZT; a sequence of cut-off valués > 0,k € Z T
Output: weight vectoni, of error at most with probability1 — §
Drawm,; examples fronPx, label them and put into a working s (1).
iterate k=1,...,s
find a hypothesisiy, (||w|]2 = 1) consistent with all labeled exampleslii(k).
letW(k+1) = W(k).
until mx41 additional data points are labeled, draw sampfeom Px
if |k - x| > by, rejectz
otherwise, ask for label of, and put intolV/ (k + 1)
end iterate

Fig. 2. Margin-based Active Learning (separable case)

Note that we can apply our favorite algorithm for finding a sistent linear sepa-
rator (e.g., SVM for the realizable case, linear prograngn@tc.) at each iteration of
Procedure 2, and the overall procedureasputationally efficient

Theorem 1. There exists a constadt, s. t. for anye,§ > 0, using Procedure 2 with
by = &+ andmy, = Cd? (dlnd +1n%), afters = [log, 1] iterations, we find a
separator of error at most with probability 1 — 6.

Proof. The proof is a rigorous version of the informal one giveniearWe prove by
induction onk that at thek'th iteration, with probabilityl — §(1 —1/(k + 1)), we have
err(w) < 27F for all separatorsy consistent with data in the sBt (k); in particular,
err(iy,) < 27F,

For k = 1, according to Theorem 7 in Appendix A, we only need = O(d +
In(1/4)) examples to obtain the desired result. In particular, weelam(w;) < 1/2
with probability 1 — 6/2. Assume now the claim is true fdr — 1. Then at thek-th
iteration, we can leb; = {x : |Wp_1 - x| < bg—1} andSe = {z : |Wk—1 - x| > br_1}.
Using the notatiorrr(w|S) = Pry((w - z)(w* - ) < 0]z € S), for all w we have:

err(w) = err(w|S1) Pr(S1) + err(w|Sz) Pr(S2).

Consider an arbitrang consistent with the data i (k — 1). By induction hypothesis,
we know that with probability at leadt— 6(1 — 1/k), bothw,_; andw have errors
at most2'~* (because both are consistent with(k — 1)). As discussed earlier, this
implies that||wy,_; — w*||2 < 2! %7 and||w — w*||2 < 2'7*7. So,Vx € S, we have



(-1 - x)(Ww - ) > 0 and(wg—1 - z)(w* - ) > 0. This implies thatrr(w|S2) =
0. Now using the estimate provided in Lemma 4 with = b,_; and~v, = 0, we
obtainPr,(S;) < by_1\/4d/7. Thereforeerr(w) < 22~ F\/4rd - err(10| Sy ), for all @
consistent with¥ (k — 1). Now, since we are labeling; data points inS; at iteration
k—1, it follows from Theorem 7 that we can fird s. t. with probabilityl — &/ (k% + k),
for all @ consistent with the data W (k), err(w|S; ), the error ofiw on Sy, is no more
than1/(4v/4xd). That is we haverr(w) < 2~* with probability 1 — §((1 — 1/k) +
1/(k*+k)) =1-6(1 —1/(k + 1)) for all w consistent with¥ (k), and in particular
err(iy,) < 27F, as desired. O

The choice of rejection region in Theorem 1 essentiallyofe#f the idea in [6].
It was suggested there that one should not sample from arrégioin the proof) in
which all classifiers in the current version space (in ouecalassifiers consistent with
the labeled examples i (k)) predict the same label. A more general version, with
theoretical analysis, was considered in [2]. Here we haeel asmore a refined VC-
bound for the realizable case, e.g., Theorem 7, to get arlmttend. However, the
strategy of choosing;, in Theorem 1 (thus the idea of [6]) is not optimal. This can be
seen from the proof, in which we showerd(w,|S2) = 0. If we enlargeS; (using a
smallerb;,), we can still ensure thatr(w;|S2) is small; furthermorePr(S;) becomes
smaller, which allows us to use fewer labeled examples teeaetihe same reduction
in error. Therefore in order to show that we can achieve amargment fromO (<) to

O(dlog (1)) asin [9], we need a morggressivestrategy. Specifically, at rouridwe

set as margin parametgy = O(Eff\/) and in consequence use fewer examples to
transition between rounds. In order to prove correctnesaeree to refine the analysis

as follows:

Theorem 2. There exists a constardt s. t. ford > 4, and for anye,d > 0, ¢ <
1/4, using Procedure 2 withn, = C+/In(1 + k) (dln (1+Ink)+In%) andb, =

21=krd=1/2,/5 +1n(1 + k), after s = [log, 1] — 2 iterations, we find a separator of
error < e with probability1 — 6.

