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ABSTRACT

In this paper we investigate the sensitivity analysis of the parameterized central path. First, a
complete marginal analysis of the central optimal solution is developed. This analysis explains the
differential properties of the central optimal solution with respect to both the cost coefficients and
the right-hand side components. We also show that the marginal derivatives are uniformly bounded.
Second, we present three conditions for which the parameterized central path converges. Two of
these results allow the difficult situation of simultaneous perturbations in the cost coefficients and

right-hand side levels.
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1 Introduction

Sensitivity analysis and parametric programming play an important role in linear programming. In
some cases, knowing how an optimum changes relative to perturbations in the input data is more
important than simply computing an optimal solution. Indeed, the data of a given problem can
never be absolutely accurate in real applications. Hence, it is crucial to keep track of how optimal
solutions, or the optimal value, change if the data changes. Because of this, many researchers have
investigated the area of sensitivity analysis; for recent advances see Gal and Greenberg [13]. There
are several software packages, many of them developed in-house by large companies, that provide
aid to practitioners when trying to understand a specific solutions characteristics. As an example
we mention ANALYZE [9], which has been used by the Energy Information Administration, British

Telecommunications, and Amoco Oil.

We make the distinction between the following two questions:

e How does an optimal solution behave with respect to data perturbations?

e How does the optimal objective value behave with respect to data perturbations?

Both questions are completely addressed from a basic solution perspective. However, interior point
algorithms for linear programming terminate with a solution, called the central optimal solution,
that has different characteristics from that of a basic optimal solution, and there are circumstances
under which the central optimal solution is more desirable than a basic optimal solution [10, 18, 34].
The parametric analysis of the optimal value is developed using the central optimal solution in [27].
Monteiro and Mehrotra [22] and Roos and Terlaky [28] independently developed an algorithm that
uses the central optimal solution to completely describe the objective function along any single
direction of change in either the cost coefficients or the right-hand side vector. This algorithm
also produces the unique optimal partition as the data is changed. Greenberg [11] shows that the
question of how the objective function responds to simultaneous changes in cost coefficients and
right-hand side levels may be answered using the central optimal solution. All of the above analysis

deals with information that is attainable from asking the second question.

We address the first question by discussing how the central optimal solution behaves when per-
turbations occur in either the objective coefficients or the right-hand side levels. Specifically, we
present an analysis of both the marginal properties of the central optimal solution and the con-
vergence properties of the parameterized central path. The organization of the paper is as follows.
Section 2 presents the notation and terminology used throughout. Sections 3 and 4 present the

marginal and parametric analysis, respectively. Section 5 concludes with a summary of the results.



2 Notation and Terminology

For the scalars 6, and 8., consider the following standard form linear program:

(LP)(g,p,) minimize (c+ 0coc)Tz
subject to Ax = b+ 6,
>0

and its dual problem
(LD)(GI,,GC) maximize (b + 6,®) Ty
subject to ATy +s=c+ 0.
s >0,

where A € R™", m < n, b+ 6, € R™, and ¢ + 0.c € R™. The vectors & and & are called
the right-hand side direction of change and the cost coefficient direction of change, respectively.
Similarly, the non-negative scalars 6, and 6, are referred to as the right-hand side parameter and the
cost coefficient parameter. The primal feasible region is denoted by Py, , and the dual feasible region
is denoted by Dy, . The strict interiors of these sets are Pgb and Dy , defined by {z € Py, : x> 0}
and {(y,s) € Dy, : s > 0}. Furthermore, the primal and dual optimality sets are Plo, 0. and

*

Dlon,00)°

We say the input data, (b, c), is admissible if both (LP)(o0y and (LD) ) satisfy Slater’s condition
-Le. Pl # ¢ and Do) # (0. Moreover, (&, &) is an admissible direction of change if there exists
0* > 0 such that (b,c) + 0(b, &) is admissible for all 6 € [0,0*). For convenience, we define

H = {(d, &) : (d,d&) is an admissible direction of change},
Hp
He

{®: (b,0) is an admissible direction of change}, and

{é : (0,6c) is an admissible direction of change}.

Throughout, we assume that both (b, c) and (&, dc) are admissible. It is easy to show that Slater’s
condition implies that . = IR". However, because we do not assume that A has full row rank,
Slater’s condition does not imply that H, = IR™. As an illustration, consider a standard trans-
portation problem with equality constraints. A right-hand side direction of change that implies an
increase in demand without a corresponding increase in supply is not admissible. What is true, and
rather easy to show, is that H; is the column space of A. Denote the rank of A by m, and let A
be an m X n matrix consisting of m independent rows of A. Denote the corresponding subvectors
of y, b and & by 7, b, and &, respectively. Furthermore, denote the remaining entries of y by 4,
so that y = [ gr, b ] , assuming that a suitable reordering has taken place. One may proceed
with the (LP) problem
min{(c + 0.0c) Tz : Az = b+ 6,3, = > 0},



and its dual
max{(b+ 0,®)T7: ATj+5s=c+ 0.8, s> 0}.

However, we prefer to establish our results with original model (LP)(gbygc), where A may not have

full row rank.

Each of H, Hp, and H, have a subset of interest that relies on the concept of the optimal partition.
Define

B(0y,0.) = {i: there exists z € P&,b,ec) such that z; > 0} and
N(6,60.) = {1,2,3,...,n}\B(6,0.).

