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Abstract We present a new margin-based approach to first-order rule learning. The ap-
proach addresses many of the prominent challenges in first-order rule learning, such as the
computational complexity of optimization and capacity control. Optimizing the mean of the
margin minus its variance, we obtain an algorithm linear in the number of examples and a
handle for capacity control based on error bounds. A useful parameter in the optimization
problem tunes how evenly the weights are spread among the rules. Moreover, the search
strategy for including new rules can be adjusted flexibly, to perform variants of proposition-
alization or relational learning. The implementation of the system includes plugins for logi-
cal queries, graphs and mathematical terms. In extensive experiments, we found that, at least
on the most commonly used toxicological datasets, overfitting is hardly an issue. In another
batch of experiments, a comparison with margin-based ILP approaches using kernels turns
out to be favorable. Finally, an experiment shows how many features are needed by propo-
sitionalization and relational learning approaches to reach a certain predictive performance.

Keywords First-order learning · Relational learning · Rule learning · Margins · Capacity
control

1 Introduction

Most systems in ILP employ a rule-based representation language to learn first-order con-
cepts. This is no surprise given that many of the challenges that are inherent in first-order
learning are similar to their counterparts in propositional rule learning. Unfortunately, learn-
ing disjunctive or conjunctive sets of rules has been proven to be hard to handle from an
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analytical point of view. This is in part due to the combinatorial complexity of the classical
DNF rule set representation (e.g., learning small sets of k-term DNF formulae is NP-hard,
Kearns and Vazirani 1994). Consequently, most traditional rule learning algorithms resort to
heuristics for model induction. In particular, capacity control (e.g. pruning) comes either at
the expense of data or is based on heuristics which are difficult to compare and may or may
not work well in a particular learning setting.

To overcome these problems, modern rule learning algorithms are often based on
weighted rule sets, that is, sets of rules, where a weight is attached to each rule (Fried-
man and Popescu 2005). To classify an instance, an algorithm simply adds up the weights
of those rules whose conditions are met. If the sum is positive, the system predicts the pos-
itive class, otherwise, it predicts the negative class. This introduces the notion of a margin
to rule learning and a rich field of analytical results from ensemble or kernel-based methods
become applicable to rule learning.

Building on these techniques, we introduce a new margin-based approach to first-order
rule learning. The approach uses a novel optimization criterion, Margin Minus Variance
(MMV) (Rückert and Kramer 2006), that is particularly well-suited for first-order rule learn-
ing, because it can be calculated in time linear in the number of examples and allows the
derivation of error bounds for capacity control. In previous work (Rückert and Kramer
2006), we introduced MMV and applied it in the context of propositional rule learning to
test the feasibility of our ideas. In this paper, we arrive at our goal of MMV for first-order
rule learning, extend its scope and evaluate it experimentally on relational data. We call
the new system RUMBLE (“Rule and Margin Based Learner”). It is able to handle multiple
plugins for various types of data, e.g., for logic, graphs and mathematical terms. Moreover,
our implementation of MMV optimization contains a flexible and generic way to specify a
declarative inductive bias. It can be configured to base its rule generation process on differ-
ent kinds of information, thus bridging the gap between propositionalization (Kramer et al.
2001) and relational learning approaches that generate and evaluate discriminative features
dynamically.

Another important focus of this work is on the general spectrum of methods between
comprehensibility and predictive performance. Traditional logic-based representations are
easily comprehensible, but often lack the predictive accuracy of methods from statistical
machine learning. On the other hand, statistically motivated methods such as ensembles or
SVMs are more accurate, but often induce bulky or incomprehensible models. With MMV
optimization, we have an easy way to control the sparseness of the induced rule sets, al-
lowing the user to find a compromise between comprehensibility and predictivity: A subtle,
but important extension to our previous work allows the use of an arbitrary p-norm in the
constraints of the optimization problem instead of the 1-norm. Setting the value of the pa-
rameter p accordingly, we can tune to which degree the weights are distributed among the
rules.

This paper is organized as follows: In Sect. 2, we briefly discuss related approaches for
rule learning and margin-based approaches in ILP. Section 3 explains MMV optimization
including the generalization to an arbitrary p-norm, and various rule generation strategies
for structured data. In Sect. 4, we report on extensive experiments: First, we show that over-
fitting is hardly an issue in the context of commonly used toxicological datasets. Second,
the experiments show that margins can be useful in ILP rule learning even without kernels.
Third, we investigate the effect of various feature generation strategies between proposi-
tionalization and relational learning. In Sect. 5, we summarize our main points and suggest
a direction for further work.
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2 Related work

Rule learning has a very long tradition in Machine Learning. While early rule learners repre-
sented rule sets as disjunctions, more modern (propositional) approaches use weighted rule
sets. Most of those systems are based on ensemble theory. In propositional rule learning,
one of the first approaches to do so was SLIPPER (Cohen and Singer 1999). It is based on
boosting, where the weak learner is a traditional rule generation procedure. More recently,
Friedman and Popescu (2005) have introduced a system based on ensembles of rules. The
algorithmic framework is conceptually based on bagging, though it can be parameterized
to resemble other methods such as Bayesian model averaging. One disadvantage of those
systems is that ensemble theory does not provide any justification to stop adding rules to an
ensemble. Therefore, rule ensembles tend to be larger than strictly necessary.

