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Gaussian latent tree models, or more generally, Gaussian latent forest models have Fisher-information ma-

trices that become singular along interesting submodels, namely, models that correspond to subforests. For

these singularities, we compute the real log-canonical thresholds (also known as stochastic complexities

or learning coefficients) that quantify the large-sample behavior of the marginal likelihood in Bayesian

inference. This provides the information needed for a recently introduced generalization of the Bayesian

information criterion. Our mathematical developments treat the general setting of Laplace integrals whose

phase functions are sums of squared differences between monomials and constants. We clarify how in this

case real log-canonical thresholds can be computed using polyhedral geometry, and we show how to ap-

ply the general theory to the Laplace integrals associated with Gaussian latent tree and forest models. In

simulations and a data example, we demonstrate how the mathematical knowledge can be applied in model

selection.

Keywords: algebraic statistics; Gaussian graphical model; latent tree models; marginal likelihood;

multivariate normal distribution; singular learning theory

1. Introduction

Graphical models based on trees are particularly tractable, which makes them useful tools for

exploring and exploiting multivariate stochastic dependencies, as first demonstrated by [3]. More

recent work develops statistical methodology for extensions that allow for inclusion of latent

variables and in which the graph may be a forest, that is, a union of trees over disjoint vertex sets

[2,14,18]. These extensions lead to a new difficulty in that the Fisher-information matrix of a

latent tree model is typically singular along submodels given by subforests. As explained in [20],

such singularity invalidates the mathematical arguments that lead to the Bayesian information

criterion (BIC) of [16], which is widely used to guide model selection algorithms that infer

trees or forests [7]. Indeed, the BIC will generally no longer share the asymptotic behavior of

Bayesian methods; see also [6], Section 5.1. Similarly, Akaike’s information criterion may no

longer be an asymptotically unbiased estimator of the expected Kullback–Leibler divergence

that it is designed to approximate [20–22].

In this paper, we study the large-sample behavior of the marginal likelihood in Bayesian infer-

ence for Gaussian tree/forest models with latent variables, with the goal of obtaining the math-
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ematical information needed to evaluate a generalization of BIC proposed in [5]. As we review

below, this information comes in the form of so-called real log-canonical thresholds (also known

as stochastic complexities or learning coefficients) that appear in the leading term of an asymp-

totic expansion of the marginal likelihood. We begin by more formally introducing the models

that are the object of study.

Let Z = (Zu)u∈U be a random vector whose components are indexed by the vertices of an

undirected tree T = (U,E) with edge set E. Via the paradigm of graphical modeling [11], the

tree T induces a Gaussian tree model N(T ) for the joint distribution of Z. The model N(T )

is the collection of all multivariate normal distributions on R
U under which Zu and Zv are

conditionally independent given ZC = (Zw : w ∈ C) for any choice of two nodes u,v and a set

C ⊂ U \ {u,v} such that C contains a node on the (unique) path between u and v. For two nodes

u,v ∈ U , let uv be the set of edges on the path between u and v. It can be shown that a normal

distribution with correlation matrix R = (ρuv) belongs to N(T ) if and only if

ρuv =
∏

e∈uv

ρe, (1.1)

where ρe := ρxy when e is the edge incident to x and y. Indeed, for three nodes v,w,u ∈ U the

conditional independence of Zv and Zw given Zu is equivalent to ρvw = ρuvρuw; compare also

[14], page 4359.

In this paper, we are concerned with latent tree models in which only the tree’s leaves corre-

spond to observed random variables. So let V ⊂ U be the set of leaves of tree T = (U,E). Then

the Gaussian latent tree model M(T ) for the distribution of the subvector X := (Zv : v ∈ V ) is

the set of all V -marginals of the distributions in N(T ). The object of study in our work is the

parametrization of the model M(T ). Without loss of generality, we may assume that the latent

variables Za at the inner nodes a ∈ U \ V have mean zero and variance one. Moreover, we as-

sume that the observed vector X has mean zero. Then, based on (1.1), the distributions in M(T )

can be parametrized by the variances ωv for each variable Xv , v ∈ V , and the edge correlations

ωe, e ∈ E.

Our interest is in the marginal likelihood of model M(T ) when the variance and correlation

parameters are given a prior distribution with smooth and everywhere positive density. Following

the theory developed by [20], we will derive large-sample properties of the marginal likelihood

by studying the geometry of the fibers (or preimages) of the parametrization map.

Example 1.1. Suppose T is a star tree with one inner node a that is connected to each one of

three leaves, labelled 1, 2 and 3. A positive definite correlation matrix R = (ρvw) ∈R
V ×V is the

correlation matrix of a distribution in model M(T ) if

R =

⎛

⎝

1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

⎞

⎠=

⎛

⎝

1 ωa1ωa2 ωa1ωa3

ωa1ωa2 1 ωa2ωa3

ωa1ωa3 ωa2ωa3 1

⎞

⎠ (1.2)

for a choice of the three correlation parameters ωa1,ωa2,ωa3 ∈ [−1,1] that are associated with

the three edges of the tree.
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Now suppose that R = (ρvw) is indeed the correlation matrix of a distribution in M(T ) and

that ρvw �= 0 for all v �= w. Then modulo a sign change that corresponds to negating the latent

variable at the inner node a, the parameters can be identified uniquely using the identities

ω2
a1 = ρ12ρ13

ρ23
, ωa2 = ρ12

ωa1
, ωa3 = ρ13

ωa1
.

Hence, the fiber of the parametrization is finite, containing two points.

If instead the correlations between the leaves are zero, then this identifiability breaks down. If

R is the identity matrix with ρ12 = ρ13 = ρ23 = 0, then every vector (ωa1,ωa2,ωa3) ∈ [−1,1]3

that lies in the set

{ωa1 = ωa2 = 0} ∪ {ωa1 = ωa3 = 0} ∪ {ωa2 = ωa3 = 0}

satisfies (1.2). The fiber of the identity matrix is thus the union of three line segments that form

a one-dimensional semi-algebraic set with a singularity at the origin where the lines intersect.

Remark 1.2. Some readers may be more familiar with rooted trees with directed edges and

model specifications based on the Markov properties for directed graphs or structural equations.

However, these are equivalent to the setup considered here, as can be seen by applying the so-

called trek rule [17]. Our later results also apply to Bayesian inference in graphical models asso-

ciated with directed trees.

Suppose ϕ is a smooth and positive density that defines a prior distribution on the pa-

rameter space � = (0,∞)V × [−1,1]E of the Gaussian latent tree model M(T ). Let Xn =
(X(1), . . . ,X(n)) be a sample consisting of n independent and identically distributed random

vectors in R
V , and write L(M(T )|Xn) for the marginal likelihood of M(T ). If Xn is generated

from a distribution q ∈ M(T ) and n → ∞, then it holds that

logL
(

M(T )|Xn

)

−
n
∑

i=1

logq
(

X(i)
)

= −
λT

q

2
logn +

(

m
T
q − 1

)

log logn + Op(1), (1.3)

where λT
q ≥ 0 is a rational number smaller than or equal to the dimension of the model M(T ).

The number mT
q is an integer greater than or equal to 1. More detail on how (1.3) follows from

results in [20] is given in Section 2. In this paper, we derive formulas for the pair (λT
q ,mT

q )

from (1.3), which will be seen to depend on the pattern of zeros in the correlation matrix of the

distribution q .

Let σ ∗
vv and ρ∗

vw be the variances and the correlations of the data-generating distribution q .

The point of departure for our work is Proposition 2.3, which clarifies that the pair (λT
q ,mT

q ) is

also determined by the behavior of the deterministic Laplace integral

∫

�

e−nHq (ω)ϕ(ω)dω, (1.4)
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where the phase function in the exponent is

Hq(ω) =
∑

v∈V

(

ωv − σ ∗
vv

)2 +
∑

v,w∈V

v �=w

(

∏

e∈vw

ωe − ρ∗
vw

)2

.

In the formulation of our results, we adopt the notation

RLCT�(Hq) :=
(

λT
q ,mT

q

)

,

as λT
q is sometimes referred to as real log-canonical threshold and m

T
q is the threshold’s multiplic-

ity. Our formulas for RLCT�(Hq) are stated in Theorem 4.3. The proof of the theorem relies on

facts presented in Section 3, which concern models with monomial parametrizations in general.

As our formulas show, the marginal likelihood admits non-standard large-sample asymptotics,

with λT
q differing from the model dimension if q exhibits zero correlations (recall Example 1.1).

We describe the zero patterns of q in terms of a subforest F ∗ with edge set E∗.

Our result for trees generalizes directly to models based on forests. If F = (U,E) is a forest

with the set V ⊂ U comprising the leaves of the subtrees, then we may define a Gaussian latent

forest model M(F ) in the same way as for trees. Again we assign a variance parameter ωv

to each node v ∈ V and a correlation parameter ωe to each edge e ∈ E. Forming products of

correlations along paths, exactly as in (1.1), we obtain again a parametrization of the correlation

matrix of a multivariate normal distribution on R
V . In contrast to the case of a tree, there may

be pairs of nodes with necessarily zero correlation, namely, when two leaves v and w are in

distinct connected components of F . Theorem 4.7 extends Theorem 4.3 to the case of forests.

