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This article provides a framework for estimating the marginal likelihood for the purpose of Bayesian model comparisons . The approach
extends and completes the method presented in Chib (1995) by overcoming the problems associated with the presence of intractable
full conditional densities. The proposed method is developed in the context of MCMC chains produced by the Metropolis–Hastings
algorithm, whose building blocks are used both for sampling and marginal likelihood estimation, thus economizing on prerun tuning
effort and programming. Experiments involving the logit model for binary data, hierarchical random effects model for clustered Gaussian
data, Poisson regression model for clustered count data, and the multivariate probit model for correlated binary data, are used to illustrate
the performance and implementation of the method. These examples demonstrate that the method is practical and widely applicable.
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1. INTRODUCTION

Consider the problem of comparing a collection of models
8­11 : : : 1 ­L9 that re� ect competing hypotheses about the
data y = 4y11 : : : 1 yn5. Suppose that each model ­l is charac-
terized by a model-speci� c parameter vector ˆl 2 Sl <kl of
dimension kl and sampling density f 4y—­l1 ˆl5. In this con-
text, Bayesian model selection proceeds by pairwise compar-
ison of the models in 8­l9 through their posterior odds ratio,
which for any two models ­i and ­j is written as

Pr4­i—y5

Pr4­j —y5
=

Pr4­i5

Pr4­j5

m4y—­i5

m4y—­j5
(1)

where

m4y—­l5 =
Z

f 4y—­l1ˆl5� l4ˆl —­l5 dˆl (2)

is the marginal likelihood of ­l. The � rst fraction on the
right-hand side of (1) is known as the prior odds and the
second as the Bayes factor.

The calculation of the marginal likelihood, which is of some
importance in Bayesian statistics, has attracted considerable
interest in the recent Markov chain Monte Carlo (MCMC)
literature. One generic problem is that because the marginal
likelihood is obtained by integrating the sampling density
f 4y—­l1ˆl5 with respect to the prior distribution of the param-
eters, and not the posterior distribution, the posterior MCMC
output from the simulation cannot be used directly to estimate
the marginal likelihood. Of course, analytic evaluation of the
integral is almost never possible. Because of these dif� cul-
ties, attempts have been made (for example, Carlin and Chib
1995; Green 1995) to estimate the posterior odds by Markov
chain Monte Carlo methods that sample both model space
and parameter space. These approaches deliver the posterior
probabilities of each model, and hence the posterior odds for
any two models, according to the frequency of visits to each
model. Although such methods are important, they suffer from
certain drawbacks. One is that the tuning of the MCMC sam-
plers to promote mixing on a high-dimensional space can be
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dif� cult (see Han and Carlin 2000) especially in models with
latent variables as in the examples that follow. Even in the
best of circumstances, these methods require prerun tuning to
get suitable mixing on model space. Another problem is that
some subset of the existing models must be included in the
simulation if a new model is to be compared to the existing
ones, increasing the dimensionality of the parameter space and
introducing tuning concerns beyond those required for sam-
pling from the new model.

Work has also been done on the direct estimation of
the marginal likelihood in general non-nested model settings
(Chib 1995; Gelfand and Dey 1994) and the estimation of
ratios of marginal likelihoods especially in the setting of
nested models (Chen and Shao 1997; DiCiccio, Kass, Raftery,
and Wasserman 1997; Meng and Wong 1996; Verdinelli and
Wasserman 1995). In this article, we focus on the approach
of Chib (1995), which is based on a representation of the
marginal likelihood that is amenable to calculation by MCMC
methods. Because the marginal likelihood is the normalizing
constant of the posterior density, one can write

m4y—­l5 =
f4y—­l1ˆl5� 4ˆl —­l5

� 4ˆl—y1 ­l5
1 (3)

which is referred to as the basic marginal likelihood iden-
tity. Evaluating the right-hand side of this identity at some
appropriate point ˆl and taking logarithms one obtains the
expression

log m4y—­l5 = log f4y—­l1ˆl 5 + log � 4ˆl —­l5

ƒ log� 4ˆl —y1­l5 (4)

from which the marginal likelihood can be estimated by � nd-
ing an estimate of the posterior ordinate � 4ˆl —y1­l5. Thus
the calculation of the marginal likelihood is reduced to � nd-
ing an estimate of the posterior density at a single point ˆl .
For estimation ef� ciency, the latter point is generally taken to
be a high-density point in the support of the posterior.
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Chib (1995) provides a method to estimate the posterior
ordinate in the context of Gibbs MCMC sampling. Suppose
that the parameter space is split into B conveniently speci-
� ed blocks, so that ˆ = 4ˆ11 : : : 1ˆB5 where we suppress the
model index for notational convenience. Then, by the law of
total probability we have

� 4ˆ —y5=� 4ˆ1—y5� 4ˆ2—y1ˆ15 � 4ˆB—y1ˆ11: : : 1ˆBƒ15 (5)

where � 4ˆ1—y5 is the marginal density ordinate of ˆ1 and
� 4ˆB—y1ˆ11 : : : 1 ˆBƒ15 is the full conditional density ordi-
nate and the remaining ordinates are reduced conditional ordi-
nates. Now assume that each full conditional density is fully
known. Then, the marginal density ordinate is estimated by
the Rao–Blackwell device (Gelfand and Smith 1990; Tanner
and Wong 1987). Next, the � rst reduced conditional ordi-
nate is found by averaging the full conditional density of
ˆ2, O� 4ˆ2—y1ˆ15 = Mƒ1 PM

j=1 � 4ˆ2—y1ˆ11ˆ
4j5

3 1 : : : 1ˆ
4j5

B 5 where
8ˆ

4j5

3 1 : : : 1 ˆ
4j5
B 9 � 4ˆ31 : : : 1 ˆB—y1ˆ15 are M draws that are

obtained from a reduced Gibbs MCMC run in which ˆ1 is
� xed at ˆ1 and sampling is over 8ˆ21 : : : 1 ˆB9, a procedure
that requires no new programming. Subsequent reduced ordi-
nates are estimated in the same way by � xing additional
blocks. The time cost of this procedure is generally small
when blocking is done effectively and a few reduced runs are
required, as is possible in many practical problems, and the
higher-dimensional blocks are placed � rst in the equation (5)
decomposition.

It is worth noting that an alternative approach to estimat-
ing the posterior ordinate is developed by Ritter and Tanner
(1992), also in the context of Gibbs MCMC chains with fully
known full conditional distributions. If one lets

KG4ˆ1ˆ —y5 =
BY

k=1

� 4ˆk—y1ˆ11 : : : 1ˆkƒ11 ˆk+ 11 : : : 1 ˆB5 (6)

denote the Gibbs transition kernel, then by virtue of the
fact that the Gibbs chain satis� es the invariance con-
dition � 4ˆ —y5 =

R
KG4ˆ1ˆ —y5� 4ˆ—y5 dˆ, one can obtain

the posterior ordinate by averaging the transition ker-
nel over draws from the posterior distribution O� 4ˆ —y5 =
Mƒ1 PM

g=1 KG4ˆ4g51ˆ —y5. This estimate only requires draws
from the full Gibbs run, but when ˆ is high-dimensional
and the model contains latent variables, this estimate tends to
be less accurate than Chib’s estimate, which achieves accu-
racy with the help of additional simulations by decomposing
the posterior ordinate into smaller pieces and estimating
each reduced ordinate from its full conditional distribu-
tion. Nonetheless, the idea embodied in Ritter and Tanner’s
method is valuable, and it is a useful method when ˆ is
low-dimensional.

