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Abstract

Estimation of marginal or partial effects of covariates x on various conditional parameters or 

functionals is often a main target of applied microeconometric analysis. In the specific context of 

probit models, estimation of partial effects involving outcome probabilities will often be of 

interest. Such estimation is straightforward in univariate models, and results covering the case of 

quadrant probability marginal effects in bivariate probit models for jointly distributed outcomes y 
have previously been described in the literature. This paper’s goals are to extend Greene’s results 

to encompass the general M≥2 multivariate probit (MVP) context for arbitrary orthant 

probabilities and to extended these results to models that condition on subvectors of y and to 

multivariate ordered probit data structures. It is suggested that such partial effects are broadly 

useful in situations wherein multivariate outcomes are of concern.
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1. Introduction and Motivation

Given M-dimensioned multivariate outcomes y and K-dimensioned covariates x whose 

relationship can often be usefully cast in terms of the conditional distribution F y |x  analysts 

will often focus attention on estimation of and inferences about functionals of the M 

univariate conditional marginals of F . , i.e V Fj yj |x . Such univariate focus may of course 

owe to the particular nature of the question(s) at hand, but such focus may also be restrictive. 

Since estimation and interpretation of marginal or partial effects of covariates x on outcomes 

is often a central feature of applied microeconometric analysis, functionals V .  defined on 

the full multivariate joint distribution F y |x  and how these vary with x may rightly be of 

interest in particular settings. 1 That is, in general one might consider functions defined on y, 

h y = h y1, …, yM  their moments, and their corresponding marginal effects ∂E h y |x / ∂x.

1One obvious example is that of conditional product moments E
j = 1

M
yj

bj |x  of which conditional covariances may be the most 

familiar example. In such cases how σi,j x  varies with conditioning sets x may be of interest in applications (consider, e.g., GARCH 

and related literatures).
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The main focus in this paper is on joint probabilities and how they vary with x, i.e. where 

h y  is 1 y = k  for integer- or binary- valued M-vectors k and the focus is on 

∂Pr y = k |x / ∂x. Such considerations arise in substantive applied problems that focus on 

various aspects or patterns involving the intrinsic jointness of multivariate discrete outcomes 

and, by extension, on the marginal effects of x on such quantities, for instance when an 

analysis concerns understanding a set of outcomes observed for subjects at one point in time, 

a single outcome observed for subjects over time, or some combination thereof.

Why might such marginal effects be of interest in economic applications? In some contexts 

the sample or population averages of the marginals will be of interest perse for all or some 

kj, i.e.

APEp = Avgx
∂Pr y = kp x

∂x ,

for some p or set of p’s in ℙ (where ℙ is the set of all possible values of y). In practice, a 

variety of situations arise where understanding how a Δx intervention affects conditional 

joint or orthant probabilities of various outcome patterns is per se of central interest. Beyond 

this, consider an evaluation context where focus is on how a change in some xj (intervention, 

policy, etc.) affects expected utility through impacting the distribution outcomes y over 

which welfare is defined. Let utility be V y1, …, ym = V y . Expected utility given x is then

E V y x = ∑kM = 0
1 …∑k1 = 0

1 V y1 = k1, …, yM = kM × Pr y1 = k1, …, yM = kM x .

Thus the change in expected utility arising from a change in x is

∂E V y x
∂x = ∑kM = 0

1 …∑k1 = 0
1 V y1 = k1, …, yM = kM ×

Pr y1 = k1, …, yM = kM x
∂x .

As such one must know the full conditional joint probability structure and how it varies with 

x to undertake welfare analysis of interventions in this context. Generally, given consistent 

estimates of the conditional probability structure Pr y = k |x  for all k, then one can use the 

approach described below to address questions involving the role of varying x on outcomes 

defined by Pr y = k |x  as well as aggregates over or differences between such probabilities 

for different k of interest. While the conceptualization of marginal effects in such contexts is 

no different from that arising in univariate contexts -- i.e. how conditional functionals vary 

with x - the computation of such marginal effects may present challenges in both 

computation and interpretation beyond those arising in univariate-outcome settings.