The nonstandard cases arise when the data-generating distribution lies in the submodel defined

by a proper subforest F ∗ of the given forest F .

The remainder of the paper begins with a review of the connection between the asymptotics of

the marginal likelihood and that of the Laplace integral in (1.4); see Section 2 which introduces

the notion of a real log-canonical threshold (RLCT). Gaussian latent tree/forest models have a

monomial parametrization and we clarify in Section 3 how the monomial structure allows for

calculation of RLCTs via techniques from polyhedral geometry. In Section 4, these techniques

are applied to derive the above mentioned Theorems 4.3 and 4.7. In Section 5, we demonstrate

how our results can be used in model selection with Bayesian information criteria (BIC). In a

simulation study and an example of temperature data, we compare a criterion based on RLCTs

to the standard BIC, which is based on model dimension alone.

2. Background

Consider an arbitrary parametric statistical model M = {Pθ : θ ∈ 	}, with parameter space

	 ⊆ R
d . Let each distribution Pθ have density p(x|θ) and, for Bayesian inference, consider

a prior distribution with density ϕ(θ) on 	. Writing Xn = (X(1), . . . ,X(n)) for a sample of size n
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from Pθ , the log-likelihood function of M is

ℓ(θ |Xn) =
n
∑

i=1

logp
(

X(i)|θ
)

.

The key quantity for Bayesian model determination is the integrated or marginal likelihood

L(M|Xn) =
∫

	

eℓ(θ |Xn)ϕ(θ) dθ. (2.1)

As in the derivation of the Bayesian information criterion in [16], our interest is in the large-

sample behavior of the marginal likelihood.

Let the sample Xn be drawn from a true distribution with density q that can be realized by

the model, that is, q(x) = p(x|θ∗) for some θ∗ ∈ 	. Then, as we will make more precise below,

the asymptotic properties of the marginal likelihood L(M|Xn) are tied to those of the Laplace

integral

Zn(Kq;ϕ) =
∫

	

e−nKq (θ)ϕ(θ) dθ, (2.2)

where

Kq(θ) =
∫

log
q(x)

p(x|θ)
q(x) dx (2.3)

is the Kullback–Leibler divergence between the data-generating distribution q and distributions

in the model M. Note that Kq(θ) ≥ 0 for all θ , and Kq(θ) = 0 precisely when θ satisfies

p(x|θ) = p(x|θ∗). For large n, the integrand in (2.2) is equal to ϕ(θ) if Kq(θ) = 0 and is negli-

gibly small otherwise. Therefore, the main contribution to the integral Zn(Kq;ϕ) comes from a

neighborhood of the zero set

V	(Kq) =
{

θ ∈ 	 : Kq(θ) = 0
}

,

which we also call the q-fiber.

Suppose now that 	 ⊆ R
d is a semi-analytic set and that Kq : 	 → [0,∞) is an analytic

function with compact q-fiber V	(Kq). Suppose further that the prior density ϕ is a smooth and

positive function. Then, under additional integrability conditions, the Main Theorem 6.2 in [20]

shows that the marginal likelihood has the following asymptotic behavior as the sample size n

tends to infinity:

logL(M|Xn) = ℓ
(

θ∗|Xn

)

− λ

2
logn + (m− 1) log logn + Op(1). (2.4)

In (2.4), λ is a rational number in [0, d], and m is an integer in {1, . . . , d}. The number λ is known

as learning coefficient, stochastic complexity or also real log-canonical threshold, and m is the

associated multiplicity. As explained in [20], Chapter 4, the pair (λ,m) also satisfies

logZn(Kq;ϕ) = −λ

2
logn + (m− 1) log logn + O(1). (2.5)
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Moreover, the pair (λ,m) can equivalently be defined using the concept of a zeta function as

illustrated below; compare also [12].

Definition 2.1 (The real log-canonical threshold). Let f : 	 → [0,∞) be a non-negative ana-

lytic function whose zero set V	(f ) is compact and nonempty. The zeta function

ζ(z) =
∫

	

f (θ)−z/2ϕ(θ) dθ, Re(z) ≤ 0, (2.6)

can be analytically continued to a meromorphic function on the complex plane. The poles of this

continuation are real and positive. Let λ be the smallest pole, known as the real log-canonical

threshold (r.l.c.t.) of f , and let m be its multiplicity. Since we are interested in both the r.l.c.t.

and its multiplicity, we use the notation RLCT	(f ;ϕ) := (λ,m). When ϕ(θ) ≡ 1, we simply

write RLCT	(f ). Finally, if g is another analytic function with RLCT	(g;ϕ) = (λ′,m′), then

we write RLCT	(f ;ϕ) > RLCT	(g;ϕ) if λ > λ′ or if λ = λ′ and m <m
′.

Example 2.2. Suppose Kq(θ) = θ2
1 θ2

2 and 	 = [0,1]2. Then the q-fiber V	(Kq) is the union of

two segments of the coordinate axes. Taking ϕ ≡ 1, we have

Zn(Kq;ϕ) =
∫ 1

0

∫ 1

0

e−nθ2
1 θ2

2 dθ1 dθ2.

This example is simple enough that RLCT	(Kq) can be computed by elementary means. Let

�(z) be the distribution function of the standard normal distribution. Then

Zn(Kq;ϕ) =
∫ 1

0

√

π

nθ2
2

[

�(
√

nθ2) − �(0)
]

dθ2 =
√

π

n

∫

√
n

0

�(v) − 1/2

v
dv.

Integration by parts yields

Zn(Kq;ϕ) =
√

π

n
·
[

log(v)

(

�(v) − 1

2

)]

√
n

0

− 1√
n

∫

√
n

0

log(v)e−v2

dv

=
√

π

n
log(

√
n)

(

�(
√

n) − 1

2

)

+ O
(

n−1/2
)

.

=
√

π

4
· log(n)√

n

(

1 + o(1)
)

.

Taking logarithms, we see that (2.5) holds with λ = 1 and m = 2. It follows that RLCT	(Kq) =
(1,2). Concerning Definition 2.1, we have that

ζ(z) =
∫ 1

0

∫ 1

0

(

θ2
1 θ2

2

)−z/2
dθ1 dθ2 = 1

(1 − z)2
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for all z ∈ C with Re(z) ≤ 0. In fact, this holds as long as Re(z) < 1. The meromorphic con-

tinuation of ζ(z) given by 1/(1 − z)2 has one pole at λ = 1. The pole has multiplicity m = 2

confirming that RLCT	(Kq) = (1,2).

In this paper, we are concerned with Gaussian models for which we may assume, without

loss of generality, that all distributions are centered. So let the data-generating distribution q

be the multivariate normal distribution N (0,�∗), with positive definite k × k covariance matrix

�∗ = (σ ∗
ij ). Further, let p(·|θ) be the density of the distribution N (0,�(θ)) with positive definite

k × k covariance matrix �(θ) = (σij (θ)). Then

Kq(θ) = 1

2

(

tr
(

�(θ)−1�∗)− k − log

(

det�∗

det�(θ)

))

.

For fixed positive definite �∗, the function

� �→ 1

2

(

tr
(

�−1�∗)− k − log

(

det�∗

det�

))

has a full rank Hessian at � = �∗. Hence, in a neighborhood of �∗, we can both lower-bound

and upper-bound Kq by positive multiples of the function

K̃q(θ) =
∑

i≤j

(

σij (θ) − σ ∗
ij

)2
.

It follows that RLCT	(Kq;ϕ) = RLCT	(K̃q;ϕ); compare [20], Remark 7.2. For our study of

Gaussian latent tree (and forest) models, it is convenient to change coordinates to correlations

and consider the function

Hq(θ) =
k
∑

i=1

(

σii(θ) − σ ∗
ii

)2 +
∑

i<j

(

ρij (θ) − ρ∗
ij

)2
, (2.7)

where ρ∗
ij and ρij (θ) are the correlations obtained from �∗ or �(θ); so, for example, ρ∗

ij =
σ ∗

ij/
√

σ ∗
iiσ

∗
jj . Since

RLCT	

(

Kq(θ);ϕ
)

= RLCT	

(

Hq(θ);ϕ
)

, (2.8)

our discussion of latent tree models may thus start from the following fact.