Neither the Chib nor Ritter and Tanner methods for esti-
mating the posterior ordinate offer a solution to problems in
which sampling is via a single-block Metropolis sampler or for
problems in which one or more of the normalizing constants
of the full conditional densities are not known. For the latter
situation, Chib and Greenberg (1998) have applied a nonpara-
metric density estimation method to calculate the recalcitrant
reduced ordinate, but in a high-dimensional case the accu-
racy of the resulting estimate is questionable, although they

suggest a modi� ed method that Chib, Nardari, and Shephard
(1999) have applied to a 120-dimensional posterior distribu-
tion. In this article, we propose a different, less demanding,
and more general solution that solves both problems, thus
extending and completing the Chib method for estimating the
marginal likelihood.

The rest of the article is organized as follows. In Section 2,
we discuss the MCMC sampling framework and give the main
results that form the basis for the proposed method. Section 3
contains results from extensive experiments that document the
performance of the method in diverse model situations. Con-
cluding remarks are given in Section 4.

2. PROPOSED APPROACH

2.1 One Block Sampling

To motivate the general approach, we begin by considering
a simple case of some importance. Suppose that the posterior
density � 4ˆ—y5 / � 4ˆ5f 4y—ˆ5, de� ned over S, a subset of <d,
is sampled in one block by the Metropolis–Hastings algorithm
(Chib and Greenberg 1995; Hastings 1970; Tierney 1994) and
the goal is to estimate the posterior ordinate � 4ˆ —y5 given the
posterior sample 8ˆ4151 : : : 1ˆ4M59. Let q4ˆ1 ˆ0—y5 denote the
proposal density (candidate generating density) for the transi-
tion from ˆ to ˆ 0, where the proposal density is allowed to
depend on the data y, and let

�4ˆ1ˆ 0—y5 = min 11
f 4y—ˆ 05� 4ˆ05

f 4y—ˆ5� 4ˆ5

q4ˆ01ˆ—y5

q4ˆ1 ˆ0—y5

denote the probability of move (probability of accepting the
proposed value).

If we let p4ˆ1ˆ 0—y5 = �4ˆ1ˆ 0—y5q4ˆ1ˆ0—y5 denote the sub-
kernel of the M–H algorithm, then from the reversibility of
the subkernel we can write that for any point ˆ

p4ˆ1ˆ —y5� 4ˆ—y5 = � 4ˆ —y5p4ˆ 1 ˆ—y50 (7)

Upon integrating both sides of this expression with respect
to ˆ over <d , we immediately obtain the result that the pos-
terior ordinate is given by

� 4ˆ —y5 =

R
�4ˆ1ˆ —y5q4ˆ1ˆ —y5� 4ˆ—y5dˆR

�4ˆ 1 ˆ—y5q4ˆ 1 ˆ—y5 dˆ
0 (8)

To highlight the estimation strategy, write the latter in more
succinct form as

� 4ˆ —y5 =
E1 �4ˆ1 ˆ —y5q4ˆ1 ˆ —y5

E2 �4ˆ 1ˆ—y5

where the numerator expectation E1 is with respect to the dis-
tribution � 4ˆ—y5 and the denominator expectation E2 is with
respect to q4ˆ 1ˆ—y5. This implies that a simulation-consistent
estimate of the posterior ordinate is available as

O� 4ˆ —y5 =
Mƒ1 PM

g=1 �4ˆ4g51 ˆ —y5q4ˆ4g51 ˆ —y5

J ƒ1
PJ

j=1 �4ˆ 1ˆ4j5—y5
0 (9)

where 8ˆ4g59 are the sampled draws from the posterior distri-
bution and 8ˆ4j59 are draws from q4ˆ 1ˆ—y5, given the � xed
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value ˆ . On substituting the latter estimate in the log of the
basic marginal likelihood identity, we get

log Om4y5 = log f4y—ˆ 5 + log � 4ˆ 5 ƒ log O� 4ˆ —y5 (10)

This is a rather simple expression that can be applied to
many models including the class of univariate generalized lin-
ear models, parametric survival models, and Gaussian linear
mixed models for clustered data. Note that the choice of point
ˆ is arbitrary, but for estimation ef� ciency it is customary to
choose a point that has high density under the posterior. Also
note that we let the simulation-sample sizes in the numerator
and the denominator be different, although in practice we set
them to be equal. It should be appreciated that the sampling
of ˆ4j5 from q4ˆ 1 ˆ—y5 normally consumes a small amount of
time in relation to the time required for the full MCMC run.
This means that the marginal likelihood of the model is avail-
able almost as soon as the full MCMC run is � nished. Finally,
if S is a proper subset of <d, then values ˆ4j5 from q4ˆ 1ˆ—y5
that do not lie in S are included in the average in the denom-
inator with the value �4ˆ 1ˆ4j5—y5 = 0.

2.2 Two Parameter Blocks and
Multiple Latent Variable Blocks

To enhance understanding, assume that the normalizing
constant of only the � rst full conditional density is not known
and that this density is sampled by the M–H algorithm, as in
the multivariate probit model example presented in section 3.5.
Let q4ˆ11ˆ0

1—y1ˆ21 z5 denote the proposal density for the tran-
sition from ˆ1 to ˆ 0

1 where we have for generality allowed the
proposal density to depend on the data and the two remaining
blocks. Also let

�4ˆ11 ˆ0
1—y1ˆ21 z5 = min 11

f 4y—ˆ 0
11ˆ21 z5� 4ˆ0

11ˆ25

f 4y—ˆ11ˆ21 z5� 4ˆ11ˆ25

q4ˆ 0
11ˆ1—y1 ˆ21 z5

q4ˆ11ˆ 0
1—y1 ˆ21 z5

denote the probability of move. An application of the basic
marginal likelihood identity yields

m4y5 =
f 4y—ˆ11ˆ25� 4ˆ11 ˆ25

� 4ˆ11 ˆ2—y5

and the goal is to estimate � 4ˆ11ˆ2—y5. We assume that the
likelihood ordinate is available readily either by direct calcu-
lation (as in mixed effects models for clustered data where
z denotes the cluster-speci� c random effects) or by a Monte
Carlo integration method. Note that although it is also true
that m4y5 = f4y1 z —ˆ11ˆ25� 4ˆ11ˆ25=� 4z 1 ˆ11 ˆ2—y5, the lat-
ter identity is not that useful because it requires the compu-
tation of the ordinate � 4ˆ11ˆ21 z —y5 whose dimension can
easily run into the hundreds, if not thousands.

