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Abstract

Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL
parametrizations under linear constraints induce a wide variety of models, including models
defined by conditional independences. We introduce a subclass of MLL models which correspond
to Acyclic Directed Mixed Graphs (ADMGs) under the usual global Markov property. We
characterize for precisely which graphs the resulting parametrization is variation independent. The
MLL approach provides the first description of ADMG models in terms of a minimal list of
constraints. The parametrization is also easily adapted to sparse modelling techniques, which we
illustrate using several examples of real data.
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1 Introduction

Models defined by conditional independence constraints are central to many methods in
multivariate statistics, and in particular to graphical models (Darroch et al., 1980; Whittaker,
1990). In the case of discrete data, marginal log-linear (MLL) parameters can be used to
parametrize a broad range of models, including some graphical classes and models for
conditional independence (Rudas et al., 2010; Forcina et al., 2010). These parameters are
defined by considering a sequence, M1, M2, … Mk, of margins of the distribution which
respects inclusion (i.e. Mi precedes Mj if Mi ⊂ Mj), with each such sequence giving rise to a
smooth parametrization of the saturated model. Useful sub-models can be induced by setting
some of the parameters to zero, or more generally by restricting attention to a linear or affine
subset of the parameter space.

The flexibility present in this scheme presents a challenge both in terms of interpreting the
resulting model and performing model selection, for which a tractable search space is
typically required. We describe a sub-class of marginal log-linear models corresponding to a
class of graphs known as acyclic directed mixed graphs (ADMGs), which contain directed
(→) and bidirected (↔) edges, subject to the constraint that there are no cycles of directed
edges; an example is given in Figure 1. The relationship between the MLL models and
ADMGs is analogous to that between ordinary log-linear models and undirected graphs: log-
linear models give a very rich class of models to choose from, since their number grows
doubly-exponentially as the number of variables increases; undirected graphs provide a
natural and more manageable subset of models with which to work (Darroch et al., 1980).
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The patterns of independence described by ADMGs arise naturally in the context of
generating processes in which not all variables are observed. To illustrate this, consider the
randomized encouragement design carried out by McDonald et al. (1992) to investigate the
effect of computer reminders for doctors on take-up of influenza vaccinations, and
consequent morbidity in patients. The study involved 2,861 patients; here we focus on the
following fields:

(Re) patient’s doctor sent a card asking to Remind them about flu vaccine
(randomized);

(Va) patient Vaccinated against influenza;

(Y) the endpoint: patient was not hospitalized with flu;

(Ag) Age of patient: 0 = ‘65 and under’, 1 = ‘over 65’;

(Co) patient has Chronic Obstructive Pulmonary Disease (COPD), as measured at
baseline.

The graphs in Figure 2 represent two possible data generating processes. Under both
structures, whether or not a patient’s doctor received a reminder note is independent of the
baseline variables age (Ag) and COPD status (Co), as would be expected under
randomization. Further the absence of an edge Re → Y encodes the assumption that whether
or not a reminder (Re) was received only influences the final outcome (Y) via whether or
not a patient received a flu vaccination (Va). Both structures also assume that there are
unobserved confounding factors between vaccination and COPD, and between COPD and
the final outcome. However, the graph in Figure 2(b) supposes that there is no additional
confounding between Va and Y. As a consequence the generating process given in (b)
implies the additional restriction that Re ⫫ Y | Va, Ag. (We make no assumptions about the
state spaces of the variables H, H1 and H2, since these factors are unobserved.)

In Figure 3 we show the ADMGs corresponding to the generating processes in Figure 2.
These graphs only contain observed variables, but by including bidirected edges (↔) they
encode the same observable conditional independence relations; see §3.1 for details.

All the work herein can easily be extended to graphs which also contain an undirected
component, provided no undirected edge is adjacent to an arrowhead. This latter case is
equivalent to the summary graphs of (Wermuth, 2011), and strictly includes all ancestral
graphs (Richardson and Spirtes, 2002). Our approach may be seen as extending earlier work
(Rudas et al., 2006, 2010; Forcina et al., 2010) which described the conditional
independence structure of certain marginal log-linear models.

1.1 ADMG Models

Richardson (2003) described local and global Markov properties for ADMGs, while
Richardson (2009) described a parametrization for discrete random variables via a collection
of conditional probabilities of the form P(XH = 0 | XT = xT). However, although
Richardson’s parametrization is simple, it does not naturally lead to parsimonious sub-
models. In addition, the parameters are subject to variation dependence constraints, in the
sense that setting some parameters to particular values may restrict the valid range of other
parameters; this makes maximum likelihood fitting, for example, more challenging (Evans
and Richardson, 2010). To illustrate this point, consider the graph 1 in Figure 1 as an
example; it encodes the model under which X1 ⫫ X3 and X4 ⫫ X1 | X2. Richardson’s
parametrization consists in this case (for binary random variables) of the probabilities
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where x1, x2 ∈ {0, 1}. A disadvantage of this parametrization is that, for instance, the joint
probabilities P(X2 = 0, X3 = 0 | X1 = x1) are bounded above by the marginal probabilities
P(X2 = 0 | X1 = x1). Consequently, from the point of view of parameter interpretation, it
makes little sense to consider the joint probabilities in isolation. For example, strong
(conditional) correlation between X2 and X3 is present when the joint probability is large
relative to the marginals.

However, replacing the joint probabilities P(X2 = 0, X3 = 0 | X1 = x1) with the conditional
odds ratios

(and similarly for P(X3 = 0, X4 = 0 | X1 = x1, X2 = x2)) yields a variation independent
parametrization, the odds ratio measuring dependence without reference to marginal
distributions. This means that if we wish to define a prior distribution over the univariate
probabilities and the odds ratios, we may, if appropriate, simply use a product of univariate
distributions; similarly, to fit a generalized linear model with these parameters as joint
responses, we need only use simple univariate link functions. We will see that this approach
to discrete parametrizations can be generalized using marginal log-linear parameters.

In Section 2 we introduce marginal log-linear (MLL) parameters and some of their
properties, while Section 3 gives background theory about ADMGs and the parametrization
of Richardson (2009). The development of MLL parameters for ADMG models is presented
in Section 4, resulting in a parametrization we refer to as ingenuous (since it arises naturally,
but ‘natural parametrization’ already has a particular meaning). We also show that this
parametrization can always be embedded in a larger one corresponding to a complete graph
and the saturated model, where some of the parameters in the bigger model are linearly
constrained. In Section 5 we classify for which models the ingenuous parametrization is
variation independent, since this can facilitate interpretation of the resulting coefficients. In
Section 6 we discuss approaches to sparse modelling using MLLs in the context of several
additional datasets and a simulation. Longer proofs are in the supplementary material.