Proposition 2.3. Let T = (U,E) be a tree with set of leaves V ⊂ U . Let � = (0,∞)V ×
[−1,1]E be the parameter space for the Gaussian latent tree model M(T ), the parameters

being the variances ωv , v ∈ V , and the correlation parameters ωe, e ∈ E. Suppose the (data-

generating) distribution q is in M(T ) and has variances σ ∗
vv > 0 and a positive definite correla-
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tion matrix with entries ρ∗
vw . Then RLCT�(Kq;ϕ) = RLCT�(Hq;ϕ), where

Hq(ω) =
∑

v∈V

(

ωv − σ ∗
vv

)2 +
∑

v,w∈V

v �=w

(

∏

e∈vw

ωe − ρ∗
vw

)2

. (2.9)

3. Monomial parametrizations

According to Proposition 2.3, the asymptotic behavior of the marginal likelihood of a Gaussian

latent tree model is determined by the real log-canonical threshold of the function Hq in (2.9).

This function is a sum of squared differences between monomials formed from the parameter

vector ω and constants determined by the data-generating distribution q . In this section, we for-

mulate general results on the real log-canonical thresholds for such monomial parametrizations,

which also arise in other contexts [15,24].

Specifically, we treat functions of the form

H(ω) =
k
∑

i=1

(

ωui − c∗
i

)2
, ω ∈ �, (3.1)

with domain � ⊆R
d . Here, c∗

1, . . . , c∗
k ∈ R are constants and each monomial ωui := ω

ui1

1 · · ·ωuid

d

is given by a vector of nonnegative integers ui = (ui1, . . . , uid). Special cases of this setup are

the regular case with H(ω) = ω2
1 + · · · + ω2

d , and the quasi-regular case of [23], in which the

vectors ui have pairwise disjoint supports and all c∗
i = 0.

Let r be the number of summands on the right-hand side of (3.1) that have c∗
i �= 0. Without

loss of generality, assume that c∗
1, . . . , c∗

r �= 0 and c∗
r+1 = · · · = c∗

k = 0. Furthermore, suppose

that ω1, . . . ,ωs are the parameters appearing in the monomials ωu1, . . . ,ωur , that is,
⋃r

i=1{j :
uij > 0} = {1, . . . , s}. If H(ω) = 0 then ωi �= 0 for all i = 1, . . . , s. Moreover, if the zero set

V�(H) = {ω ∈ � : H(ω) = 0} is compact, then each one of the parameters ω1, . . . ,ωs is bounded

away from zero on V�(H). (Clearly, the zero set of the function Hq from Proposition 2.3 is

compact.)

Now define the nonzero part H 1 of H as

H 1(ω1, . . . ,ωs) :=
r
∑

i=1

(

ωui − c∗
i

)2
(3.2)

and the zero part H 0 of H as

H 0(ωs+1, . . . ,ωd) :=
k
∑

i=r+1

d
∏

j=s+1

ω
2uij

j . (3.3)
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Definition 3.1. The Newton polytope Ŵ(H 0) of the zero part H 0 is the convex hull of the points

(uij : s + 1 ≤ j ≤ d) ∈ R
d−s for i = r + 1, . . . , k. The Newton polyhedron of H 0 is the polyhe-

dron

Ŵ+
(

H 0
)

:=
{

x + y ∈R
d−s : x ∈ Ŵ

(

H 0
)

, y ∈ [0,∞)d−s
}

.

Let 1 = (1, . . . ,1) ∈ R
d−s be the vector of all ones. Then the 1-distance of Ŵ+(H 0) is the smallest

t ∈ R such that t1 ∈ Ŵ+(H 0). The associated multiplicity is the co-dimension of the (inclusion-

minimal) face of Ŵ+(H 0) containing t1.

We say that A ⊆R
d is a product of intervals if A = [a1, b1]×[a2, b2]×· · ·×[ad , bd ] with ai <

bi ∈R∪ {−∞,∞}. The following is the main result of this section. It is proved in Appendix A.

Theorem 3.2. Suppose that � is a product of intervals, and let �1 and �0 be the projections of �

onto the first s and the last d −s coordinates, respectively. Let H be the sum of squares from (3.1)

and assume that the zero set {ω ∈ � : H(ω) = 0} is nonempty and compact. Let ϕ : � → (0,∞)

be a smooth positive function that is bounded above on �. Then

RLCT�(H ;ϕ) = (λ0 + λ1,m),

where λ1 is the co-dimension of V�1
(H 1) = {ω ∈ �1 : H 1(ω) = 0} in R

s , and 1/λ0 is the 1-

distance of the Newton polyhedron Ŵ+(H 0) with associated multiplicity m. Here, λ0 = 0 and

m = 1 if H has no zero part, that is, s = d .

Remark 3.3. In order to compute the co-dimension of V�1
(H 1), one may consider one orthant

at a time and take logarithms (accounting for signs). This turns the equations H 1(ω) = 0 into

linear equations in logω1, . . . , logωs .

Example 3.4. If H(ω) = ω2
1 + · · · + ω2

d and � = R
d , then (2.2) is a Gaussian integral and it

is clear (cf. (2.5)) that RLCT�(H) = (d,1). The Newton polytope for H 0 = H is the convex

hull of the canonical basis vectors of Rd . The Newton polyhedron of H has 1-distance 1/d with

multiplicity 1. The same is true whenever

H(ω1, . . . ,ωd) = ω2
1 + · · · + ω2

d + “higher even order terms”. (3.4)

Example 3.5. Earlier, we have shown that on � = [0,1]2 the function H(ω) = ω2
1ω

2
2 has

RLCT�(H) = (1,2); recall Example 2.2. The function has no nonzero part. Its Newton poly-

tope consists of a single point, namely, (1,1). The Newton polyhedron is [1,∞)2. Clearly, the

1-distance of the Newton polyhedron is 1. Since the ray spanned by 1 meets the Newton polyhe-

dron in the vertex (1,1), the multiplicity is 2, as it had to be according to our earlier calculation.

Example 3.6. Consider the function

H(ω) = (ω1ω2 − 1)2 + ω2
1ω

2
3 + ω2

2ω
2
3 + ω2

3ω
2
4
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on � = [−2,2]4. The nonzero part is H 1(ω1,ω2) = (ω1ω2 − 1)2 and the zero part is

H 0(ω3,ω4) = 2ω2
3 + ω2

3ω
2
4 . With �1 = [−2,2]2, the co-dimension of V�1

(H 1) is λ1 = 1. The

Newton polytope of H 0 is the convex hull of (1,0) and (1,1). The Newton polyhedron of H 0

is [1,∞) × [0,∞). Hence, λ0 = 1 and m = 1. Note that while the point (1,1) is a vertex of the

Newton polytope, it lies on a one-dimensional face of the Newton polyhedron. In conclusion,

RLCT�(H) = (2,1).

4. Gaussian latent tree and forest models

Let T = (U,E) be a tree with set of leaves V . By Proposition 2.3, our study of the marginal

likelihood of the Gaussian latent tree model M(T ) turns into the study of the function

Hq(ω) =
∑

v∈V

(

ωv − σ ∗
vv

)2 +
∑

v,w∈V

v �=w

(

∏

e∈vw

ωe − ρ∗
vw

)2

. (4.1)

Since σ ∗
vv > 0 for all v ∈ V , the split of Hq into its zero and nonzero part depends solely on the

zero pattern among the correlations ρ∗
vw of the data-generating distribution q . Furthermore, from

the form of the parametrization in (1.1), it is clear that zero correlations can arise only if one sets

ωe = 0 for one or more edges e in the edge set E. For a fixed set E0 ⊆ E, the set of parameter

vectors ω ∈ � with ωe = 0 for all e ∈ E0 parametrizes the forest model M(F0), where F0 is the

forest obtained from T by removing the edges in E0. In this submodel, ρvw ≡ 0 if and only if v

and w lie in two different connected components of F0.

It is possible that two different subforests induce the same pattern of zeros among the corre-

lations of the data-generating distribution q . However, there is always a unique minimal forest

F ∗(q) = (U∗,E∗) inducing this zero pattern, and we term F ∗(q) the q-forest. Put differently,

the q-forest F ∗(q) is obtained from T by first removing all edges e ∈ uv for all pairs of nodes

u,v ∈ U that can have zero correlation under q and then removing all inner nodes of T that have

become isolated. Isolated leaf nodes are retained so that V ⊆ U∗. In the remainder of this section,

we take E0 = E \ E∗ to be the set of edges whose removal defines F ∗(q). We write v ∼ w if v

and w are two leaves in V that are joined by a path in the q-forest F ∗(q).

Example 4.1. Let T be the quartet tree in Figure 1(a). Let q have ρ∗
12 �= 0 but ρ∗

vw = 0 for

all other {v,w} ⊆ V = {1,2,3,4}. The q-forest F ∗(q) is obtained by removing the edges in

E0 = {{a, b}, {b,3}, {b,4}}. Inner node b becomes isolated and is removed as well. The forest

F ∗(q) thus has the five nodes in the set U∗ = {1,2,3,4, a}, and the two edges in the set E∗ =
{{1, a}, {2, a}}; see Figure 1(b).

Moving on to the decomposition of the function from (4.1), recall that we divide the parameter

vector ω into coordinates (ω1, . . . ,ωs) that never vanish on the q-fiber V�(Hq) and the remaining

part (ωs+1, . . . ,ωd). In our case, (ω1, . . . ,ωs) consists of all ωv for v ∈ V and ωe for e ∈ E∗ and
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a

Figure 1. (a) A quartet tree T ; (b) the q-forest from Example 4.1.