In the specific context of binary or ordered probit models -- the main subject of this paper -- 

estimation of partial effects like ∂Pr y ∈ A|x / ∂x are often a central focus (here, A is some 

outcome set of interest). Such estimation is straightforward in standard univariate models for 
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∂Pr y ∈ 1|x / ∂x, and Greene (1996, 1998)2 has extended these calculations to quadrant 

probability marginal effects ∂Pr y1 = k1, y2 = k2 |x / ∂x, kj ∈ 0, 1 , in bivariate probit models.

This paper extends these results to the general m≥2 multivariate probit (MVP) case for 

arbitrary orthant probabilities. Specifically the paper derives analytical representations of 

∂Pr y1 = k1, yM = kM |x / ∂x or, in shorthand, ∂Pr y = k |x / ∂x where, for the binary probit 

case, y = yj  is the M-variate binary outcome vector, k = kj  is an m-vector of zeros or ones 

indicating any of the any of the 2M possible outcomes, x are conditioning covariates,3 and 

Pr(…) is a joint or orthant probability from a multivariate normal distribution.4 While 

Greene’s results are well established, the analytical formulae describing the general orthant 

probability result are not evident in the literature. This paper derives such results, which 

contain Greene’s bivariate result as a special case, and suggests their potential applicability 

in applied contexts.

The remainder of the paper is organized as follows. Section 2 derives the main analytical 

results for arbitrary joint distributions. Section 3 describes the nature of the data in probit 

contexts, discusses estimation of multivariate probit models, and obtains the specific 

marginal effect formulae for multivariate probit models. Building on these results, Section 4 

derives the marginal effects of probabilities that are conditioned on subvectors of y and 

Section 5 derives marginal effects for multivariate orderedprobit models. Section 6 reports 

an empirical exercise in a model of the determinants of multiple chronichealth conditions. 

Section 7 summarizes. Detailed derviations of the main resultsare presented in appendixes.

2. Results for Arbitrary Multivariate Distributions

The paper first establishes the main results on marginal effects for arbitrary joint 

distributions and then proceeds in the next section to obtain the particular results for the 

multivariate probit (MVP) model.

Let u = u1, …, uM  be continuously measured random variables with population joint 

distribution function F = u1, …, uM . A standard result (or definition) is

∂MF u1, …, uM
∂u1⋯∂uM u = v

= f v1, …, vM , (1)

2See also Christofides et al. (1997, 1998).
3To streamline the analysis and notation the x’s will be treated as continuous so that “ ∂x “ calculus can be used. Discrete x’s (e.g. 
dummy variables, count measures, etc.) can be accommodated straightforwardly with the understanding that discrete differences in 
Pr y1 = k1, …, yM = kM |x  due to Δxj = 1 will be of interest; these can be computed by evaluating 

Pr y1 = k1, …, yM = kM |x  at two different values of xj and then differencing.
4Somewhat informally, the paper uses the term “orthant probability” in reference to the vector of binary outcomes y to refer to the 
probabilities that the underlying latent random variables that map into the observed binary y (see (4) below) occupy any of the 2M 

orthants in ℝM defined implicitly by k. Some additional notation will also prove useful. Let K be the 2M × M matrix whose rows 
(arranged arbitrarily) are the 2M possible outcome configurations k. Let ℙ be a 2M‐element set indexing rows of K having typical 
indexing element p, so that kp = kp• will denote a particular (p-th) outcome configuration.
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where f(…) is the joint density and vj are specific values of uj. Note that (1) can be 

expressed as:

f j uj ×
∂M−1F u1, …, uj−1, uj+1, …, uM uj

∂u1⋯∂uj−1∂uj+1⋯∂uM u = v
= f v1, …, vM , for any j = 1, …, M .

The partial derivative of F(u) with respect to uj satisfies (see Appendix A for detailed 

derivations):

∂F u
∂uj u = v

= f j vj × F−j v1, …, vj−1, vj+1, …, vM vj , j = 1, …, M . (2)

Suppose F(u) is evaluated at u = c θ = c1 θ , …, cM θ  where θ is a parameter (scalar or 

vector) shared across the M margins of F(u), and where all cj (θ) are differentiable in θ. 