The sets B(6y,60.) and N(6,0.) form the optimal partition and completely define the optimal sets
as follows [28],

P(*gb,ac) ={z € Py, : Tn(g,,6,) = 0} and D?Gbﬁc) = {(y,8) € Dy, : 5B(4,,0.) = 0}

where a set subscript is used to denote the sub-vector corresponding to the indices contained in
the set. Let H!, ’H;, and ! be respective subsets of H, Hj, and H,., where a direction of change
being in one of these subsets implies that the optimal partition remains intact for sufficiently small
amounts of perturbation. In other words, !, "Hg, and ’Hi are the admissible directions of change for
which the optimal sets are invariant with respect to small amounts of data change. Investigations
into the dimensions of these subsets are found in [14], and a geometric description is found in
Figure 1. Denoting the column and row spaces of a matrix, M, by coll(M) and row(M), we have

the following equalities [11, 16]:

Ap An

Hl =coll(Ag), H!=
» = coll (Ap) . row(l 0 I

D HY =My x HL. (2.1)

A pertinent implication of (LP) g0y and (LD) g o) satisfying Slater’s condition is that both (LP) g, 4.)
and (LD) g, .y satisfy Slater’s condition for (6,6.) in a neighborhood of zero [26]. Let 60, and 6,
be such that (LP)q, 5,) and (LD)g, 4, satisfy Slater’s condition for (6, 0.) in [0,6;) X [0,6.). It is
well known that under Slater’s condition, the analytic central path exists [28]. This means that
for any fixed (65,0,) € [0,6,) x [0,8,), there exist a unique z(x) € Pg, and a unique (y(u), s(n)) €
{(y,s) € P§ : 9 = 0} such that

‘TZ(IU‘)S’L(H) =K, i = 1727"' U

The above notation indicates a reliance only on p, which is too restrictive for our purposes. We
extend this notation to include a reliance on both 6, and 6.. Formally, the parameterized central
path is defined by

:13(01), 067 M) and (y(gba 00, /1')’ S(Oba 00, /1'))7
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Analytic Central Paths
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X X X
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Figure 1: The cut through the cone of cost coefficient changes indicates the perturbations that

leave the original optimal partition intact. Changes in ¢ not in this cut cause the central optimal
solution to change from z* to one of the Z’s.

where these vectors satisfy

z(0p, 0c,0) € PG,
(y(6s, bc, 11), 5(6b, bc, 1)) D§,
(0, 0c, 1) = 0, and
i (Op, Oc, 1) si (0,00, 8) = p, i=1,2,....n.

m

(2.2)

Since the work of Sonnevend [30], the elements of the parameterized central path have been known

to be analytic functions not only of u, g > 0, but also of 8, and 6.. Hence, (6, 6., 1) and s(6, 0., 11)
are analytic functions for y > 0.

It is useful to notice that the conditions in (2.2) are the necessary and sufficient Lagrange conditions
showing that (6, 0., 1) is the unique minimizer of

min {(c +0.00) Tz —p Z In(z;) : z € Pgb} .

i=1

n
Here, Y In(z;) is the logarithmic barrier function, and y is called the barrier parameter. One of the
i=1

well established properties of the analytic central path is that it converges to the central optimal
solution as the barrier parameter decreases to zero [19]. We define these limits by,

I*(Oba 06) = lulﬁ)ll‘(eb, 96; :u’) and
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(y* (9(), 90)7 s* (9()7 90)) = luli{)l(y(eba 907 ,U,), 8(957 907 ,LL))

Furthermore, these limits are the analytic centers, respectively, of ’P(*ab 00) and D&’b 00)" That is,

z*(0p,0.) is the unique solution to

max{ Z In(z;) : Az = b+ 0d , Tpg,0.) >0, Tn,,0.) = O} (2.3)
i€ B(0p,0c)

and (y*(6,0c),s*(0p,0.)) solves

max{ Z In(s;) : ATy +s=c+ 0, sn,6.) >0, SB@,6.) = 0} . (2.4)
€N (0,0c)

The standard operator notation, D, is used for differentiation. If f : R®™ — R™ is k times
differentiable in a neighborhood of v € R"™, then D’&i f(u) is the vector whose ;' component is
kaj
8ui.° ?

where f; is the 4™ component function.

In this paper, we study the existence and value of ngx*(ﬁb,O) and Dgczz;*(O,HC). We extend the
notation as follows,
k . x(n+ _ 1 k %
Dy, z*(07,0) = %i%Da”x (6y,0), and

DE=14%(6,,0) — DE=12%(0,0)
k % 1 O by 0y ’
Dez:ra; (0,0) = %ﬁ% o ;

where ngflm*((), 0) = ng*lx*(0+, 0). Analogous definitions hold for Df z*(0,0") and D§+x*(0, 0).

For convenience, we let D? be the identity operator. The derivatives of a real valued, single variable

function, g, are denoted by ¢, ¢”, ..., ¢*®). The right sided derivatives and limiting derivatives
are written, ¢',, g1, ..., gf) and ¢'(z7), ¢" (), ..., ¢ (), respectively. The set of infinitely

differentiable functions is denoted by C*°. We say that an analytic property holds locally at = if
there exists an open neighborhood of z for which the property holds.

Given a vector € R", we implicitly let the upper case symbol X denote the n x n diagonal matrix
with the elements of z on its diagonal. For terminology that is common in the linear programming

literature, we refer to the Math Programming Glossary [12].