(ωs+1, . . . ,ωd) consists of ωe for e ∈ E0 = E \ E∗. Moreover,

H 1
q (ω1, . . . ,ωs) =

∑

v∈V

(

ωv − σ ∗
vv

)2 +
∑

v,w∈V

v �=w,v∼w

(

∏

e∈vw

ωe − ρ∗
vw

)2

(4.2)

and

H 0
q (ωs+1, . . . ,ωd) =

∑

v≁w

∏

e∈vw∩E0

ω2
e . (4.3)

The Gaussian latent tree model M(T ) given by a tree T with set of leaves V and edge set E

has dimension

dim M(T ) = |V | + |E| − l2,

where l2 denotes the number of degree two nodes in T . Similarly, the model given by a forest F

with set of leaves V and edge set E has dimension

dim M(F ) =
r
∑

i=1

dim M(Ti) = |V | + |E| − l2,

where T1, . . . , Tr are the trees defined by the connected components of F and l2 is again the

number of degrees two nodes.

Example 4.2. The q-forest F ∗ from Example 4.1 has dim M(F ∗) = 4 + 2 − 1 = 5. The dimen-

sions for the trees in the forest F ∗ are dim M(T ∗
1 ) = 3, dim M(T ∗

2 ) = 1, and dim M(T ∗
3 ) = 1; the

trees T ∗
2 and T ∗

3 each contain only a single node.

The following theorem provides the real log-canonical thresholds of Gaussian latent tree mod-

els. The proof of theorem is given in Appendix B.

Theorem 4.3. Let T = (U,E) be a tree with set of leaves V ⊂ U , and let q be a distribution in

the Gaussian latent tree model M(T ). Write � = (0,∞)V ×[−1,1]E for the parameter space of

M(T ), and let F ∗(q) = (U∗,E∗) be the q-forest. If ϕ : � → (0,∞) is a smooth positive function
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that is bounded above on �, then the function Hq from (4.1) has

RLCT�(Hq;ϕ) =
(

dim M
(

F ∗(q)
)

+
∑

e∈E\E∗ w(e)

2
,1 + l′2

)

,

where w(e) = |e ∩ U∗| ∈ {0,1,2} is the number of nodes that e shares with F ∗(q), and l′2 is the

number of nodes in T that have degree two and are not in U∗.

Theorem 4.3 implies in particular that the pair (λT
q ,mT

q ) depends on q only through the forest

F ∗(q) and we write

λF ∗(q),T := λT
q , mF ∗(q),T := m

T
q .

Example 4.4. In Example 4.1, dim M(F ∗) = 5 (cf. Example 4.2) and
∑

e∈E0
w(e) = 3. Hence,

the real log-canonical threshold λF ∗(q),T is 13/2, which translates into a coefficient of 13/4

for the logn term in the asymptotic expansion of the log-marginal likelihood. Note that the

threshold 13/2 is smaller than dim M(T ) = 9, making the latent tree model behave like a lower-

dimensional model.

Example 4.5. Suppose T has two leaves, labelled 1 and 2, and one inner node a, which then

necessarily has degree two. If q is a distribution under which the random variables at the two

leaves are uncorrelated, then we have

Hq(ω) =
(

ω1 − σ ∗
11

)2 +
(

ω2 − σ ∗
22

)2 + (ω1aω2a)
2.

Using the calculation from Example 2.2 or Example 3.5, we see that RLCT�(Hq) = (3,2). When

applying Theorem 4.3, the q-forest F ∗ has the leaves 1 and 2 isolated and dim M(F ∗) = 2. Since

l′2 = 1 and each one of the two removed edges satisfies w(e) = 1, the formula from Theorem 4.3

yields RLCT�(Hq) = (3,2), as it should.

Remark 4.6. Note that if T has an (inner) node of degree two, then we can contract one of

the edges the node is adjacent to obtain a tree T̃ with M(T̃ ) = M(T ). Repeating such edge

contraction it is always possible to find a tree with all inner nodes of degree at least three that

defines the same model as the original tree T . Moreover, in applications such as phylogenetics,

the trees of interesting do not have nodes of degree two, in which case the multiplicity in RLCT

is always equal to one.

In the model selection problems that motivate this work, we wish to choose between different

forests. We thus state an explicit result for forests in the below Theorem 4.7. For a forest F ,

we define q-forests in analogy to the definition we made for trees. In other words, we apply the

previous definitions to each tree appearing in the connected components of F and then form

the union of the results. Similarly, the proof of Theorem 4.7 is obtained by simply applying

Theorem 4.3 to each connected component of the given forest F .
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Theorem 4.7. Let F = (U,E) be a forest with the set of leaves V ⊂ U , and let q be a distribution

in the Gaussian latent forest model M(F ). Write � = (0,∞)V × [−1,1]E for the parameter

space of M(F ), and let F ∗(q) = (U∗,E∗) be the q-forest. If ϕ : � → (0,∞) is a smooth positive

function that is bounded above on �, then the function Hq from (4.1) has

RLCT�(Hq;ϕ) :=
(

λF
q ,mF

q

)

=
(

dim M
(

F ∗(q)
)

+
∑

e∈E\E∗ w(e)

2
,1 + l′2

)

,

where w(e) = |e ∩ U∗| ∈ {0,1,2} is the number of nodes that e shares with F ∗(q), and l′2 is the

number of nodes in F that have degree two and are not in U∗.

As in Theorem 4.3, the pair (λF
q ,mF

q ) depends on q only through the forest F ∗(q) and we

write

λF ∗(q),F := λF
q , mF ∗(q),F := m

F
q .

Remark 4.8. Fix a forest F = (U,E) with leaves V ⊂ U , and let F ∗ = (U∗,E∗) be any subfor-

est of F with the same leaves (any F ∗(q) is of this form). Let dF and dF ∗ be such that dF (u) is

the degree of u in F for all u ∈ U and similarly for dF ∗ . Note that

∑

e∈E\E∗
w(e) =

∑

u∈U∗

(

dF (u) − dF ∗(u)
)

.

From this and our prior formula for dim M(F ∗), we have that

λF ∗,F =
∣

∣U∗∣
∣+

∣

∣E∗∣
∣− l2 + 1

2

∑

u∈U∗

(

dF (u) − dF ∗(u)
)

,

where l2 is the number of degree 2 nodes in F ∗. Computing λF ∗,F can now easily be done in

linear time in the size of F , that is, in O(|U |+ |E|) = O(|U |) time, under the assumption that we

have stored F and F ∗ as adjacency lists and there is a map, with O(1) access time, associating

vertices in F ∗ with those in F . In computational practice, we found that the prior two conditions

are trivial to guarantee. In particular, note that if F and F ∗ are stored as adjacency lists we may

simply loop over these lists, taking O(|U |+ |E|+ |U∗|+ |E∗|) = O(|U |) time, and precompute

dF , dF ∗ , l2, |U∗|, and |E∗|. Computing λF ∗,F is then simply a matter of summing over u ∈ U∗

and using the precomputed values of dF (u) and dF ∗(u), taking O(U∗) time. Similarly, noting

that l′2 =
∑

u∈U\U∗ 1[dF (u)=2], we have that mF ∗,F can also be computed in linear time in the size

of F .

5. Singular BIC for latent Gaussian tree models

In this section, we consider the model selection problem of inferring the forest F underlying a

Gaussian latent forest model M(F ) based on a sample of independent and identically distributed

observations Xn = (X(1), . . . ,X(n)). To this end, we consider Bayesian information criteria that
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are inspired by the developed large-sample theory for the marginal likelihood L(M(F )|Xn).

Note that for all the following simulations the space of models we consider implicitly include

only forests and trees without degenerate degree 2 nodes; as described in Remark 4.6, this results

in an RLCT whose multiplicity is always 1.

As stated in (1.3) and (2.4), the RLCTs found in Section 4 give the coefficients for loga-

rithmic terms that capture the main differences between the log-marginal likelihood and the

log-likelihood of the true data-generating distribution q . Let q̂F be the maximum likelihood es-

timator of q in the Gaussian latent forest model M(F ). By the results of [4], if q ∈ M(F ) and

n → ∞, then

n
∑

i=1

[

log q̂F

(

X(i)
)

− logq
(

X(i)
)]

= Op(1)

and thus, by (2.4), we also have

logL
(

M(F )|Xn

)

(5.1)

=
n
∑

i=1

log q̂F

(

X(i)
)

− λF ∗(q),F

2
logn + (mF ∗(q),F − 1) log logn + Op(1).