Thus with F c θ = F c1 θ , …, cm θ  a Standard chain rule for differentiation along with 

(2) yields:

∂F c1 θ , …, cM θ
∂ θ = ∑j = 1

M ∂F c1 θ , …, cM θ
∂cj θ ×

dcj θ
dθ

= ∑j = 1
M f j cj θ × F−j c1 θ , …, cj−1 θ , cj+1 θ , …, cM θ cj θ

×
dcj θ

dθ

(3)

3. Results for the Multivariate Probit Model

In the binary probit context the outcomes y = ym  can be thought of as arising in the 

standard probit context as binary indicators of threshold crossings of latent marginal normal 

variates:5

yj* = x βj + εj, j = 1, …, M (4)

y = 1 y* ≥ 0

5This stochastic structure allows for but does not appeal specifically to a common factor error structure for ε in (4). It may be that 
such an assumption would simplify estimation and, ultimately, computation of the marginal effects.
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ε = ε1, …, εM MVN 0, R

R =

1 ρ12 ⋯ ρ1M
ρ12 1 ⋮

⋮ ⋱
ρ1M ⋯ 1

.

The parameters B = β1
T , …, βM

T  and R can be estimated using algorithms like Stata’s 

mvprobit (Cappellari and Jenkins 2003) that uses a full-information approach (i.e. estimating 

all elements of B and R simultaneously) with simulated ML. Alternatively B and R can be 

estimated consistently using a computationally less demanding approach suggested by 

Mullahy (2016) that uses a chain of bivariate probit estimators to estimate the MVP model. 

For present purposes the method of estimation is not of concern so long as consistent 

estimates of B and R are available.

Recall that in the binary-outcome case there are 2M possible outcome configurations. For 

each configuration kp, p∈ℙ, one has a corresponding conditional outcome probability 

Pr y1 = k1p, …, yM = kMp |x  The derivations obtained in Appendix B give the MVP marginal 

effects as

∂Pr y1=k1p,…,yM=kMp|x
∂x = ∑j = 1

M ϕ αjp × Φz,Vjp
Ljp × sjp βj

T , (5)

where all relevant notation is defined in Appendix B. For M=2 this is the result obtained by 

Greene (1998, p. 298). Greene’s result in his notation,

∂BVNΦ β′x1 +γ, α′ x2,ρ
∂zk

= ϕ β′x1+γ Φ α′ x2 − ρ β′ x1 + γ / 1 − ρ2 βz

+ ϕ α′ x2 Φ β′x1+γ − ρ α′ x2 / 1 − ρ2 αz

translates in the present notation (and forthe k1 = k2 = 1 case of interest to Greene) into
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∂ ΦQp*
α1p*, α2p*

∂x = ∑j = 1
2 ϕ αjp* × Φz,Vjp*

α 3 − j p* − αjp*τ 3 − j jp*

1 − τ12p*
2 × sjp* βj

T

,

(6)

where p* is the element of ℙ corresponding to the orthant defined by k1 = k2 = 1.

In closing this section, three points merit consideration. First, only an (M-1)-dimension 

cumulative normal must be evaluated to obtain the marginal effects. So, e.g., for M=3 

bivariate cumulative functions like Stata’s binormal(…) can be used in lieu of simulation 

procedures. Second, note that the familiar panel probit model (Greene 2004) is a special case 

β1 = β2 = … = βM  of (4) when period-specific covariates xt are time-invariant. As such, 

its orthant marginal effects can be computed exactly as above. Even when the xt vary over 

time in the panel probit context, the relevant marginal effects can be obtained as a 

straightforward modification of (6). Finally, in practice it will typically be the case that 

estimation of the empirical counterparts to the APEs discussed in Section 1 will be the main 

objective. The approach to such estimation would in general follow that used for 

computation of marginal effects in most regression contexts, i.e.

APE^
p = ∑i = 1

N Wgti
∂Pr̂ yi1 = k1p, …, yiM = kMp xi

∂xi
,

where wgti might be N−1 or some other quantity reflecting sampling or other weighting 

schemes.

4. Marginal Effects of Orthant Probabilities Conditional on Subvectors of y

In the context of bivariate probit models, Greene (1996) suggests that consideration of the 

marginal effects of x on conditional-on-y probabilities, e.g. ∂Pr y1 | y2, x / ∂x may be of 

interest in some instances.6 Using the approach developed above, this idea can be extended 

straightforwardly to the general multivariate probit context as follows.