Proof. As in Theorem 1, we prove by induction érthat at thet’s iteration, fork < s,
with probability at least — 6(1 — 1/(k + 1)), weerr(w) < 2~%=2 for all choices ofii
consistent with data in the working s8f(k); in particularerr (i) < 27%72.

Fork = 1, according to Theorem 7, we only need. = O(d +1n(1/¢)) examples
to obtain the desired result; in particular, we have(«w;) < 27%~2 with probability
1—9/(k+1). Assume now the claim is true fé—1 (¢ > 1). Then at the:-th iteration,
we can letS; = {z : |Wg—1 - x| < bg_1} andSy = {x : |wr_1 - x| > by—1}. Consider
an arbitraryi consistent with the data i (k — 1). By induction hypothesis, we know
that with probabilityl — §(1 — 1/k), both<,_; and«@ have errors at most—+—1,
|mply|ng O (wp—1, w *) < 27k 1r andf(w, w*) < 27717, Therefored(w, wy—1) <

kr. Let B = 27 %7 and usingcos ﬁ/ sinf3 < l/ﬂ andsin 5 < (it is easy to verify

thatby,_1 > QSianl/z\/E) + In (1 + \/lnmax(l, cos B/ sin@)). By Lemma 7, we
have both



Pr, [(g—1 - 2)(w-xz) < 0,2z € Sy] < _sinB_ o ‘/_ and

eb cos,6’ -

Pr, [(Wg—1 - z)(w* - 2) < 0,2 € S3] < _sinB_ o ‘/?B.

— ebcosfB — €° R
Taking the sum, we obtaiBr,, [(w - z)(w* - x) < 0,2 € So] < Zeﬁ < 2~ (k+3) Us-
ing now Lemma 4 we get that for all consistent with the data i (k — 1) we have:

err(w) <err(|Sy) Pr(S1) + 27 F+3) < err(iy|S1)bp_1/4d/m 4 2~ *+3)

<9~ (k+2) (err(w\51)16\/477\/5 T In(l+ &) +1 /2) .

Since we are labellingy;, points inS; at iterationk — 1, we know from Theorem 7 that
3C's. t. with probabilityl — 6/ (k + k?) we haveerr (1| S1)16v/47 /5 + In(1 + k) <
0.5 for all @0 consistent with¥V (k); so, with probabilityl S(1=1/k)+1/(k+k?)) =
1—6(1—1/(k+1)), we haveerr(w) < 27%=2 for all 1 consistent withV (k). O

The bound in Theorem 2 is generally better than the one in fEmed. due to the
improved dependency o in my;. However,m;, depends on/InkInlnk, for k <
[log, 1] — 2. Therefore when! < Ink(Inlnk)?, Theorem 1 offers a better bound.
Note that the strategy used in Theorem 2 is more aggressvettte strategy used in
the selective sampling algorithm of [2, 6]. Indeed, we do sernple from the entire
region of uncertainty — but we sample just from a subregiaefodly chosen. This
helps us to get rid of the undesirétf 2. Clearly, our analysis also holds with very small
modifications when the input distribution comes from a highehsional Gaussian.

4 The Non-realizable Case under the Uniform Distribution

We show that a result similar to Theorem 2 can be obtained frenon-separable
problems. The non-realizable (noisy) case for active iegrin the context of classi-
fication was recently explored in [2, 4]. We consider here aehavhich is related to
the simple one-dimensional problem in [4], which assumasttie data satisfy the in-
creasingly popular Tsybakov small noise condition alorgydicision boundary[14].
We first consider a simple version which still leads to expuia convergence similar
to Theorem 2. Specifically, we still assume that the dataimests are drawn uniformly
from the the unit ball inR?, and a linear classifiap* is the Bayes classifier. However,
we do not assume that the Bayes error is zero. We consideplibaihg low noise
condition: there exists a known parameter 0 such that:

Px(|P(Y =1|X) — P(Y = —1|X)| > 48) = 1.