2 Marginal Log-Linear Parameters

We consider collections of random variables (Xv)v∈V with finite index set V, taking values
in finite discrete probability spaces ( )v∈V under a strictly positive probability measure P;
without loss of generality,  = {0, 1, …, | | − 1}. For A ⊆ V we let  ≡ ×v∈A( ),  ≡ 
and similarly XA ≡ (Xv)v∈A, X ≡ XV and xA ≡ (xv)v∈A, x ≡ xV. In addition  is the subset of

 which does not contain the last possible element in any co-ordinate; that is  = {0, 1, …, |
| − 2}, and  = ×v∈V ( ). We use pA(xA) ≡ P(XA = xA) and pA|B(xA | xB) ≡ P(XA = xA |

XB = xB), for particular instantiations of x.

Following Bergsma and Rudas (2002), we define a general class of parameters on discrete
distributions. The definition relies upon abstract collections of subsets, so it may be helpful
to the reader to keep in mind that the sets Mi ∈  are margins, or subsets, of the distribution

Evans and Richardson Page 3

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



over V, and each set  is a collection of effects in the margin Mi. A pair (L, Mi) corresponds
to a log-linear interaction over the set L, within the margin Mi.

Definition 2.1—For L ⊆ M ⊆ V, the pair (L, M) is an ordered pair of subsets of V. Let ℙ
be a collection of such pairs, and define

to be the collection of margins in ℙ. If  = {M1, …, Mk}, write

for the set of effects present in the margin Mi. We say that the collection ℙ is hierarchical if
the ordering on  may be chosen so that if i < j, then Mj ⊈ Mi and also L ∈  ⇒ L ⊈ Mi; the
second condition is equivalent to saying that each L is associated only with the first margin
M of which it is a subset. We say the collection is complete if every non-empty subset of V
is an element of precisely one set .

The term ‘hierarchical’ is used because each log-linear interaction is defined in the first
possible margin in an ascending class, and ‘complete’ because all interactions are present.
Some authors (Rudas et al., 2010; Lupparelli et al., 2009) consider only collections which
are complete.

Definition 2.2—For each M ⊆ V and xM ∈ , define the functions  by the identity

subject to the identifiability constraint that for every ∅ ≠ L ⊆ M, xL ∈  and v ∈ L,

that is, the sum over the support of each variable is zero. We call  a marginal log-
linear parameter.

Note that the constant  is determined by the values of the other parameters and the fact
that the probabilities pM (xM) sum to one. In the sequel we will always assume that L is non-
empty.

The term ‘marginal log-linear parameter’ is coined by analogy with ordinary log-linear
parameters, which correspond to the special case M = V. The following result provides an

explicit expression for .

Lemma 2.3—For L ⊆ M ⊆ V and xL ∈  we have
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(1)

This result is elementary, and its proof is omitted.

For a collection of ordered pairs of subsets ℙ (see Definition 2.1), we let

be the collection of marginal log-linear parameters associated with ℙ. Note that we avoid the
redundancy created by the identifiability constraint by only considering xL ∈ .

The definition of a marginal log-linear parameter we give is equivalent to the recursive one
given in Bergsma and Rudas (2002); since both expositions are somewhat abstract, we invite
the reader to consult the examples below for additional intuition. In particular note that for
binary random variables, the product in (1) is always ±1. Bergsma and Rudas (2002,
Theorem 2) show that any collection Λ̃(ℙ) where ℙ is hierarchical and complete smoothly
parametrizes the saturated model, that is, it parametrizes the set of all positive distributions
on .

The restriction that the parameters must sum to zero is required for identifiability, but

different constraints can be used in its place. We might instead require that  be zero
whenever any entry of xL is zero (or some other selected value); this is seen in Marchetti and
Lupparelli (2011), for example, and its use would not substantially affect any of the results
in this paper.

2.1 Examples of Marginal Log-Linear Models

We will write  to mean the collection { }; the expression  denotes
that we are setting all the parameters in this collection to 0.

Example 2.4—The classical log-linear parameters for a discrete distribution over a set of

variables V are { }.

Example 2.5—Up to trivial transformations, the multivariate logistic parameters of Glonek

and McCullagh (1995) are { }.

Example 2.6—Let V = {1, 2, 3} and assume all random variables are binary. Write P001 ≡
P(X1 = 0, X2 = 0, X3 = 1), and P1++ ≡ P(X1 = 1), etc. Then

which, up to a multiplicative constant, is the logit of the probability of the event {X1 = 0}.
Also,
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the log odds product and log odds ratio between X1 and X2 respectively.

If instead X1 is ternary, we obtain

Here  contrasts the probability P(X1 = 0) with the geometric mean of the probabilities

P(X1 = 1) and P(X1 = 2). On the other hand, up to constants,  is an average of the
two log odds ratios

and so gives a contrast between P(X1 = X2 = 0) and other joint probabilities in a way which
generalizes the binary log odds ratio and provides a measure of dependence; in particular

note that  if X1 ⫫ X2.

Here we have written, for example, 12 instead of {1, 2}; similarly, for sets A and B we
sometimes write AB for A ∪ B, and aB for {a} ∪ B.

2.2 Properties of Marginal Log-Linear Models

The next result relates marginal log-linear parameters to conditional independences; it is
found as Lemma 1 in Rudas et al. (2010) and Equation (6) of Forcina et al. (2010).

Lemma 2.7—For any disjoint sets A, B and C, where C may be empty, A ⫫ B | C if and

only if

The special case of C = ∅ (giving marginal independence) is proved in the context of
multivariate logistic parameters by Kauermann (1997).

Example 2.8—Take a complete and hierarchical parametrization of 3 variables,
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Then we can force X1 ⫫ X3 by setting . Similarly X2 ⫫ X3 | X1 corresponds to setting

.

The following lemma shows that under conditional independence constraints, certain MLL
parameters defined within different margins are equal.

Lemma 2.9—Suppose that A ⫫ B | C, and A is non-empty. Then for any D ⊆ C,

The proof of this result is found in the supplementary material.

3 Acyclic Directed Mixed Graphs

We introduce basic graphical concepts used to describe the global Markov property and
parametrization schemes.

Definition 3.1—A directed mixed graph consists of a set of vertices V, and both directed

(→) and bidirected (↔) edges. Edges of the same type and orientation may not be repeated,
but there may be multiple edges of different types between a pair of vertices.