6In applied studies an explicit formulation of the model of interest as Pr ya = kp,a |yb = kp,b, x  is often absent, and this 

conditional probability may or may not be the parameterwhose marginal effects are of interest. See Greene (1996) for conceptual 
discussion.
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Partition the outcome vector y as ya, yb  and correspondingly partition kp as kp,a, kp,b
where ya and kp,a are M*-vectors and yb and kp,b are (M‐M*)‐vectors. Suppose interest is in 

the quantities Pr ya = kp,a |yb = kp,b, x  and ∂Pr ya = kp,a |yb = kp,b, x / ∂x. Note that

Pr ya = kp,a yb = kp,b, x =
Pr y = kp x

Pr yb = kp,b x
= =

ΦQp
α1P

, …, αMp

ΦQp,b
α M* + 1 P

, …, αMp

,

where Qp,b is defined in an obvious way as a submatrix of Qp. Applying the quotient rule 

gives:

∂Pr ya = kp,a yb = kp,b, x
∂x =

Pr yb = kp,b x ×
∂Pr y = kp x

∂x − Pr y = kp x ×
∂Pr yb = kp,b x

∂x

Pr yb = kp,b x 2 .

The component partial derivatives in the numerator of the rhs expression are simply the 

marginal effects described above for the multivariate outcomes y and yb, respectively.

5. Multivariate Ordered Probit Models

Marginal effects for multivariate ordered probit model (see Greene and Hensher (2010, 

chapter 10)) are straightforward to compute using essentially the same algebra as derived in 

Section 3 for the multivariate binary probit model. Assume that (4) holds but now for j=1,

…,M each observed y j assumes one of g possible values, yj ∈ 0, …, g − 1  7 with the 

mapping given by:

yj = c = 1
g c−1 × 1 μ c−1 j − x βj < uj < μcj − x βj ,

and with −∞ = μ0j < μ1j < … < μgj = + ∞. As such for each j there are g‐1 free threshold 

parameters μ1j, …, μ g−1 j . Let μj = μ1j, …, μ g−1 j
T, M = μ1, …, μM  and ωcj = μcj − x βj

for all j. It follows that

7Allowing the yj to have different numbers of outcomes is straightforward; the assumption of equal numbers of categories across j is 
made solelyto keep notation from becoming unwieldy.
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Pr yj = c−1 x = ω c−1 j

ωcj ϕ uj duj − −∞

ω c−1 j ϕ uj duj, c = 1, …, g,

where φ(uj ) is a univariate N(0,1) density.8

Analogous to the definition of K, define the M×gM matrix C whose columns are the gM 

possible outcome configurations c, and let ℙ be a gM -element set indexing columns of C 
having typical indexing element r, so that cr = C•r will denote a particular (r‐th) outcome 

configuration. Thus

Pr y = cr x = ∫
ω crM − 1

ωcrM
⋯∫

ω cr1 − 1

ωcr1
ϕR u1, …, uM du1…duM, r ∈ ℂ . (7)

Note that (7) will be a sum of signed multivariate normal cdfs including( zeros and ones at 

lower and upper integration limits), so that marginal effects at any cr are the corresponding 

signed sum of the components’ marginals. For example, for the trivariate ordered probit 

model, (7) is

∫ω
cr3 − 1

ωcr3 ∫ω cr2 − 1

ωcr2 ∫ω cr1 − 1

ωcr1
ϕR u1, u2, u3 du1du2du3 =

ΦR ωcr1
, ωcr2

, ωcr3
− ΦR ωcr1

,ωcr2
,ω

cr3 − 1
−

ΦR ωcr1
, ω cr2 − 1 , ωcr3

− ΦR ω cr1 − 1 ,ωcr2
,ωcr3

+

ΦR ωcr1
, ω cr2 − 1 , ω

cr3 − 1
+ ΦR ω cr1 − 1 ,ωcr2

,ω
cr3 − 1

+

ΦR ω cr1 − 1 , ω cr2 − 1 , ωcr3
+ ΦR ω cr1 − 1 ,ω cr2 − 1 ,ω

cr3 − 1

6. Empirical Illustration

This section provides an empirical illustration of the application of MVP marginal effects. 