The pair (λF ∗(q),F ,mF ∗(q),F ) on the right-hand side still depends on the unknown data-

generating distribution q through the forest F ∗(q). However, the pair is a discontinuous function

of q and plugging in the MLE q̂F has little appeal. Instead, we will consider a criterion pro-

posed by [5], in which one averages over the possible values of (λF ′,F ,mF ′,F ) for all subforests

F ′ of F . As in [5], we refer to the resulting model selection score as the ‘singular Bayesian

information criterion’, or sBIC for short.

We briefly describe how sBIC is computed. Let F be the set of forests in the model selection

problem, which we assume to contain the empty forest F∅ = (V ,∅). Note that every forest

F ∈ F has set of leaves V . For forest F ∈ F with subforest F ′ ∈ F , let (λF ′,F ,mF ′,F ) be the

pair from (5.1) when the distribution q has F ′ as q-forest, that is, F ∗(q) = F ′. Theorem 4.7 gives

the value of this RLCT pair. Define

L′
F ′F = n−λF ′F /2(logn)mF ′F −1

n
∏

i=1

q̂F

(

X(i)
)

, (5.2)

which is a proxy for the marginal likelihood L(M(F )|Xn) obtained by exponentiating the right

hand side of (5.1) and omitting the Op(1) remainder. For each F ∈F , the sBIC of model M(F )

is defined as logxF , where (xF : F ∈F) is the unique positive solution to the equation system

∑

F ′⊆F

(

xF − L′
F ′F

)

xF ′ = 0, F ∈F . (5.3)

The system (5.3) is triangular and can be solved by recursively solving univariate quadratic

equations. The starting point is the case when F is the empty forest F∅, for which F ′ = F∅

is the only possible q-forest and (5.3) gives xF∅
(xF∅

− L′
F∅F∅

) = 0. The sBIC of the model
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M(F∅) is thus logL′
F∅F∅

, which coincides with the usual BIC as the relevant RLCT is given by

λF∅F∅
= dim M(F∅) = |V | and mF∅F∅

= 1. When the forest F is nonempty, the sBIC and the

BIC of M(F ) differ.

In [5], sBIC is motivated by considering weighted averages of the approximations L′
F ′F , with

the weights being data-dependent. Furthermore, it is shown that the sBIC of M(F ) differs from

logL(M(F )|Xn) by an Op(1) remainder whenever data are generated from a distribution q ∈
M(F ), even if q lies in a strict submodel M(F ∗) ⊂ M(F ). The same is true for BIC only if

q ∈ M(F ) does not belong to any strict submodel (i.e., all edge and path correlations are nonzero

and F equals the q-forest F ∗). In what follows, we explore the differences between the RLCT-

based sBIC and the dimension-based BIC in two simulation studies and on a temperature data

set.

5.1. Simulation studies

The first task we consider is selection a subforest of a given tree T , where each subforest as

well the tree T share a set of leaves V , or in other words, each subforest is a q-forest for some

q ∈ M(T ). When ordering edge sets by inclusion, the set of all subforests of T becomes a poset

that we denote by PT . The poset is a lattice with the empty graph (with |V | isolated nodes)

as minimal element and the tree T as maximal element. To select a forest, we optimize BIC

and sBIC, respectively, over the set PT . Maximum likelihood estimates are computed with an

EM algorithm, in which we repeatedly maximize the conditional expectation of the complete-

data log-likelihood function of forest models N(F ) for a random vector Z comprising both the

observed variables at the leaves in V and the latent variables at the inner nodes of F ; recall the

notation from the Introduction.

As a concrete example, we choose T to be the tree in Figure 2(a). We generate data from a

distribution q that lies in M(T ) but under which the third leaf is independent from all other leaves.

The corresponding q-forest F ∗ is depicted on Figure 2(b). We choose q to have covariance matrix

�∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0.13 0 0.22 0.36

0.13 1 0 0.22 0.13

0 0 1 0 0

0.22 0.22 0 1 0.22

0.36 0.13 0 0.22 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5.4)

which is obtained by taking all edge correlations equal to 0.6. We then generate a random sample

of size n from N(0,�∗) and pick the best model with respect to the BIC and the best model with

respect to sBIC. For each considered choice of a sample size n, this procedure is repeated 100

times.

The poset PT comprises 34 possible forests/models. In Figures 3–5, we display the lattice

structure of PT overlaid with a heat map of how frequently the models were chosen at the partic-

ular sample size. The subforest/submodels are labeled from 1 to 34 with 1 corresponding to the

complete independence model and 34 corresponding to M(T ), where T is the tree in Figure 2(a).
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Figure 2. (a) A tree with five leaves; (b) one of its subforests.

If we order the edges as {a,1}, {a,5}, {a, b}, {b,4}, {b, c}, {c,2}, {c,3} and use {0,1}-vectors to

indicate the presence of edges then the submodels are:

1 : 0000000

2 : 1100000

3 : 1011000

4 : 0111000

5 : 1111000

6 : 1010110

7 : 0110110

8 : 1110110

9 : 0001110

10 : 1101110

11 : 1011110

12 : 0111110

13 : 1111110

14 : 1010101

15 : 0110101

16 : 1110101

17 : 0001101

18 : 1101101

19 : 1011101

20 : 0111101

21 : 1111101

22 : 0000011

23 : 1100011

24 : 1011011

25 : 0111011

26 : 1111011

27 : 1010111

28 : 0110111

29 : 1110111

30 : 0001111

31 : 1101111

32 : 1011111

33 : 0111111

34 : 1111111

In particular, the smallest true model is model 13.

Figures 3–5 show that the standard dimension-based BIC tends to select too small models

that do not contain the data-generating distribution q . In particular, BIC never selects the full

Figure 3. Results from 100 simulations with true covariance matrix given by (5.4) for n = 25 (sBIC left,

BIC right). Darker color corresponds to higher selection frequency. The square node 13 is the smallest true

model and includes the selection frequency. Models never chosen are without border.
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Figure 4. Results from 100 simulations as for Figure 3 but with sample size n = 75.

tree model 34. The RLCT-based sBIC, on the other hand, invokes a milder penalty, occasionally

selects the tree model 34, and more frequently selects the smallest true model 13. Indeed, already

for n = 75, sBIC selects the true model more often than any other model. On the other hand, the

regular BIC procedure selects too simple a model also when the sample size is increased to

n = 125.

Next, we consider examples with 10 and 11 leaves, in which case the number of considered

models is still tractable. Writing m := |V | for the number of leaves, the lattice PT has depth m−1

with the complete independence model having depth 0 and the maximal element M(T ) having

Figure 5. Results from 100 simulations as for Figure 3 but with sample size n = 125.
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(a) (b)

Figure 6. Proportion of times, out of 50 simulations, sBIC (solid line) and BIC (dashed line) select the

smallest true model for different samples sizes (displayed on a logarithmic scale). (a) m = 10 leaves.

(b) m = 11 leaves.

depth m − 1. Since the penalty in BIC is always at least the penalty in sBIC, it holds trivially

that BIC will select the smallest true model more often than sBIC when the smallest true model

is at depth 0; the converse is true if the smallest true model is at depth m − 1. We thus focus on

the middle depth and randomly choose 50 trees T1, . . . , T50 with corresponding randomly chosen

subforests F1, . . . ,F50 each at depth ⌊m−1
2

⌋. From each subforest which we pick qi ∈ M(Fi) by

setting all edge correlations to 0.6 and all leaf variances to 1; note that Fi equals the q-forest

F ∗(qi). From each qi , we generate a dataset of a fixed size n and compare the proportion of

times that sBIC and BIC correctly identify the smallest true model M(Fi) for 1 ≤ i ≤ 50. The

results of these simulations are summarized in Figure 6. We see that sBIC outperforms BIC for

smaller sample sizes with BIC marginally overtaking sBIC in very large samples.

Remark 5.1. In the simulations, we evaluated the quality of the forests found by BIC and sBIC

through the proportion of times the chosen forest matched the truth exactly. An exact match is

a very strong requirement and one may instead wish to compute the average distance, based on

some metric, between selected forest and the truth. Unfortunately, the most natural metrics in our

setting are NP-hard to compute and can only be approximated in general [9,10].

5.2. Temperature data

We consider a dataset consisting of average daily temperature values on 310 days from 37 cities

across North America, South America, Africa and Europe. The data was sourced from the Na-

tional Climatic Data Center and compiled in a readily available format by the average daily tem-

perature archive of the University of Dayton [19]. In order to decorrelate and localize the data we

first perform a seasonality adjustment where we regress each observed time series of temperature



1220 Drton, Lin, Weihs and Zwiernik

values on a sinusoid corresponding to the seasons and retain only the residuals. We then consider

only the differences of average temperatures on consecutive days reducing the number of data

points to n = 309.

In the simulations of Section 5.1, we performed an exhaustive search over the lattice of all

considered forests, a strategy which quickly becomes infeasible when increasing the number

of observed variables beyond the low teens. Thus, in order to do model selection with the 37

observed nodes described above, we need to formulate an approximate sBIC. There are a plural-

ity of possible heuristic strategies for producing this approximation involving combinations of

greedy search, truncation of the considered model space, and simulated annealing. An in-depth

exploration of these strategies and their relative performance is beyond the scope of this paper,

instead we will show the results of using one such method as a proof of concept.