A path in is a sequence of adjacent edges, without repetition of a vertex; a path may be
empty, or equivalently consist of only one vertex. The first and last vertices on a path are the
endpoints (these are not distinct if the path is empty); other vertices on the path are non-
endpoints. The graph 1 in Figure 1, for example, contains the path 1 → 2 → 4 ↔ 3, with
endpoints 1 and 3, and non-endpoints 2 and 4. A directed path is one in which all the edges
are directed (→) and are oriented in the same direction, whereas a bidirected path consists
entirely of bidirected edges.

A directed cycle is a non-empty sequence of edges of the form v → ··· → v. An acyclic
directed mixed graph (ADMG) is one which contains no directed cycles.

Definition 3.2—For a graph and a subset of its vertices A ⊆ V, we denote by A the

induced subgraph formed by A; that is, the graph containing the vertices A, and the edges in
whose endpoints are both in A.

Definition 3.3—Let a and d be vertices in a mixed graph  If a = d, or there is a directed

path from a to d, we say that a is an ancestor of d, and that d is a descendant of a. The sets of
ancestors of d and descendants of a are denoted an (d) and de (a) respectively. If there is a
directed path from a to d containing precisely one edge (a → d) then a is called a parent of
d; the set of vertices which are parents of d is written pa (d).

The district of a, denoted dis (a), is the set containing a and all vertices which are connected
to a by a bidirected path. These definitions are applied disjunctively to sets of vertices, so
that, for example,

A set of vertices A is ancestral if A = an (A); that is, A contains all its own ancestors.
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Example 3.4—Consider the graph 1 in Figure 1. We have

The district of 3 is the set {2, 3, 4}, and since 3 has no parents, pa 1(3) = ∅.

Note that by the definitions of some authors, vertices are not their own ancestors (Lauritzen,
1996). The above notations may be shortened on induced subgraphs so that paA ≡ pa A, and
similarly for other definitions. In some cases where the meaning is clear, we will dispense
with the subscript altogether.

We use the now standard notation of Dawid (1979), and represent the statement ‘X is
independent of Y given Z under a probability measure P′, for random variables X, Y and Z,
by X ⫫ Y | Z [P]. If P is unambiguous, this part is dropped, and if Z is empty we write
simply X ⫫ Y. Finally, we abuse notation in the usual way: v and Xv are used
interchangeably as both a vertex and a random variable; likewise A denotes both a vertex set
and XA.

3.1 Global Markov Property for ADMGs

A Markov property associates a particular set of independence relations with a graph.

A non-endpoint vertex c on a path is a collider on the path if the edges preceding and
succeeding c on the path have an arrowhead at c, for example → c ← or ↔ c ←; otherwise
c is a non-collider. A path between vertices a and b in a mixed graph is said to be blocked
given a set C if either

i. there is a non-collider on the path in C, or

ii. there is a collider on the path which is not in an (C).

If all paths from a to b are blocked by C, then a and b are said to be m-separated given C.
Sets A and B are said to be m-separated given C if every a ∈ A and every b ∈ B are m-
separated given C. This naturally extends the d-separation criterion of Pearl (1988) to graphs
with bidirected edges.

A probability measure P on  is said to satisfy the global Markov property for if for every
triple of disjoint sets of vertices A, B and C,

The model associated with an ADMG is simply the set of distributions that obey the global
Markov property for 

Proposition 3.5—If a path from x to y is not blocked given Z, then every vertex on the

path is in an ({x, y} ∪ Z).

Proof: This follows from the definition of m-separation.

Example 3.6—Consider the graph 1 in Figure 1. There are two paths between the vertices

1 and 4,
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both are blocked by C = {2}. π1 is blocked because 2 is a non-collider on the path and is in
C, while π2 is blocked because 3 is a collider on the path and is not in an 1(C) = {1, 2}.
Hence {1} and {4} are m-separated given {2} in 1.

One can similarly see that {1} and {3} are m-separated given C = ∅, and that no other m-
separations hold for this graph. Thus a joint distribution P obeys the global Markov property
for 1 if and only if X1 ⫫ X4 | X2 [P] and X1 ⫫ X3 [P].

By similar arguments the independences associated with the ADMGs in Figure 2 may also
be read off.

3.2 Existing Parametrization of ADMG models

This subsection defines the parameters of Richardson (2009) for multivariate discrete
distributions satisfying the global Markov property for an ADMG.

Definition 3.7—Let be an ADMG with vertex set V. We say that a collection of vertices

W ⊆ V is barren if for each v ∈ W, we have W ∩ de (v) = {v}; in other words v has no non-
trivial descendants in W. For an arbitrary set of vertices U, the maximal subset with no non-
trivial descendants in U is denoted barren (U).

A head is a collection of vertices H which is connected by bidirected paths in an(H) and is
barren in  We write (  for the collection of heads in  The tail of a head H is the set

Thus the tail of H is the set of vertices in V\H connected to a vertex in H by a path on which
every vertex is a collider and an ancestor of a vertex in H. We typically write T for a tail,
provided it is clear which head it belongs to.

Proposition 3.8—Let H be a head. Then (i) H = barren (H ∪ tail (H)); (ii) tail (H) ⊆
an (H).

Proof: Immediate from the respective definitions.

Richardson (2009) shows that discrete distributions obeying the global Markov property for
an ADMG are parametrized by the conditional probabilities:

This is achieved via factorizations based on head-tail pairs; let ≺ be the partial ordering on
heads such that Hi ≺ Hj if Hi ⊂ an (Hj) and Hi ≠ Hj. This is well defined, since otherwise 
would contain a directed cycle. Then let [·]  be a function which partitions sets of vertices
into heads by repeatedly removing heads which are maximal under ≺.

Then P satisfies the global Markov property for if and only if it obeys the factorizations
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(2)

for ancestral sets of vertices A; see Richardson (2009) for details. In the case of a directed
acyclic graph (DAG), this corresponds to the probability distribution of each vertex
conditional on its parents.

Example 3.9—Consider again the ADMG 1 in Figure 1; its head-tail pairs (H, T) are (1,

∅), (2, 1), (3, ∅), (23, 1), (4, 2) and (34, 12). Multivariate binary distributions obeying the
global Markov property with respect to 1 are therefore parametrized by

for x1, x2 ∈ {0, 1}, as mentioned in the Introduction.