Following Chib (1995), we decompose the posterior ordi-
nate as

� 4ˆ11 ˆ2—y5 = � 4ˆ1—y5� 4ˆ2—y1 ˆ151

where � 4ˆ1 —y5 cannot be estimated by the Rao–Blackwell
method because, by assumption, the normalizing constant of
� 4ˆ1—y1 ˆ21 z5 is not known. Let

p4ˆ11ˆ1—y1 ˆ21 z5 = �4ˆ11ˆ1—y1ˆ21 z5q4ˆ11ˆ1—y1ˆ21 z5

denote the subkernel of the M–H chain for ˆ1 conditioned
on 4ˆ21 z5. Then, by direct calculation we see that this kernel
satis� es the condition

p4ˆ11 ˆ1—y1ˆ21 z5� 4ˆ1—y1ˆ21 z5

= � 4ˆ1 —y1ˆ21 z5p4ˆ11ˆ1—y1ˆ21 z51 (11)

which may be referred to as a local reversibility condition.
Now if we multiply both sides of (11) by � 4ˆ21 z—y5 and inte-
grate over – = 4ˆ11ˆ21 z5, we get

Z
p4ˆ11 ˆ1—y1 ˆ21 z5� 4ˆ1—y1ˆ21 z5� 4ˆ21 z—y5 d–

=
Z

p4ˆ11ˆ1—y1ˆ21 z5� 4ˆ1—y1ˆ21 z5� 4ˆ21 z—y5 d–

or

Z
p4ˆ11 ˆ1—y1 ˆ21 z5� 4ˆ11ˆ21 z—y5 d–

=
Z

p4ˆ11ˆ1—y1ˆ21 z5� 4ˆ1—y5� 4ˆ21 z—y1ˆ15 d–

and so,

Z
p4ˆ11 ˆ1—y1 ˆ21 z5� 4ˆ11ˆ21 z—y5d–

= � 4ˆ1—y5
Z

p4ˆ11ˆ1 —y1ˆ21 z5� 4ˆ21 z—y1 ˆ15d–0

From this last equality, and the de� nitions of p4ˆ11ˆ1—y1ˆ21 z5
and p4ˆ11ˆ1—y1 ˆ21 z5, it follows that

� 4ˆ1 —y5 =
E1 �4ˆ11ˆ1—y1ˆ21 z5q4ˆ11ˆ1—y1ˆ21 z5

E2 �4ˆ11ˆ1—y1ˆ21 z5
1 (12)

where the numerator expectation E1 is with respect to the
distribution � 4ˆ11ˆ21 z—y5, whereas the denominator expec-
tation E2 is with respect to the distribution � 4ˆ21 z—y1ˆ15
q4ˆ11ˆ1—y1ˆ21 z5.

Each of the integrals in (12) can be estimated by the Monte
Carlo method. To estimate the numerator, we take the draws
8ˆ

4g5

1 1ˆ
4g5

2 1 z4g59M
g=1 from the full run and average the quan-

tity �4ˆ11 ˆ1—y1 ˆ21 z5q4ˆ11 ˆ1—y1 ˆ21 z5. For the denominator,
because the expectation is conditioned on ˆ1, we continue the
MCMC simulation for an additional J iterations with the two
full conditional densities

� 4ˆ2—y1 ˆ11 z53 � 4z—y1 ˆ11ˆ25 (13)

At each iteration of this reduced run, given the values
4ˆ

4j5

2 1 z4j55, we generate a variate

ˆ
4j5

1 q4ˆ11ˆ1—y1 ˆ
4j5

2 1 z4j55

leading to the triple 4ˆ
4j5

2 1 z4j51ˆ
4j5

1 5 that is a draw from the dis-
tribution � 4ˆ21 z—y1 ˆ15q4ˆ11 ˆ1—y1ˆ21 z5. The marginal ordi-
nate can now be estimated as

O� 4ˆ1 —y5=
Mƒ1 PM

g=1 �4ˆ
4g5
1 1ˆ1 —y1ˆ

4g5
2 1z4g55q4ˆ

4g5
1 1ˆ1 —y1ˆ

4g5
2 1z4g55

J ƒ1
PJ

j=1 �4ˆ11ˆ
4j 5
1 —y1ˆ

4j 5
2 1z4j55

0 (14)
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Next, the values z4j5 from the preceeding reduced run,
which are marginally from � 4z—y1 ˆ15, are used to form the
average O� 4ˆ2—y1 ˆ15 = J ƒ1 PJ

j=1 � 4ˆ2—y1 ˆ11 z4j55, which is a
simulation-consistent estimate of � 4ˆ2—y1ˆ15. Thus at the
conclusion of the reduced run, both ordinates are available and
the marginal likelihood estimate is given by

log Om4y5 = logf 4y—ˆ 5 + log � 4ˆ 5 ƒ 8log O� 4ˆ1—y5

+ log O� 4ˆ2—y1 ˆ1590 (15)

Three remarks are in order. First, a single reduced run, aug-
mented with a step to sample ˆ1 from the proposal density,
delivers the variates that are used in the calculation of each
of the two ordinates, � 4ˆ1—y5 and � 4ˆ2—y1ˆ15. Second, if one
places the recalcitrant ordinate � rst in the decomposition of
the posterior ordinate, then the reduced run does not involve
any M–H steps. Third, as mentioned previously and shown
later in Section 3.4, this same approach can be applied when
the full conditional density of z is sampled by a sequence of
M–H steps.

2.3 Multiple Parameter Blocks

One of the features of the approach of Chib (1995), which
has been inherited by the current method, is the � exibility
with which it accommodates both low- and high-dimensional
problems. For example, in most low-dimensional MCMC
problems, grouping all parameters into one block is a sensi-
ble strategy. In higher-dimensional problems, it may be the
case that convenience, computational necessity, or simulation
design may require sampling of the parameters in several
smaller, more manageable blocks. Our approach readily gen-
eralizes to this situation.

To describe the setting, suppose that the MCMC sam-
pling is conducted without any latent data, because latent
data, sampled in one or more blocks, can be handled as in
the previous section, and suppose that the parameters are
grouped into B blocks ˆ = 4ˆ11 : : : 1 ˆB5, with ˆk 2 Sk <dk .
Write the posterior ordinate at ˆ as � 4ˆ11 : : : 1 ˆB—y5 =QB

i=1 � 4ˆi —y1 ˆ11 : : : 1ˆiƒ15 and consider the estimation of the
reduced ordinate � 4ˆi —y1ˆ11 : : : 1 ˆiƒ15.

Now suppose that the full conditional density
� 4ˆi—y1ˆƒi5 / � 4ˆ5f 4y—ˆ5, i = 11 : : : 1B , is sampled by the
M–H algorithm with proposal density q4ˆi1ˆ0

i—y1– iƒ11 –i+ 15

and probability of move

�4ˆ i1 ˆ0
i—1 –iƒ11– i+ 15

= min 11
f 4y—ˆ0

i1– iƒ11– i+ 15� 4ˆ 0
i1 ˆƒi5

f 4y—ˆi1– iƒ11– i+ 15� 4ˆ i1 ˆƒi5

q4ˆ0
i1ˆ i—y1 –iƒ11– i+ 15

q4ˆi1ˆ 0
i—y1 –iƒ11– i+ 15

1

where we have written – iƒ1 = 4ˆ11 : : : 1ˆ iƒ15 to denote the
blocks up to i and – i+ 1 = 4ˆ i+ 11 : : : 1 ˆB5 to denote the blocks
beyond i.

Again by exploiting the local reversibility of the M–H step
for ˆi and completely analogous arguments to the ones pre-

sented in the last subsection, we obtain the result that

� 4ˆi —y1ˆ11 : : : 1 ˆiƒ15

=
E1 �4ˆ i1 ˆi —y1 –iƒ11 –i+ 15q4ˆi1ˆi —y1– iƒ11– i+ 15

E2 �4ˆi 1ˆi—y1– iƒ11 –i+ 15
(16)

where E1 is the expectation with respect to conditional poste-
rior � 4ˆi1– i+ 1—y1– iƒ15 and E2 that with respect to the condi-
tional product measure � 4–i+ 1—y1– i 5q4ˆi 1ˆ i—y1 –iƒ11– i+ 15.
These two integrals can be estimated as before from the out-
put of the reduced MCMC runs, as follows.

