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Abstract: Objectives: Few studies have evaluated the marginal fit of computer-aided design—computer-
aided manufacturing (CAD-CAM) monolithic zirconia crowns fabricated through completely digital
workflow; however, the internal fit of these restorations is not well known. The purpose of this
in vitro study was to evaluate the marginal and internal fit of monolithic zirconia crowns fabricated
by using digital workflow, including intraoral scanner (IOS) scans, and compare the results to those
of a semi-digital workflow, which combined conventional impressions, poured casts, and extraoral
scanner (EOS) scanning. Materials and methods: A typodont right mandibular first molar was
prepared for a complete-coverage ceramic crown and scanned using an IOS. The conventional
impressions of the preparation were also made, and stone casts were poured and scanned by using
an EOS. Virtual models were generated for both workflows, and identical virtual anatomic contour
crowns were designed using CAD software. Monolithic zirconia crowns were fabricated for both
IOS (ZI; n = 10) and EOS (ZE; n = 10) groups. The silicon replica technique was used to evaluate
the marginal and internal fit of the crowns. Measurements were made at 13 points on buccolingual
and mesiodistal cross-sections per specimen with a ×6.5 to ×50 zoom stereo microscope. The
results from both groups were statistically compared using the Independent Samples t-tests and
the Mann–Whitney U test (α = 0.05). Results: Mean gap values at all measurement locations for
ZE were significantly higher than those for ZI (p ≤ 0.002). Overall mean values ranged between 29
and 43 µm (median: 28–42 µm) for ZI and 42 and 75 µm (median: 43–77 µm) for ZE. Conclusion:
Completely digital workflow through intraoral scans provided significantly better marginal and
internal fit for CAD-CAM monolithic zirconia crowns compared with the semi-digital workflow,
where stone casts obtained from conventional impressions were scanned with an EOS. Yet, both
workflows provided an acceptable marginal and internal fit for CAD-CAM monolithic zirconia
molar crowns (<120 µm). Clinical Relevance: Completely digital workflow using IOS scans may be
advantageous for the fabrication of CAD-CAM monolithic zirconia crowns as favorable results can be
obtained with less material waste and potentially shortened overall treatment time as the impression
files can be transferred to the production facility electronically. The results need to be corroborated
with clinical studies.

Keywords: marginal fit; internal fit; zirconia; CAD-CAM; IOS; replica technique

1. Introduction

Three-dimensional (3D) intraoral scanners (IOSs) have enabled the fabrication of
completely digital indirect restorations using computer-aided design—computer-aided
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manufacturing (CAD-CAM) technology [1,2]. Although still not affordable by every prac-
tice and having insufficiencies related to accuracy for long-span fixed dental prostheses
(FDPs) [2], IOSs have advantages over semi-digital workflow, which incorporates extraoral
scanners (EOSs) to scan stone casts obtained from conventional impressions. IOSs eliminate
impression and solid cast materials, improve patient comfort, enable rapid data transfer to
the laboratory for fabrication, and shortened overall treatment time [3,4], especially when
monolithic crowns are fabricated in the posterior [5], where aesthetics is not a priority [6]. In
this respect, IOSs are replacing conventional impressions preceded by CAD-CAM workflow
that includes 3D extraoral (laboratory) scanners.

With their improved physical properties [7–11], biocompatibility [8,10,12], reduced
plaque accumulation [12], and aesthetic appearance, CAD-CAM monolithic zirconia
crowns have the potential to outperform and permanently replace metal–ceramic pos-
terior crowns [13]. Nevertheless, results on the clinical performance of monolithic zirconia
crowns are currently limited to short-term follow-ups [6,14,15].

