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Abstract

Convolutional neural networks have significantly

boosted the performance of face recognition in recent years

due to its high capacity in learning discriminative features.

In order to enhance the discriminative power of the deeply

learned features, we propose a new supervision signal

named marginal loss for deep face recognition. Specifically,

the marginal loss simultaneously minimises the intra-class

variances as well as maximises the inter-class distances by

focusing on the marginal samples. With the joint supervi-

sion of softmax loss and marginal loss, we can easily train

a robust CNNs to obtain more discriminative deep features.

Extensive experiments on several relevant face recognition

benchmarks, Labelled Faces in the Wild (LFW), YouTube

Faces (YTF), Cross-Age Celebrity Dataset (CACD), Age

Database (AgeDB) and MegaFace Challenge, prove the

effectiveness of the proposed marginal loss.

1. Introduction

Face representation through the deep convolutional net-

work embedding is considered the state-of-the-art method

for face verification, face clustering, and recognition [24,

18, 17]. The deep convolutional network is responsible for

mapping the face image, typically after a pose normalisation

step, into an embedding feature vector such that features of

the same person have a small distance while features of dif-

ferent individuals have a considerable distance.

The various face recognition approaches by deep con-

volutional network embedding differ along three primary

attributes. The first attribute is the training data em-

ployed to train the model. The identity number of public

available training data, such as VGG-Face [17], CAISA-

WebFace [30], MS-Celeb-1M [7], MegaFace [12], ranges

from several thousand to half million. Although MS-Celeb-

1M and MegaFace have a significant number of identi-

ties, they suffer from annotation noises [29] and long tail

distribution [31]. By comparison, private training data of

Google [18] even has several million identities. The second

attribute is the network architecture. High capacity deep

convolutional networks such as ResNet [8, 9, 27, 31] and

Inception-ResNet [21] usually obtains better performance

compared to VGG network [19, 17] and Google Inception

V1 network [22, 18]. The third attribute is the design of loss

function. The contrastive loss [20] and the triplet loss [18]

utilise pair training strategy. The contrastive loss function

consists of positive pairs and negative pairs. The gradients

of the loss function pull together positive pairs and push

apart negative pairs. Triplet loss minimises the distance be-

tween an anchor and a positive sample and maximises the

distance between the anchor and a negative sample from a

different identity. In [24] and [17], a classification layer

is trained over a set of known identities. The feature vector

is then taken from an intermediate layer of the network and

used to generalise recognition beyond the set of identities

used in training. The training procedure of the contrastive

loss [20] and the triplet loss [18] is very tricky due to the

selection of effective training samples. The classification-

based methods [24, 17] suffer from massive GPU memory

consumption on the classification layer when the identity

number increases to million level, and prefer balanced and

sufficient training data for each identity.

In this paper, we employ the large scale public available

training data (MS-Celeb-1M) and the high capacity ResNet

network structure. We propose a new supervision signal

named marginal loss to enhance the discriminative power

of the deeply learned features. Specifically, the marginal

loss simultaneously minimises the intra-class variances as

well as maximises the inter-class distances by focusing on

the marginal samples. With the joint supervision of softmax

loss and marginal loss, we can easily train a robust CNNs to

obtain more discriminative deep features.

Our main contributions are summarised as follows.

1. We propose a new loss function (called marginal loss)

to minimise the intra-class variances as well as max-

imise the inter-class distances of the deep features.

With the joint supervision of the marginal loss and the

0https://github.com/davidsandberg/facenet
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softmax loss, the highly discriminative features can be

obtained for robust face recognition, as supported by

our experimental results. We show that the proposed

loss function is very easy to implement in the CNNs

and can be directly optimised by the standard SGD.

2. Extensive experiments are conducted to prove the

effectiveness of the proposed method on the pub-

lic datasets. We verify the excellent performance

of our new approach on Labelled Faces in the Wild

(LFW) [10] and YouTube Faces (YTF) datasets [28].

The proposed method is robust under age varia-

tions and obtains state-of-the-art results on Cross-

Age Celebrity Dataset (CACD) [3] and Age Database

(AgeDB) [15]. The proposed marginal loss also

achieves state-of-the-art results on MegaFace Chal-

lenge [12], which is the largest public face database

with one million faces for recognition.

2. Related Work

To enhance the discriminative power of the deep fea-

tures, Wen et al. [27] add a new supervision signal, called

centre loss, to softmax loss for face recognition task.