Step 1. Set – iƒ1 = – iƒ1 and sample the reduced set of full
conditional distributions � 4ˆk—y1ˆƒk5, k = i1 : : : 1 B. Let the
generated draws be 8ˆ

4g5
i 1 : : : 1ˆ

4g5
B 9, g = 11 : : : 1M .

Step 2. Include ˆi in the conditioning set, let – i =

4– iƒ11ˆ i 5 and remove the ˆi full conditional distribution
from the collection in Step 1. Then sample the remain-
ing distributions � 4ˆk—y1ˆƒk5, k = i + 11 : : : 1B, to produce
8ˆ

4j5

i+ 11 : : : 1ˆ
4j5

B 9. At each step of the sampling also draw ˆ
4j5

i

from q4ˆi 1 ˆi—y1– iƒ11– i+ 114j55.
Step 3. Estimate the reduced ordinate in (16) by the ratio

of Monte Carlo averages

O� 4ˆi —y1ˆ11: : : 1ˆiƒ15

=
Mƒ1PM

g=1 �4ˆ
4g5
i 1ˆi —y1– iƒ11–i+ 114g55q4ˆ

4g5
i 1ˆi —y1–iƒ11–i+ 114g55

J ƒ1
PJ

j=1�4ˆi 1ˆ
4j5
i —y1–iƒ11–

i+ 114j55

(17)

where the average in the denominator may include zeros if
there are ˆ

4j5

i values that lie outside the support of the poste-
rior S.

Step 4. Estimate the marginal likelihood on the log scale as

log Om4y5 = logf 4y—ˆ 5 + log � 4ˆ 5

ƒ
BX

i=1

log O� 4ˆi —y1 ˆ11 : : : 1ˆiƒ15 (18)

It is important to keep in mind that the reduced runs are
obtained by � xing an appropriate set of parameters and con-
tinuing the MCMC simulation with a smaller set of distribu-
tions. Therefore, these runs require little to no coding beyond
what is done initially for the sampling of the posterior dis-
tribution. As long as the full MCMC sampling scheme has
been properly designed (with blocking and proposal densities
that avoid reducibility problems), each of the reduced runs is
well de� ned. Finally, observe that the variates –4i+ 15 in Step 2
are automatically produced in the next reduced run, where the
ordinate � 4ˆ i+ 1—y1ˆ11 : : : 1 ˆi 5 is estimated.
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2.4 Numerical Standard Error of the
Marginal Likelihood Estimate

In this section, we discuss brie� y how the numerical stan-
dard error of the marginal likelihood estimate can be derived.
The numerical standard error gives the variation that can be
expected in the marginal likelihood estimate if the simulation
were to be repeated. For speci� city, we consider the case in
Section 2.2 under the assumption that M = J . Following Chib
(1995) we de� ne the vector process

h4g5 =

0
BB@

h
4g5

1

h
4g5

2

h
4g5

3

1
CCA

0
BB@

�4ˆ
4g5

1 1ˆ1—y1ˆ
4g5

2 1 z4g55q14ˆ
4g5

1 1 ˆ1—y1ˆ
4g5

2 1 z4g55

�4ˆ11ˆ
4g5

1 —y1ˆ
4g5

2 1 z4g55

� 4ˆ2—y1ˆ11 z4g55

1
CCA 1

where the draws in the � rst component of h are from the full
MCMC run, while those in the second and third components
are from the reduced run, although this is not emphasized
in the notation. If we let Oh = Mƒ1 PM

g=1 h4g5, then by equa-
tions (14) and (15), an estimate of the log-marginal likelihood
as a function of the elements of Oh is given by

log Om4y5=logf4y—ˆ 5+ log� 4ˆ 5ƒ8log Oh1 ƒ log Oh2 + log Oh390

To estimate the variance of this quantity, suppose that the
values of f4y—ˆ 5 and � 4ˆ 5 are available directly. Then,
the variance of the log-marginal likelihood estimate becomes
var4log Om4y55 = var4log Oh1 ƒ log Oh2 + log Oh35, which can be
found by the Delta method once we obtain an estimate of the
variance of Oh. As 8h4g59 inherits the ergodicity of the Markov
chain, it follows by the ergodic theorem in Tierney (1994) that
Oh will converge to its mean almost surely as M !ˆ. Under
regularity conditions, an estimate of the sample variance of Oh
is given by the expression (Newey and West 1987)

var4 Oh5 = Mƒ1

"
ì0 +

mX
s=1

1 ƒ
s

m + 1
4ìs + ì0

s5

#
1

where

ìs = Mƒ1
MX

g=s+ 1

4h4g5 ƒ Oh54h4gƒs5 ƒ Oh501 s = 01 11 : : : 1m1

and m is a constant that represents the lag at which the auto-
correlation function of h4g5 tapers off. In the examples that
follow, we have set the value of m, somewhat cautiously,
to equal 40. Given this covariance matrix, it follows from
the Delta method that var4log Om4y55 = a0var4 Oh5a, where a =
4 Ohƒ1

1 1ƒOhƒ1
2 1 Ohƒ1

3 50. The numerical standard error is the square
root of this quantity.

We note that if one also needs to estimate the ordinate of
the likelihood function, that of the prior, or both, as in the
examples presented in Sections 3.3 and 3.4, then the variance

of the latter estimates must be incorporated by a separate cal-
culation. In addition, extending the calculation of the numeri-
cal standard error to cases involving more than two blocks is
straightforward. One proceeds by including (with appropriate
arguments and conditioning sets) more elements like h1 and
h2 for each block that is simulated by Metropolis–Hastings,
and elements similar to h3 for blocks that are sampled directly.

In closing, we mention that in the subsequent examples
we have performed a frequency analysis to verify the accu-
racy of the numerical standard error estimates obtained by
the approach described in this section. The posterior simula-
tions are repeated 50 times for each combination of M and J .
The standard deviations of the marginal likelihood estimates
obtained from these replications are found to closely mirror
those from the above approach, thus providing a useful vali-
dation of this method.

3. EXAMPLES

We now discuss the performance of the marginal likelihood
estimation method by varying different aspects of the MCMC
design in several important models. We report evidence on
different facets of the design including the choice of the pro-
posal density, the type of blocking and size of blocks, and the
sample sizes M and J used to estimate the posterior ordinate.
To measure the ef� ciency of the MCMC parameter sampling
scheme, we use the measures 61 + 2

Pˆ
k=1 �k4l57, where �k4l5

is the sample autocorrelation at lag l for the kth parameter in
the sampling with the summation truncated according to (say)
the Parzen window. The latter quantity is called the inef� ciency
factor or the autocorrelation time and may be interpreted as
the ratio of the numerical variance of the posterior mean from
the MCMC chain to the variance of the posterior mean from
hypothetical independent draws. Our conclusion is that the
scheme that is ef� cient for sampling the posterior distribution,
as measured by the inef� ciency factors, is also ef� cient for
estimating the marginal likelihood. Thus algorithms that have
higher inef� ciency factors tend to produce marginal likelihood
estimates with larger numerical standard errors although they
have minor to no signi� cant effect on the point estimate of the
marginal likelihood. Conversely, algorithms that are designed
to be ef� cient for the simulation of the parameters are also
ef� cient for the estimation of the marginal likelihood.