Our selection strategy, which we call a pruned chain search, has the following form:

(1) Generate an approximate maximum likelihood trivalent tree structure T .

(2) Prune the model space of considered forests to only consider a single decreasing path in

the poset PT starting at T and ending with the empty forest.

(3) Compute the sBIC (or BIC) for models in the pruned space and select the highest scoring

model.

Note that after (2) the number of considered models will equal to the number of observed

variables making computation tractable for many observed nodes. We accomplish (1) using a

version of the structural EM algorithm proposed by [8]. To produce the decreasing path of models

in (2), we start with T and iteratively select subforests in a greedy fashion:

(a) Suppose that after the mth iteration we have constructed the decreasing chain Cm of forests

T = F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fm.

(b) If Fm is the empty forest then we are done.

(c) Otherwise, we extend Cm to Cm+1 by adding to it the forest with largest BIC-penalized

log-likelihood (with log-likelihood maximized using the EM algorithm described in Section 5.1)

among all maximal subforests of Fm.

We present the results of applying above selection procedure to the temperature data in Fig-

ure 7. Note that the models selected by the sBIC and BIC are quite similar with the majority of

the connections following our physical intuition that geographically adjacent cities should have

similar temperature fluctuations while further separated cities should be essentially uncorrelated.

For instance, all three cities in Washington, USA are connected to each other but to no other

cities. The one difference between the model selected by sBIC and that selected by the BIC is

the connection of Barbados to the component containing the Bahamas in the sBIC graph. The

distance between these nodes is just far enough to place this connection on the border between

spurious and reasonable. As in the simulation experiments, we observe sBIC’s ability to select

larger models.

6. Conclusion

Real log-canonical thresholds and associated multiplicities quantify the large-sample properties

of the marginal likelihood in Bayesian approaches to model selection. In this paper, we computed
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(a)

(b)

Figure 7. The models selected by sBIC and BIC pruned chain search. Each colored node represents an

observed node (nodes with the same color are from the same country or US state) and the black nodes

correspond to latent variables. The position of colored nodes corresponds to the city from where the data

was collected. (a) Model chosen by sBIC. (b) Model chosen by BIC.

these RLCTs for Gaussian latent tree and forest models; the main results being Theorems 4.3

and 4.7. Our computations relied on the fact that the considered tree and forest models have a

monomial parametrization, which allows one to apply methods from polyhedral geometry that

we presented in Theorem 3.2.

Knowing RLCTs makes it possible to apply a ‘singular Bayesian information criterion’ (sBIC)

that was recently proposed by [5]. RLCTs provide refined information about the marginal likeli-
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hood and our simulations show that, at least in smaller problems, the sBIC outperforms the usual

BIC of [16] that is defined using model dimension alone. As an exhaustive search over all models

becomes quickly infeasible as the number of observed variables increases, we demonstrated, by

example of a temperature dataset, how the sBIC might be approximated and applied to larger

problems. In particular, we combined the structural EM of [8] with a greedy search methodol-

ogy to reduce the number of considered models to a small collection for which the sBIC can be

readily computed.

Appendix A: Proof of Theorem 3.2

Let H be the function from (3.1). By assumption, the ‘prior’ ϕ : � → (0,∞) is bounded above

and V�(H) = {ω ∈ � : H(ω) = 0} is compact. Since ϕ is smooth and positive, ϕ is bounded

away from zero on V�(H) and any compact neighborhood of this zero set. The poles of the

zeta function in (2.6) can be shown to be the same for all such choices of ϕ, and we have

RLCT�(H ;ϕ) = RLCT�(H).

Our proof of Theorem 3.2 now proceeds in three steps:

Step 1. Show that RLCT�(H) = RLCT�(H 0 +H 1), where H 0, H 1 are the zero and nonzero

parts of H that are defined in (3.2) and (3.3).

Step 2. Show that RLCT�1
(H 1) = (λ1,1), where λ1 = codimV�1

(H 1).

Step 3. Show that RLCT�0
(H 0) = (λ0,m), where λ0 is the 1-distance of the Newton polyhe-

dron Ŵ+(H 0) and m is the multiplicity (recall Definition 3.1).

Since H 0 and H 1 are functions of disjoint sets of coordinates and � = �0 × �1 is a Cartesian

product, it follows from Remark 7.2(3) in [20] and the above Steps 1–3 that

RLCT�

(

H 0 + H 1
)

=
(

λ0 + λ1, (m+ 1) − 1
)

= (λ0 + λ1,m),

which is the claim of Theorem 3.2.

Before moving on to Step 1, we make a definition. Let f,g : � → [0,∞) be two nonnegative

functions with common zero set V�(g) = V�(f ). Then f and g are asymptotically equivalent,

we write f ∼ g, if there exist two constants c,C > 0 and a neighborhood W of V�(g) = V�(f )

such that

cf (ω) ≤ g(ω) ≤ Cf (ω) (A.1)

for all ω ∈ W ∩ �. Note that ∼ is indeed an equivalence relation. According to Remark 7.2(1) in

[20], f ∼ g implies RLCT�(f ) = RLCT�(g).

A.1. Step 1

First, note that RLCT�(H) = RLCTW∩�(H) for any neighborhood W of the compact zero

set V�(H). Choose W sufficiently small such that ω1, . . . ,ωs are bounded away from zero on
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W ∩ �. Next, by definition of the index r in Section 3, we have that H = H 1 + H 01, where

H 01 =
k
∑

i=r+1

ω2ui .

When viewed as functions restricted to W ∩ �, we have H 0 ∼ H 01 because
(

min
i

s
∏

j=1

ω
2uij

j

)

H 0 ≤ H 01 ≤
(

max
i

s
∏

j=1

ω
2uij

j

)

H 0

and ω1, . . . ,ωs are bounded above and bounded away from zero on the compactum W ∩ �.

It follows that RLCT�(H) = RLCT�(H 0 + H 1) because H 01 ∼ H 0 implies that H 1 + H 0 ∼
H 1 + H 01 = H .

A.2. Step 2

To complete Step 2, we will prove the following result.

Proposition A.1. Suppose that H satisfies (3.1) with all c∗
i �= 0, that is, H is equal to its nonzero

part. Let V�(H) be the zero set of H on �. Then

RLCT�(H) =
(

codimV�(H),1
)

.

Before turning to the proof, we exemplify the application of Proposition A.1.

Example A.2. Let � = [0,1] × [0,1] be the unit square in R
2, and consider two functions

g1(ω) = (ω1 − ω2)
2 and g2(ω) = (ω1 + ω2)

2. The zero set of either function is a line in R
2.

When restricting to �, the zero set V�(g1) is a line segment and of co-dimension one. The zero

set V�(g2), on the other hand, consists only of the origin and is of co-dimension two. We have

RLCT�(g1) = (1,1) but RLCT�(g2) = (2,1).

To prove Proposition A.1, note first that when H is equal to its nonzero part and V�(H) is

compact, RLCT�(H) is equal to the RLCT of H over a compact set on which all coordinates

of the argument ω are bounded away from zero. Partition this compactum into the intersections

with each one of the 2d orthants in R
d . Then RLCT�(H) is the minimum RLCT in any orthant.

Similarly, the co-dimension of V�(H) is the minimum of any co-dimension obtained from inter-

section with an orthant. We may thus consider one orthant at a time. Changing signs as needed

to make all coordinates positive, the following lemma becomes applicable.

Lemma A.3. Let W = [a1, b1] × · · · × [as, bs] with 0 < ai < bi < ∞. Let logW = [loga1,

logb1] × · · · × [logas, logbs]. If H satisfies (3.1) with all c∗
i > 0 and VW (H) is nonempty, then

RLCTW (H) = RLCTlogW

(

r
∑

i=1

(

uT
i ω − log c∗

i

)2

)

.
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The result follows from a change of coordinates and an argument about asymptotic equivalence

that has been used in other contexts. We include the proof of the lemma for sake of completeness.

Proof of Lemma A.3. Change coordinates via the substitution ω̃ = log(ω), where the logarithm

is applied entry-wise. Since the Jacobian of this transformation is bounded above and bounded

away from zero on W , it may be ignored in the computation of the RLCT, and thus

RLCTW (H) = RLCTlogW

(

r
∑

i=1

(

euT
i ω − elog c∗

i
)2

)

.

Since W , and thus also logW , is compact, each of the r linear combinations uT
i ω takes its values

in a compact set. Restricted to this compact set, the function

h1(x) =
r
∑

i=1

(

exi − elog c∗
i
)2

is asymptotically equivalent to the sum of squares

h2(x) =
r
∑

i=1

(

xi − log c∗
i

)2
,

as can been seen by a quadratic Taylor approximation to h1 around the point (log c∗
1, . . . , log c∗

r ).