The example is drawn from a larger project studying the determinants of multiple chronic 

conditions in U.S. adult populations. The data are from the 2010 Medical Expenditure Panel 

Survey (MEPS) Household Component, with a focus on adults aged 18+. Five common 

8Estimation of the M-variate multivariate ordered probit model can be approached using the methods spelled out in Mullahy (2016).
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chronic conditions, measured as binary outcomes, are of interest: Hypertension, Asthma, 

Depression, Hyperlipidemia, and Diabetes. As such, there are 25=32 possible outcome 

patterns. An MVP model is estimated in which covariates are age (in years), schooling (in 

years), and gender. The estimation sample size is N=23,328. Sample average marginal 

effectswith respect to age and schooling are computed using the methods described in 

Section 3, with the results reported in Table 1.

Table 1 indicates that most patterns of poorer health conditions except some in which asthma 

is prominent are estimated to be increasing with age, with the probability of the perfect 

health (i.e. y = 0 ) outcome decreasing by roughly one percentage point per additional year 

of age. Schooling’s estimated marginal effects are positive for the perfect health outcome, 

negative for most outcomes that involve the presence of diabetes, and somewhat mixed 

otherwise.9

7. Summary

This paper has derived the marginal effects for multivariate probit models of arbitrary 

dimension M≥2, thus generalizing a result obtained by Greene (1996, 1998) for the bivariate 

probit case. Beyond elucidating the mechanics of these marginal effects, one obvious 

advantage of the analytical results obtained here is that they reduce the dimension of the 

multinormal numerical simulation relative to what is required to obtain fully numerical 

derivatives.10 The paper has not addressed issues regarding sampling variation in the 

estimates of the marginal effects and corresponding inference considerations. It may be that 

the results derived here point the way to the derivation of a delta-method estimator of the 

variance of the estimated marginal effects, but the algebra would be quite messy. If 

computational power is adequate,bootstrapping for purposes of inference would seem to 

provide a more straightforward approach

Finally, a potentially interesting extension of the results obtained here would be to situations 

involving conditionally heteroskedastic multivariate probit models. In this instance, 

v cov ε x = V x  in (4). While estimation of such models itself may be challenging, the 

additional richness afforded by such parameterizations in describing multivariate probit data 

structures may be important to exploit in particular applications.
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Appendix A:: Detailed Derivations for the General Case

For an intuition for (2), note that in the M=2 case the partial derivative w.r.t. u1 of the 

function g u1, u2 ≡ ∂F u1, u2 / ∂u2 evaluated at u=v must in light of (1) yield the joint density 

f (v1,v2 ). One function g(v1,v2 ) satisfying this is g v1, v2 = f2 v2 × F v1 | v2  which is of the 

form (2); this follows since, at u = v,

∂f2 v2 × F v1 v2
∂v1

= f2 v1 ×
∂F v1 v2

∂v1
= f2 v2 × f v1 v2 = f v1, v2 . (A.1)

By recursion, this result generalizes to M>2 by working backwards from the M-th cross 

partial derivative. The general sequence of partial derivatives of F(…) is (differentiating 

w.o.l.o.g. in the order j=1,2,…,M):

∂F v
∂v1

= f1 v1 × F−1 v2, …, vM v1

∂rF v
∂v1⋯∂vr

= f1 v1 × k = 2
r f vk v1, …, vk‐1 × F− 1, …, r vr+1, …, vM v1, …, vr , r = 2, …, M‐1

∂MF v
∂v1⋯∂vM

= f v .

This result is trivial when the v j are mutually independent, in which case all the 

conditioning arguments are irrelevant.

Alternatively (2) can be obtained directly using Leibniz’s rule for differentiation of integrals 

whose limits depend on the variable of differentiation. Since F v =
−∞

vM
⋯ −∞

v1 f u du1⋯duM

then one can obtain ∂F v / ∂vj by noting that v j appears in this expression only once, as the 

upper limit of one integration, so that passing Leibniz’s rule into the integral yields
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∂
∂vj