3.3 Graphical Completions

Given a discrete model defined by a set of conditional independence constraints, it is natural
to consider it as a sub-model of the saturated model, which contains all positive probability
distributions. In a setting where the model is graphical, it becomes equally natural to think of
the graph as a subgraph of a complete graph, by which we mean a graph containing at least
one edge between every pair of vertices. We can obtain a complete graph from an
incomplete one by inserting edges between each pair of vertices which lack one, but this
leaves a choice of edge type and orientation. These choices may affect how much of the
structure and spirit of the original graph is retained; we will require that a completion
preserves the heads of the original graph, which helps to preserve the structure of the
parametrization.

Definition 3.10—Given an ADMG and a supergraph �̄�, we call �̄� a head-preserving

completion of if �̄� is complete, and (  ⊆ (�̄�).

It is easy to see that a head-preserving completion always exists; for example, if we add in a
bidirected edge between every pair of vertices which are not joined by an edge, then it is
clear that barren sets in will remain barren in �̄�, and bidirected connected sets in will
remain bidirected connected in �̄�.

Note that it is not necessary for every pair of vertices to be joined by an edge in order for a
graph to represent the saturated model, however we will require this for our completions.

Example 3.11—Figure 4 shows a head-preserving completion of the ADMG in Figure 1.

Proposition 3.12—If �̄� is a head-preserving completion of then an (v) ⊆ an�̄�(v). In

particular, if a set A is ancestral in �̄� then A is also ancestral in 

Proof: This follows because contains a subset of the edges in �̄�.

4 Ingenuous Parametrization of an ADMG model

We now use the marginal log-linear parameters defined in Section 2 to parametrize the
ADMG models discussed in Section 3.
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Definition 4.1—Consider an ADMG with head-tail pairs (Hi, Ti) over some index i, and

let Mi = Hi ∪ Ti. Further, let  = {A | Hi ⊆ A ⊆ Hi ∪ Ti}. This collection of margins and
associated effects is the ingenuous parametrization of  denoted ℙing( .

Example 4.2—We return again to the ADMG 1 in Figure 1; the head-tail pairs are (1, ∅),

(2, 1), (3, ∅), (23, 1), (4, 2) and (34, 12), meaning that the ingenuous parametrization is
given by the following margins and effects:

M

1 1

12 2, 12

3 3

123 23, 123

24 4, 24

1234 34, 134, 234, 1234.

Note that the ordering of the margins given here is hierarchical; in order to use most of the
results of Bergsma and Rudas (2002), we need to confirm that the definition above always
leads to a hierarchical parametrization, which is shown by the following result.

Lemma 4.3—For any ADMG  there is an ordering on the margins Mi of the ingenuous

parametrization ℙing(  which is hierarchical.

Proof: Firstly we show that for distinct heads Hi and Hj, the collections  and  are disjoint.
To see this, assume for a contradiction that there exists A such that Hi ⊆ A ⊆ Hi ∪ Ti and Hj
⊆ A ⊆ Hj ∪ Tj. Since Hi ≠ Hj, assume without loss of generality that there exists

.

Then v ∈ Hj ∪ Tj implies that v ∈ Tj, and thus there is a directed path from v to some w ∈
Hj. Now, w ∉ Hi, since v, w ∈ Hi would imply that Hi is not barren. But if , then
by the same argument as above we can find a directed path from w to some x ∈ Hi. Then v
→ ··· → w → ··· → x is a directed path between elements of Hi, which is a contradiction.
Thus  and  are disjoint.

Now, consider the partial ordering ≺ of heads defined in Section 3.2: Hi ≺ Hj whenever Hi
⊂ an (Hj) and Hi ≠ Hj Any total ordering which respects this partial ordering is hierarchical,
because each set A ∈  is a subset of the ancestors of Hi.

We proceed to show that the ingenuous parameters for an ADMG characterize the set of
distributions which obey the global Markov property with respect to 

Lemma 4.4—For any sets M and L ⊆ M, the collection of MLL parameters

together with the (|L| − 1)-dimensional marginal distributions of XL conditional on XM\L,
smoothly parametrizes the distribution of XL conditional on XM\L.
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A proof is given in the supplementary material. We now come to the main result of this
section.

Theorem 4.5—The ingenuous parametrization Λ̃(ℙing( ) of an ADMG parametrizes

precisely those distributions P obeying the global Markov property with respect to 

Proof: We proceed by induction. Again we use the partial ordering ≺ on heads from Section
3.2. For the base case, we know that singleton heads {h} with empty tails are parametrized

by the logits .

Now, suppose that we wish to find the distribution of a head H conditional on its tail T.
Assume that we have the distribution of all heads H′ which precede H, conditional on their
respective tails; we claim this is sufficient to give the (|H| − 1)-dimensional marginal
distributions of H conditional on T.

Let v ∈ H, and let C = H\{v} be a (|H| − 1)-dimensional marginal of interest. The set A =
an (H)\{v} is ancestral, since v cannot have (non-trivial) descendants in an (H); in
particular C ∪ T ⊆ A. Theorem 4 of Richardson (2009) states that the factorization in
equation (2) holds for every ancestral set, so

But all the probabilities in the product are known by our induction hypothesis, and the
marginal distribution of C conditional on T is given by the distribution of A.

The ingenuous parametrization, by definition, contains  for H ⊆ A ⊆ H ∪ T, and thus
the result follows from Lemma 4.4.

Example 4.6—Returning to our running example, the graph 1 in Figure 1 corresponds to

the model

Theorem 4.5 tells us that this collection of distributions is precisely characterized by the
ingenuous parameters for 1,

4.1 Constraint-Based Model Description

The results above show that the ingenuous parameters for an ADMG  like Richardson’s
parameters, provide precisely the information required to reconstruct a distribution obeying
the global Markov property for  However, it is difficult to use this parametrization in
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practice unless we can evaluate the likelihood, which requires us to make explicit the map
which we have implicitly defined from the ingenuous parameters to the joint probability
distribution under the model. For example, for the parameters in Richardson (2009) there is
an explicit map from the parameters back to the joint distribution using a generalization of
Möbius inversion. This was used by Evans and Richardson (2010) to fit these models via
maximum likelihood. In contrast, the map from ingenuous parameters to the joint
distribution cannot be written in closed form.

An alternative approach is to consider the ingenuous parametrization as part of a larger,
complete parametrization of the saturated model, such that the additional parameters are
constrained to be zero under the sub-model defined by  This enables us to fit the model
using Lagrange-type algorithms, as in Evans and Forcina (2013).

Theorem 4.7—Let be an ADMG, and �̄� a head-preserving completion of  The

ingenuous parametrization of corresponds to setting

for (L, M) ∈ ℙing(�̄�) whenever L does not appear as an effect in ℙing( . In particular, these
constraints define the set of distributions which satisfy the global Markov property with
respect to 

To prove this result we require the following lemma.