The fit of a crown is crucial for its clinical success [16]. Marginal misfit may lead to
excessive plaque accumulation, microleakage, and cement breakdown, therefore increasing
the risk of secondary caries, periodontal disease, pulpal inflammation, and impaired
retention of the restoration [17–21]. Internal fit is directly associated with the retention
and resistance properties of crowns [22]. Larger misfit values decrease retention and
increase the risk of fracture under loads [23]. Uniformly distributed internal cement space
is crucial for proper force dissipation under occlusal forces and protects the crown against
loss of retention and potential fracture [24]. However, a clear scientific consensus on an
acceptable range for internal and marginal discrepancy from a clinical perspective has not
been reached yet.

The term internal gap corresponds to the shortest distance measured between the
intaglio surface of a crown and the axial wall of the prepared abutment, and the same
distance measured at the finish line of the preparation corresponds to the term marginal
gap [25]. The shortest distance measured between the finish line of the preparation and
the margin of the crown is called the absolute marginal gap and is defined as the vectorial
combination of the marginal gap and the horizontal over- or under-extension of the restora-
tion margin in relation to the preparation finish line [26]. At present, studies seem to be in
agreement that any misfit at the margin of FDPs should be smaller than 120 µm [27–29].
Some suggest that this limit should not exceed 100 µm when CAD-CAM technology is
involved [30,31]. As for the internal aspect of the restorations, it has been advocated that
gaps between 100 and 300 µm could be considered clinically acceptable [32].

There are previous studies that evaluated the effect of a completely digital work-
flow on the fit of zirconia crown copings [33–36]. However, zirconia copings need to
undergo a veneering process before cementation, which may compromise the fit of the
final crown [37–39]. In addition, thickness has been shown as a factor that may affect the
marginal fit of zirconia restorations, and the fit may differ between monolithic crowns
and copings as their thickness differ [40]. Furthermore, monolithic zirconia crowns can
be cemented after glazing or polishing without veneering, which may alter their final
fit. In this regard, only two studies [41,42] have evaluated the marginal fit of monolithic
zirconia crowns fabricated through a completely digital workflow by using IOSs. These
studies only focused on the marginal fit of monolithic zirconia crowns, and to the authors’
knowledge, there is a limited number of studies on the internal fit of monolithic zirconia
crowns fabricated by using a completely digital workflow.

The purpose of this in vitro study was to evaluate the marginal and internal fit of
CAD-CAM monolithic zirconia crowns fabricated by using a completely digital workflow
and compare the results to those from a semi-digital workflow that combines conventional
impressions, poured casts, and EOS scanning. The null hypothesis was that there would
be no significant difference in the marginal and internal fit of crowns fabricated with two
different workflows.
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2. Materials and Methods

A right mandibular first molar typodont tooth (ANA-4 ZP; Frasaco, Tettnang, Ger-
many) mounted on a typodont model (ANA-4 V CER; Frasaco, Tettnang, Germany) was
prepared for a complete-coverage ceramic crown with 2 mm occlusal reduction, 1.5 mm ax-
ial reduction and 360-degree 1 mm deep chamfer margin [43]. The model was then scanned
using a 3D IOS (CEREC AC Omnicam; Sirona Dental Systems, Bensheim, Germany) accord-
ing to the manufacturer’s recommendations (starting from the prepared tooth following on
mandibular and maxillary arch, respectively, finalizing with a maxillomandibular registra-
tion) 10 times to generate 10 individual virtual 3D mandibular and maxillary casts in STL
(stereolithography) format (Figure 1).
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Figure 1. Occlusal virtual view of prepared typodont tooth on the mandibular model generated
through digital impression making using IOS (CEREC AC Omnicam) (a); bite registration of virtual
typodont full-mouth model (b); occlusal virtual view of preparation site on CAD image software
(CEREC Software) (c); occlusal virtual view of designed crown restoration (d). IOS intraoral scanner;
CAD computer-aided design.