∫−∞

vM
⋯∫−∞

v1
f u du1⋯duM = ∫−∞

vM
⋯∫−∞

vj+1∫−∞

vj−1

⋯∫−∞

v1 ∂
∂vj

∫−∞

v1
f u1, …, uM duj du1⋯duj−1duj+1⋯duM

= ∫−∞

vM
⋯∫−∞

vj+1∫−∞

vj−1

⋯∫−∞

v1
f u1, …, uj−1, vj, uj+1, …, uM du1⋯duj−1duj+1⋯duM

= ∫−∞

vM
⋯∫−∞

vj+1∫−∞

vj−1

⋯∫−∞

v1
f u1, …, uj−1, uj+1, …, uM vj × f vj du1⋯duj−1duj+1⋯duM

= f vj × ∫−∞

vM
⋯∫−∞

vj+1∫−∞

vj−1

⋯∫−∞

v1
f u1, …, uj−1, uj+1, …, uM vj du1⋯duj−1duj+1⋯duM

= f vj × F v1, …, vj−1, vj+1, …, vM vj

Analogous results appear in the literature on copula joint distribution functions (Frees and 

Valdez (1998); Trivedi and Zimmer (2005)) in which the joint distribution of y is represented 

in copula form as

C F1 y1 , …, FM yM = C u1, …, uM = F u

with Fj denoting the marginal distribution function of yj, with the uj being marginally 

uniform variates. A familiar result in the bivariate copula literature is that 

∂C u1, u2 / ∂u1 = F u2 | u1  This is essentially equivalent to (A.1) since uniform marginal 

densities satisfy fj (uj)=1. Note, however, that there are instances in the copula literature in 

which results like ∂F u1, u2 / ∂u1 = F u2 | u1  stated. In light of (A.1), this result in general 

does not hold unless fj(uj)=1

Appendix B:: Detailed Derivations for the Multivariate Probit Model

Let sjp=2kjp−1 so sjp ∈ −1, 1  and define correspondingly the M×M diagonal 

transformation matrixes Tp = diag sjp , p = 1, …, 2M, j = 1, …, M Define for each p the 

transformation Qp = TpRTp of the original covariance (i.e correlation) matrix R, so that Qp 

is of the form
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Qp =

1 s1ps2pρ12 ⋯ s1psMpρ1M
s1ps2pρ12 1 ⋮

⋮ ⋱
s1psMpρ1M ⋯ 1

=

1 τ12p ⋯ τ1Mp
τ12p 1 ⋮

⋮ ⋱
τ1Mp ⋯ 1

.

The conditional-on‐x probability of any particular outcome configuration k p is thus given 

by

Pr y1 = k1p, …, yM = kMp x = ΦQp
s1px β1 , …, sMpx βM = ΦQp

α1p, …, αMp ,

where ΦQ is the cumulative of an MVN(0,Q) distribution with density φQ (…) and αjp =sjp 

xβj. Using the transformed matrixes Q in place of the original correlation matrixes R 
streamlines the exposition since for each configuration p the outcome orthant probability can 

be described by a joint cumulative rather than by a notationally messy mix of cumulatives 

and survivor functions. This amounts to a linear change-of-variables operation on 

ε = ε1, …, εm  of the form Tp ε which becomes the effective error structure of model at each 

p; this transformation works due to the symmetry of the distribution of ε around the origin.

To obtain the MVP’s marginal effects it thus suffices to obtain the particular expressions 

corresponding to the second line in (3). f j cj θ  is a univariate N(0,1) density and 

F−j c1 θ , …, cj−1 θ , cj+1 θ , …, cm θ | cj θ  is the cumulative of a conditional (M-1)-

variate Multivariate normal distribution. The cj(θ) in (3) are equal to sjxβj in the MVP 

context, with x playing the role of the “parameter” that is common across outcomes, so that 

dcj θ / dθ is d sjx βj /dx = sj βj. Substituting into (14) ϕ …  for f … , Φ …  for F … , and 

αjp for cj θ  gives:

∂ ΦQp
α1p, …, αMp

∂x = ∑j = 1
M

∂ ΦQp
α1p, …, αMp
∂αjp

×
∂αjp
∂x

= ∑j = 1
M ϕ αjp × ΦQp −j α1p, …, α j−1 p, α j+1 p, …, αMp αjp × sjp βj

T .