3.1 Binary Data Logit Model

To begin, we consider the marginal likelihood computation
in the binary data logit model with emphasis on the effect of
the proposal density on the marginal likelihood estimate. For
this model it is possible to sample the posterior distribution
in one block, which allows us to isolate the role of the pro-
posal density without having to consider the in� uence of the
blocking design.

We compare two canonical proposal densities in this set-
ting. The � rst is a tailored proposal density, and the second is
a random walk proposal density. The tailored proposal density
is de� ned by letting q4ˆ1ˆ0—y5 = q4ˆ0—y5 = fT 4ˆ0—m1V1�5,
where m is the mode of the log target density and V is the
inverse of the negative Hessian of the log-target evaluated at m,
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and fT 4 — 5 denotes a multivariate-t density with mean m, vari-
ance �V=4�ƒ25, and � degrees of freedom. The random walk
proposal density is de� ned as q4ˆ1ˆ0—y5 = fT 4ˆ0—ˆ1 ’V1 �5
where we use the tailored matrix V, along with a tuning param-
eter ’, as the dispersion matrix of the proposal.

The model we � t utilizes an n = 200 observation data set
from Mroz (1987) that deals with the factors that in� uence
participation of the female spouse in the labor market. Seven
covariates, non-wife income, number of years of education,
years of experience, experience squared, age, number of chil-
dren less than 6 years old in the household, and number of
children greater than 6 years old in the household are used
to explain the binary indicator of labor market participation.
Including the constant, the full model contains eight parame-
ters. If we assume that the parameters follow the multivariate
normal distribution ”84‚—‚01B05, then the posterior distribu-
tion of the parameters is given by

� 4‚—y5 / ”84‚—‚01B05
200Y
i=1

p
yi

i 41ƒpi5
41ƒyi5

pi = 41+ eƒxi‚5ƒ1

where yi 2 80119 is the binary outcome variable and xi is the
covariate vector on the ith subject in the sample.

In Figure 1, we see that the MCMC simulation of the pos-
terior distribution with the tailored proposal density produces
inef� ciency factors that are about � ve times smaller than those
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Figure 1. Binary Logit Model. Inef ciency factors under two different proposals and choices of M J for eight covariate parameters.

from the random walk proposal density for each value of M

that is used in the experiment. Next, we consider the estimates
of the marginal likelihoods under the two proposal densities
for different values of M and J . These results are shown in
Table 1, where we � nd that the marginal likelihood estimate
under the tailored proposal density stabilizes up to the second
decimal when the sample sizes are M = 51000 and J = 51000.
Further increases in the sample sizes affect the estimate only
in the third decimal place. On the other hand, the estimate
from the more volatile random walk chain agrees with the
tailored estimate up to the � rst decimal place only when the
sample size is about 20,000. In terms of the variability of
the estimates, we see that the numerical standard error of the
marginal likelihood estimate, which we report in parentheses
below each estimate, is about 10 times smaller from the tai-
lored chain in comparison with the random walk chain.

3.2 Longitudinal Hierarchical Model for
Clustered Data

In this example, we illustrate the impact of the MCMC
blocking scheme on the marginal likelihood estimate. We use
two schemes to sample the posterior distribution of the param-
eters. In the � rst scheme, multiple blocks are used to sample
the posterior distribution. In the second scheme, the posterior
samples are drawn in one block, marginalized over the latent
data and a subset of the parameters. Within each scheme we
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Table 1. Log-marginal Likelihood Estimates for the Binary Logit Model
Using Tailored and Random Walk Proposal Densities

Type of proposal density
(M1J) Tailored Random walk

(5,000, 5,000) ƒ1440756 ƒ1440835
(0015) (0201)

(10,000, 10,000) ƒ1440757 ƒ1440884
(0011) (0106)

(20,000, 20,000) ƒ1440751 ƒ1440779
(0010) (0103)

are careful to ensure that the sampling is done as ef� ciently as
possible in order to isolate the pure effect of blocking. Other-
wise, of course, the de� ciencies of the sampling scheme would
be confounded with the effect of blocking. Once again, we � nd
that the MCMC parameter simulation scheme that produces
the lower inef� ciency factors also tends to produce marginal
likelihood estimates with lower numerical standard errors.

The effect of blocking is considered in the context of a
Gaussian longitudinal data model with random effects. We use
the same model and data as Han and Carlin (2000) where
several model space methods, including those of Carlin and
Chib (1995), and Green (1995), are compared. Han and Carlin
report that the model space methods were dif� cult to imple-
ment in this setting.

The data used in our illustration is from a clinical trial on
the effectiveness of two antiretroviral drugs (didanosine (ddI)
and zalcitabine (ddC)) in 467 persons with advanced HIV
infection. The response variable yij for patient i at time j is
the square root of the patient’s CD4 count, a seriological mea-
sure of immune system health and prognostic factor for AIDS-
related illness and mortality. The dataset records patient CD4
counts at study entry and again at 2, 6, 12, and 18 months
after entry, for the ddI and ddC groups, respectively. Follow-
ing the aforementioned work, we � t a mixed-effects model

yi = Xi‚+ Wibi + ˜i

˜i ®ni
401 ‘2Ini

5

bi ®2401 D5

where the jth row of patient i’s design matrix Wi takes the
form wij = 411 tij 5, where tij 2 8012161121 189 and the � xed
design matrix Xi is Xi = Wi—diWi—aiWi . The di is a binary
variable indicating whether patient i received ddI (di = 1) or
ddC (di = 0), and ai is a binary variable indicating if the
patient was diagnosed as having AIDS at baseline (ai = 1) or
not (ai = 0). The prior distribution of ‚ 2 6 1 is assumed to
be ®64‚01B05 with

‚0 = 41010101 01ƒ31051

and

B0 = Diag4221 121 4015211211211251

that on Dƒ1 is Wishart ·24�01R0=�05 with �0 = 24 and
R0 = diag40251 165 and � nally that on ‘ 2 is inverse gamma
© §4�0=21 „0=25 with �0 = 6 and „0 = 400.

Two blocking schemes are considered for this model both of
which rely on the facts, exploited by Chib and Carlin (1999),
that

yi—‚1 D1‘ 2 ®ni
4Xi‚1ìi5

‚—y1 D1‘ 2 ®64 O‚1Bn5

where ìi =4‘ 2Ini
+ WiDW0

i51
O‚ =Bn4Bƒ1

0 ‚0+
P467

i=1 X0
iì

ƒ1
i yi5

and Bn = 4Bƒ1
0 +

P467
i=1 X0

iì
ƒ1
i Xi5

ƒ1. Therefore, one MCMC
scheme, which we refer to as the multiple-block scheme, is
given as follows.