Conventional impressions of the model were also made using vinyl-polysiloxane
impression material (Elite HD+; Zhermack, Rovigo, Italy) with a one-step dual-phase
technique (putty-soft and light-body) 10 times, and 10 pairs of stone casts (mandibular
and maxillary) were poured in dental stone. Then, the casts were scanned with a 3D EOS
(inEos X5; Sirona Dental Systems, Bensheim, Germany) according to the manufacturer’s
recommendations to generate 10 virtual 3D mandibular and maxillary casts along with
their respective maxillomandibular registration (Figure 2). A virtual anatomic-contour
crown with a simulated cement space of 40 µm was designed and converted to STL format
for each virtually generated model of the molar tooth using IOS (CEREC SW 5.0; Sirona
Dental Systems, Bensheim, Germany) and EOS (inLab CAD SW 20.0; Sirona Dental Systems,
Bensheim, Germany) compatible CAD software programs. The designed crown data were
used to mill 10 monolithic zirconia crowns for the IOS group (ZI; n = 10) and 10 monolithic
zirconia crowns for the EOS group (ZE; n = 10) from pre-sintered zirconia blocks (inCoris
TZI C-A2 16 mm; Sirona Dental Systems, Bensheim, Germany) with a CAM software
(inLab CAD SW 20.0; Sirona Dental Systems, Bensheim, Germany) and a CAM dental
milling-device (inLab MC X5; Sirona Dental Systems, Bensheim, Germany). The milled
crowns were sintered (inFire HTC speed; Sirona Dental Systems, Bensheim, Germany)
at 1500 ◦C for 20 min and glazed (Celtra Universal Overglaze; Sirona Dental Systems,
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Bensheim, Germany) at 850 ◦C (Programat P510; Ivoclar Vivadent, Schaan, Liechtenstein)
for 12 min according to the manufacturer’s recommendations.
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Figure 2. Occlusal virtual view on CAD image software (inLab CAD Software) of mandibular and
maxillary typodont model generated through solid cast scanning using EOS (inEos X5) (a); occlusal
virtual view of preparation site on CAD image software (b); occlusal virtual view of designed crown
restoration (c); STL image of designed crown restoration during cement space setting on CAD
image software (d); STL image of designed crown restoration (e). CAD computer-aided design; EOS
extraoral scanner; STL standard tessellation language.

A two-dimensional (2D) silicon replica technique was used to evaluate the marginal
and internal fit of all crowns [44]. The intaglio surface of the crowns was left unaltered after
milling. Each crown was filled with light-body vinyl-polysiloxane impression material
(Elite HD+; Zhermack, Rovigo, Italy) and seated on the prepared typodont tooth with
maximum index finger pressure (180-degree distal pad press) applied for 5 s [45], and
left in place under constant pressure of 10 N for 5 min, using static load equipment, until
the silicon material set [32,46,47]. Crowns were removed carefully from the typodont
model with the silicone replica obtained after filling the gap between the crown and the
prepared tooth. Then, the crowns were filled with putty vinyl-polysiloxane impression
material (Elite HD+; Zhermack, Rovigo, Italy) to support the shape of the replica specimens
to be evaluated. After polymerization of the putty impression material, the specimens
were removed from the crowns and carefully sectioned at the midline in buccolingual and
mesiodistal directions (Figure 3) [44]. The thickness of the cross-section of the silicone
replica standing for the cement material used in clinical practice [48] was measured at
13 measurement points on a buccolingual and mesiodistal section side. Five of the points
were used for occlusal gap evaluation at 5 different locations (O1, O2, O3, O4, and O5),
3 pairs with corresponding points were used for axial (internal) gap evaluation at 3 other
locations (AOA; axio-occlusal-angle, A; axial, AMA; axio-marginal-angle), and another pair
with corresponding points were used for marginal gap evaluation at the marginal location
(M) (Figures 4 and 5) [44,49]. All evaluations were done by a single operator by using a ×6.5
to ×50 zoom stereo microscope (Zeiss Stemi 2000-C; Carl Zeiss Microscopy GmbH, Jena,
Germany) equipped with a 5-MP digital camera (AxioCam ERc 5s; Carl Zeiss Microscopy
GmbH, Gottingen, Germany) and double-gooseneck light-emitting diode cold-light source
(Zeiss KL200; Carl Zeiss Microscopy GmbH, Jena, Germany). A total of 520 measurements
were made using digital imaging software (ZEN lite; Carl Zeiss Microscopy GmbH, Jena,
Germany) in 2 groups (ZI and ZE) of 10 specimens. The means were calculated for every
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measurement location, and the results were statistically compared between the groups. A
uniformity index (UI) analyzing how uniform the internal fit of the crowns [50] obtained
from occlusal and axial locations means ratio was also compared [49]. The Independent
Samples t-tests and the Mann–Whitney U test was applied accordingly at a significance
level of α = 0.05 by using statistical software (IBM SPSS Statistics, v21.0; IBM Corp, Armonk,
NY, USA) following the Shapiro–Wilk test of normality and Levene Statistic of homogeneity
of variance. Post-statistical power analysis was also performed on the results revealing a
power equal to 1 (0.926–1.000) with type I error at α = 0.05.
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Figure 3. Intaglio surface view of crowns with silicone replica after filling the gap between restoration
and prepared tooth (a); crowns filled with putty vinyl-polysiloxane impression material to support
the shape of replica specimens (b); specimens removed from crowns after polymerization of putty
impression material (c) specimen sectioned at the midline in buccolingual direction (d); specimen
sectioned at the midline in mesiodistal direction (e).
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original magnification ×50). (b) Micro view of measurement points at locations A, AMA, and M
(mesiodistal direction, original magnification ×50). A axial; AMA axio-marginal-angle; M marginal.