Given consistent estimates B and Q, estimation of ∂ ΦQp
α1p, …, αMp / ∂x is complicated 

only by evaluation of the term ΦQp −j α1p, …, α j−1 p, α j+1 p, …, αMp |αjp  The following 

result provides a basis for this calculation:

Result: Joint Conditional Distribution of an MVN-Variate, Adapted from Rao 
(1973) (8a.2.11)
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Suppose z = z1, …, zM MVN 0, Ω  Partition Ω as 
ω11 Ω12
Ω21 Ω22

 with ω11 scalar. Then 

z−1 = z2, …, zM  conditional on z1 is (M‐1)‐variate 

MVN Ω21ω11
−1z1, Ω22 − ω11

−1Ω21Ω12 .■

This generalizes straightforwardly to z−j = z1, …, zj−1, zj+1, …, zM  j=2,…M, by defining 

different partitions of Ω. In the case of interest here, Ω= Qp so that ω11= 1. It follows that the 

joint conditional distribution is

z−1 | z1 MVN

z1τ12p

⋮
z1τ1Mp

,

1 − τ12p
2 τ23p − τ12pτ13p ⋯ τ2Mp − τ12pτ1Mp

τ23p − τ12pτ13p 1 − τ13p
2 ⋮

⋮ ⋱

τ2Mp − τ12pτ1Mp ⋯ 1 − τ1Mp
2

,

(8)

again with obvious generalization to the distributions of z−j | zj, j = 2, …, M.

To obtain ΦQp −j α1p, …, α j−1 p, α j+1 p, …, αMp |αjp , define the (M‐1)-vector of 

differences

Δ− j, p
= α1p − αjpτ1jp , …, α j−1 p − αjpτ j−1 jp , α j+1 p − αjpτ j+1 jp , …, αMp − αjpτMjp

T,

(9)

and an M−1 × M−1  diagonal transformation matrix Hjp = diagk≠j 1 − τjkp
2 −1

 Let 

Ljp = HjpΔ− j, p be the corresponding (M‐1)-vector of normalized differences. Then 

ΦQp −j
α1p, …, α j−1 p, α j+1 p, …, αMp |αjp  can be computed by referring Ljp to ΦZ, Σ … , 

which is the cumulative of an (M-1)‐variate MVN(0,Σ) distribution in which the off-

diagonals of Σ may be nonzero. In this instance Σ is the variance‐covariance matrix of Ljp 

which is in correlation matrix form having typical off-diagonal (r,c) element 
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τrcp − τjrpτjcp / 1 − τjrp
2 1 − τjcp

2  Let this matrix be denoted Vjp. The results derived in this 

appendix now provide the basis for computing the quantities of interest in (5).
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Table 1

Multiple Chronic Conditions Model: Estimated Sample Average Marginal Effects

Outcomes (y=k)

Sample Freq.

Avg. Marginal Effects

Hypertens. Asthma Depression Hyperlipid. Diabetes Age Schooling

0 0 0 0 0 .6133 −.011600 .003796

0 0 0 0 1 .0331 .000115 −.001320

0 0 0 1 0 .0141 .001100 .001213

0 0 0 1 1 .0036 .000203 −.000313

0 0 1 0 0 .0147 −.000483 .000031

0 0 1 0 1 .0012 .000005 −.000132

0 0 1 1 0 .0012 .000103 .000126

0 0 1 1 1 .0003 .000027 −.000049

0 1 0 0 0 .0386 −.000405 .000302

0 1 0 0 1 .0050 .000001 −.000068

0 1 0 1 0 .0052 .000055 .000105

0 1 0 1 1 .0015 .000013 −.000019

0 1 1 0 0 .0079 −.000054 .000028

0 1 1 0 1 .0015 −.0000003 −.000015

0 1 1 1 0 .0016 .000012 .000023

0 1 1 1 1 .0007 .000003 −.000006

1 0 0 0 0 .0782 .002439 −.001045

1 0 0 0 1 .0081 .000435 −.001145

1 0 0 1 0 .0107 .003227 .001019

1 0 0 1 1 .0026 .002522 −.001802

1 0 1 0 0 .0141 .000205 −.000123

1 0 1 0 1 .0019 .000050 −.000152

1 0 1 1 0 .0030 .000468 .000140

1 0 1 1 1 .0009 .000525 −.000380

1 1 0 0 0 .0566 .000141 −.000027

1 1 0 0 1 .0076 .000032 −.000090

1 1 0 1 0 .0156 .000301 .000155

1 1 0 1 1 .0033 .000307 −.000182

1 1 1 0 0 .0363 .000027 −.000010

1 1 1 0 1 .0059 .000007 −.000025

1 1 1 1 0 .0087 .000089 .000044

1 1 1 1 1 .0031 .000129 −.000078
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