In supervised learning, such a condition can lead to fastergence rates. As we will
show in this section, the condition can also be used to dyathie effectiveness of
active-learning. The key point is that this assumption iegpthe stability condition
required for active learning:

o\ 1/(1—a)
4 min (1, M) < err(w) — err(w*) (1)



with o = 0. We analyze here a more general setting witke [0,1). As mentioned
already, the one dimensional setting was examined in [4]ct¥ecrr(w) — err(w*)
the excess erroof w. In this setting, Procedure 2 needs to be slightly modifisdna
Figure 3.

Input: allowed error rate, probab. of failurey, a sampling oracle foPx, and a labeling oracle
a sequence of sample sizes, > 0, k € ZT; a sequence of cut-off valués > 0,k € Z*
a sequence of hypothesis space ragii> 0, k € ZT;

a sequence of precision valugs> 0,k € Z ™

Output: weight vectorb of excess error at mostwith probability1 — ¢

Pick randomyg: ||wo||2 = 1.

Drawm; examples fromPx, label them and put into a working sét.

iterate k=1,...,s

find Wy, € B(wr—1,7k) (|wk]]2 = 1) to approximately minimize training error:
Z(z,y)EW I(ty, - zy) < minyepa,_,rp) Z(z,y)GW I(w - zy) + myek.
clear the working seltl’
until mx41 additional data points are labeled, draw sampfeom Px
if |Wy - x| > by, rejectz
otherwise, ask for label af, and put intol?”
end iterate

Fig. 3. Margin-based Active Learning (non-separable case)

Theorem 3. Letd > 4. Assume there exists a weight vecidr s. t. the stability con-
dition (1) holds. Then there exists a constéhts. t. for anye,§ > 0, ¢ < 3/8, us-
ing Procedure 3 withh, = 2~ (1=9krg=1/2, /5 4+ akIn2 —In B+ In(2 + k), rp =
2-U=k=2rfork > 1,7 =7, ¢, = 27¢F=D=438/ /5 + akIn2 — In B + In(1+k),
andmy, = Ce;,* (d+ In %), afters = [log,(3/e)] iterations, we find a separator with
excess erroK e with probability 1 — §.

Proof. The proof is similar to that of Theorem 2. We prove by inductim  that after
k < s iterations,err(wy) — err(w*) < 27%3 with probability 1 — §(1 — 1/(k + 1)).
Fork = 1, according to Theorem 8, we only need = 520(d+In(k/6)) exam-
ples to obtaini; with excess erro2—* 3 with probability1 —§/(k+1). Assume now the
claim is true fork — 1 (k > 2). Then at the-th iteration, we can lef; = {x : g1 -
x| < bg—1} andSe = {x : [Wg—_1 - x| > br—1}. By induction hypothesis, we know that
with probability at least —&(1 —1/k), 1x_1 has excess errors at mast“*+1 3, imply-
ing O(ty_1,w*) < 2-0-)k=Dz/4 By assumptiond (iy_1,1w) < 2~ (1-0k=27,
Let 5 = 2= (1=2)k=27 and usingeos 3/ sin 3 < 1/3 andsin § < 3, it is easy to verify

thatb,_, > 2sinfBd~1/2,[5+akn2 —InB+1In (1 + 1n(cosﬁ~/ Sinﬁ)>. From
Lemma 7, we have both

Pr, [(tg_1 - ) (g, - 2) < 0,2 € Sp] < ——Sn8 < V38 49

— ebpB—12ak cos 3 — 29Fed




Pr, [(Wg—1 - 2)(w* - 2) < 0,2 € S3] < sin 5 < 268

esB3—12ak cos 3 — 29Fe5” R
Taking the sum, we obtaiRr,, [(@y, - z)(w* - z) < 0,z € S] < 22‘[% < 2=+,
Therefore we have (using Lemma 4):

err(wy) — err(w*) <(err(wg|S1) — err(w*|Sy)) Pr(S1) + 9~ (k+1) 3
<(err(iy|S1) — err(w*|S1))be—1y/4d/m + 27 *F1
<27k ((err(wk.|51) —err(w*|S1))vm/(4er) + 1/2) )

By Theorem 7, we can choosg s. t. with m; samples, we obtailrr(wg|S1) —
err(w*|S1) < 2¢;/+/m with probability1 —§/(k+k?). Thereforeerr (wy, ) — err(w*) <
2% 3 with probability 1 — §((1 — 1/k) +1/(k+k?)) =1—-6(1 - 1/(k+1)). O

If « = 0, then we can achieve exponential convergence similar tofEne 2, even for
noisyproblems. However, for € (0, 1), we mustlabeb~, my = O(e 2> In(1/€)(d+
In(s/6)) examples to achieve an error rate ef That is, we only get a polynomial
improvement compared to the batch learning case (with saghplexity between
O(e~2) andO(e1)). In general, on€annotimprove such polynomial behavior — see
[4] for some simple one-dimensional examples.