Since asymptotically equivalent functions have the same RLCT, the claim is proven. �

By an application of Lemma A.3, the proof of Proposition A.1 reduces to an analysis of sums

of squares of linear forms, that is, functions of the form

g(ω) =
r
∑

i=1

(

uT
i ω − C∗

i

)2
(A.2)

with C∗
i ∈ R and ui ∈ R

d . Proposition A.1 thus follows from Proposition A.4 below. Note that

V�(g) is a polyhedron, which we assume to be nonempty.

Proposition A.4. If g : � → [0,∞) is a sum of squares of linear forms as in (A.2) and � is a

product of intervals, then RLCT�(g) = (codimV�(g),1).

Proof. By [12], Propositions 2.5 and 3.2, or also [20], Remark 2.14, RLCT�(g) is the minimum

of local thresholds RLCT�(x)(g) over x ∈ V�(g). Here, each set �(x) = W(x)∩�, where W(x)

is a sufficiently small neighborhood of x. We will show that RLCT�(x)(g) = (codimV�(g),1)

for x ∈ V�(g), which implies our claim.

Consider any point x ∈ V�(g). By translation, we may assume without loss of generality

that x = 0 and g(ω) =
∑

i(u
T
i ω)2. We may then take the neighborhood �(0) to be equal to

{ω ∈ � : maxi |ωi | ≤ ε} for sufficiently small ε > 0.
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When partitioning �(0) into orthants, the co-dimension of V�(g) is the minimum of the

codimensions of the intersection between V�(g) and each one of the orthants. Furthermore,

RLCT�(0)(g) is equal to the smallest RLCT of g over any of these orthants. Therefore, chang-

ing the signs of the coordinates ωi as needed, we are left with checking that RLCT�+(g) is

given by the codimension of V�+(g) for �+ = {ω ∈ � : 0 ≤ ωi ≤ ε for all i = 1, . . . , d} and

g(ω) =
∑

i(u
T
i ω)2.

Case 1. If V�+(g) intersects the interior of �+, then we may pick any point x+ in this in-

tersection and consider �+ as a neighborhood of x+. After a change of coordinates, we have

g(ω) = ω2
1 + · · · + ω2

s , where s is the co-dimension of V�+(g). By Example 3.4, RLCT�+(g) =
(s,1), which was to be shown.

Case 2. Suppose now that V�+(g) is contained in the boundary of �+. Since the zero set of

g on all of Rd is a linear space, V�+(g) is in fact a face of �+, and each uT
i ω is a supporting

hyperplane of �+. In particular, after appropriate sign changes, we may assume that uT
i ω ≥ 0

on �+. The co-dimension of V�+(g) is equal to the number, say s, of facets of �+ containing

it. Without loss of generality, we may assume that these facets are given by ω1 = 0, ω2 = 0, . . . ,

ωs = 0. This implies that all ui have nonzero entries only in the first s coordinates. We now show

that when restricted to �+, the functions g(ω) and f (ω) = ω2
1 + · · · + ω2

s are asymptotically

equivalent; recall (A.1).

To show that on �+, the function g can be bounded from below by a positive multiple of f ,

note that the fact that uT
i ω ≥ 0 on �+ implies that all ui have nonnegative entries. Hence,

r
∑

i=1

(

uT
i ω
)2 =

r
∑

i=1

(

s
∑

j=1

uijωj

)2

≥
s
∑

j=1

(

r
∑

i=1

u2
ij

)

ω2
j ,

where the inequality is obtained by expanding squares and dropping the mixed terms, which are

nonnegative. If
∑r

i=1 u2
ij = 0 for some index j then uij = 0 for all i, which contradicts the fact

that ωj = 0 for all ω ∈ V�+(g). Thus,

c = min

{

r
∑

i=1

u2
ij : 1 ≤ j ≤ s

}

> 0,

and g(ω) ≥ cf (ω) for all ω ∈ �+.

To prove that g can be bounded above by a multiple of f , note that all uT
i ω are nonnegative

on �+, and thus

r
∑

i=1

(

uT
i ω
)2 ≤

(

r
∑

i=1

uT
i ω

)2

=
(

r
∑

i=1

s
∑

j=1

uijωj

)2

.

Let u+j =
∑

i uij and u++ =
∑

j u+j . Then, since all ui have nonnegative entries, Jensen’s

inequality implies that

(

r
∑

i=1

s
∑

j=1

uijωj

)2

= u2
++

(

s
∑

j=1

u+j

u++
ωj

)2

≤ u++ max{u+j : 1 ≤ j ≤ s}
s
∑

i=1

ω2
i .
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Since g is asymptotically equivalent to f (ω) = ω2
1 + · · · + ω2

s , we have RLCT�+(g) =
RLCT�+(f ). Let �′

+ = [−ε, ε]s × [0, ε]d−s . Then

∫

�+

(

ω2
1 + · · · + ω2

s

)−z/2
dω = 2−s

∫

�′
+

(

ω2
1 + · · · + ω2

s

)−z/2
dω.

Hence, RLCT�+(f ) = RLCT�′
+(f ). From Case 1, we know that RLCT�′

+(f ) = (s,1). Putting

it all together, we have shown that RLCT�+(g) = (s,1).

�

A.3. Step 3

The remaining step amounts to proving the following result, which concerns the case where the

considered function H is equal to its zero part.

Proposition A.5. Let � be a compact product of intervals containing the origin, and let Ŵ+(H)

be the Newton polyhedron of the function H(ω) =
∑

i ω
2ui . Then

RLCT�(H) = (λ,m),

where 1/λ is the 1-distance of Ŵ+(H) and m is its multiplicity.

Proof. Note that H is invariant under sign changes. Hence, RLCT�(H) = RLCT�′(H) =
RLCT�∪�′(H) when �′ is obtained from � by changing the signs of any subset of the coor-

dinates ω1, . . . ,ωd . Forming the unions of � and its reflected versions shows that in order to

prove Proposition A.5, we may assume that the origin is an interior point of �. The claim now

follows from Theorem 8.6 in [1], see also [12], Section 4, and by Remark A.6 below. �

Remark A.6. When the origin is in the interior of �, the function H(ω) =
∑

i ω
2ui has

RLCT�(H) = RLCT�(0)(H) for any small neighborhood �(0) of the origin. Indeed, as men-

tioned in the proof of Proposition A.4, RLCT�(H) is the minimum of local RLCTs of H in small

neighborhoods �(x) of points x ∈ �. If x �= 0, then some of the variables, say ω1, . . . ,ωs , are

bounded away from zero on a sufficiently small neighborhood �(x). Substituting these variables

by ω1 −x1, . . . ,ωs −xs , respectively, in H , we get a new function Hx for which RLCT�(0)(H) =
RLCT�(x)(Hx). Now, 0 ≤ Hx ≤ H near x. Consequently, RLCT�(x)(Hx) ≤ RLCT�(x)(H). We

conclude that RLCT�(0)(H) ≤ RLCT�(x)(H).

Appendix B: Proof of Theorem 4.3

Let T = (U,E) be a tree with set of leaves V , and let q be a distribution in the latent tree model

M(T ), which has parameter space � = (0,∞)V × [−1,1]E . We are to compute RLCT�(Hq)

for the function Hq from (4.1), where ω∗
v and ρ∗

vw are the variances and correlations of the

distribution q . The basic idea of this proof follows [24].
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First, observe that Theorem 3.2 is applicable to this problem. Indeed, Hq has the form

from (3.1) and the q-fiber V�(Hq) is compact. Compactness holds because Hq(ω) = 0 implies

that ωv = ω∗
v for all v ∈ V , and all edge correlations ωe, e ∈ E, are in the compact interval

[−1,1].
Now, let F ∗ := F ∗(q) = (U∗,E∗) be the q-forest, and let H 1

q (ω1, . . . ,ωs) be the nonzero part

of Hq given in (4.2). The set V�1
(H 1

q ) is equal to the q-fiber under the model M(F ∗); recall

that �1 is the projection of � onto the first s coordinates. We deduce that codimV�1
(H 1

q ) =
dim M(F ∗), which gives the value of λ1 in Theorem 3.2. It remains to show that the zero part

H 0
q (ωs+1, . . . ,ωd) defined in (4.3) satisfies

(λ0,m) = RLCT�0

(

H 0
q

)

=
(

1

2

∑

e∈E0

w(e),1 + l′2

)

, (B.1)

where �0 is the projection of � onto the last d − s coordinates, E0 = E \ E∗ is the set of edges

that appear in T but not in F ∗, and l′2 is the number of degree two nodes of T that are not in U∗.