Due to its roots in first-order logic, most multi-relational rule learning algorithms are
based on disjunctions or conjunctions of rules. Recently, interest in margin-based relational
learning has been spawned. Most of the work in this direction builds on kernel methods:
Muggleton et al. proposed Support Vector Inductive Logic Programming (Muggleton et al.
2005), where the clauses that are induced by CProgol5.0 are used as features to represent the
training data propositionally and thus allow the application of a linear SVM. A different ap-
proach is taken by Landwehr et al. (2006). They replace the rule evaluation function in FOIL
with a novel scoring function, which rates the quality of a set of clauses as the accuracy of
a SVM that is built on a propositional data representation, where the clauses are again used
as features. Finally, Woźnica et al. (2005) extend convolution kernels to work on relational
data. The main idea is to represent each instance in the training set as a tree whose edges
are connections between the tuples in different relations. This instance representation can
be dealt with convolution kernels so that standard SVM methods apply. Popescul and Ungar
(2003) extend Logistic Regression to the relational setting. They apply refinement operators
to generate new features from relational data and add those features to a logistic regression
model until the model overfits according to the Bayesian information criterion (BIC).

As our approach aims at finding an explicit representation of the rules, we do not need the
power of kernels to implicitly project into a higher dimensional feature space. Consequently
we can use margin-based methods without some of the restrictions that are often attached
to kernel-based approaches. In the next section we outline the concepts that underlie the
proposed system.

3 Margin-based rule learning

The approach to margin-based rule learning presented in this paper can be divided into three
conceptual subtasks. First, we motivate MMV optimization as a feasible relaxation of the
infeasible direct empirical risk minimization. MMV is related to LDA (Linear Discriminant
Analysis) in that it considers the variance and covariance information, but it does not make
any assumptions about the data generating distribution and it uses the margin rather than the
Rayleigh quotient to determine the decision boundary. Second, we use a novel risk bound to
perform capacity control and avoid overfitting. Third, we describe a flexible way to adjust
the learner’s inductive bias, that is able to work in propositionalization-like and traditional
ILP settings.1

1In the general setting, ILP induces rules that can have variables in the head, thus allowing for recursive rule
definitions. In this paper we deal only with non-recursive rules.



192 Mach Learn (2008) 70: 189–206

3.1 Margin minus variance optimization

In order to give a more formal definition of the setting, we need some basic definitions.
First of all, we presume the “learning from interpretations” setting (De Raedt 1997). In
this setting, each instance is represented by a set of ground atoms or, equivalently, a set
of tuples taken from a fixed set R of relations. For example, one can represent a dataset
of molecules using the three relations R = {mol,atom,bond}: a tuple in the relation mol
represents a molecule, atom contains the atoms in the molecules and bond describes the
bonds between those atoms. In this example, the instance x = {mol(m1,18.02), atom(a1,
m1, H), atom(a2, m1, H), atom(a3, m1, O), bond(b1,a1,a3), bond(b2,a2, a3)} represents a
water molecule with molecular weight 18.02. Let X denote the set of all possible instances
and Y = {−1,+1} the (binary) set of class labels, where the values −1 and 1 represent the
negative and positive class respectively. We follow the usual convention in classification and
assume that the instances are drawn i.i.d. according to a fixed but unknown distribution D,
ranging over X ×Y . A sample X = {(x1, y1), . . . , (xm, ym)} of size m is drawn and given to
a learning algorithm. The task of the learning algorithm is to induce a hypothesis h : X → Y
whose predictive accuracy P(x,y)∼D(h(x) = y) is as large as possible.

Furthermore, we assume we already have a (possibly infinite) repository of rules R =
{r1, r2, . . .}, where a rule rj : X → [−1,1] assigns a value between −1 and 1 to each in-
stance. A typical rule could be “assign +1, if the molecule contains an aromatic ring, and −1
otherwise” or “assign +1, if the molecular weight is greater than 51.5 and −1 otherwise”.
We will later present a scheme to enumerate the rules in the repository declaratively. The
results in the paper also hold for rules that assign intermediate values, such as 0.5 (“probably
positive”) or 0 (“don’t know”), but in general we assume that r(x) ∈ {−1,+1}. Let xi(j) de-
note the result of the application of rule j on instance xi . If we consider only the first n rules,
we can represent the ith instance by the vector of rule values x̄i := (xi(1), xi(2), . . . , xi(n))T .
Likewise, a weighted rule set can be given by a weight vector w ∈ [−1,1]n. An individual
rule set w assigns class label sgn(wT x̄i), so that instance xi is positive, if

∑n

j=1 wjxi(j) ≥ 0
and negative otherwise. Representing a rule set as a weight vector might seem unusual.
However, even if the number of rules n is large, we can still deal with small rule sets, if
most components of w are set to zero. Also note that the weight vector defines a hyperplane
separating [−1;1]n into two half-spaces so that rule sets in our setting are related to linear
classifiers and perceptrons.

Usually, the zero-one loss l(wT x̄, y) = I[sgn(wT x̄) �= y] is used in classification to define
the empirical error ε̂w := 1

m

∑m

i=1 l(wT x̄i , yi) and the true error εw :=
E(x,y)∼Dl(wT x̄, y). We are interested in finding a weighted rule set w that minimizes the true
error εw . However, since D is unknown, we have no information about the true error and
the best we can do is to minimize the empirical error ε̂ instead. Note that scaling a weight
factor w with a positive factor does not change the actual classification of the instances.
Thus, in practice, one often restricts the space of possible weight factors. Unfortunately,
due to the discontinuity of the zero-one loss, empirical risk minimization is a combinatorial
optimization problem. It has been shown to be NP-hard and is also hard to approximate up
to a fixed constant (Ben-David et al. 2003). One way to avoid those computational expenses
is to optimize ε̂ not directly, but through a related quantity. For example, support vector
machines restrict the hypothesis space to weight vectors of unit length w ∈ {x | ‖x‖ = 1}
(as scaling w with a factor does not change the classification) and search for a w that max-
imizes the margin (or the soft margin) to the nearest training instances. Optimizing for a
large margin has two advantages: First, the resulting quadratic programming problem can
be solved efficiently, and second, it allows for the application of the kernel trick to elegantly
deal with large feature spaces.
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Fig. 1 The distances between a
hyperplane and the training
instances (left) induce a
distribution of margins (right).
MMV optimization aims for
hyperplanes whose margin
distribution features a large mean
and a small variance