Note: Instead of rejecting: when |y, - | > by, we can add them tdV using the
automatic labels fromo;. We can then remove the requiremeint € B(wg_1, %)
(thus removing the parameters). The resulting procedure will have the same con-
vergence behavior as Theorem 3 because the probability kihmarror by, when
by, - x| > by, is no more thare—(F+2) 3,

5 Dimension Independent Bounds

Although we showed that active learning can improve sampiepiexity, the bounds
depend on the dimensionality In many practical problems, such dependency can be
removed if the classifier can separate the data with larggimane consider the fol-
lowing simple case, witlx drawn from ad-dimensional Gaussian with bounded total
varianceix ~ N(0,Y), ¥ = diag(c?,...,03) ando; > --- > o4 > 0. Note that
E.|z|3 = > o3. The Gaussian assumption can also be replaced by otheasimil
assumptions such as uniform distribution in an ellipsoi@. &nhploy the Gaussian as-
sumption for computational simplicity. We assume furthettthe label is consistent
with a weight vectorw* with ||w*|| = 1. However, if we do not impose any restric-
tions onw™*, then it is not possible to lear™ without thed-dependence. A standard
assumption that becomes popular in recent years is to agbatne* achieves a good
margin distribution. In particular, we may impose the faliog margin distribution
conditionVy > 0:

Py(|w* 2| <7) < (2)

2o

Condition (2) says that the probability of small margin isaimSince the projection
w* - x is normal with variancer? = - o7 (w?)?, the margin condition (2) can be
J

replaced by

5 We are ignoring dependence @rhere.



w2 >0 3)

where||{]|sx = ,/Z] 202, which says that the variance ofrojected tav* is at least

o. This condition restricts the hypothesis space containihgo that we may develop
a learning bound that is independentiofAlthough one can explicitly impose a margin
constraint based on (3), for simplicity, we shall considelifierent method here that
approximatesv* with a vector in a small dimensional space. Lemma 1 showsttisat

possible. Fotw, w’ € R?, we defineédx(w, w’) = arccos 2

HWHEHWHE ’

2
]’UJJU)

Lemma 1. If w* with |Jw*||2 = 1 satisfies (3) and lew*[k] = [w], ..., w},0,...,0],
thensin 5 (w*, w*[k]) < og41/0.

Proof. By assumption, we have:

. - Sk 75 (w))? g (w))? >, (w))?
sin(0s (w*, w*[k]))? = W < U’%HW < o}iﬂm =

(0k41/0)?, as desired. 0

Note that the error of classifier is given byerr(w) = M Therefore Lemma 1
shows that under the margin distribution condition (2)sipossible to approximate*
using a low dimensionab*[k] with small error. We can now prove that:

Theorem 4. Assume that the true separater* with ||w*|| = 1 satisfies (3). There
existsC's. t.Ve,§ > 0, e < 1/8, using Procedure 4 with, = 2! ~%7,/5 + In(1 + k),
bp = 0, dj, = inf{( : sin(2_(k+4)e_bifl/27r >op1/otry =2"Fnfork > 1,r =

T e =27°/\/5+In(1 + k), andmy, = Ce;,* (dy + In &), afters = [log, (2)] — 2

iterations, we find a separator with excess erfok with probability 1 — §

Proof. We prove by induction ort that afterk < s iterations,err(wy) — err(w*) <
2~ (k+2) with probability1 — §(1 — 1/(k + 1)). Note that by Lemma 1, the choice of
dy, ensures thals; (w*, w*[dy]) < 2~ *+3) 7, and thuserr (w*[d]) < 2~ *+3),