Lemma 4.8—Let �̄� be a head-preserving completion of  and let H ∈ (  have tails T and

 in and �̄� respectively. Then under the global Markov property for 

Proof: Let π be a path in from some h ∈ H to t ∈ \T, and assume without loss of
generality that π does not intersect H or \T other than at its endpoints. By Proposition 3.5,
every vertex on π is in an ({h, t} ∪ T) ⊆ an (H ∪ ). Since �̄� is complete, if v ∈ an�̄�(H ∪

), then v ∈ H ∪ , thus H ∪  is ancestral in �̄�. By Proposition 3.12, H ∪  is also ancestral
in  thus every vertex on π is in H ∪ .

By Proposition 3.8,  ⊆ an�̄�(H), so H ∪  = an�̄�(H). However, since H forms a head in �̄�, H
is barren in �̄�. Thus in �̄�, no proper descendant of a vertex in H is on π, and by Proposition
3.12 this also holds in 

Now let y be the first vertex after h on π that is not in T. By hypothesis, y exists since t ∉ T.
By construction, any vertices between h and y on π are in T, hence are colliders on π and
ancestors of H in (by Proposition 3.8). Thus y ∈ dis (H) ∪ pa (dis (H)). If y ∈ an  (H)
then y ∈ T, which is a contradiction, hence y ∈ dis (H) and y ∉ an (H). As shown earlier, y
is not a descendant of a vertex in H, so H ∪ {y} forms a head in  Since �̄� is a head-
preserving completion, it follows that H ∪ {y} also forms a head in �̄�, and thus y ∉ an�̄�(H)
= H ∪ , but this is a contradiction.
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Proof of Theorem 4.7: Let (H, ) be a head-tail pair in �̄�. There are three possibilities for
how this pair relates to  if (H, ) is also a head-tail pair in  then there is no work to be
done; otherwise either (i) H is not a head in  or (ii) H is a head in but  is not its tail.

If (i) holds, then we claim that under   for all H ⊆ A ⊆ H ∪ . To see this, first note
that H is a barren set in �̄�, and since H is maximally connected, this means that all elements
are joined by bidirected edges in �̄�. Since contains a subset of the edges in �̄�, H is also
barren in  since H is not a head in this means that H = K ∪ L for disjoint non-empty sets
K and L with no edges directly connecting them. But this implies that K and L are m-
separated conditional on , and thus XK ⫫ XL |  under the Markov property for  Then,
by Lemma 2.7, these parameters are all identically zero under 

(ii) implies that H is head in both and �̄�, but  ≡ tail�̄�(H) ⊃ tail (H) ≡ T. Then  for
all H ⊆ A ⊆ H ∪  such that A ∩ ( \T) ≠ ∅; this follows from Lemma 4.8 and application
of Lemma 2.7.

We have shown that all parameters corresponding to effects not found in ℙing(  are
identically zero under  The vanishing of these parameters defines the correct sub-model,
but note that some of the margins in ℙing(�̄�) which we have not yet considered are not the
same as those in ℙing( . These remaining cases are again from (ii), but where H ⊆ A ⊆ H ∪

T; in this case  under  again due to Lemma 4.8, this time combined with Lemma
2.9.

Thus we have shown that under  all the ingenuous parameters for �̄� are either zero or equal
to ingenuous parameters for  Combined with Theorem 4.5, this shows that those
constraints define the model.

Example 4.9—Consider again the ADMG 1 in Figure 1; a possible head-preserving

completion �̄�1 (shown in Figure 4) is obtained by adding the edges 1 → 3 and 1 → 4. The
ingenuous parametrization for �̄�1 is

M

1 1

2 2, 12

13 3, 13

123 23, 123

124 4, 14, 24, 124

1234 34, 134, 234, 1234.

The effects found in ℙing(�̄�1) but not in ℙing( 1) are 13, 14, and 124, and indeed the sub-
model defined by 1 corresponds to setting

under this model the following equalities hold by Lemma 2.9:
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Removing the zero parameters in ℙing(�̄�1) and renaming two others according to the above
equations returns us to the ingenuous parametrization of 1.

Theorem 4.7 shows that we can fit the model defined by 1 by maximum likelihood simply

by maximizing the log-likelihood subject to . In particular, this approach
always provides a list of independent constraints which characterize the model.

An obvious question which arises is whether any completion of a graph will lead to a
complete parametrization with the property of Theorem 4.7. We can obtain a
counterexample by considering the complete graph �̄�1 in Figure 5, which has ingenuous
parametrization

M

3 3

13 1, 13

123 2, 12, 23, 123

1234 4, 14, 24, 124, 34, 134, 234, 1234.

The graph 1 in Figure 1 is a subgraph of �̄�1, and corresponds to the model obtained by

setting ; however, these last two parameters do not appear in the ingenuous
parametrization of �̄�1, and so there is no way to enforce the sub-model as a linear constraint.

�̄�1 is, of course, not head-preserving. Such completions may still lead to parametrizations
which satisfy the property of Theorem 4.7: for example, if the edge 1 → 3 is added to the
graph in Figure 6(a), this destroys the head {1, 2, 3}, but the sub-model corresponds to

, which is a parameter in the complete graph.

4.2 Relationship To Prior Work

Rudas et al. (2010) parametrize chain graph models of multivariate regression type, also
known as type IV chain graph models, using marginal log-linear parameters. Type IV chain
graph models are a special case of ADMG models, in the sense that by replacing the
undirected edges in a type IV chain graph with bidirected edges, the global Markov property
on the resulting ADMG is equivalent to the Markov property for the chain graph (see Drton,
2009). The graphs in Figure 6 are examples of Type IV models. However, there are models
in the class of ADMGs which do not correspond to any chain graph, such as the one
described by 1 in Figure 1.

The parametrization of Rudas et al. (2010) uses different choices of margins to the
ingenuous parametrization, though their parameters can be shown to be equal to the
parameters considered here under the global Markov property, using Lemma 2.9. Thus the
variation dependence properties of that parametrization are identical to those of the
ingenuous parametrization (see next section). Forcina et al. (2010) provide an algorithm
which gives a range of ‘admissible’ margins in which collections of conditional
independence constraints may be defined.
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Marchetti and Lupparelli (2011) also parametrize type IV chain graph models in a similar
manner to Rudas et al. (2010), in that case using multivariate logistic contrasts.