For our purposes, though, the kernel trick is not helpful, because we are looking for an
explicit representation of the rule set, not one that is implicitly defined by a kernel. Thus,
a different approach might be desirable. One problem of the large margin approach is that
the classifier depends only on the support vectors and ignores the other data. If the support
vectors are not very representative of the underlying distribution, the classifier performs
worse than necessary. One approach to overcome this problem is to introduce regulariza-
tion, which requires an additional parameter. A different approach is to consider the margin
to all training instances. Ideally one would want to maximize the average distance from
the separating hyperplane to the training instances and to minimize the sample variance of
these distances (see Fig. 1). More formally: given an instance (x, y) let μw(x, y) := wT x̄ · y
denote the margin. The margin is positive, if the instance is classified correctly by w and
negative otherwise. Similarly to true and empirical error, one can define the empirical mar-
gin μ̂w := 1

m

∑m

i=1 μw(xi, yi) and the true margin μw := E(x,y)∼Dμw(x, y). One can also
estimate the sample variance of the margins from a training set; the empirical variance is
σ̂w := 1

m−1

∑m

i=1(μw(xi, yi) − μ̂w)2, the true variance is σw := E(x,y)∼D(μw(x, y) − μw)2.
Using this notation, one can look for weight vectors w that maximize the empirical margin
but minimize the empirical variance:

maximize
w

μ̂w − σ̂w

subject to ‖w‖p = 1
(1)

where the constant p ≥ 1 in the norm of the constraint is a user-adjustable parameter. We
call the optimization function margin minus variance (MMV) and denote it by γ̂w := μ̂w −
σ̂w . MMV optimization is intuitively appealing, since a low MMV also gives a low error,
and technically useful, since the true error can be upper-bounded based on the MMV. The
constraint in the above optimization problem is not strictly necessary; MMV is a concave
function so that the maximum is unique and global. However, it is convenient to restrict
the length of the weight vector w in order to limit the range of possible values the MMV
function can take. This is crucial to derive the concentration inequality used in Sect. 3.2.
The actual form of the constraint is not determined by the learning setting. It turns out,

however, that the constraint based on the p-norm ‖x‖p := (
∑n

i=1 |x|p)
1
p allows for a nice

way to regulate the bias of the MMV optimization. The norm value p controls how evenly
the weights are spread across the rules. If p = 1, most of the weights are set to zero and only
the few most informative rules get a non-zero weight. This is similar to the traditional rule
learning setting where one aims at a small set of good rules. If p = ∞, MMV assigns the
weight +1 or −1 to almost all rules. This setting is related to ensemble techniques such as
bagging, where the prediction is determined by a voting process. Often, predictive accuracy
is best for values of p near two, because MMV attaches large weights to highly informative
rules and small weights to less significant rules. Of course, the best value of p depends on
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the actual learning problem. For instance, learning from gene expression data works usually
best with small values of p, because typically only a few genes are relevant. On the other
hand, predicting the toxic activity of small molecules favors large values of p, because the
activity of a compound may depend on many different mechanisms. Thus, the parameter
p allows the user to adjust the bias of MMV in a meaningful way. If p > 1, maximizing
MMV is a semidefinite quadratic optimization problem with nonlinear constraints that can
be solved in time linear in the number of examples and, in the worst case, cubic in the
number of rules.

3.2 Capacity control for MMV optimization

Using the MMV maximization procedure one can efficiently determine “good” weights for
the rules in a predefined repository of rules. Obviously, the success depends to a large degree
on the right size of the repository, to avoid over- or underfitting. The standard approach to
this is to start with a small repository, then iteratively increase its size until an estimate of
the structural risk is optimal. However, traditional structural risk minimization is not optimal
in our setting, since it is too coarse-grained (i.e., it does not work on the level of individual
rules), and is based on error, not MMV. Therefore, we derived a new risk bound to estimate
the structural risk of a given repository in terms of the difference between true and empirical
MMV. Bn

p := {x ∈ R
n | ‖x‖p ≤ 1} denotes the unit ball according to the p-norm in R

n.

Theorem 1 Let D be a fixed unknown distribution over Bn∞ × {−1,+1} and S =
{(x1, y1), . . . , (xm, ym)} be a sample of size m drawn i.i.d. from D. Then for all δ > 0 and
all w ∈ Bn

1 :

PrS∼D

[

γw ≥ γ̂w −
√

18
2 lnn + ln 1

δ

m

]

≥ 1 − δ. (2)

See Appendix for a proof. The inequality basically states that the true MMV is with high
probability greater than the empirical MMV minus a risk term that depends logarithmically
on the size of the class of rules. It can be used also for w ∈ Bn

p with arbitrary p, if the w is
divided by its 1-norm before calculating γ̂w . The inequality provides a pessimistic estimate
of the structural risk that is involved with using larger classes of rules. The constant 18 in
the risk term is too pessimistic for most real world settings and applicable only for worst-
case analysis; for practical model selection applications one should use a smaller constant.
The following lemma indicates that one can use the true MMV to bound the true error (see
Rückert and Kramer 2006 for further discussions).