Fork = 1, according to Theorem 7, we only need. = O(d, +1n(k/6)) examples
to obtaimi; € H[d}] with excess erra2~(**+2) with probability1 —§/(k+1). Assume
now the claim is true fok — 1 (k > 2). Then at thek-th iteration, we can leb; =
{z: |g_1 - z| <bp_1}andSs = {x : |Wg—1 - x| > br—1}. By induction hypothesis,
we know that with probability at leagt— §(1 — 1/k), @w,—1 has excess errors at most
2= (k+1) |mply|ng O(p—1, w*) < 27 By assumptiond(wy—1,dy) < 2~
Let 3 = 2~ %7 and usecos ﬁ/ sin 3 < 1/5 andsin 3 < §, it is easy to verify that the

following inequality holds,_; > \/isinﬁ\/5 +1n <1 + 1/In(cos 3/ sin [3))

Let P = Pr, [(Wr—1 - x) (i - ) < 0,z € So], and let(&1, &) ~ N(0, I2x2) and
0 = 05 (g, wr—1). By Lemma 3, we have

P =2 P;r [€1 < 0,& cos(0) + & sin(6) > by—1]
&1 20,6 + &sin(B), cos(5) > b1/ cos(5)]
<sinﬂ (1 + \/ln (cos(3)/ sin(3 ))) e b1/ @sin(3)%) < g.

<2 Pr

—




Similarly, we also havér, [(i_1 - z)(w* - ) < 0,z € S5] < ¥28_ This implies that
Pr, [(y, - x)(w* - x) < 0,z € Sy] < 2¥28 < 9-(k+3) Now using Lemma 2, we have

ed

err(iy) <err(wy|S1) Pr(Sy) + 27 *+3) < err(ig | Sy )by /vV2m 4 27+

<9~ (k+2) (err(ﬁ)k|51)8\/5 +In(1+k)+ 1/2) .

Our choice ofd;, ensures thatrr(w*[dy]|S1) < 27¢/+/5 + Ink. From Theorem 8,
we know it is possible to choose a consténisuch that withm, samples we have
err(wy]S1)8+/5 + In(1 + k) < 0.5 with probability 1 — §/(k + k2). Henceerr (1) <
2-%=2 with probabilityl — §((1 — 1/k) + 1/(k+ k%)) =1-6(1 - 1/(k+1)). D

Input: allowed error rate, probab. of failurey, a sampling oracle foPx, and a labeling oracle
¥ = diag(oi,...,03), a sequence of sample sizeg > 0,k € Z*
a sequence of cut-off valués > 0, k € Z™ and one of hypothesis space ragjii> 0,k € Z*
a sequence of hypothesis space dimensins 0, k € Z+
a sequence precision valugs> 0,k € Z7.
Output: weight vectoni, of excess error at mostwith probability1 — ¢
Pick randomig: [|o|lx = 1.
Drawm; examples fromPx, label them and put into a working sBt.
iteratek=1,...,s
find Wi € H[dk] (k]| s = 1, ||k — Wr—1]|s < 2(1 — cos(ry))) such that
Z(m,y)eW I('Lf)k . :cy) S ME€k,
WhereH[dk] = {U) < Rd PWdp41 = = Wa = 0}
clear the working seltl’
until mx41 additional data points are labeled, draw sampfeom Px
if |wy - x| > by, rejectz
otherwise, ask for label af, and put intol?”
end iterate

Fig. 4. Margin-based Active Learning (with low-dimensional approximation)

Using a more refined ratio VC-bound, one can easily improeectivice ofm;, =
Ce; *(dy +1In(k/5)) tomy, = Ce;, ' (dy Ine~ +1n(k/5) in Theorem 4. In Algorithm 4,
instead of putting constraint af, usingr;, one can also use_ to label datar and
put them into the working sé¥’ such thatwy_; - x| > bx_1, which introduces error at
most2~(*+3)_ One may then train &, using labeled data iii” without the constraint
[l — —1]ls < 2(1 — cos(ry)); the results will be similar.

The sample complexity of Procedure 4 dependsowhich is determined by the decay
of oy, instead ofd. In particular we can consider a few possible decays withco:

— Assumes;, < O(279%) with constant3 > 0, which is the eigenvalue decaying
behavior for exponential kernels. In this cageis O(k/3). Therefore we only
needm; = O(k?In k) examples at each iteratidgn



— Assumeo;, < O(k~?) with constant3 > 0, which is the eigenvalue decaying
behavior for spline kernels. In this cagg is O(Qk//’). Therefore we neeth;, =
O(Qk/ ) examples at each iteratién The total samples needed to achieve accuracy
eis O(e~'/P). Note that wher > 1, we achieve faster thaf(1/e).