Longitudinal Data Model: Multiple Block MCMC Algo-
rithm

1. Sample ‚ ®64
O‚1Bn5 and

bi ®2 Di4‘ƒ2Wi4yi ƒ Xi‚51

Di = 4D + ‘ƒ2W0
iWi5

ƒ1 1 i 467

2. Sample

Dƒ1 ·2

(
�0 + 4671

³
Rƒ1

0 +
467X
i=1

bib
0
i

ƒ́1)

3. Sample

‘2 ©§

³
�0 +

P
ni

2
1

„0 +
P467

i=1 ˜ yi ƒ Xi‚ƒ Wibi ˜2

2

´
0

Because each of these distributions is tractable the posterior
ordinate can be computed by the direct Chib method using the
decomposition

� 4Dƒ1 1‘ 2 1‚ —y5

= � 4Dƒ1 —y5� 4‘ 2 —y1D 5� 4‚ —y1Dƒ1 1‘ 2 51

where the � rst term is obtained by averaging the Wishart den-
sity over draws on 8bi9 from the full run, the second ordinate
is estimated by averaging the inverse gamma full density of
‘ 2 over draws on 4‚1 8bi95 from a reduced run conditioned
on D , and the third ordinate is multivariate normal as given
previously and available directly.

In the second scheme, the parameters of the model are
sampled in one block by using the fact that the density
of the observations marginalized over both 4‚1 8bi95 can be
expressed as

f4y—D1‘ 25 =
”64 O‚—‚01 B05ç

467
i=1”ni

4yi—Xi
O‚1ìi5

”64 O‚— O‚1Bn5
1

which is an application of the basic marginal likelihood iden-
tity, now used to � nd the marginal density of y conditioned on
4D1‘ 25. Therefore, the posterior of 4Dƒ11 ‘25 is proportional
to this density times the prior densities on these parameters
and can be sampled by a one-block tailored M–H method. In
particular, let fW4Dƒ1—�01R05 and fIG4‘ 2—�0=21 „0=25 denote
the Wishart and inverse gamma prior densities, respectively,
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and let 4m1 V5 denote the modal value and inverse of the neg-
ative Hessian at the mode of the function logf 4y—Dƒ11 ‘25 +
logfW4Dƒ1—�01 R05 + log fIG4‘ 2—�0=21 „0=25 and let q4Dƒ11
‘2—y5 = fT 4Dƒ11‘ 2—m1 V1�5 denote the proposal density.
Then, in the one block algorithm for the clustered Gaus-
sian model we propose 4Dƒ10

1‘ 20
5 fT 4Dƒ11 ‘2—m1V1�5 and

move to 4Dƒ10
1‘ 20

5 with probability

� = min

(
f4y—Dƒ10

1‘ 20
5fW4Dƒ10 —�01R05fIG4‘20 —�0=21 „0=25

f 4y—Dƒ11‘ 25fW4Dƒ1—�01R05fIG4‘2—�0=21 „0=25

fT 4Dƒ11 ‘2—m1V1�5

fT 4Dƒ10 1 ‘20 —m1V1�5
11

)

Given the output from this scheme, we estimate the marginal
likelihood by the one-block estimate given in Section 2.1. It
should be noted that this scheme provides an entirely differ-
ent route to � nding the marginal likelihood in relation to the
one presented in the preceding paragraph. We think it is inter-
esting to see what estimates emerge from these two different
approaches to the same problem.

In Figure 2, we report the inef� ciency factors under the two
schemes for the parameters D11, D12, D22, and ‘2. Observe
that the single block M–H scheme lowers the inef� ciency fac-
tors by a factor of about two. Next, in Table 2 we report
the estimates of the marginal likelihood under the two sam-
pling schemes. The � rst important point to note is that the two
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Figure 2. Gaussian Longitudinal Model. Inef ciency factors under two different sampling schemes and choices of M J for the parameters
D11 , D12, D22, and ‘ 2

sets of estimates are virtually identical, thus showing that the
direct Chib method and its extension to M–H chains produce
the same answer, when both can be applied, and in parallel
with the evidence presented previously, that the scheme that
produces the lower inef� ciency factors (here the single block
scheme) produces the marginal likelihood estimate with the
smaller numerical standard error. We should note, however,
that not all of the difference in the numerical standard errors
is due to the effect of blocking because some of it comes from
the difference in the size of the posterior ordinates that are esti-
mated under the two schemes: 4-dimensional in the one-block
scheme versus 10-dimensional in the multiple-block scheme.

On the basis of these experiments, which cover important
model situations, one may conclude that the marginal likeli-
hood estimation method in this article appears to be robust
to changes in the simulation sample sizes, blocking schemes,
and sampling methods. For this method, the numerical stan-
dard error of the marginal likelihood estimate is lower for the
schemes that produce the lower inef� ciency factors.

3.3 Poisson Longitudinal Regression

We now consider the calculation of the marginal likelihood
in a nonlinear latent variable problem where the likelihood
calculation is quite complicated and latent variables cannot be
avoided in the MCMC simulation. With this example, which
has n = 58 blocks of latent variables that must each be sam-
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Table 2. Effect of Blocking Scheme in the Longitudinal Model on
Log-marginal Likelihood Estimates

Type of blocking

(M1J) Multiple blocks Single block

(5,000, 5,000) ƒ315770551 ƒ315770578
(0028) (0009)

(10,000, 10,000) ƒ315770565 ƒ315770566
(0020) (0006)

(20,000, 20,000) ƒ315770575 ƒ315770574
(0014) (0006)

pled by a M–H step, we are able to illustrate the point made
in Section 2 that the intractability of the latent variable distri-
butions does not alter the scheme for estimating the marginal
likelihood.

The model of interest, taken from Diggle, Liang, and Zeger
(1995), is concerned with the modeling of seizure counts 8yit9

for each of i = 11 : : : 1 59 epileptics measured � rst over an
8-week baseline period 4t = 05 and then over four subsequent
2-week periods t = 11 : : : 14. At the end of the baseline period,
each patient is randomly assigned to either receive the drug
progabide or a placebo. After removing observation 49, we � t
the model:

yit —‚1bi Poisson4‹it5

ln4‹it5 = ln ’it + ‚1xit1 + ‚2xit1xit2 + bi1 + bi2xit2

bi ®24‡1D51

where the covariate xit1 is an indicator for treatment status,
xit2 is an indicator of period (0 if baseline and 1 otherwise),
’it is the offset that is equal to 8 in the baseline period and 2
otherwise, and bi = 4bi11 bi25 are latent random effects. This
speci� cation of the model produces the likelihood function

f 4y—‚1 ‡1D5 =
58Y

i=1

Z
”24bi—‡1D5

4Y
t=0

p4yit—‚1bi5 dbi

58Y
i=1

Z
”24bi—‡1D5f4yi—‚1bi5 dbi1 (19)

where p4 5 is the Poisson mass function with mean ‹it . We
now follow Chib, Greenberg, and Winkelmann (1998) and
conduct the posterior MCMC simulations with the full con-
ditional distributions of ‚, 8bi9, ‡1 and Dƒ1 where the ‚

and 8bi9 blocks are each updated by M–H steps. If we let
‚ ®2401 100I251 ‡ ®2401100I251 and Dƒ1 ·2441 I25,
then the complete MCMC algorithm for simulating the poste-
rior distribution is de� ned as follows.