Lemma 1 Let D be a fixed unknown distribution over Bn∞ × {−1,+1} and w ∈ Bn
1 be a

weight vector with true error εw and true MMV γw . Then:

εw ≤
{ γw

4γ 2
w+γw

if γw ≤ 0.5,

1−γw

2−γw
if γw > 0.5.

(3)

See Appendix for a proof.

3.3 The learning algorithm

With the tools presented in the preceding section we have the main building blocks to design
a statistically motivated rule learning system. An outline is given in Algorithm 1. The system
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Algorithm 1 The RUMBLE learning algorithm

procedure Learn(X)

R(0) ← ∅
for i = 1,2, . . . and while new rules available

R(i) ← add new rule to R(i−1)

T (i) ← apply rules in R(i) to instances in X

w(i) ← argmaxwγ̂w(T (i))

γ (i) ← bound calculated from w(i) and n = |R(i)|
end for

return (R(i),w(i)) with the maximal γ (i)

end procedure

starts with the training set given in a set X and an empty set of rules. In the main loop, it
adds a new rule to the set of rules and applies the rules to the examples in the training set. It
determines the weight vector w(i) optimizing the empirical MMV on this data and calculates
an upper bound on the corresponding true value given the empirical quantity and the number
of rules. If no new rules are available, the algorithm terminates the loop and returns the set
of rules and the weight vector which achieved the best bound. RUMBLE can be adjusted
with two parameters: The constant b replaces the 18 in Theorem 1. It specifies how strict
the algorithm should be with regard to overfitting avoidance. If overfitting is not an issue,
one can set the constant to zero and thus select the repository with the best empirical MMV.
The constant p is used for the p-norm in the constraint in (1). It specifies how evenly the
weights should be distributed among the rules and quantifies how large and diverse the rule
set should be. To complete the system, one needs two additional subroutines: one to solve
the empirical optimization problems and another to generate new rules for the training set.

We formulate the MMV optimization task as a standard quadratic programming problem.
This is a semidefinite quadratic programming problem with one equality and 2n inequality
constraints, if p = 1, and a quadratic program with quadratic constraints if p > 1. It can be
solved using any established algorithm for constrained optimization. Usually, the computa-
tionally most demanding part of the process is to determine the set of active constraints. As
the number of non-zero weights is usually rather small, this optimization step is typically
very fast.

The procedure to generate the rules in the repository is outlined in the next section. In
practice, it is not necessary to store the covariance matrix for all rules in the repository. Many
weights will be too small to make a difference for prediction anyway. In our implementation
we therefore limit the number of rules in the model to 100 and remove the rule with the
lowest weight whenever the model’s size exceeds this limit. This also avoids the cubic time
complexity during MMV optimization.

3.4 Rule generation for structured data

So far, we have specified, how large the repository should be in order to avoid overfitting,
but we have not given a specific procedure to generate the rules. Fundamentally, one would
like to generate rules that are as informative as possible about the class label. However, a
rule that may contain a lot of information in one learning setting, can be useless in another
setting. As the number of rules that can be generated for multi-relational domains is virtually
unlimited, it is unreasonable to assume that a fixed rule generation order can work well in
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many cases. Instead it makes more sense to allow the user to adjust the rule generation
order in a flexible and generic manner, so that she can incorporate common sense or explicit
background knowledge. Before we specify RUMBLE’s approach to rule generation, we point
out two interesting observations.

First, it is noteworthy that the system’s predictive performance depends not only on the
rule repository as a whole, but also on the order, in which the rules are evaluated. If the
system generates a large number of rules, it is quite likely that one of the rules agrees with
the target class label just by pure coincidence. Hence, the risk of overfitting increases with
the number of generated rules and the structural risk term in (2) penalizes rules that are added
only late. The user should therefore configure the system to generate presumedly informative
rules first. For instance, in the task of predicting carcinogenicity for small molecules, one
could generate rules that check for the existence of halogens (which are known to contribute
to carcinogenicity) before presumedly less informative rules. This imprecise knowledge is
in contrast to the design in many ILP systems, where the background knowledge is encoded
in a precise logical form. Also note that the order can be interpreted as a Bayesian prior:
early rules have greater prior probability.

The second point is motivated by the question on whether RUMBLE should be regarded
as a propositionalization approach or rather as an ILP system in the classical sense. It turns
out that the border between those two categories is somewhat blurry and that RUMBLE can
be configured to resemble either approach. In the following we try to clarify this distinction
in a more precise way. First of all, all learning algorithms need to extract information from
the training data. In this sense, classical relational learning systems also generate “features”,
i.e., queries on the training data. The main difference to propositionalization is the fact that
relational learning methods generate those queries only when they are needed during the
hypothesis induction stage. Thus, the fundamental difference between relational learning
and propositionalization lies in the question of which information is evaluated in order to
decide whether a query is generated and included in the hypothesis. The following list cat-
egorizes learning algorithms depending on the type and amount of information that is used
for making those decisions.2

1. Agnostic feature generation. This is the most extreme form of propositionalization, where
the queries are generated without accessing the training data. The set of queries is fixed
before the actual learning starts. Of course, this approach runs the risk of generating many
uninformative features, such as queries that are true or false on all training instances.
Agnostic propositionalization makes sense only if there is significant evidence that a
particular feature set works well for the problem at hand.