3 Marginal Analysis of the Central Optimal Solution

In this section we investigate the marginal, or differential, properties of the central optimal solution.
The marginal analysis of z*(0,6.) along d& is quite simple because, as shown in Theorem 3.1,

z*(0,0.) is a step function along d&. However, the differential properties of z*(6,,0) along & are



more intricate, and our analysis is two fold in it objectives. First, we show that the central optimal
solution is a continuous, piecewise analytic function along &. Second, we provide uniform bounds
for the derivatives of the central optimal solution. We begin with the following monotonicity
relationship for the optimal partition, which is found in both [2, 3].

Lemma 3.1 (Adler and Monteiro [2]) For sufficiently small (6;,6.) > 0, we have

N(8,0) C N(0,0) C N(0,0,) and B(0,6,) C B(0,0) C B(6,0).

In addition to Lemma 3.1, Greenberg [11] has shown that if . = 0, there exists 6; > 0 such that
the optimal partition is invariant for 6, € (0,6} ). Similarly, if 8, = 0, there exists 8} > 0 such that
the optimal partition does not change for any 6. € (0, 67).

The first result of this section completely describes the behavior of the central optimal solution
with respect to cost coefficient parameterization. Specifically, the following result shows that the
central optimal solution is a step function along é&. Although our development follows from a
primal perspective, we include for future reference the corresponding dual statement in this result.

The immediate corollary states the subsequent marginal properties.

Theorem 3.1 The central optimal solution, x*(0,6.), is a step function in .. Similarly, s*(6y,0)

s a step function in Gy.

Proof. If & € #., there exists §7 > 0 such that the optimal partition, (B(0,6.)|N(0,6.)), is
invariant for any 6. € [0,67). Since z*(0,6.) is the analytic center of {z : Az = b,zp0) >
0,Zn(0,0) = 0}, so that z*(0,0.) = z*(0,0) for any 6. € [0,07). If & & HL, there exists 6 >
0 such that the optimal partition, (B(0,6.)|N(0,6.)), is invariant with respect to 6. € (0,0}).
From Lemma 3.1, N(0,0) C N(0,6.) and B(0,0.) C B(0,0). Let Z = B(0,0)\B(0,6.). From
(2.3), we have that z%(0,0) > 0. However, for all §, € (0,6}), z%(0,6,) = 0, which implies
a discontinuity at . = 0. Furthermore, for any of the finite number of partitions, (D|F), of
{1,2,...,n}, {6.: (B(0,6.)|N(0,6.)) = (D|F)} is convex [11], which implies there is only a finite

number of discontinuities. The dual statement follows from an analogous argument. Q.E.D.
Corollary 3.1 If éc € H., D{gcw*(0,0) = 0. Otherwise, *(0,0.) is discontinuous at 6, = 0.

Proof. From (2.1), & € M.} implies —& € HL. So (B(0,6.)|N(0,6.)) = (B(0,0)|N(0,0)) for all 6,
in some neighborhood of 0. Furthermore, as indicated in the prior proof, £*(0, 6.) is invariant over
this neighborhood. Hence, Dgca:*(0,0) =0, for all k. The case when & € H.\H. is addressed in
the proof of Theorem 3.1. Q.E.D.



Similar to Corollary 3.1, the marginal analysis with respect to the right-hand side parameter de-
pends on whether or not & € #}. However, unlike the result stated in Corollary 3.1, the analytic
center solution is continuous along any admissible . In fact, the analytic center solution is a
continuous, piecewise analytic function with respect to linear changes in the right-hand side. The
next result, which is a direct consequence of the implicit function theorem [7], establishes that the
analytic center solution is an analytic function of 6, provided that the optimal partition remains

intact.
Theorem 3.2 If & € H}, z*(65,0) is locally analytic in 6.

Proof. From (2.1), & € H} implies —& € H;. Hence, (B(0,0)|N(0,0)) = (B(6s,0)|N(6s,0)) for 6,
in some sufficiently small neighborhood of 0, and TN (0,,0) (6,0) = Ty (0,0) (0,0) = 0 over this same
neighborhood. Since & € coll(Ag), we have that {x : Apx = b+ 0,b} = {x : Apz = b+ 0,b}. The
analytic center solution of the unperturbed problem is the unique solution to the following system
at 01, = 0,

ABLEB = E—I— Gb&) (3.5)
ALg+sp = 0 (3.6)
Xpsp = e (3.7)

zp > 0 (3.8)

s > 0, (3.9)

(Recall that Xp is the diagonal matrix with the elements of zp on its diagonal.) Denote the
solution to (3.5)-(3.9), with @ = 0, by (%, 5p,7). Define ¢ : RABFm+L _ RABIHFM 44

ABJIB — 0[,&) -b
¢($Baga SB,G[,) = Agg + s
Xpsgp—e¢

Then, ¢ is analytic in an open neighborhood of (2%, 7, §,0) and ¢(z%, 7, §,0) = 0. Since the Jacobian
of ¢((z%,9, §,0)) with respect to (zp,y,sp) is non-singular, the implicit function theorem implies

that zp is an analytic function of 6, in some sufficiently small neighborhood of zero. Q.E.D.