— When the total variation is boundey; , o7 < 1, which means thaz||, is bounded
on average (corresponding to standard large margin kerettads with bounded
|z||2), theno), < 1/vk. Therefore we can také, = O(2%%) andm;, = O(2%).
The total sample size needed to achieve accuedsyO(¢~2). The constant will

depend on the margin/ /Zj 0? but independent of the dimensionalifywhich
is infinity.

6 A General Analysis for Margin Based Active Learning

We show here a general bound for Algorithm 1 based on assongpéibout the algo-
rithm A, the sample sizes:;, and the thresholds,. This is a more abstract version of
the same underlying idea used in proving the results predearlier in the paper.

Theorem 5. Consider Algorithm 1. Letd be empirical risk minimization algorithm
with respect to the hypothesis spakeand assume that givené > 0, with m >
M (H, e, ) samples, we have distribution free uniform convergencedtole.:

P [supyen [BI(w- 2y <0)— 3" T(w-ay; <0)| <e] >1-6. (4)
Letd € (0,1) be the probability of failure. Assume that we ensure thabahestagek:

— Choose margin thresholg, _; such that with probability. — 0.55/(k + k?2), 3.
P((wg_1 - o) (s - ) <0, [thg_q - x| > bp_1) < 272 and P(ab, - 2y < 0) <
infep err(w) + 2~ F+2),

— Takemy, = my, — mg_1 = M(H,2=*+3) 0.55/(k + k?)).

Then afters iterations,err(w;) < inf,,ep err(w) 4+ 27° with probability at leastl — 4.

Proof Sketch: By the assumption omy,, with probability1 — §/(k + k2), we have:
err(wy) < Py -2y <0,z € S1) + P((Wg - x) (s - ) < 0,2 € S) + Py - zy <
0,2 € S2) < P2y < 0,2 € S1)+P((Wi-x)(Wg—1-x) <0,z € S2)+P(s-zy <
0,7 € Sp)+2~F+2) < P(ib, -2y < 0,2 € S1) + P((W,-2) (W—1-7) < 0,2 € So)+
Py, -zy < 0,2 € S3)4+2-2-F+2) < err(i,) +3-2-*F+2) < inf,, ey err(w) +275.

O

In order to obtain a robust active learning algorithm thatslaot depend on the
underlying data generation assumptions, one can estimdf¥, ¢, §) using sample
complexity bounds. For example, we have used standard Bosunch as Theorem 8
in earlier sections. A similar approach is taken in [2]. Oa@ @lso replace (4) with
a ratio uniform convergence bound such similar to the raeble case VC bound in
Theorem 7. For some problems, this may lead to improvements.

In principle, it is also possible to estimalg using theoretical analysis. We only
need to findb, such that wheni, - = > b, no weight vectorv can disagree with



1y, with probability more thar2~(#+3) if err(w) is within 2=* of the optimal value.
However, the computation is more complicated, and reqtivaswe know the under-
lying distribution of z. Note that in the theorems proved in earlier sections, weewer
able to estimaté;, because specific distributions ofwere considered. Without such
knowledge, practitioners often pidlg by heuristics. Picking the right, is necessary
for achieving good performance in our analysis. One praksaolution is to perturhy,
(e.g. using bootstrap samples) and findsuch that the perturbed vectors agrees with
Wy with large probability whenby, - = > bi.. Another possibility is to use a procedure
that tests for the besj,. This is relatively easy to do for realizable problems, as\sh

in Figure 5. We can then prove that:

Theorem 6. Consider Algorithm 5. Letd be the empirical risk minimization algo-
rithm with respect to the hypothesis spdde and assume thate, 6 > 0, withm >
M(H,e€,) samples we have distribution free uniform convergence @oue. with
probability 1 — §, Yw € H, we have both

El(w- -2y <0)< 23" I(w-z;y; <0)+e and

m

%Z;’;ll(w-xiyi <0)<2EI(w-2y <0)+e.