5 Variation Independence

As discussed in the introduction, the interpretation of parameters and the construction of
prior distributions is simpler when parameters are variation independent.

Definition 5.1—Let θi, for i = 1, … k be a collection of parameters such that θi takes all

values in the set Θi. We say that the vector θ = (θ1, …, θk) is variation independent if θ can
take every value in the set Θ1 × ··· × Θk.

Bergsma and Rudas (2002) characterize precisely which hierarchical and complete
parametrizations are variation independent, using a notion they call ordered
decomposability. We now do this for ingenuous parametrizations.

Definition 5.2—A collection of sets  = {M1, …, Mk} is incomparable if Mi ⊈ Mj for

every i ≠ j.

A collection  of incomparable subsets of V is decomposable if it has at most two elements,
or there is an ordering M1, …, Mk on the elements of  wherein for each i = 3, …, k, there
exists ji < i such that

This is also known as the running intersection property.

A collection  of (possibly comparable) subsets is ordered decomposable if it has at most
two elements, or there is an ordering M1, …, Mk such that Mi ⊈ Mj for i > j, and for each i =
3, …, k, the inclusion maximal elements of {M1, …, Mi} form a decomposable collection.
We say that a collection ℙ of parameters is ordered decomposable if there is an ordering on
the margins  which is both hierarchical and ordered decomposable.

The following example is found in Bergsma and Rudas (2002).

Example 5.3—Let  = {12, 13, 23, 123}. In order to have a hierarchical ordering of these

margins it is clear that the set 123 must come last, but there is no way to order the collection
of inclusion maximal margins {12, 13, 23} such that it has the running intersection property.
Thus  is not ordered decomposable.

The next result links variation independence to ordered decomposability.

Theorem 5.4—(Bergsma and Rudas (2002), Theorem 4). Let ℙ be a parametrization which

is hierarchical and complete. Then the parameters Λ̃(ℙ) are variation independent if and
only if ℙ is ordered decomposable.

As previously noted, the ingenuous parametrization is not complete in general, and so we
cannot apply the above result directly to characterize its variation dependence. However, by
constructing complete parametrizations of which the ingenuous parametrizations are linear
sub-models, we can obtain the following.
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Theorem 5.5—The ingenuous parametrization for an ADMG is variation independent if

and only if contains no heads of size greater than or equal to 3.

The proof of this result is found in the supplementary material.

Example 5.6—The graph 1 in Figure 1 has maximum head size 2, and therefore the

associated ingenuous parametrization is variation independent.

Likewise the graphs in Figure 3(a) and (b) contain no heads of size greater than 2, so that the
resulting ingenuous parameters are variation independent. Note that this was not true of the
parameters given by Richardson (2009).

Example 5.7—The bidirected 3-chain shown in Figure 6(a) has the head 123, and therefore

its ingenuous parametrization is variation dependent. This can easily be seen directly: in the

binary case, for example, if the parameters  and  are chosen to be very large,
this induces very strong dependence between the variables X1 and X2, and between X2 and
X3 respectively. If these correlations are chosen to be too large, then it is impossible for X1

and X3 to be marginally independent, which is implied by the graph.

Observe that we could use the Markov equivalent graph in Figure 6(b), which has no heads
of size 3, and thus obtain a variation independent parametrization of the same model.
However, if we add incident arrows as shown in Figure 6(c), we obtain a graph where such a
trick is not possible. In fact this third graph has no variation independent parametrization in

the Bergsma and Rudas framework, since it requires , and these
margins cannot be ordered in a way which satisfies the running intersection property (see
Example 5.3).

In general, it would be sensible for a statistician concerned about variation dependence to
choose a graph from the Markov equivalence class created by their model which has the
smallest possible maximum head size. This could be achieved by reducing the number of
bidirected edges in the graph, where possible; see, for example, Ali et al. (2005) and Drton
and Richardson (2008b) for algorithms for finding the graph with the minimal number of
arrowheads in a given Markov equivalence class.

Example 5.8—The bidirected 4-cycle, shown in Figure 7, contains a head of size 4, and so

its ingenuous parametrization is variation dependent. However, there is a marginal log-linear
parametrization of this model which is ordered decomposable, and therefore variation
independent. The 4-cycle is precisely the model with X1 ⫫ X3 and X2 ⫫ X4. Set  = {13,
24, 1234}, with

here (A) denotes the power set of A. This gives a hierarchical, complete and ordered
decomposable parametrization, so the parameters are variation independent. The 4-cycle

corresponds exactly to setting , and it follows that the remaining parameters are
still variation independent under this constraint.

This approach to parametrization, which considers disconnected sets, is discussed in detail
by Lupparelli et al. (2009). It produces a variation independent parametrization for graphs
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where the disconnected sets do not overlap, and may well be preferable to the ingenuous
parametrization in these cases. In sparser graphs however, it does not seem as useful; as
mentioned above, some graphs have no variation independent MLL parametrization.

6 Parsimonious Modelling with Marginal Log-Linear Parameters

The number of parameters in a model associated with a sparse graph containing bidirected
edges can, in certain cases, be relatively large. In a purely bidirected graph, the parameter
count depends upon the number of connected sets of vertices; in the case of a chain of
bidirected edges such as that shown in Figure 11(a), this means that the number of
parameters grows quadratically in the length of the chain.

The parametrization of Richardson (2009), and its special case for purely bidirected graphs
(see Drton and Richardson, 2008a) does not present us with any obvious method of reducing
the parameter count whilst preserving the conditional independence structure. In contrast,
there are well established methods for sparse modelling with other classes of graphical
models. In the case of an undirected graph with binary random variables, restricting to one
parameter for each vertex and each edge leads to a Boltzmann Machine (Ackley et al.,
1985). Rudas et al. (2006) use marginal log-linear parameters to provide a sparse
parametrization of a DAG model, again restricting to one parameter for each vertex and
edge.

As we will see from the following examples, the ingenuous parametrization allows us to fit
graphical models with a large number of parameters, and then remove higher-order
interactions to obtain a more parsimonious model whilst preserving the conditional
independence structure of the original graph.

6.1 Flu Vaccination Data Revisited

We first return to the McDonald et al. (1992) study considered in the Introduction. All
variables are binary, and (excepting Age) are coded as 0 = false, 1 = true; we add constraints
to our model sequentially, recording the results in the analysis of deviance Table 1. The
ADMG in Figure 3(a) represents the constraint Ag, Co ⫫ Re; it fits well, having a deviance
of 2.54 on 3 degrees of freedom. The smaller model for 3(b) encodes

note that these precise independences cannot be represented by a DAG or chain graph (of
any of the types considered by Drton (2009)). It also fits well (deviance 7.66 on 7 d.f.), so
we may prefer it on the grounds of simplicity.