Longitudinal Poisson Model: MCMC Algorithm

1. Calculate the parameters 4m01V05 as the mode
and inverse of the negative Hessian of the mode
of log ”24‚—01100I25 +

P58
i=1 logf 4yi—‚1 bi5, propose ‚0

fT 4‚—m01V01�5 q4‚—y1 8bi95 and move to ‚0 with

probability

�4‚1 ‚0—y1 8bi95 = min

(Q58
i=1 f4yi—‚01bi5”24‚

0—01100I25Q58
i=1 f 4yi—‚1bi5”24‚—01100I25

fT 4‚—m01 V01 155

fT 4‚0—m01 V01 155
1 1

)
0

2. Calculate the parameters 4mi1 Vi5 as the mode
and inverse of the negative Hessian of the mode
of log”24bi—‡1D5 + log f4yi—‚1bi5, propose b0

i

fT 4bi—mi1Vi1�5 and move to b0
i with probability

� i = min

(
f 4yi—‚1b0

i5”24b
0
i—‡1D5

f 4yi—‚1bi5”24bi—‡1D5

fT 4bi—mi1Vi1�5

fT 4b0
i—mi1Vi1�5

11

)
0

3. Sample ‡ ®24‡— O‡1 M5 where M = 4100ƒ1I2 +
58Dƒ15ƒ1 and O‡ = M

P58
i=1 Dƒ1bi .

4. Sample

Dƒ1 ·2

³
621 6I +

58X
i=1

4bi ƒ ‡54bi ƒ ‡507ƒ1

´
0

To estimate the marginal likelihood, we observe that this
MCMC scheme is a special case of the setup in Section 2.3
with B = 3, ˆ1 = Dƒ1, ˆ2 = ‚, and ˆ3 = ‡, where the addi-
tional blocks of latent variables can be integrated out in the
manner described in Section 2.2. We begin by decomposing
the posterior ordinate as

� 4Dƒ1 1‚ 1‡ —y5=� 4Dƒ1 —y5� 4‚ —y1D 5� 4‡ —y1D 1‚ 51

where only the 2-dimensional reduced ordinate � 4‚ —y1D 5
cannot be estimated by the Rao–Blackwell device. Speci� -
cally, an estimate of the � rst ordinate can be found by aver-
aging the Wishart density over draws on 8bi9 and ‡ from the
full run. Then, from Section 2.3, our estimate of the second
ordinate is given by

O� 4‚ —y1 D 5

=
M ƒ1 PM

g=1 �4‚4g51‚ —y1 8b4g5

i 95q4‚ —y1 8b4g5

i 95

J ƒ1
PJ

j=1 �4‚ 1 ‚4j5—y1 8b4j5
i 95

(20)

where the draws in the numerator are from a reduced run
with the full conditional distributions of ‚1 ‡, and 8bi9, con-
ditioned on D . The draws in the denominator are from a
second reduced run with the full conditional distributions of
8bi9 and ‡, conditioned on 4D 1‚ 5 with an appended step in
which ‚4j5 is drawn from q4‚—y1 8b4j5

i 95. The draws on 8bi9 in
the latter run are also used to average the normal density of ‡
to produce an estimate of the third ordinate. The log-marginal
likelihood is then obtained from (18) after the likelihood ordi-
nate f4y—‚ 1‡ 1 D 5 is found by estimating the integral in
(19) by an importance sampling method.

We compare the performance of the new approach by also
computing the marginal likelihood as in Chib, Greenberg, and
Winkelmann (1998) where a kernel density estimation method
is used to calculate � 4‚ —y1 D 5. Because the dimension of ‚
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is small, we expect that the two methods should agree closely.
In fact, the new method produces an estimate of ƒ915023
based on M = J = 101000 and the older method gives the
value of ƒ915049, with numerical standard errors from both
methods of approximately 01. As the dimension of ‚ increases,
the kernel density estimate of the ordinate � 4‚ —y1D 5 will
become less accurate and one will have to rely on the approach
developed in this article.

3.4 Multivariate Probit Model

The � nal example again involves a large number of latent
variables in the nonlinear model setting of a model for cor-
related binary data. The model of interest is the multivari-
ate probit model, which we � t using data from the Panel
Study of Income Dynamics of the University of Michigan.
The response variable is the labor force participation decision
of 520 married women, in the age range 25–62, each observed
over the 7-year span 1976–1982. Under the � tted model, the
marginal probability of participation status of the ith woman
at the jth time point is given by

Pr4yij =1—‚5=ê4‚0 + ‚1x1ij + ‚2x2ij51 i 5201j 71

where x1 is the ith subject’s education measured as the number
of grades completed, x2 is total family income excluding the
woman’s earnings, in thousands of dollars, ‚ = 4‚01‚11‚25
and ê is the distribution function of the standard normal dis-
tribution. The joint probability of a particular vector yi 2 7 1
representing the sequence of participation status indicators for
the ith subject, conditioned on the parameters ‚ and a corre-
lation matrix è is

Pr4yi—‚1è5 =
Z

Bi7

Z

Bi1

”J 4zi—Xi‚1è5 dzi1 (21)

where Bij is the interval 401 ˆ5 if yij = 1 and the interval
4ƒˆ107 if yij = 0 and zi = 4zi11 : : : 1 zi75 is a vector of latent
variables with distribution

zi—‚1è ®74Xi‚1è51

Xi = 4xi01 : : : 1 xi25
0 is a 7 3 matrix of the covariates

augmented with a vector of 1s and ‚ = 4‚01 : : : 1 ‚25
0

are the regression parameters. The 21 free elements
of the correlation matrix è are denoted by ‘ =
4‘211‘311‘321 ‘411 ‘421‘431 : : : 1 ‘711 : : : 1‘765. The likelihood
of this model is dif� cult to compute because the integral in
(21), which de� nes the likelihood contribution of the ith sub-
ject, is not available in closed form. This necessitates the use
of latent data in the MCMC sampling.

We now consider how well our method performs in this
context. Under the prior distributions � 4‚5 = ”34‚—01 10I45
and � 4‘5 / ”214‘ —03i211 02I215IS , where i21 is a vector of ones
and S is the subset of R21 that leads to a positive de� nite
correlation matrix, the posterior distribution is sampled using
the algorithm of Chib and Greenberg (1998), which is based
on the method of Albert and Chib (1993), by the 4520 75+ 2
conditional distributions

� 48zij9—y1‚1‘5 4i = 11 : : : 1 5201 j = 11 : : : 1753

� 4‚—y1 8zi91è53 � 4‘ —y1 8zi91‚51

where the last distribution, which is high-dimensional, is sam-
pled in one block by a conditional tailored M–H step.

Multivariate probit model: MCMC algorithm

1. Sample for i 520, j 7

zij

(
´ ® 401ˆ54Œij 1 vij 5 if yij = 1

´ ® 4ƒˆ1054Œij 1 vij 5 if yij = 0

where Œij = E4zij —zi4ƒj51‚1è5, vij = var4zij —zi4ƒj51‚1è5, and
´ ®

4Œ1s5

4a1b5 denotes the normal distribution with parameters
4Œ1 s5 truncated to the interval 4a1 b5.