3. Results

The Independent Samples t-tests and the Mann–Whitney U test revealed that there
was a statistical difference between the groups. The mean gap values at all measure-
ment locations were significantly higher for group ZE than those for group ZI (p ≤ 0.002)
(Tables 1 and 2).

Table 1. Independent Samples t-test results for measurement location(s) with satisfied normality
assumptions of individual measurement data (p ≤ 0.001).

Location t df p-Value Mean Difference Std. E. 95% CI Lower 95% CI Upper

M 3.793 18 0.001 * 12.4 3.269 5.531 19.269

AMA 6.548 18 0.000 * 18.9 2.886 12.836 24.964

AOA 4.844 10.738 0.001 * 19.8 4.088 10.776 28.824

O1 5.031 12.71 0.000 * 27.7 5.506 15.777 39.623

O2 7.044 11.874 0.000 * 30.8 4.373 21.262 40.338

O3 5.527 10.379 0.000 * 35.4 6.405 21.199 49.601

O4 4.360 18 0.000 * 30.1 6.903 15.598 44.602

O5 5.207 18 0.000 * 24.4 4.686 14.556 34.244

M marginal; AMA axio-marginal-angle; AOA axio-occlusal-angle; O1 occlusal 1; O2 occlusal 2; O3 occlusal 3; O4
occlusal 4; O5 occlusal 5; * indicates significance (p < 0.05).

Table 2. Mann–Whitney U test results for measurement location(s) with non-satisfied normality
assumptions of individual measurement data (p = 0.002).

Location Group Mean Rank Sum of Ranks U p-Value

A
ZI 6.35 63.50

8.5 0.002 *
ZE 14.65 146.50

A axial; * indicates significance (p < 0.05).

The calculated mean gap values and standard deviations, median values, standard
error, and minimum and maximum range values for both groups are presented in Table 3
(Figure 6). The calculated mean gap values, along with the minimum and maximum gap
values individually measured at each measurement location for a specimen in a group, are
also given in Tables 4 and 5.
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Table 3. Mean gap values and standard deviations, median values, standard error, and minimum
and maximum range values for group ZI and ZE (µm).

Location Group Mean Std. D. Median Std. E. Min. Max.