The ingenuous parametrization in this case contains some higher order effects, including the

5-way interaction between all variables. Setting  for |L| ≥ 4 removes five parameters
whilst increasing the deviance by only 2.22; removing the effects of size 3 adds a further
8.39 to the deviance whilst removing seven more parameters. The resulting model has a total
deviance of 18.28 on 19 degrees of freedom, representing a good fit compared to the
saturated model (likelihood ratio test p = 0.49).

6.2 Incorporating Symmetry: Twins Data

Hakim et al. (2003) investigate genetic effects on the presence or absence of two soft tissue
disorders, frozen shoulder and tennis elbow, based on a study in pairs of monozygotic and
dizygotic twins; the data are reproduced in Ekholm et al. (2012). We have count data for a 5-
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way contingency table over the variables Si and Ei, indicators of whether twin i in the pair
suffers from frozen shoulder and tennis elbow respectively, i ∈ {1, 2}, and T, an indicator of
whether the pair are monozygotic or dizygotic twins. There are a total of 866 observations
for monozygotic pairs, and 963 for dizygotic pairs; twin 1 corresponds to the twin who was
born first.

We first fitted the model T ⫫ (S1, S2, E1, E2) to test whether the zygosity of the twins has
any effect on the other variables; we obtained a deviance of 16.4 on 15 degrees of freedom,
suggesting that there is no evidence that T is related to the other variables. Note that this
contradicts the conclusions of Ekholm et al. (2012), but they use additional assumptions to
obtain more powerful tests.

Collapsing to a 4-way table over (S1, S2, E1, E2), we consider the complete bidirected model
in Figure 8(a). A further simplifying assumption is to impose symmetry between the twins in
each pair, on the basis that we do not expect any association between the prevalence of the
disorders and which twin was born first. Using the ingenuous parametrization for the graph
in Figure 8(a), which is itself symmetric with respect to the individual twins, this amounts to
six independent linear constraints, and gives a deviance of 0.59 compared to the saturated
model on four variables; there is therefore no evidence to reject symmetry.

Now, a hypothesis of interest is whether a common gene is responsible for the increased risk
of the two disorders, or the genetic effects are separate and independent. In the latter case we
would expect the data to be explained by the model encoded by the graph in Figure 8(b), and
therefore to observe the marginal independences E1 ⫫ S2 and E2 ⫫ S1 (see Drton and

Richardson, 2008a, for more details). This amounts to the constraint ; the first
equality already holds by symmetry, so only one additional constraint is imposed.

This model has a deviance of 8.41 on 7 degrees of freedom, which is not rejected in a
likelihood ratio test with the saturated model (p = 0.30), and so there is no evidence to reject
the separate genes hypothesis. We remark however, that the model with symmetry but no
marginal independences has a slightly lower BIC score, and so might be preferred.

The elimination of the 4-way and 3-way interaction parameters for the model from Figure
8(b) with symmetry results in deviances of 11.63 on 8 d.f. and 16.69 on 10 d.f. respectively,
both of which also represent reasonable fits; the latter of these has just 5 free parameters.

6.3 Netherlands Kinship Data

The Netherlands Kinship Panel Survey (NKPS) is an ongoing study which collects
longitudinal information on several thousand Dutch individuals and their families (Dykstra
et al., 2005, 2007). One question asked of both the primary respondents (anchors) and their
partners is “How is your health in general?”, with possible responses of ‘excellent’, ‘good’,
‘good nor poor’, ‘poor’ and ‘very poor’. We combined ‘good nor poor’, ‘poor’ and ‘very
poor’ into one category to avoid small counts.

Two waves of data are currently available, from 2002–04 and 2006–07. We only considered
anchors who had the same partner in both waves, and such that both the individual and the
partner answered the health question in both waves. Let Ai and Pi denote the response of the
anchor and partner respectively for wave i ∈ {1, 2}. In total there are n = 2, 318 data points,
classified into a 3 × 3 × 3 × 3 table.

We begin with the complete graph in Figure 9. One plausible model would be that anchors
and their partners are exchangeable. Since the graph is symmetrical in this respect, so is the
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ingenuous parametrization, and enforcing symmetry amounts merely to a set of 36 linear
constraints; for example:

This model has a deviance of 89.98, which when compared to the tail of a  distribution
gives p = 1.6×10−6; thus the symmetry model is a poor fit to the data, and is rejected. The
lack of exchangeability is probably due to selection bias in the sampling of the anchors, as
well as the different ways in which the anchors and their partners were asked the question:
anchors were asked about their health as part of a face-to-face interview, whereas the
partners were only asked to complete a survey. See Siemiatycki (1979) for an analysis of
differences resulting from survey mode.

If instead we remove the edge A1 → P2 and fit the graph in Figure 9(b), we obtain an
explanation of the data which is not rejected at the 5% level (deviance 19.09 on 12 degrees
of freedom, p = 0.086); this model corresponds to the conditional independence P2 ⫫ A1 |
P1. This graph is the only subgraph of the complete graph in Figure 9(a) which leads to a
good fit; in particular the model created by removing the edge P1 → A2 is strongly rejected,
which is one manifestation of the asymmetry between individuals and their partners.

Note that we could also have obtained the independence P2 ⫫ A1 | P1, for instance, by using
a DAG with topological ordering P1, A1, P2, A2, but the resulting parametrization would
have made it much more difficult to enforce the symmetry constraint tested above.

6.4 Example: Trust Data

Drton and Richardson (2008a) examine responses to seven questions relating to trust and
social institutions, taken from the US General Social Survey between 1975 and 1994.
Briefly, the seven questions were:

Trust: Can most people be trusted?

Helpful: Do you think most people are usually helpful?

MemUn, MemCh: Are you a member of a labour union/church?

ConLegis, ConClerg, ConBus: Do you have confidence in congress/organized
religion / business?

In that paper, the model given by the graph in Figure 10 is shown to adequately explain the
data, having a deviance of 32.67 on 26 degrees of freedom, when compared with the
saturated model. The authors also provide an undirected graphical model which has one
more edge than the graph in Figure 10, and yet has 62 fewer parameters. It too gives a good
fit to the data, having a deviance of 87.62 on 88 degrees of freedom. Both graphs were
chosen by backwards stepwise selection methods; see Drton and Richardson (2008a) for
details.