Notice that if & had not been in coll(Ap), the implicit function theorem is not applicable since the
needed row reduction to form (A, b, ®) is not possible. Theorem 3.2 implies that if we are concerned
with a right-hand side direction of change that does not immediately alter the partition, not only

is £*(6y,0) of class C*°, but z*(6,,0) has a power series expansion. Differentiating (3.5), (3.6), and



(3.7) with respect to 6, and denoting z*(6;,0) as z*, we have
Ap(Djzg) =

 AB(Dg,9) + Dy, 8p =

Sp(Dg,vs) + Xp(Dj,58) =

(3.10)

S~

Noticing that this is a non-singular system of linear equations in D;ba:’jg, D;bé B, and D;bgjg, we
have the following,
Djzy = (Xp)?AL(Ap(XE)*AR)™'d, (3.11)
Djip = —AL(Ap(Xp)’AR)~'®, and
D = (Ap(X5)*Ap)~'d.
Using (3.10), we are able to recursively establish the higher order derivatives. For k > 2, define
k=1 g o "
Ok =— Z ( ) ) (ngSB)(Dab_sz).
i=1
Then, for £ > 2 we have
AB(ngxE) =0
AL(Dg §)+ Dy s = 0

Sp(Df ) + X3(Df 5) = OF,
which implies
Dixy = (Xp)2QF — XpAL(AR(X5)2AL) 'ApXpQF
Dysp = AL(AB(Xp)?AR) 'ApXp0k (3.12)
Dy = —(Ap(Xp)*AL) ' ApXpQk.
Hence,
\ >, (Dg, z*(0,0))
z*(6,0) ZI;)"T(%)IC, (3.13)

for 8 sufficiently close to zero. Notice that this power series expansion is easy to calculate to a

given order, since it requires only the single matrix factorization of (Ap(X}3)2A%).

We now consider the case when & € #,\H;. In this situation, the only analytic property for
x*(0p,0) that holds locally at 8, = 0 is continuity. The following example demonstrates that even

if —% is admissible, the one-sided derivatives are not guaranteed to be equivalent.

Example: Consider the linear program min{—z2 : 0 < z1 < 1,0 < z9 < 1,21+ 22 < 1464}, which

18 illustrated in Figure 2. After adding a slack vector,

0

10100 1 0 -1
A=lo 101 0|,6=1]|,%=|0],andec=]| o0
11001 1 0

0



9b= -0.5 9b= 0 9b= 0.5 9b= 1

Figure 2: The movement of the central optimal solution, as 6, decreases from 1 to —1/2, is indicated

by the bold arrows.

The central optimal solution is

(w7} (65,0), 73(65,0)) = { (1405 — §4/03 +30,+9,1) if 8,>0
1 y V) &2 ’ -

(0,1 + 6p) if —1<6,<0,

and the optimal partitions for 6, > 0, 8, =0, and —1 < 6 < 0 are respectively,
({1,2,3,5},{4}), ({2,3},{1,4,5}), and ({2,3,4},{1,5}).

If 0, =0, & € Hp\H; because & & coll(Ag). In this situation, we have that the limiting right-sided
derivative is
1 — 26,43 5
lim Dg,z*(65,0) = lim 6y/0,+30s+9 | — ( 6 ) )
0,—0t 0,—0t 0 0

and the limiting left-sided derivative is
0 0
lim D} z*(6;,0) = li = .
oy Do (B, 0) ebif%-(l) <1>

Although continuity is the strongest local property allowed when &% € ”Hb\?-[%, we do establish that

x*(0p,0) is one-sided, infinitely, continuously differentiable. A key ingredient in our argument is the



well known existence result of the limiting derivatives of z (6, 6., u) with respect to u [1, 15, 33].

The formal statement is cited below.

Lemma 3.2 (Giiler [15]) For k = 1,2,3,..., both Dl’jm(O, 0,0") and Dl’js(O,O,O’L) exist. More-

over,

( ) = DF,x(0,0,0),
( ) = DFys(0,0,0),

D,z N(0,0)(0,0,07) = (SN(0,0)(0,0)
( )

) 1
= (XB0,0)(0,0))” "ep(0,0) > 0.

€N(0 0) > 0 G,Tld

The above differential properties are used in conjunction with the formula for the kth derivative of
a composite function to establish the one-sided marginal analysis of the central optimal solution.
Let h(z) = f(g(x)), where both f and g are in C* on some suitable neighborhoods. Then A(*)(z)

eI\ /g ()72 (k) (5 Jk dmf
ZZ]M X [(%)) (92(!)> ,..(9 k'( )) ] Gy 9(2)), (3.14)

k k
where the second sum is taken over all non-negative integer solutions of ) ij; = kand > j; = m [§].
i=1 i=1

The following lemma provides some needed differential properties.

Lemma 3.3 Let f map [0,u*) onto [0,0%). Furthermore, let f be in C® on (0,pu*), let f*)(0F)
exist for all k > 1, and let f'(07) > 0. Then, there exists @ > 0 such that g = f~' exists on (0,0)
and has the property that g% (07) exists for all k > 1. Moreover, if f is continuous at zero, f is
in C*® on [0,p*) and g is in C*® on [0,0).

Proof. Let f be as above. The general inverse function theorem [24] establishes that g = f~!
exists and is in C* on (0, ), for some § > 0. For all # € (0,0),

q'(0) = (3.15)

and since f'(0+) > 0,

§(04) = 5,
f'(g(0+))
which completes the first statement when k£ = 1.
Applying (3.14) on (3.15) yields an expression for ¢g(¥)(0) in terms of ¢/(8), ¢"(9), ¢"(6), ...,
g*=1(0), and f'(g(0)), f"(g(8)), f"(9(9)), ..., f*)(g(#)). So, a simple induction argument shows
that ¢g*¥)(04) exists for all k.

10



Now, suppose that f is continuous at zero, and let #(u) be from the mean value theorem. Then

f(w) = £(0)

y = f'(t(n)) for all p € (0,u").