2. Instantiation-dependent feature generation. In this case, a query is generated if it can be
expected that its instantiation meets certain conditions. Typically, systems in this cate-
gory try to ensure that the number of covered instances is between a minimum and a
maximum threshold. This is a reasonable goal as queries that are satisfied (or violated)
by only a few instances can contribute only a limited amount of discriminative informa-
tion. A typical example of an instantiation dependent propositionalization approach is
substructure mining in structure activity relationships.

3. Interaction-dependent feature generation. This category differs from the preceding one
in that the instantiations of the existing features are also taken into account for deciding
a new query’s suitability. The main motivation is to generate queries that complement
the existing ones, in the sense that they cover a significantly different subset of instances.

2Here, the terms “features”, “queries” and “rules” are used with the same meaning.



Mach Learn (2008) 70: 189–206 197

This ensures a certain variability in the feature set and improves the set’s discriminative
power.

4. Class-dependent static feature generation. Methods of this type take into account the
class label in the process of generating queries. However, this is done before queries are
actually assessed and potentially incorporated into the model.

5. Class-dependent dynamic feature generation. While methods in this category also use
class information as they generate new queries, they evaluate and incorporate features
dynamically, depending on the features in the model so far.

Types one to four belong to the family of propositionalization methods, type five is typ-
ically used in traditional ILP systems for decision tree and rule learning. Of course, this
categorization is far from being exhaustive and could be easily extended to include other
criteria. In the following we describe the rule generation method that is implemented in
RUMBLE. It can be configured to work in any of these settings. The main goal for the design
of the rule generation process is to allow for a flexible and generic way to specify a declar-
ative bias. Consequently, we do not restrict the data representation to a particular format.
For instance, it does not make sense to force the user to encode molecules as Prolog facts, if
the data is already available in a much more efficient representation (e.g., a canonical form
for a graph mining tool). Instead, we implemented a plugin architecture, where the user can
upgrade RUMBLE with plugins for various data representations. Each plugin offers a set of
refinement operators that are called by the system to generate new rules. The refinement
operator can access the existing set of rules, the weights of the current rule set, the training
data and generic background knowledge to form new rules. A setup text file specifies, which
plugins are loaded and which refinement operators are called in which order to generate the
rules. Right now, RUMBLE provides four plugins:

– Terms. These are simple mathematical expressions such as (a1 + a2)/2 or (a1 ∧ a3) ∨ a5.
The plugin provides refinement operators for adding new (fixed) term rules, modifying
existing term rules or combining existing terms to form a new rule.

– FreeTree. Predicting the biological activity of small molecules is an important and popu-
lar application of ILP. Thus, we incorporate a version of the frequent substructure mining
tool FreeTreeMiner (Rückert and Kramer 2004) as a plugin. It offers refinement operators
that can build rules checking for the occurrence of a particular substructure, create all sub-
structure rules that occur more frequently in the training data than a predefined threshold
or refine existing rules depending on the existing rule set or weights.

– Prolog. Prolog is a powerful and generic way to represent general data and background
knowledge. The Prolog plugin incorporates a fully featured Prolog engine based on Cx-
Prolog (Dias 2006). This enables the user to write her own refinement operators in Prolog.

– Meta. This plugin can combine existing rules from other plugins using simple logical
combinations. The refinement operators can be configured to combine only rules whose
instantiations meet certain conditions, e.g. minimum mutual information.

For instance, it is possible to specify that RUMBLE should first generate 200 rules describ-
ing the substructures that occur in more than 20% of the molecules in the dataset. Then, the
Term plugin can be configured to generate five rules that test the molecules’ LogP value as
discretized in 5 equal-frequency bins. Finally, the Meta plugin can be used to combine those
of the first 200 rules disjunctively, whose mutual information is among the fifty lowest.
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4 Experimental results

In order to evaluate MMV optimization, we perform a range of experiments. First, we inves-
tigate the role of the norm parameter and the bound parameter on the mutagenesis dataset
(Srinivasan et al. 1996). We then test RUMBLE on a range of benchmark datasets and com-
pare the results with those of other ILP systems. Finally, we compare the performance of
different rule generation biases.

4.1 Parameters for MMV optimization

Our implementation of RUMBLE can be adjusted with two parameters. The first parameter
is the value of the norm p in (1). This parameter controls how evenly the weights are dis-
tributed among the rules. The second parameter is the constant b that is used instead of the
pessimistic value 18 in the structural risk bound (2). This parameter determines the degree
of overfitting avoidance. We performed a set of experiments to evaluate the impact of those
two parameters on the predictive performance of the system on the mutagenesis dataset. We
configured the Prolog plugin with a bias that generates rules for the discretized LogP and
Lumo values and a Prolog refinement operator that generates all acyclic substructures that
appear at least three times in the data. For the first experiment, we set b to zero and choose
p ∈ {1,1.5,2,2.5}. Figure 2 shows the results for generating 600, 800, 1000, 1400, 1800
and 2400 rules. The first observation is that p = 1 performs constantly worse than the other
values. Apparently, there is a certain trade-off between predictivity and comprehensibility
on this dataset; small rulesets are simply not as predictive as the larger ones. The difference
between the other values of p is marginal and p = 2 appears to be a good compromise.