2. Sample ‚ ®k4 O‚1 Bn51 where O‚ = Bn4Bƒ1
0 ‚0 +P520

i=1 X0
iè

ƒ1zi5 and Bn = 410ƒ1I3 +
P520

i=1 X0
iè

ƒ1Xi5
ƒ1 are the

usual updates based on the complete data.
3. Calculate m = arg max‘ log ”214‘ —03i211 02I215 +P520
i=1 log”214zi—Xi‚1è5 and V the negative inverse of the Hes-

sian of the log-target at the mode, propose ‘ 0 fT 4‘ —m1V1 �5
and move to ‘ 0 with probability

� = min

(
”214‘

0—03i211 02I215
Q520

i=1 ”214zi—Xi‚1è05I6‘ 0 2 S7

”214‘ —03i211 02I215
Q520

i=1 ”214zi—Xi‚1è5

fT 4‘ —m1V1�5

fT 4‘ 0—m1V1�5
11

)

It should be clear that this situation is similar to the one
discussed in Section 2.2 except that the latent variables are
sampled not in one block but in several blocks. If we decom-
pose the posterior ordinate at the posterior mean as

� 4‘ 1 ‚ —y5 = � 4‘ —y5� 4‚ —y1‘ 51

then the � rst ordinate is available from (14) and the second
ordinate as the average

O� 4‚ —y1è 5 = Mƒ1
MX

g=1

”34‚ — O‚
4g5

1Bn5

where O‚
4g5

= Bn4
P520

i=1 X0
iè

ƒ1z4g5

i 5, Bn = 410ƒ1I3 +P520
i=1 X0

iè
ƒ1Xi5

ƒ1 and z4g5
i are draws from a reduced MCMC

run with è � xed at è . We are particularly interested in see-
ing how the proposed method is able to estimate the marginal
likelihood if the 21-dimensional ordinate � 4‘ —y5 is estimated
in one block. For comparison purposes we also utilize the
approach of Chib and Greenberg (1998), where the posterior
ordinate is estimated from

� 4‘ 1—y5� 4‘ 2—y1‘ 15� 4‘ 3—y1‘ 11‘ 25� 4‘ 4—y1‘ 11‘ 21‘ 351

where ‘ 11 ‘ 2, and ‘ 3 are 6-dimensional subblocks of ‘ and
‘ 4 is 3-dimensional. Each of the conditional ordinates in the
latter expression is estimated by kernel smoothing applied to
20,000 values of ‘ i generated from � 4‘ i—y1‘ 11 : : : 1‘ iƒ15
in a reduced Markov chain Monte Carlo run. In relation
to the one ‘ block setup, the latter sampler requires three
additional reduced runs and consumes about twice as much
time. Interestingly, however, the two setups produce virtu-
ally the same answer. From the one ‘ block method based
on M = J = 201000, the marginal likelihood is found to be
ƒ115500533 with a numerical standard error of .842. Then, the
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multiple ‘ block setup produces the value ƒ11550045 with a
numerical standard error of .278. The larger numerical stan-
dard error of the one ‘ block method is a consequence of
the fact that the sampling of ‘ from � 4‘ —y1 8zi91‚5 produces
higher inef� ciency factors for each component of ‘ in relation
to the output on ‘ when it is generated in three 6-dimensional
blocks and one 3-dimensional block, which shows once again
that the more ef� cient MCMC simulation routine reduces the
numerical standard error of the marginal likelihood estimate.

3.5 Additional Examples and Alternative Methods

The method developed in this article has been applied to
other important models. For example, we have conducted an
analysis of the method in the context of ordinal probit mod-
els, autoregressive and moving average (ARMA) models, and
parametric models for survival data such as the Weibull and
the log-logistic. We � nd support for the same general conclu-
sions presented previously. For instance, in our ordinal data
example, a 16-dimensional posterior ordinate is estimated two
ways: from the output of a single block M–H algorithm and
from the output of a two-block algorithm. In this case, the
single block algorithm produces higher inef� ciency factors
and, in keeping with the results presented previously, a higher
numerical standard error in the marginal likelihood estimation.

In addition, we have considered some of the alternative
methods that are discussed in the introduction. One such alter-
native is the method of kernel smoothing to estimate the poste-
rior ordinate. For high-dimensional problems, we � nd that the
kernel-based estimate exhibits two de� ciencies: larger numer-
ical standard errors and signi� cant bias that tends to dissi-
pate slowly as a function of the simulation sample size. For
example, in the logit model of Section 3.1, the kernel based
estimate is ƒ1410722 after 5,000 draws, and ƒ1420229 after
40,000 draws; and, standard errors are approximately 10 times
larger than those produced by the proposed method. The ker-
nel estimates can be made more accurate by breaking up the
parameter vector into smaller blocks, as is done in the mul-
tivariate probit example, and then proceeding with additional
reduced runs to produce the correct sample draws. This proce-
dure reduces the bias and lowers the numerical standard error
of the marginal likelihood estimate but takes increasingly more
time as the size of each MCMC block is increased. Thus to
apply this method one would usually need more blocks in the
MCMC sampling than would arise from the natural full con-
ditional structure of the model.

Furthermore, we have examined the marginal likelihood
estimation methods proposed by Gelfand and Dey (1994) and
Meng and Wong (1996) in the context of the problems that are
discussed in this article. Although these methods both require
the use of certain auxiliary functions, each produces results in
close agreement with those in Tables 1 and 2. This is what
one might expect given that both models are relatively simple
and the sample sizes are relatively large. In the last two mod-
els, however, these methods are computationally much more
expensive than our method because of the required evaluation
of the likelihood for each sampled draw. In the multivariate
probit model discussed previously, for example, a single like-
lihood evaluation, which is all that is required in our approach,
takes about 2 minutes of computing time on a 550 MHz

machine. Multiple evaluations of the likelihood are therefore
extremely costly. It is not possible to circumvent this burden
by keeping the approximately 3,600 latent variables in the last
example because the consequent increase in the dimension of
the ordinates leads to inef� cient estimates. Model space meth-
ods, on the other hand, have a different underpinning and
provide a complementary set of tools for � nding Bayes fac-
tors. In general, these methods cannot be competitive with a
direct marginal likelihood estimation method when the num-
ber of models being compared is small because it is easier to
� t each model directly than to design a new mega-simulation
procedure with its attendant tuning and other costs. Han and
Carlin (2000), in the context of our second example, make
the same point and report favorably on our method in relation
to the methods of Green (1995) and Carlin and Chib (1995).
Nonetheless, a comparative study of these methods in more
general settings, such as those in our last two examples, will
be desirable once suitable model space methods for those
models have been worked out.

4. CONCLUDING REMARKS

In this article, we have derived and illustrated an extended
version of the Chib method of computing model marginal
likelihoods for Bayesian model comparisons based on the
output of Metropolis–Hastings MCMC chains. By complet-
ing the Chib method we now have a framework for calcu-
lating marginal likelihoods in practically all models that are
� t by Markov chain Monte Carlo methods. One virtue of the
approach is that it is based on the programming that is done
to simulate the posterior distribution. Thus once the basic pro-
gramming has been done, one can � nd the marginal likelihood
of a given collection of models by rearrangement of existing
code and, importantly, without further tuning of the MCMC
algorithm. In experiments involving the logit model for binary
data, hierarchical random effects model for clustered Gaussian
data, Poisson regression model for clustered count data, and
the multivariate probit model for correlated binary data, we
have illustrated the performance and implementation of the
method. In our examples, the method is robust to changes in
the blocking schemes and proposal densities that are used to
sample the posterior distribution. Furthermore, the sampling
scheme that is ef� cient for sampling the posterior distribution,
as measured by the inef� ciency factors, is also ef� cient for
estimating the marginal likelihood.

[Received July 1999. Revised June 2000.]
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