The zero part of Hq is the sum of squares of the monomials

∏

e∈vw∩E0

ωe, v,w ∈ V,v ≁ w; (B.2)

recall that v ≁ w if there is no path between v and w in the q-forest F ∗ = (U∗,E∗). The edge

set E0 can be partitioned into sets E01, . . . ,E0t such that each E0i defines a tree Si = (Ui,E0i)

that has the set of nodes Li := Ui ∩ U∗ as leaves. In other words, the set of leaves Li of tree

Si comprises precisely those nodes that belong to both Si and the q-forest F ∗. For example, in

Figure 1, we have t = 1 and S1 is the tree with one inner node b and three leaves a,3,4. As a

further example, consider the tree and q-forest in Figure 8(a) and (b), for which we form two

subtrees S1 and S2 with edge sets E01 = {{a,3}} and E02 = {{a,4}}, as shown in Figure 8(c) and

(d). In this second example, the sets of leaves are L1 = {a,3} and L2 = {a,4}, illustrating that

the sets L1, . . . ,Lt need not be disjoint.

Consider now the function H̃ 0
q given by the sum of squares of the monomials

∏

e∈uu′

ωe, i ∈ [t], u,u′ ∈ Li, u �= u′, (B.3)

where [t] = {1, . . . , t} and uu′ refers to the unique path between u and u′ in tree Si . Each mono-

mial listed in (B.3) is also listed in (B.2). To see this, observe that two distinct nodes u,u′ ∈ Li

(a)

1

2

3

4

a

(b)

1

2

3

4

a

(c)

1

2

3

4

a

(d)

1

2

3

4

a

Figure 8. (a) Star tree; (b) q-forest when ρ∗
12

is the only nonzero correlation; (c), (d) subtrees formed from

the removed edges.
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belong to distinct connected components in F ∗. If we take v ∈ V from one of the two connected

components and w ∈ V from the other, then the monomial they define in (B.2) is equal to the

monomial that u and u′ define in (B.3). Moreover, by the definition of the trees Si , every mono-

mial listed in (B.2) is the product of monomials from (B.3). It follows that the Newton polyhedra

Ŵ+(H 0
q ) and Ŵ+(H̃ 0

q ) are equal and hence RLCT�0
(H 0

q ) = RLCT�0
(H̃ 0

q ) (cf. Proposition A.5).

Let fi be the sum of squares of the monomials in (B.3) that are associated with pairs of distinct

nodes u and u′ in the set of leaves Li of the tree Si . No two trees Si and Sj for i �= j share an

edge. Hence, the two sums of squares fi and fj depend on different subvectors of ω. Since

H̃ 0
q = f1 + · · · + ft , it follows from (2.5) that

RLCT�0

(

H 0
q

)

=
t
∑

i=1

RLCT�0
(fi) − (0, t − 1); (B.4)

see also Remark 7.2(3) in [20]. If T has no nodes of degree two, that is, l2 = l′2 = 0, then the

same is true for the each tree Si . Lemma B.1 below then implies that

RLCT�0
(fi) =

( |Li |
2

,1

)

. (B.5)

Since the nodes in Li lie in F ∗, we have

t
∑

i=1

|Li | =
∑

e∈E0

w(e), (B.6)

where w(e) ∈ {0,1,2} is the number of nodes of e that lie in the q-forest F ∗. Combining (B.4)–

(B.6), we obtain (B.1) and have thus proven Theorem 4.3 in the case of l2 = 0 nodes of degree

two. The case with nodes of degree two follows the same way applying Lemma B.2 instead of

Lemma B.1.

Lemma B.1. Let S = (V ,E) be a tree with set of leaves L and all inner nodes of degree at least

three. Let f be the sum of squares of the monomials

∏

e∈vw

ωe, v,w ∈ L,v �= w. (B.7)

If � is a neighborhood of the origin, then

RLCT�(f ) =
( |L|

2
,1

)

.

Proof. If |L| = 2, then S has a single edge and no inner nodes. In this case, f is the square of

a single variable and it is clear RLCT�(f ) = (1,1) = (|L|/2,1). In the remainder of this proof,

we assume that |L| ≥ 3.



Gaussian latent tree and forest models 1229

By Proposition A.5, it suffices to compute the 1-distance and its multiplicity for the Newton

polyhedron Ŵ+(f ) ⊂ R
E . By Definition 3.1, the polyhedron Ŵ+(f ) is determined by the expo-

nent vectors of the monomials in (B.7). Each exponent vector is the incidence vector for a path

between a pair of leaves. In other words, each pair of two distinct leaves v and w defines a vector

u ∈ R
E with ue = 1 if e ∈ vw and ue = 0 otherwise. Write U for the set of all these

(|L|
2

)

vectors.

Let EL be the set of terminal edges of S, that is, the |L| edges that are incident to a leaf. We

claim that every point x in the Newton polyhedron Ŵ+(f ) satisfies

∑

e∈EL

xe ≥ 2 (B.8)

and that the inequality defines a facet of Ŵ+(f ). Indeed, if x ∈ U then
∑

e∈EL
xe = 2 because

every path between two leaves in L includes precisely two edges in EL. It is then clear that (B.8)

holds for all points x ∈ Ŵ+(f ). Moreover, by [13], Lemma 1, the span of U is all of RE . Hence,

the affine hull of U is the hyperplane given by
∑

e∈EL
xe = 2, and we conclude that (B.8) defines

a facet of Ŵ+(f ).

Since |EL| = |L|, inequality (B.8) implies that the 1-distance of Ŵ+(f ) is at least 2/|L|. We

claim that it is equal to 2/|L|. In fact, we will show that the vector 2
|L|1 not only lies in the Newton

polyhedron but also in the Newton polytope Ŵ(f ), that is, the vector is a convex combination of

the incidence vectors in U . To prove this, we construct a set of paths P in the tree S such that

(i) each element of P is a path between leaves of S, (ii) P contains precisely |L| paths and

(iii) every edge of S is covered by exactly two paths of P . The construction implies our claim

because the average of the incidence vectors of the paths in P is equal to 2
|L|1.

Let S∗ be any trivalent tree that has the same set of leaves L as S and that can be obtained

from S∗ by edge contraction. Here, a tree is trivalent if each inner node has degree three. We will

use induction on the number of leaves to show that a set of paths P with the desired properties

(i)–(iii) exists. Figure 9 shows an example.

If S∗ has three |L| = 3 leaves, then there is a single inner node and each path between two

leaves has two edges. We may simply take P to be the set of all the three paths that exist between

pairs of leaves. This provides the induction base.

In the induction step, pick two leaves v and w of the tree S∗ that are joined by a path with two

edges {v, a} and {a,w}. The node a is an inner node of S∗. Remove the two edges and the two

leaves to form a subtree S∗∗, in which a becomes a leaf. Then S∗∗ has |L| − 1 leaves and, by

Figure 9. An example of a system of paths such that each edge of a trivalent tree is covered by exactly two

paths.
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the induction hypothesis, there is a set of paths P∗∗ that satisfies properties (i)–(iii) with respect

to S∗∗. In particular, |P∗∗| = |L| − 1. Now, precisely two paths in P∗∗ have the node a as an

endpoint. Extend one of them by adding the edge {a, v} and extend the other by adding {a,w}.
This gives two paths between leaves of S∗. All other paths in P∗∗ are already paths between

leaves of S∗. Add one further path, namely, (v, a,w), and denote the resulting collection of |L|
paths by P∗. Clearly, the set P∗ satisfies properties (i)–(iii) with respect to S∗. Contracting each

path in P∗ by applying the edge contractions that transform S∗ into S, we obtain a system of

paths P that satisfies properties (i)–(iii) with respect to S.

Finally, note that in the construction we just gave we can ensure that P includes a given path

between two leaves in L. Hence, the vector 2
|L|1 can be written as a convex combination of

vertices of Ŵ(f ) such that a given vertex x get positive weight. It follows that 2
|L|1 lies in the

interior of the Newton polytope and thus the multiplicity m is 1. �

The next result generalizes the previous lemma to the case of trees with nodes of degree 2. We

remark Example 2.2 is a special case of this generalization. It matches the case where the tree S

has two leaves and one inner node, which is then necessarily of degree two.

Lemma B.2. Let S = (V ,E) be a tree with set of leaves L, and let f be the sum of squares of

the monomials
∏

e∈vw

ωe, v,w ∈ L,v �= w. (B.9)

If � is a neighborhood of the origin, then

RLCT�(f ) =
( |L|

2
,1 + l2

)

,

where l2 is the number of (inner) nodes of S that have degree two.

Proof. Suppose a is an inner node of degree two, and that a is incident to the two edges e =
{a, b} and f = {a, c}. Then any path connecting to leaves in L either uses both e and f or neither

e nor f . Hence, if x is the incidence vector of a path between two leaves in L, then xe = xf .

It follows that the affine hull of Newton polytope generated by the path incidence vectors is no

longer a hyperplane but an affine space of dimension |E| − 1 − l2.

Proceeding exactly as in the proof of Lemma B.1, we see that it still holds that the 1-distance

of the Newton polyhedron Ŵ+(f ) is 2/|L|. Similarly, the ray spanned by 1 still meets Ŵ+(f )

in the relative interior of the Newton polytope Ŵ(f ). However, since the co-dimension of the

Newton polytope is now 1 + l2, we have RLCT�(f ) = (|L|/2,1 + l2). �
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