The second observation is the fact that MMV optimization does not seem to overfit, even
for very large numbers of generated rules. This is a surprising result given that overfitting
was a major issue on propositional datasets (Rückert and Kramer 2006), where setting the
overfitting parameter b = 1.0 gave the best results. The reason for this phenomenon is not
yet clear. One explanation might be that MMV tends to assign comparably low weights to
the larger substructures, which appear only in a limited number of instances. Hence, rules
containing large substructures can make a difference only if many of them vote for the same
target class. This resembles the voting process in ensemble methods, which are known to be
insusceptible to overfitting. Another explanation could be that several modes of action are in-
volved in chemical mutagenesis. Thus, unlike in pharmacological applications, the weights
are distributed among many potentially activating or deactivating substructures, and there
is no single structural feature that correlates well with the class label. To test this hypoth-
esis, we conducted two experiments with datasets from pharmacological applications: The

Fig. 2 The predictive accuracy
of MMV on mutagenesis for
p ∈ {1,1.5,2,2.5} and the
maximum number of rules
ranging from 600 to 2400
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Yoshida dataset (Yoshida and Topliss 2000) consists of 265 molecules classified according
to their bio-availability. The second dataset classifies molecules according to the degree to
which they can cross the blood-brain barrier (BBB) (Li et al. 2005). Our hypothesis was
partly confirmed by the experiments: In contrast to the toxicological datasets, the differ-
ence between training and test set error increased sharply with the number of substructures.
However, the best overall models were still found with a large number of features.

4.2 Comparison to other ILP systems

In the second batch of experiments we compared the predictive accuracy of MMV optimiza-
tion to those of other margin-based approaches. Following the discussion in Sect. 4.1, we
set p to two and b to zero for all experiments. In a recent paper Landwehr et al. (2006)
present kFOIL, a version of FOIL modified to use kernels and SVMs in the rule induction
step. The authors give a comparison of kFOIL with nFOIL, Aleph and the propositional-
ization approach c-ARMR+SVM on six datasets. Mutagenesis (Srinivasan et al. 1996) is a
popular ILP benchmark dataset. To warrant a fair comparison we used atom and bond in-
formation only and give results for the regression friendly part, as the regression unfriendly
part is too small to warrant precise estimation of predictive accuracy. On the Alzheimer
dataset (King and Srinivasan 1995) the task is to predict the ranking of certain compounds
with regard to four quantities that are known to influence Alzheimer’s disease. Following
Landwehr et al. (2006) we give results for amine reuptake inhibition (686 instances), low
toxicity (886 examples), high acetyl cholinesterase inhibition (1,326 instances) and reversal
of memory deficiency (642 instances). We used a Prolog-based bias that resembles the origi-
nal GOLEM bias (Srinivasan et al. 1996). The NCTRER dataset deals with the prediction of
estrogen receptor relative binding affinities of small molecules. We used the FreeTree plugin
to build substructure rules for the 232 examples. The left-hand side of Table 1 gives the pre-
dictive accuracies as estimated by tenfold cross-validation for the four systems (Landwehr
et al. 2006) and RUMBLE. As can be seen, RUMBLE outperforms the other approaches on all
datasets. For NCTRER, one can improve the predictive accuracy of RUMBLE even further
to 82.76% by setting p to 1.5.

A different approach to relational margin based learning has been taken by Muggleton
et al. (2005), where the output of CProgol5.0 is used in a linear kernel SVM. The authors
compare their algorithm with partial least squares, multi-instance kernels and an RBF kernel
on three chemical features on the DSSTox dataset (576 instances). The goal is to predict
whether or not the toxicity of a compound is above average. We used a Prolog refinement

Table 1 Predictive accuracy according to tenfold cross-validation for several systems. On the left, four sys-
tems are compared on six datasets with MMV optimization, on the right, five systems are compared on the
DSSTox dataset

kFOIL nFOIL Aleph c-ARMR RUMBLE Method Pred.

+ SVM Acc.

Mutagenesis 81.3% 75.4% 73.4% 73.9% 84.0% CProgol5.0 55%

Alzh. amine 88.8% 86.3% 70.2% 81.2% 91.1% CHEM 58%

Alzh. toxic 89.3% 89.2% 90.9% 71.6% 91.2% PLS 71%

Alzh. acetyl 87.8% 81.2% 73.5% 72.4% 88.4% MIK 60%

Alzh. memory 80.2% 72.9% 69.3% 68.7% 83.2% SVILP 73%

NCTRER 77.6% 78.0% 50.9% 65.1% 79.3% RUMBLE 76%
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operator to generate 300 rules that check for the existence of substructures in the molecules
that appear at least three times in the dataset. Then, we apply a Meta refinement operator that
calculates all pairs of the first 100 existing rules and combines them disjunctively. The results
on the right-hand side of Table 1 give the predictive accuracies as estimated by tenfold-cross
validation. RUMBLE outperforms SVILP and the other methods on this dataset. All in all,
the results demonstrate that margins are useful in first-order learning without the need for
kernels.

4.3 Comparing the biases

As outlined in Sect. 3.4, the performance of RUMBLE depends to a large degree on the order
and type of rules that are generated. For most of the benchmark datasets in the preceding
section, the bias essentially contains rules that express the occurrence of a particular sub-
structure in a molecule. Thus, if one aims at finding good biases for those datasets, the main
question is which substructures should be generated in which order. In particular, it is an
open question whether or not a propositionalization-like approach is more effective than an
approach that closer resembles traditional ILP systems. In the following we investigate this
empirically on the Yoshida dataset. We compare six biases:

– Unsorted MinFreq. This generates all substructures that occur more frequently than a
predefined threshold in the dataset. The rules are added in the order as output by Free-
TreeMiner, e.g. sorted according to the canonical form that is used in FreeTreeMiner.

– Sorted MinFreq. This is the same as the preceding bias, but the rules are ordered ac-
cording to the size (i.e. number of atoms) of the substructures. The idea is that smaller
substructures cover more instances and are thus more likely to be informative than large
substructures that cover only a few molecules.