M
ZI 29 6 32 2 19 37

ZE 42 9 43 3 31 55

AMA
ZI 29 5 28 2 23 41

ZE 48 7 45 2 37 58

A
ZI 36 5 36 2 26 44

ZE 47 9 45 3 39 68

AOA
ZI 32 4 31 1 27 39

ZE 52 12 49 4 38 74

O1
ZI 39 7 38 2 29 54

ZE 66 16 64 5 46 92

O2
ZI 43 5 42 2 31 49

ZE 73 13 77 4 55 92

O3
ZI 39 5 39 2 32 50

ZE 75 20 72 6 47 112

O4
ZI 35 8 34 3 26 52

ZE 65 20 60 6 42 107

O5
ZI 39 9 36 3 29 57

ZE 64 12 65 4 47 84

M marginal; AMA axio-marginal-angle; A axial; AOA axio-occlusal-angle; O1 occlusal 1; O2 occlusal 2; O3
occlusal 3; O4 occlusal 4; O5 occlusal 5.
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Table 4. Mean gap values and minimum-maximum of individually measured gap values (in paren-
theses) for specimens in group ZI (n = 10) per measurement location (µm).

M AMA A AOA O1 O2 O3 O4 O5

#1
32 41 36 29 30 42 41 33 34

(20–41) (24–62) (15–59) (23–41) (28;31) (37;46) (40;42) (33;34) (30;38)

#2
30 30 35 27 36 46 38 36 39

(20–41) (19–38) (17–59) (21–37) (30;42) (34;58) (33;44) (35;37) (39;40)

#3
23 26 31 30 37 42 35 30 36

(14–35) (12–40) (15–45) (18–41) (30;45) (33;52) (30;40) (28;33) (30;42)

#4
19 25 26 31 42 46 50 45 53

(10–40) (5–42) (16–52) (22–40) (37;46) (43;49) (46;53) (36;54) (53;54)

#5
24 24 32 28 29 31 39 39 35

(12–54) (18–28) (17–46) (18–36) (27;31) (25;37) (35;42) (28;49) (30;40)

#6
32 32 39 36 43 48 39 35 43

(20–45) (15–40) (19–70) (33–41) (30;56) (33;64) (28;49) (30;40) (40;46)

#7
32 23 44 35 43 42 32 52 57

(16–70) (17–33) (21–78) (28–44) (42;45) (38;47) (26;38) (40;64) (37;76)

#8
37 32 39 39 54 49 46 26 33

(17–66) (14–44) (13–61) (27–50) (49;58) (40;59) (44;49) (26;26) (31;35)

#9
34 26 40 30 34 40 34 26 29

(15–65) (15–35) (26–62) (29–35) (28;40) (27;52) (33;35) (21;31) (23;34)

#10
31 29 33 33 39 40 39 31 33

(17–47) (20–37) (21–40) (27–38) (35;43) (38;43) (35;42) (29;33) (31;34)

M marginal; AMA axio-marginal-angle; A axial; AOA axio-occlusal-angle; O1 occlusal 1; O2 occlusal 2; O3
occlusal 3; O4 occlusal 4; O5 occlusal 5.

Table 5. Mean gap values and a minimum–maximum of individually measured gap values (in
parentheses) for specimens in group ZE (n = 10) per measurement location (µm).

M AMA A AOA O1 O2 O3 O4 O5

#1
53 57 48 63 81 82 70 58 53

(30–79) (29–74) (40–64) (39–66) (71;91) (73;92) (63;77) (42;74) (37;70)

#2
32 42 46 41 49 55 47 49 47

(14–46) (23–61) (33–64) (27–57) (43;56) (44;67) (37;58) (44;53) (45;49)

#3
31 42 44 43 54 65 64 62 66

(20–43) (27–60) (37–56) (39–52) (35;72) (49;82) (56;72) (53;70) (63;70)

#4
45 45 39 56 92 89 81 66 67

(30–60) (26–60) (22–60) (40–74) (88;96) (75;103) (65;96) (53;78) (52; 83)

#5
33 37 39 44 61 78 73 49 55

(21–52) (25–50) (23–56) (37–57) (60;63) (70;86) (65;80) (37;60) (42;68)