For practical and theoretical reasons, the bidirected model may be preferred to the
undirected one, even though the latter appears to be much more parsimonious. One may
consider the dependence between the responses given to a questionnaire to be manifestations
of unmeasured characteristics of the respondent, such as their political beliefs. Such a
system can be well represented by a bidirected graph, through its marginal independence
structure and connection to latent variable models, but not necessarily by an undirected one,
which induces conditional independences. Note that, since models defined by undirected and
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bidirected graphs are not nested, there is no a priori reason to expect the two methods to give
a similar graphical structure.

The greater parsimony of the undirected model (when defined purely by conditional
independences) is due to its hierarchical nature: if we remove an edge between two vertices

a and b, then this corresponds to requiring that  for every effect A containing both a

and b. Removing that edge in a bidirected model may correspond merely to setting 
and nothing else, depending upon the other edges present. Using the ingenuous
parametrization, it is easy to constrain additional higher order terms to be zero to obtain sub-
models of the set of distributions obeying the global Markov property.

Starting with the model in Figure 10 and fixing the 4-, 5-, 6- and 7-way interaction terms to
be zero increases the deviance to 84.18 on 81 degrees of freedom; none of the 4-way
interaction parameters was found to be significant on its own. Furthermore, removing 21 of
the remaining 25 three-way interaction terms increases the deviance to 111.48 on 102
degrees of freedom; using an asymptotic χ2 approximation gives a p-value of 0.245, so this
model is not contradicted by the data. The only parameters retained are the one-dimensional
marginal probabilities, the two-way interactions corresponding to edges in Figure 10, and
the following three-way interactions:

MemUn, ConClerg, ConBus Helpful, MemUn, MemCh

Trust, ConLegis, ConBus MemCh, ConClerg, ConBus.

This model retains the marginal independence structure of Drton and Richardson’s model,
but provides a good fit with only 25 parameters, rather than the original 101.

A similar analysis, for different data, is performed by Lupparelli et al. (2009, page 573);
again they find an undirected graphical model to be much more parsimonious than any
bidirected one, but obtain comparable fits by removing statistically insignificant higher-
order parameters.

6.5 Simulated Data

We saw in the earlier examples that we were often able to remove higher order interaction
parameters without compromising the goodness of fit. Here we explore this phenomena
further via simulations.

Consider the DAG with latent variables shown in Figure 11(b); over the observed variables,
the conditional independences which hold are exactly those given by the bidirected chain in
Figure 11(a).

We randomly generated 1,000 distributions from this DAG model with k = 6, where each
latent variable was given three states, and each observed variable two. The probability of
each observed variable being zero, conditional on each state of its parents, was an
independent uniform random draw on (0, 1); latent states were fixed to occur with equal
probability. For each distribution, a sample size of 10,000 was drawn, and the bidirected
chain model was fitted to it by maximum likelihood estimation. For each of the 1,000 data
sets, we then measured the increase in deviance associated with removing higher order
parameters

The histogram in Figure 12(a) demonstrates that the deviance increase from setting the 5-
and 6-way interaction parameters to zero (a total of three parameters) was not
distinguishable from that which would be observed under the null hypothesis that these
parameters are zero. The deviance increase from setting the 4-, 5- and 6-way interactions to
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zero appeared to have only a slightly heavier tail than the associated χ2-distribution, as
suggested by the outliers in Figure 12(b). Removing the 3-way interactions in addition to
this caused a dramatic increase in the deviance, as may be observed from the heavy tail of
the histogram in Figure 12(c). This illustrates that the ingenuous parametrization can be used
to produce more parsimonious model descriptions than would be possible using
Richardson’s parameters.

Note that under the process which generated these models, each of these interaction
parameters was non-zero almost surely. As the sample size increases the power of a
likelihood ratio test for a fixed distribution tends to one, so it must be the case that a
simulation such as the above would, for large enough data sets, show significant deviation
from the associated χ2 distributions. However, even at a fairly large sample size of 10,000, a
limited effect was observed in Figures 12(a) and (b), and the examples above with real data
suggest that higher order interactions are often not particularly useful in practice for
describing data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
An acyclic directed mixed graph, 1.
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Figure 2.
Two different generating processes for the flu vaccine encouragement design (red vertices
are unobserved): both graphs imply Re ⫫ Ag, Co; however (b) also implies Re ⫫ Y | Va, Ag.
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Figure 3.
Two ADMGs representing the conditional independence restrictions on the observed margin
implied by the corresponding graphs in Figure 2.
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Figure 4.
A head-preserving completion, �̄�1 of the ADMG in Figure 1.
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Figure 5.
A complete ADMG, �̄�1, of which 1 is a subgraph, but whose ingenuous parametrization
does not contain the model described by 1 as a linear sub-space because the associated
completion is not head-preserving.
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Figure 6.
(a) a graph with a variation dependent ingenuous parametrization; (b) a Markov equivalent
graph to (a) with a variation independent ingenuous parametrization; (c) a graph with no
variation independent MLL parametrization.
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Figure 7.
A bidirected 4-cycle.
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Figure 8.
Graphs for the twins data for models corresponding to (a) a common gene and (b) separate
genes affecting the prevalence of frozen shoulder and tennis elbow.
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Figure 9.
Graphs for the NKPS data; responses of Anchor and Partner regarding their assessment of
health; subscripts indicate time. (a) a complete graph; (b) a subgraph which implies P2 ⫫ A1

| P1.
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Figure 10.
Markov model for trust data given in Drton and Richardson (2008a).
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Figure 11.
(a) A bidirected k-chain and (b) a DAG with latent variables (h1, …, hk−1) generating the
same observable conditional independence structure.
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Figure 12.
Histograms showing the increase in deviance caused by setting to zero (a) the 5- and 6-way
interaction parameters; (b) the 4-, 5- and 6-way interaction parameters; (c) the 3-, 4-, 5- and
6-way interaction parameters. Plots are based on 1, 000 datasets, each of size 10, 000,
generated from the DAG in Figure 11(b). The plotted densities are χ2 with 3, 6 and 10
degrees of freedom respectively.
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Table 1

Analysis of deviance table of models considered for influenza data. Constraints are added sequentially from
top to bottom; the last three columns give the additional deviance for the constraint, the total degrees of
freedom and the total deviance of the models respectively.

Constraint Figure Add. Dev. d.f. Total Dev.

Ag, Co ⫫ Re 3(a) 2.54 3 2.54

Y ⫫ Re |Va, Ag 3(b) 5.11 7 7.66

no 4- and 5-way params 2.22 12 9.88

no 3-way params 8.39 19 18.28
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