Then using the assumption that f/(0+) exists implies

oo | £ = £(0)

10 u —f'(w)| = Eﬁ;m(t(u)) — f'(w)] = 0.

So, f1(0) = f'(04) and we have that f’ is continuous at zero. Repeated applications of the
mean value theorem give that f is in C* on [0, 4*). Since f being continuous at zero implies g is

continuous at zero, a similar argument shows g is in C* on [0, 6). Q.E.D.

We now prove that if ® € H;\H}, the primal central optimal solution is not only continuous, but
is infinitely, continuously, one-sided differentiable with respect to the perturbation parameter 6.

Theorem 3.3 ngx*(0+,0) exists for k=0,1,2,..., and ng:c*(0+,0) D0+:1: (0,0).

Proof. The case when & € ’Hg is already addressed in Theorem 3.2, so assume that & € 7-[1,\’}-[;.
Let 6; > 0 be such that (B(6s,0), N(6p,0)) is invariant for 6, € (0,6;), and denote this common
partition by (B’|N’). From Lemma 3.1, B(0,0) C B’ and N’ C N(0,0). Therefore, if i € N,
z}(0y,0) = 0 for all 6 € [0,0;). Hence, De zh:(07,0) = D9+:1:N,(0,0) = 0 for all k.

Let 7 € B’, and consider the following linear program
min{6y : Ap(0,0)28(0,0) + Az2z — dp = b, 2p(0,0) > 0,22 > 0,6, > 0},

where Z = B'\B(0,0). Furthermore, let {(zp(0,0)(1), 2z(1),0s(1)) : > 0} be the central path for

this linear program. Then,

ZB(0,0) (1) = x%(o,o) (0b(1),0) and zz(u) = z7(6s(1),0).

Since the optimal value of the linear program is zero, 6,() — 0, as p J 0, and from Lemma 3.2,
6;(04+) > 0. So, there exists some interval, say [0, &), where 6;(u) is invertible. Denote the inverse
by 1(6) and let the corresponding interval be [0, 0},), where we assume that 6, < ;. Then for all
0 € (0,6,) we have

ZB(0,0) (1(6h)) = 9579(0,0) (66,0) , 2z(u(6s)) = z7(6,0)

Applying (3.14) we have the following for i € B’,
! Jt " J2 k) Jk
1 (6s) p" (6s) 1) (65) (m)
Dii(0s) = Z Y l( ) () () | A e

11




Lemmas 3.2 and 3.3 imply that the right-hand side converges as 6, | 0. So, D{‘fbm*(0+, 0) exists.
Now, z is continuous continuous at zero because of the convergence properties of the analytic central
path, and u is continuous at zero because it is the inverse of 6, which is in C*° and increasing on
[0, ). Hence, £*(65,0) is continuous at 6, = 0, and the mean value theorem is used as in the proof
of Lemma, 3.3 to conclude the result. Q.E.D.

Theorems 3.3 and 3.2 have shown the existence of the (one-sided)derivatives of z*(6,,0). We now
conclude this section by showing that these derivatives are uniformly bounded. Let p > 0 and
consider the system (2.2), —i.e. the definition of the parametric central path. Using the full rank
matrix A, we have that differentiating with respect to 6 yields

ADL (0, 0.1) = B
AT(D;b'g(eba Oaﬂ)) + Débs(eba 0, M) = 0
S(D;bx(gbaoau)) +X(0b307u)(D;bs(0baOap’)) = 0.
This system implies
Déb.’IJ(Ob, 0, /'1’) = X2(9ba 0, M)AT(AX2 (9(), 0, /'&)AT)_I&)' (316)

The equality in (3.16) is convenient because Dikin [6] showed that for a given full row-rank matrix,
M, the following condition number, x s, is finite (also see Stewart [31], Todd [32], and for the rank
deficient case, Holder and Caron [17]):

xu = sup{||(MDMT")™' M D|| : D is positive diagonal}.

This condition number, together with (3.11) and (3.16), provides a uniform bound on the first order

derivatives.

Theorem 3.4 It holds for any positive u that

1D, (5,0, )| < xll]- (3.17)
Furthermore, if & € Hj,

|Dg,*(0,0)Il < x|l (3.18)
Otherwise & € Hp\H}, and

||D;b+$*(0,0)|| < xall®ll- (3.19)

Proof. Both (3.17) and (3.18) follow directly equations 3.11 and 3.16, and from the definition of
xi- The bound in (3.19) follows since Theorem 3.3 implies D, 2*(0,0) = gii% Dg, z*(6y,0), and
b b

form (3.18) the right side of this equality is bounded by x 4/|®||- Q.E.D.

12



We remark that the bounds in Theorem 3.4 depend only on the A-matrix and ||®||; in particular,

they are independent of u, 8, and b. Furthermore, ||®|| can obviously be normalized to one.

The following corollary lists several order relations that follow from Theorems 3.3 and 3.4. This
corollary highlights the fact that the entire primal central path behaves “smoothly” with respect
to right-hand side parameterization. An extension of the big-O nation is used, viz. u(t) = O(w(t))

if u(t) and w(t) are positive sequences, and the ratios u(t)/w(t) and w(t)/u(t) are both bounded.