#6
47 50 43 53 79 75 91 71 67

(21–82) (36–63) (15–61) (34–68) (74;84) (68;83) (87;96) (65;76) (61;74)

#7
46 57 43 38 55 61 58 42 55

(24–85) (32–85) (33–64) (32–42) (46;64) (52;70) (52;65) (37;47) (52;58)

#8
55 58 68 74 80 92 112 107 79

(33–79) (40–80) (24–116) (50–92) (68;93) (88;95) (100;124 *) (95;119) (50;109)

#9
40 45 58 64 67 78 92 92 84

(21–61) (29–59) (30–84) (38–82) (64;70) (75;82) (82;102) (75;110) (70;98)

#10
36 44 46 40 46 59 59 58 63

(17–66) (19–64) (33–55) (30–57) (45;47) (49;68) (53;65) (49;68) (63;63)

M marginal; AMA axio-marginal-angle; A axial; AOA axio-occlusal-angle; O1 occlusal 1; O2 occlusal 2; O3
occlusal 3; O4 occlusal 4; O5 occlusal 5; * indicates an individually measured value equal to or exciding 120 µm at
the certain measurement point.

The UI analysis revealed that group ZI had a significantly more uniform (closer to
ideal) internal fit than group ZE (The closer the ratio to 1, the more uniform the internal
cement space) (Figure 7).
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4. Discussion

The results of the present study revealed that marginal and internal gap values of
CAD-CAM monolithic zirconia crowns fabricated by using a completely digital production
workflow were significantly smaller than those of a semi-digital workflow. Thus, the null
hypothesis was rejected.

The results obtained through the completely digital workflow used in this study could
not be directly compared with the previous study results because IOSs, software, and
evaluation methods utilized varied across studies [41,42]. Additionally, to the authors’
knowledge, studies with similar materials and methodology were either scarce or lacking.
Nevertheless, the results derived from this study are in accordance with some previous
studies [41,42,51,52]. Group ZI had significantly better marginal and internal fit at all mea-
surement locations than group ZE. Haddadi et al. [51] also reported marginal and internal
fit in favor of a completely digital workflow in a split-mouth randomized clinical study for
lithium disilicate crowns. Uluc et al. [52] reported similar but not statistically significant
in vitro results for 5-unit zirconia FDPs. Sakornwimon et al. [41] and Freire et al. [42]
evaluated IOS vs. EOS concerning only the marginal fit of monolithic zirconia crowns and
found no significant difference. However, IOS enabled lower marginal gap values.

Overall mean gap values calculated in this study ranged between 29 and 43 µm for
completely digital workflow and 42 and 75 µm for semi-digital workflow. Freire et al. [42]
presented similar mean marginal gap values for both workflows, whereas other above-
mentioned studies [41,51,52] reported mean marginal gap values of 62–72 µm for IOS and
57–83 µm for EOS and mean axial and occlusal gap values of 75–162 µm for IOS and 82–182
for EOS. Present study results are relatively lower than those, hence are promising.

Recent studies [46,47,53–55] which investigated the marginal and/or internal fit of
monolithic zirconia crowns fabricated only by semi-digital workflow reported results which
were not better than those in the present study. Paul et al. [55] presented mean marginal gap
values of 77 µm and mean axial and occlusal gap values of 57–105 µm. Schriwer et al. [53]
reported mean axial and occlusal gap values of 50–142 µm. The results of Rau et al. [44] for
marginal and internal fit ranged between 101 and 104 µm. The results of Sadeqi et al. [46]
were 38 µm for the marginal gap and 142 µm for the mean overall internal fit. Ha and
Cho [47] reported a marginal gap range of 64–66 µm, which was 44–70 µm for axial, and
171–213 µm for occlusal gaps.
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The current study presented gradually increasing gap values from the margins through
axial walls up to the occlusal surface. Many studies [47,49,51–53,55] have reported similar
variations focusing mainly on the difference between the axial and occlusal gap. This
phenomenon has been attributed to the insufficient compensation of digitally calculated
shrinkage incorporated in 3D virtual models by the actual shrinkage occurring during the
sintering process after milling [53].