Let N (e, §) be a distribution free convergence bound for the binary @ndariables
&€ {0,1}:i. e.form > N(e, 0) with probabilityl — § we have both

E¢ <183 & +eandl Y & < 1.5EE +e.
Letmy = M(H,2-F+5) 0.5/ (k+k?)), np = N(2-F+30.255 /(¢ (k+k2))), and
e, = 2~ (1) Assume also we take ¢, S.t. P(y_1 - & > by, ) < 27 F+5),
If inf,, e I (w - 2y < 0) = 0, then afters iterations, with probabilityl — §, we have:

— At each iterationk < s, before the for loop ovey stops:Vw,. € H such that
P(t,-zy < 0) > 27F+0): P((ay,_y-2) () <0, [thg_1-7| > by 4) > 27 FF0),
— The final error iserr(w,) < 27%.

We omit the proof here due to lack of space. Note that Theorénptes that we only
need to label a portion of data, with margins,, , whereg,, is the smallesy such that
b, € H with P(ib, - vy < 0) < 276 and P((y_1 - ) (s - ) < 0, [adg_y - 2| >
br.q) < 2~ (*+6) It does not require us to estimdigas in earlier theorems. However, it
requires an extray, labeled data at each iteration to select the optimal masginThis
penalty is usually small because the testing samplersiig often significantly smaller
thanm,. For example, forl dimensional linear classifiers consider earlief, needs to
depend onl butn; can bed-independent. Therefore it is possible to achieve sigmifica
improvement with this testing procedure. Its advantagkaswe can choosig, based
on data, and thus the procedure can be applied to distritautieat are not uniform.



Input: a learning algorithmA that learns a weight vector from labeled data
a sequence of training sample sizes, . . ., ms;
a sequence of validation sample sizgs. . ., ns, and one of acceptance threshadgs. . . , e,

a sequence of cut-off poinfs—1 = b0 < br,1 < -+ < bre, t(k=1,...,5)
Output: classifieri
label data points:, . .., xm, by @ human expert and uskto learn weight vectot); .
iterate k =2,...,s
generate and label, samplegz1, 1), ..., (n,,¥n,)
generaten;, samplese; with labelsy; = sign(wk—1-z;) (j = 1,...,my)
forg=1,..., 0
labely; by a human expert ifivx—1 - ;| € (bk,g—1,br,q] (G = 1,...,mk)
useA to learn weight vectot, from examplegz;,y;) (j = 1,...,mx)
if (error ofwy on (x},y:) (j = 1,...,n) is less thar,) break
end for
end iterate

Fig. 5. Margin-based Active Learning with Testing

7 Discussion and Open Problems

While our procedure is computationally efficient in the reafile case, it remains an
open problem to make it efficient in the general case. It ixemable that for some
special cases (e.g. the marginal distribution over theaits space is uniform, as in
section 4) one could use the recent results of Kalai et. alAfmostically Learning
Halfspaces [11]. In fact, it would be interesting to deriveqise bounds for the more
general of class of log-concave distributions.
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A Useful Facts

We state here two standard Sample Complexity bounds [1] & aseful probability
bounds for standard normal variable.

Theorem 7. Let H be a set of functions fronX to {—1, 1} with finite VC-dimension
V > 1. Let P be an arbitrary, but fixed probability distribution ovef x {—1,1}. For
anye, d > 0, if we draw a sample fron? of sizeN (¢, 6) = 1 (4V log (1) + 2log (%)),
then with probabilityl — ¢, all hypotheses with errop e are inconsistent with the data.
Theorem 8. Let H be a set of functions fronX to {—1, 1} with finite VC-dimension
V' > 1. Let P be an arbitrary, but fixed probability distribution ovéf x {—1, 1}. There

exists a universal constant, such that for any, § > 0, if we draw a samplé(x;, y;));
from P of sizeN = N(e,8) = & (V +log (%)), then with probabilityl — 4, for all

he H, we have{ LS I(h(@:) # vi) — B I(h(X) # y)\ <e

Lemma 2. Assumer = [z1,22] ~ N(0, I2x2), then any giveny;, v, > 0, we have
Pr, (21, 22) € [0,7] x [r2,1]) < 52A=e 72/,

Lemma 3. Assumer = [z1,x2] ~ N(0, I2x2). For any giveny, 5 > 0, the following
holds:Pr,,(z1 < 0,21 + fa2 > ) < g (1 ++v—In [min(l,ﬁ)]) e~/

B Probability estimation in high dimensional ball

Considerz = [z, ..., x4] ~ P, uniformly distributed on unit ball iR?. Let A be an
arbitrary set ink?; we are interested in estimating the probabilty, ((z1,z2) € A).
Let V; be the volume ofl-dimensional ball; we know; = 7%/2/I"(1 4 d/2) wherel"
is the Gamma-function. In particuldf_o/Vy = d/(2x). It follows:

Vi
Pr((r1,a2) € 4) = =12 /( e =
X T1,T2)€E
d 2 2\ (d—2)/2 d —(d—2)(z2+x3)/2
— (1 —zf —x3) dridry < — e 1782) 2 dx day.
2m (z1,22)€EA 2m (z1,m2)EA

where we use the inequalify — z) < e™~.