– Maximum dispersion. This bias is designed to maximize the variety and dispersion of the
rules. To do so, it rates each generated rule according to a dispersion score that measures
to which degree a rule classifies differently than the other rules. The calculation of the
dispersion score is as follows: for each pair of training instances (xi, xj ), the bias calcu-
lates sij , the number of rules which assign the same label to both instances in the pair.
Then, the dispersion score of a new rule is the sum of the skl for those instance-pairs
(xk, xl) which are assigned the same label by the new rule. Hence, the dispersion score is
a measure of how many instance pairs are classified in a similar way by the other rules.
The bias proceeds as follows: first, it generates all rules that check for the existence of
one atom substructures. Then, it iteratively extends this rule set by refining that rule with
the lowest dispersion score, that is, the rule that classifies in the most different manner. It
stops as soon as a maximum number of rules are built.

– Greedy. This bias aims at refining those rules that have proven to be informative. Similar
to the preceding approach, it starts with a rule set that checks for the existence of all the
elements. Then, it iteratively refines the rule with the largest absolute weight in the current
model.

– Maximum dispersion MinFreq. This is the same as maximum dispersion, but it gener-
ates only those refinements that occur more frequently than a predefined threshold in the
dataset.

– Greedy MinFreq. This is the same as greedy with a minimum frequency threshold.

These biases fall into different categories when categorized according to the scheme in
Sect. 3.4. Unsorted and sorted MinFreq are in the second, the two maximum dispersion
biases in the third, and greedy and greedy MinFreq fall into the fifth category. Thus, these
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biases can be regarded to span the range between propositionalization and classical ILP
approaches. Figure 3 gives the results of our experiments for the Yoshida dataset. The left
side denotes the predictive accuracy as estimated by tenfold cross-validation in relation to
the number of rules that have been generated. The right side gives the average training error.
A good bias generates informative rules first, so that the maximal predictive accuracy is
reached after a few iterations and the rule generation loop can stop early without sacrificing
predictive accuracy. According to this criterion, maximum dispersion MinFreq performs
best, followed by sorted and unsorted MinFreq. In this and similar experiments (not reported
here) we found that greedy approaches and biases without minimum frequency constraints
fail to capture much of the relevant information, while sorting by size and dispersion tends
to improve predictive accuracy.

5 Discussion and conclusion

In the paper, we introduced a new margin-based approach to first-order rule learning. The
approach and in particular the quantity used for optimization, MMV, give theoretically ap-
pealing answers to many of the challenges in first-order rule induction, e.g., the computa-
tional complexity of optimizing a rule set, and overfitting avoidance. Moreover, it provides
several possibilities for adjusting the learning algorithm to the problem: First, the degree to
which the weights are distributed among the rules can be tuned by a parameter. Second, the
effectiveness of the error bound for capacity control can be adapted as needed. Third, vari-
ous rule generation strategies can be explored, depending on the way information is used to
generate the next rule in forward selection, to be included in the model. This also implies
that prior knowledge can be incorporated easily: Features assumed to be useful could be gen-
erated earlier than features just included for completeness. Fourth, RUMBLE offers specific
plugins for various types of data, such as logic, graphs, and mathematical terms. In experi-
ments, we investigated the overfitting behavior, the performance compared to margin-based
ILP approaches using kernels, and the effectiveness of various search strategies. The latter
experiments highlight an interesting aspect of propositionalization and relational learning,
namely the number of features needed to achieve a certain predictive performance. In fu-
ture work, we are planning to investigate this issue of “feature efficiency” of various feature
generation strategies in more detail.

Appendix: Proofs

Proof of Theorem 1 We assume that the training data is given as a m × n matrix X ∈ R
m×n.

Each of the m row vectors represents an instance xi := (xi1, . . . , xin) and each of the n

columns represents a rule. When given a weight vector w ∈ [−1;1]n, we are interested in
the distribution of the empirical margins yixiw. If a training set contains a negative instance
(i.e. yi = −1) one can simple multiply yi and xi with −1 to gain a positive training instance
with the same margin. Therefore, we assume without loss of generality that yi = 1 for all
1 ≤ i ≤ m and omit the yi in the following. To compute the MMV, we need the (unweighted)
empirical mean vector μ̂ ∈ R

n := 1
m
XT 1m and the (unweighted) empirical covariance matrix

Σ̂ ∈ R
n×n := 1

m−1 (XT X − 1
m
XT 1m1T

mX), where 1m denotes the vector containing m ones.

Later on, we will find it convenient to compute the individual entries σ̂ij in Σ̂ by σ̂ij =
1

m(m−1)

∑
k<l(xki −xli)(xkj −xlj ). The corresponding true quantities are μ := Eμ̂, Σ := EΣ̂
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and σij := Eσ̂ij . The empirical MMV γ̂w can be defined as γ̂w := μ̂T w − wT Σ̂w, and the
true MMV is just the expectation over all training sets γw := EX∼Dγ̂w . We would like to find
an upper bound of the estimation risk Pr[supw∈Bn

1
(γ̂w − γw) ≥ ε] that the empirical MMV

differs from its expectation by more than ε for the worst possible weight vector. First of all,
observe that

sup
w∈Bn

1

(γ̂w − γw) = sup
w∈Bn

1

((μ̂ − μ)T w − wT (Σ̂ − Σ)w)

= sup
w∈Bn

1

( n∑

k=1

wk(μ̂k − μk) −
n∑

k,l=1

wkwl(σ̂kl − σkl)

)

≤ sup
w∈Bn

1

( n∑

k,l=1

wkwl[(μ̂k − μk) − (σ̂kl − σkl)]
)

(4)