The gap value of 120 µm was considered as a reference for clinical acceptability in the
present study, and misfits equal to or exceeding 120 µm at each measurement point per
specimen were reported to avoid misleading conclusions [56]. The mean values calculated
at any measurement location for both tested groups (ZI and ZE) in this study were all
within the clinically acceptable limit of 120 µm. Moreover, individually measured gap
values exceeding 100 µm were at 7 points, and only 1 of these values (124 µm) was over
120 µm. All of these peak values measured in group ZE were mainly at the occlusal part,
clustering on three specimens, and four values were detected in one specimen alone. As
only one specimen had most of the higher values, this specimen may be responsible for the
higher mean values in the ZE group.

The UI analysis performed in the present study had close to ideal index results for
both groups, with the statistical difference in favor of group ZI. In addition to overall
clinically acceptable gap values calculated for groups ZI and ZE, the UI results have
gained significance.

Compared workflows performed well within the clinically acceptable range, and
yet, completely digital workflow incorporating IOS presented significantly better results.
Previous studies claim digital workflow to be overall more comfortable and tolerable for
the patient, thereby being the preferred way for fixed prosthodontic treatment [41,57,58].

The current study used the 2D silicon replica technique to evaluate the
marginal and internal fit of the crowns. Being a well-established methodology in the
literature [32,41,42,44,47,49,51–55], it has been defined as an easy, reproducible, and eco-
nomical method applicable to both in vitro and in vivo studies [42,47,49,52]. The main
limitation of the technique is the reduced number of available areas for analysis and being
operator-dependent, which may result in difficulties in their standardization and results
not representing an ideal overall evaluation [42,49]. However, it is a non-invasive, physical
technique to mimic the cement thickness as a result of the cementation process that takes
place in the clinic [48,59]. Digital analysis of fit has been recently available; however, this
technique requires appropriate software, which may be costly and also depend on the
accuracy of the scan and superimposition algorithm [60,61].

In an attempt to reproduce clinical conditions, finger pressure was used in the current
study to seat the crowns. This technique and the application of as low as 8–10 N load static
pressure has been adapted by some previous studies [32,42,47,52]. It has been reported that
higher seating forces have no effect on the cement thickness statistically [62].

The current study adopted the marginal gap as the evaluation parameter for the
marginal fit of the restorations because a substantial misfit at the vertical marginal com-
ponent of the absolute marginal gap would result in harder to adjust inadaptability that
most often would require the remaking of the restoration [25,56]. Whereas horizontal over-
extensions might be improved by recontouring the margins [56], and under-extensions
might be improved by adding some veneering ceramic to the zirconia material.

Uniformity of internal cement space has become a point of interest in recent years [49,50].
UI analysis was performed in the present study to evaluate the uniformity of the internal
fit and to complement the marginal and internal fit results. Currently, data regarding UI
evaluation methodology is limited [50].

Above-discussed studies used varying ceramic brands and systems, sintering pro-
cesses, simulated cement space settings of 40–50 µm, different mediums for the fixation
of the restorations via low-viscosity silicon (silicon replica technique) or cement, different
CAD-CAM systems, IOSs, EOSs, and software. Therefore, the results of the present study
should be interpreted with caution, considering that one type of zirconia brand, CAD-CAM
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system, IOS, EOS, and their corresponding software, were used with a relatively small
sample size. The results of the present study should be corroborated with clinical data.

5. Conclusions

Within the limitations of this in vitro study, the following conclusions were drawn:
1. Completely digital workflow resulted in smaller marginal and internal gaps along

with improved internal fit uniformity compared with the tested combination of conven-
tional and digital workflows (semi-digital).

2. Completely digital and semi-digital workflows provided acceptable marginal and
internal fit for CAD-CAM monolithic zirconia molar crowns (<120 µm).
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