Corollary 3.2 For all p > 0 and 0y sufficiently small,
(05,0, 1) — (0,0, w)|| = O(6), (3.20)
and also, since the constant in the big-O is independent of p,
127 (0, 0) — 27(0,0)[| = O(6b)- (3.21)
Furthermore, for sufficiently small 6y, and T and N' as in the proof Theorem 3.3, we have

27(06,0) = ©(6s), (3.22)
zn (05,0,p) = O(p). (3.23)

Proof. Equations (3.20) and (3.21) follow immediately from the uniform bound presented in (3.17).
Equation (3.22) follows from the fact that 2%(0,0) = 0 and Lemma 3.2 shows D;ij(O, 0) > 0. To
show equation (3.23) we first recognize that from Lemma 3.2, Dz (65,0,07) = (S} (65,0)) " 'enr.
Theorem 3.1 implies that s}, (6p,0) is constant over some suitably small neighborhood, say (0, 6;).
Furthermore, the definition of N’ implies sy’ (6,0) and sy+(0,0) are both positive. So over [0, 6;),
Dlll:cN/ (6,0,0T) is uniformly bounded, which establishes (3.23). Q.E.D.

The bounds indicated in the last corollary are improvements over those in Theorem 4.1 of [25] by
Nunez and Freund, where the upper bound on ||z(6y, 6., 1) — (0,0, 4)|| not only depends on p,
but increases to infinity as u | 0. The reason why our results are stronger is that we allow only
right-hand side changes, whereas the work of Nunez and Freund allows simultaneous changes in A,

b, and c.

4 Convergence and Order Relations Under Parameterization

Each of the three results of this section establishes conditions under which the parameterized central
path converges. The first of these results establishes that the parameterized central path converges

to the unperturbed central optimal solution, provided that only right-hand side perturbation is

13



allowed. This result follows directly from a result in [5] and is quite useful because cost coefficient
perturbations may also be modeled as right-hand side changes. Modeling cost coefficient changes
as right-hand side changes allows us to include simultaneous perturbations in the second and third
results. Specifically, the second result shows that if the cost parameter and barrier parameter
are scalars of each other, the parameterized central path converges to an element of a central path
defined on the unperturbed optimal set. The third result shows that the parameterized central path
converges to the unperturbed central optimal solution if the barrier parameter converges to zero
slower than the cost coefficient parameter. The following example illustrates all three convergence

results and demonstrates that convergence is not always assured.

Example: Consider the linear program min{0.(10z1) + O.z2 + z3 : 0 < z1, 29,23 < 1+ 63}, for
which b = & = (1,1,1)T, ¢ = (0,0,1)7, and & = (10,1,0)T. The parameterized central path is
defined by

stge (1001 + 0,)0 + 2 — /TOO(L ¥ G202 ¥ 4%) , 0o #0
xl(eb’ecau) = 1+5b
2 , 8.=0
(O, 00 1) = o (L4000 +2u— VA + 002+ 47) , 0. #0
Z2\Up, Uc, ) = #1 ’ 00 0

23(0p, 0, 1) = % ((1+6) + 2 — VL + 02 + 4422)

To illustrate the next three results, we consider the situations of (0y,0:) = (0y,0), (0, v0:) = (Op, ),
and (ab’ec) = (017’/1’2)'

Setting 0, to 0, we see that the limit as (0p, 1) | O of the parameterized central path is
(21(0,0),25(0,0),25(0,0)) = (1/2,1/2,0).

This is because the entire central path, including the analytic center solution, shifts “smoothly” as
the right-hand side is perturbed. Figure 8 depicts this situation, and a formal convergence result is
stated in Theorem 4.1

The second, and most difficult situation to explain, makes the substitutions y = v0.. Under this

substitution we have that the limits as (6y,6.) L 0 are

71 = %5 (10 + 20 — V100 + 47)
xgzé(l—l—%/—\/m), and
0.

r3 —

It so happens that these limits are the v element of the central path associated with the linear program

max{10z; + z2 : 0 < z1,z2 < 1,23 = 0}, or equivalently max{10z1 + z2 : (1, x2,z3) € P(*O,o)}' So,

14



not only does the linear relationship between p and 8. allows the convergence of the parameterized
central path, but the limit is an element of the central path contained in the optimal set and defined

by the cost coefficient direction of change. This special type of convergence is illustrated by Figure 4

Making the substitution 0, = p? and allowing (0, 1) | 0, we find that the limit is the analytic center
solution of the unperturbed problem —i.e. (z7(0,0),z5(0,0),25(0,0)) = (1/2,1/2,0). As shown in
Theorem 4.3, this follows because 6. converges to zero faster than u. An example is found in

Figure 5.

Notice that a mizture of the last two cases may easily produce a sequence that does not allow
convergence. For example, let u* = 1/k, and 6% be (u*)? or (1/2)u*, depending on whether k is
even or odd, respectively. Then, the subsequence of even indices converges to (1/2,1/2,0) and the

14—+v/116 5—v17 0
20 2

subsequence of odd indices converges to ( . The sporadic behavior of this path is

?

shown in Figure 6

Before continuing, we explain the differences between the results of this section and those found
in [4] by Bonnans and Potra, in [21] by Mizuno, Todd, and Ye, and in [23] by Monteiro and
Tsuchiya. Bonnans and Potra consider a single shifted analytic center in a specific algorithmic
framework (see Theorem 4.13 in [4]). Our results are algorithm independent and deal not only
with a single shifted analytic center, but rather with a central path defined on the unperturbed
optimal set. Furthermore, our results allow simultaneous parameterization of both b and ¢, which
is not allowed in the horizontal linear complementary framework they address. Mizuno, Todd,
and Ye provide conditions under which the cluster points of the parameterized central path are
contained in either the boundary or the relative interior of the unperturbed optimal set (see Section
5 of [21]), whereas our results establish the existence of a unique limit. Mizuno and Tsuchiya show
that z(0,pu, 1) converges, as u | 0 (see Section 4 of [23]). This is a special case of Theorem 4.2,
where we establish the convergence of z(6y,0.,v0.), for v > 0 and (6;,0.) | 0.