≤ sup
v∈[−1;1]n×n

( n∑

k,l=1

vkl[(μ̂k − μk) − (σ̂kl − σkl)]
)

(5)

≤ sup
1≤k,l≤n

((μ̂k − μk) − (σ̂kl − σkl)). (6)

Inequality (4) holds because the wl sum up to at most one, (5) is a relaxation of the condition
in the supremum, and (6) is due to the fact that a linear function on a convex hull reaches
its optimum at one of the vertices. Then, we can upper-bound the estimation risk as follows,
where s > 0 is a free parameter that can be tuned to make the inequality sharper later on:

Pr
[

sup
w∈Bn

1

(γ̂w − γw) ≥ ε
]

= Pr
[

sup
w∈Bn

1

es(γ̂w−γw) ≥ esε
]

≤ e−sεE
[

sup
w∈Bn

1

es(γ̂w−γw)
]

(7)

≤ e−sεE
[
sup
k,l

es[(μ̂k−μk)−(σ̂kl−σkl )]
]

(8)

≤ e−sε

n∑

k,l=1

E[es[(μ̂k−μk)−(σ̂kl−σkl )]]. (9)

Inequality (7) is an application of Markov’s inequality, (8) is given above, and (9) follows
because ex > 0 and the sum over all k, l includes the summand that achieves the supremum.

Now, define the set of random variables

Z(k,l) := (μ̂k − μk) − (σ̂kl − σkl)

depending on X. If we can find an upper bound for the Z(k,l), (9) gives us an upper bound of
the estimation risk. We follow the method by McDiarmid (1989) and write Z(k,l) as a sum
of martingale differences to find such a bound. Let

V (k,l)
r := E[Z(k,l) | x1, . . . , xr ] − E[Z(k,l) | x1, . . . , xr−1].

Then, Z(k,l) = ∑m

r=1 V (k,l)
r . Replacing the σ̂ij and μ̂i in V (k,l)

r with their definitions yields:
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V (k,l)
r = 1

m
(xrk − Exrk) (10)

− 1

m(m − 1)

∑

j �=r

[E[σ̂ kl
rj | x1, . . . , xr ] − E[σ̂ kl

rj | x1, . . . , xr−1]] (11)

where σ̂ kl
ij := (xik − xjk)(xil − xjl). It turns out that the random variable V (k,l)

r can take only
values in the interval [c; c + 6

m
] for some constant c. The first part in (10) depends only on

xrk ∈ [−1;1], so it can differ from its expectation by at most 1
m

. In the second part (11) each
summand depends only on xrk and xrl , so that the σ̂ kl

ij can take values that differ by at most
four. Since there are m − 1 summands, the part in (11) changes within a range of at most
4
m

depending on X. Also, since the conditional expectation E[V (k,l)
r | x1, . . . , xr−1] = 0, we

can apply a conditional version of Hoeffding’s inequality (Hoeffding 1963):

Theorem 2 (Hoeffding’s inequality) Let X be a random variable with EX = 0, a ≤ X ≤ b.
Then, for s > 0,

E
[
esX

] ≤ es2(b−a)2/8.

Applying this inequality conditionally to the V (k,l)
r , we obtain:

E[esV
(k,l)
r |x1, . . . , xr−1] ≤ e

1
8 s2( 6

m )2
. (12)

Since the instances are drawn independently from each other, we can apply (12) iteratively
on all summands in Z(k,l) = ∑m

r=1 V (k,l)
r :

E[esZ(k,l) ] = E[es
∑m−1

i=1 V
(k,l)
i · esV

(k,l)
m ]

= E[es
∑m−1

i=1 V
(k,l)
i · E[esV

(k,l)
m |x1, . . . , xm−1]]

≤ E[es
∑m−1

i=1 V
(k,l)
i · e 1

8 s2( 6
m )2 ]

≤ · · · ≤ em 1
8 s2( 6

m )2 = e
9
2 s2 1

m .

Finally, we may plug this result into (9):

Pr
[

sup
w∈Bn

1

(γ̂w − γw) ≥ ε
]

≤ e−sεn2e
9
2 s2 1

m

≤ n2e− 1
9 ε2m+ 1

18 ε2m

(

by choosing s = 1

9
εm

)

= n2e− 1
18 ε2m.

Choosing

ε =
√

18(2 lnn + ln 1
δ
)

m

yields

Pr
[

sup
w∈Bn

1

(γ̂w − γw) ≥
√

18(2 lnn + ln 1
δ
)

m

]

≤ δ.
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This is equivalent to the statement in Theorem 1. �

Proof of Lemma 1 The Chebyshev inequality states that

εw = Pr[μw ≤ 0] ≤ Var[μw]
Var[μw] + μ2

w

= μw − γw

μw − γw + μ2
w

(13)

Denote the right hand side of (13) by f (μw,γw). To yield the final result, we determine
μ′

w := argmaxμw
f (μw,γw) maximizing the right hand side subject to the constraint that

γw ≤ μw ≤ 1 (since the variance is always positive). To find this optimum, we set the deriv-
ative to zero:

∂f

∂μw

= −μ2
w + 2μwγw

(μw − γw + μ2
w)2

= 0.

The only positive solution to this equation is μ′
w = 2γw . So, for γw ≤ 0.5 we yield:

εw ≤ f (2γw, γw) = γw

4γ 2
w + γw

.

If γw > 0.5, the optimal value of μw is violating the constraint that μw ≤ 1. As f is increas-
ing until 2γw , the optimal margin is thus 1 and we yield:

εw ≤ f (1, γw) = 1 − γw

2 − γw

. �
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