Lemma4. Letd > 2 and letz = [z1,...,x4] be uniformly distributed in thel-
dimensional unit ball. Given; € [0,1], 2 € [0, 1], we have:

Pro((z1,22) € [0,71] % [12,1]) < % NVd —(d—2)43 /2

e
Proof. Let A = [0,71] X [72, 1]. We have
PI‘$((.’131,$2) EA) < % f e_(d_Q)(x?"‘xg)/delde < ’72;: f e—(d—Q);cg/de2

(z1,22)EA z2€[v2,1]
S 'é_e (d— 2)72/2 f 6_(d_2)w2/2df1} S %ie—(d—Q)'yg/Q min |:1 — Y2, /—2(d7r2):| .
z€[0,1—72)
Note that whenl > 2, min(1, /7 /(2(d — 2))) < /7/d. O
Lemma 5. Assumer = [z, ..., x4] iS uniformly distributed in the-dimensional unit

ball. Giveny, € [0, 1], we havePr, (z; > 71) < te~ /2,
Proof. Let A = [y, } [—1,1]. Using a polar coordinate transform, we have:
PI‘$(($1,$2) € A) 27r (z1 m2)€A(1 - .Z‘% - x%)(d_Q)/deldx2 =

a2 1
T.Q) > rdrdf = 27 f(r,rcos 0)€[0,1] x [wq 1] dad( Tz)
dfd(1 — %)% = 0.5(1 — A2)¥/2 < Le~hi/2, 0

d d

b2 f(r,rcosG)E[O,l]X[71,1](1 o 2
1

< 27 f(’l‘,@)e[’\/l,l}X[fﬂ'/2,ﬂ'/2]

Lemma6. Letd > 4 and letz = [z1,...,x4] be uniformly distributed in thel-
dimensional unit ball. Given, 5 > 0, we have:

Pry(z1 < 0,21 + fa2 > 7) < g(l + /= Inmin(1, §))e~ /(457

Proof. Leta = 3y/—2d~! Inmin(1, 3), we have:
Pry(z1 < 0,21 + fz2 > 7)
< Pry(z < —a x1+ﬁx2>’y)+Pri(x1€ [—a, 0], 21 + Bx2 > 7)
<Prm(z1 < —a,x9 > (a+7)/B) + Pre(z1 € [—a,0], 22 > ~v/0)
3 Pro(a2 > (04 + ’Y)/ﬁ) + Pry(z1 € [0,0],22 > 7/B)
l —d(a+v)?/(26%) | avd ,—dy?/(46%)
1€ Qﬁ

_da? _d? : —21 i _dy?
|:411€ 252 _‘_;Y\\//gil e 152 = |:m1né(ll,ﬁ) + By 2211/1211(173)] e 457 | 0

IN |/\

IN

Lemma 7. Letu andw be two unit vectors if?, and assume thal{u, w) < § < /2.
Letd > 4 and letz = [z1,...,z4] be uniformly distributed in thé-dimensional unit

ball. ConsiderC' > 0, lety = 25\'}%5 \/an+ln <1 + \/lnmax(l,cosﬁ’/sinﬁ)).

ThenPr, [(u-z)(w-z) <0, |w-z| >~] < Jifg

Proof. We rewrite the desired probability &Pr, [w-x > v,u -2 < 0]. W.L.g., let
u = (1,0,0,...,0) andw = (cos(d),sin(6),0,0,...,0). Forx = [x1,x9,...,xq] We
haveu-z = x; andw-z = cos(6)z1+sin(6)z2. Using this representation and Lemma 6,
we obtainPr, [w -z > v,u -z < 0] = Prglcos(d)z1 + sin(@)ze > v,27 < 0] <

- 42
Pr, [a: + qm((g)) 9 > ”’(é),xl < 0} ;;nﬁ (1 + 4/Inmax(1, %) e T =
sin_-1 a5 desired. 0
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