Our development begins with two lemmas, the first of which shows that the analytic center is a
continuous function of the right-hand side data. This result follows directly from Theorem 3.1
in [5], where simultaneous changes in the A matrix are also allowed. As already mentioned, this
result is handy because cost coefficient changes may be modeled as right-hand side changes, and
hence, subsequent results involving convergence under cost coefficient perturbations may include

simultaneous data perturbations without extra effort.

Lemma 4.1 (Caron, Greenberg, and Holder [5]) Let (D|F) be a partition of {1,2,...,n}.

Then, the argument mazimum of

{Zln(:ci) Az =b,xp > 0,zp :O}

€D

18 continuous with respect to b.
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Figure 3: The parameterized central path for

0. = 0 and 6, moving from 1 to 0

Figure 5: The parameterized central path for
0, moving from 1 to 0 and 6, being set to the
square of the barrier parameter. The central
path in the plane with 3 = 0 is associated
with minimizing d&p(0,0)Zp(0,0) OVer the unit

square.

15

Figure 4: The parameterized central path for
0, moving from 1 to 0 and 6, being set to
half the barrier parameter. The central path
in the plane with 3 = 0 corresponds to min-

imizing &cp(,0)ZB(0,0) OVver the unit square.

15

Figure 6: The parameterized central path for
0y moving from 1 to 0 and 6. alternating
between half the barrier parameter and the

square of the barrier parameter.

The second lemma extends Lemma 1.6 in [27] to include the situation of data perturbations. This

result establishes that the union of the level sets of the primal and dual parameterized central path



is bounded. These level sets are defined for each M > 0 as follows,
‘CIJCVI = {(.’L‘, 8) : ('Ta (yas)) € Pa{; X Deé“’ CUTS < M},

where (0,’5, 6%) is any non-negative sequence of parameters.
Lemma 4.2 Let (0{5,05) 10, as k1 oo. Then, for all M > 0,
U £Lis
k
18 bounded.

Proof. For any k, let (z*, (4*, s%)) €
zF — 2 € null(4). So

g{,}c X Dgéc. Choose (z,s) € LX,. Then s* — s € row(A) and

0= (z—2")(s = ") =als —aTs" — (&F)Ts + (") s".

Non-negativity yields
zist < alsf < als + (2F)T'sk < M + (aF)TsF.

Hence,
M + (zF)Tsk
T; :
i
Similarly,
M k\T ok
5 < +(:Z )" s
Ty

So, for any fixed k and M > 0, L%, is bounded.

Let > 0 and set,
s¥ = 5(0,0,) + 0%& and =¥ = 2(0,0,7) + OF AT,

where AT is the Moore-Penrose pseudo inverse of A. Since (0,0, z) and s(0, 0, z) are positive, there

exists a natural number K such that for allk > K, s¥ > 0 and z* > 0. Furthermore, A7y(0,0, )+

sk = ¢+ 6%& and because b € Hy = & € coll(A), AzF = b+ 0Fd. So, (zF, (y(0,0,n),s%)) €

g{,}c XD(S’@’ forall k > K'. Since (6%,60%) | (0,0) as k 1 0o, we have that for k > K, (z*, s*) > a > 0,
for some a. Hence, both

K\T .k M k\T .k
M—I—(i)s and —l—(alcc)s
85 Z;

are bounded for all £ > K'. This implies that

U £

k>K1
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is bounded. Since
k
U £k
1<k<K!

is a finite union of bounded sets, the result follows. Q.E.D.

Although the prior example demonstrates that convergence of the parameterized central path is
not guaranteed, Lemma 4.2 assures us that if {(6%,0F, u*)} decreases to zero, both (6%, 6%, 1i*) and
(0%, 6%, u*) have at least one cluster point.

We conclude this section with three convergence results that explain situations guaranteeing the
convergence of the parameterized central path. The first of these results shows that the parame-
terized central path converges to the analytic center solution of the unperturbed linear program,

provided there is no change in the cost vector.

Theorem 4.1 [t holds that
lim z(6,,0,u) = 2*(0,0
o (06,0, ) (0,0)
Proof. The third equality in (2.2) implies 2T (5,0, 1) s(p, 0, ) = nu, and hence Lemma 4.2 implies
that {(z(6F,0,u¥), s(0F,0,uF) : (6%, u*) | 0} is bounded. Without loss in generality, let (6F, u*) be
such that (z(0F,0,u*), s(0F,0,u*)) — (2,8). Since 274 = 0, we have that & € P*, which implies

Tn(0,0) = 0-

To complete the proof we must show that £p(g0) = x*B(o,o) (0,0). First, note that zp(g ) (65,0, u%)

is the analytic center of

{"EB(O,O) : AB(O,O)iEB(o,o) = b+ Opd — AN(0,0)$N(0,0)(9£C, O,Hk)a ZB(0,0) = 0}.

From Lemma 4.1, this analytic center is a continuous function of the right-hand side, b + 6 —
AN(0,0)TN(0,0) (0%,0, u%). Now, since b+ 6,0 — AN(0,0)TN(0,0) (6%,0, %) — b, we have that

T B(0,0) (efaﬂaﬂk) — Zp(0,0) = wyb(o,o) (0,0).
Q.E.D.

While Theorem 4.24 shows that the parameterized central path is continuous at (0,0,0), with
respect to both the barrier parameter and the right-hand side parameter, we have already seen
in the previous example that a similar continuity result is not possible with respect to the cost
coefficient parameter. However, the next result shows that convergence is assured as long as the
barrier parameter and the cost coefficient parameter are linearly related. Furthermore, the limit
under this special parameterization is an element of the central path contained in the unperturbed

optimal set and defined by the cost coeflicient direction of change. The elements of this central
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path are denoted by z(b,v) and are the unique solutions to
ma.x{&:Bz — I/Zln(zi) :Apz =10,z > O} .
i€EB
This central path inherits the analytic properties of any other central path. Specifically, we require

the use that for any v > 0,

;if}; z(b,v) = z(b,v). (4.24)

Theorem 4.2 For any given parameter v > 0, it holds that

lim (zB(6h,0c,0v), xN(0p,0,0.v)) = (2(b,v),0).
(61,,0,;)—>O

Proof. From Lemma 4.2,

{(z(65,6¢,68v), (05, 0%, 0£v)) = (6502) L 0}

crve [

is bounded. Since
z (05, 0¢,0¢v)s (65,62, 6¢v) = nbv,
we have that any cluster point of z(6F, 6%, 0%v), as (6F,0%) | 0, is in P(o,0)- Hence,

CCN(O,O)(H(I)caeé‘:a9?’/) — Oa as (95’05) J/ 0.

Set

ok ok pk 1 k gk ok .

y(0f, 06, 0kv) = o (u(0F,08,06v) = y"(0,0)) and

[+

] 1 )

505,05, 0v) = o (506,68, 0v) = 5°(0,0)) .
Using that

A%(o,o)y(efagicagf’/) + $B(0,0) (0F,0F,050) = ¢B(0,0) + 0cdepo,0), and

Ag(o,o)y*(0,0) = CB(0,0)>

we have that (z(0F, 0%, 0%v), 5(0F, 0%, 6%v), 5(0F, 0%, 6%0)) solves

ApoozBe0 = b+ 0d = AnoooNeo©F, 0, 0cv)
A0 +3800) = &B0)
Xp0,0SBo0eE = Ve
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Since these are the necessary and sufficient Lagrange equations describing
2(b+ 0 — An(0,0)Tn(0,0)(0F, 05, 05v),v),

we have that zp () (0F,0%,080) = 2(b + Oy — AN(0,0)TN(0,0) (0%, 6, 0%v),v). From (4.24), we see
that

li 0k 6k 0kL) = i b+ 6, — A ok ok oF = 2(b,v).
(eb,lggwa(o,o)( b1YcH CV) (ab’lafng( + 0 N(O,O)-'EN(O,O)( bsYcH c’/)a’/) z(b,v)

Q.E.D.

The third and final result of this section shows that if the cost coefficient parameter converges to
zero faster than the barrier parameter, the parameterized central path converges to the analytic

center solution of the unperturbed linear program.

Theorem 4.3 If 6. = o(u) and (6, ) 4 (0,0),

lim  z(6p,0., 1) = z*(0,0).
(ebaeczﬂ)¢0 ( b lu) ( )

Proof.
Consider a sequence {(0F, 0%, %) : k= 1,2,...} with

lim 0% = lim % = lim 6% /u* = 0.
fim 0 = lim p* = lim 6/

Let Fy(z) = (c'z/p*) — 5P In(x;) and notice that z(65,0, u*) is the unique solution to

min{Fk(a:) c Az =b+0F®, x> O} .

Assume, for the sake of attaining a contradiction, that
lim ('T(eba Oc, ,U,) - ‘T(eba 0, H)) # 0.
ktoo

The optimality of z(6y, 0., 1) and x(6,0, 1) imply that
k k k pk , k k k 05 T,k 05 T~k
Fk(x(gbao,lj' )) SFk(m(ob,gcaU )) SFk(m(obaoa//‘ ))_ﬁ(&) T +F(&) T (4'25)

Observe now that Fi(x) is strongly convex and that the eigenvalues of the Hessian matrix of Fj

are uniformly bounded from zero. Hence, if Ille(ik — z¥) £ 0, there exists € > 0 such that for each
o0

natural number, IV, there exists k > N, such that

Fo(z(6fF,0%, u*)) > Fi(z(65F,0, %)) + €.
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However, since 6% /u* — 0, this is a contradiction to (4.25). So, we must have
ktToo
Using Theorem 4.1, we have

0 = lim(x(ell)caeka:u’k)_'T(ellfaoa:uk))
koo

= lim((65, 6%, u*) — 2*(0,0)) + lim(z*(0,0) — (65, 0, u*))
ktoo kToo

= hm(x(ollfa 955 ,u’k) - 3)*(0, 0))
koo

Q.E.D.

5 Concluding remarks

In this paper we carried out an investigation of how the parameterized central path and the central
optimal solution (analytic center of the optimal set) react to changes in the right-hand side vector,
b, and the objective vector, c. These issues are important in the context of sensitivity analysis and

parametric programming.

As was shown, the parameterized central path behaves differently under parameterization of b
and c¢. In the former case, we proved that the (primal) central optimal solution has one-sided
differentiability with respect to the perturbation parameter. Consequently, the entire central path
has a smooth, uniformly bounded shift. Perturbation in the objective vector, however, may cause
drastic changes in the central path. In this case we showed that every element of the central path

defined on the optimal face is a cluster point of the parametrized central path.
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