Specifically, the centre loss simultaneously learns a feature

centre for each identity and penalises the distances between

the deep features of examples and their corresponding fea-

ture centres. With the joint supervision of softmax loss and

centre loss, this method can easily obtain inter-class dis-

persion and intra-class compactness. However, the on-line

centre for each identity doubles the memory consumption

of the last CNN layer.

To alleviate long tail distribution of the real-world face

recognition training data, Zhang et al. [31] propose a new

loss function called range loss to effectively utilise the en-

tire long-tailed data in the training process. The optimisa-

tion objective of range loss is the k greatest ranges harmonic

mean values in one class and the shortest inter-class dis-

tance within one batch. Both the range value and the centre

value are calculated based on groups of samples, which alle-

viates unbalanced comparison times on the long tail training

data. However, it is the softmax loss that most need uniform

distribution across the classes, and the ability to increase

inter-class differences within one mini-batch is limited be-

cause there are only four identities within each mini-batch

as described in the original paper.

Tadmor et al. [23] point out that solving the

classification-based training is easier than the comparative

training, but the classification-based method requires a large

training set because of the significant increase in the num-

ber of parameters due to the large classification layer. To

speed up the convergence rate of stochastic gradient descent

method, Tadmor et al. propose a multibatch method, which

first generates features for a mini-batch of k face images and

then constructs an unbiased estimate of the full gradient by

relying on all k2 − k pairs from the mini-batch. The objec-

tive function requires features of positive pairs to be below

a global threshold while features of negative pairs should

be above the global threshold. Compared to the standard

gradient estimator that relies on random k/2 pairs and has

a variance of order 1/k, the multibatch method is bounded

by O(1/k2), both in theory and in practice.

3. Marginal Loss

The most widely used classification loss function, soft-

max loss, is presented as follows:

Ls = −

m
∑

i=1

log
eW

T
yi

xi+byi

∑n

j=1
eW

T
j
xi+bj

, (1)

where xi ∈ R
d denotes the deep feature of the i-th samples,

belonging to the yi-th identity. The feature dimension d
is set as 512 in this paper following [27, 31]. Wj ∈ R

d

denotes the j-th column of the weights W ∈ R
d×n in the

last fully connected layer and b ∈ R
n is the bias term. The

batch size and the identity number is m and n, respectively.

In order to enhance the discriminative power of the

deeply learnt features, we propose the marginal loss func-

tion to minimise the intra-class variations and keep inter-

classes distances within the batch. When xi and xj are from
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2

2
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where yij ∈ {±1} indicates whether the faces xi, and xj

are from the same class or not, (u)
+

:= max(u, 0) is the

marginal (hinge) loss [5], θ is the threshold to distinguish

whether the faces are from the same person or not, and ξ is

the error margin besides the classification hyperplane.

In Figure 1, we give a toy example to illustrate the pro-

posed marginal loss. As we can see, the farthest intra-class

samples and the nearest inter-class samples are selected to

compute the loss, which can decrease the intra-class vari-

ances as well as keep inter-class distances. Due to the lim-

itation of the GPU memory, the number of different identi-

ties within one batch is set as 16 in this paper. If we ran-

domly select 16 individuals and 16 images per individual,

the marginal loss looks like the matrix shown in Figure2(a).

The gray-scale value indicates the loss value. The diagonal

blocks are the penalty on intra-class variations, and the off-

diagonal values are the penalty on inter-class confusion. As

we can see, the inter-class loss is not as obvious as the intra-
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Figure 1. A simulated 2-D feature distribution graph in one batch.

We only show three classes in this batch. For a particular sample

from class A (marked by the black circle), the farthest intra-class

samples (marked by blue circles) and the nearest inter-class sam-

ples (marked by green and red circles) are selected to compute

the marginal loss. The farthest intra-class samples and the near-

est inter-class samples are both called marginal samples, which

are distributed around the decision boundary. The objective of

marginal loss is to decrease the intra-class variances as well as

keep inter-class distances.

class loss, and the marginal loss degenerates into a simi-

lar formulation to only control intra-class variances as the

centre loss [27]. Since similar persons hardly get together

randomly, we calculate the feature centre for each identity

in an off-line way and re-rank the reading sequence of the

training data. For each step, we randomly select one iden-

tity and its 15 nearest neighbour identities according to the

off-the-shelf feature centres, which can increase the proba-

bility of the effective inter-class marginal loss, as is shown

in Figure 2(b). The identity feature centres are updated af-

ter each identity has been selected for training. Compared

to the range loss [31], the proposed marginal loss is also

calculated based on groups of samples, but easier to imple-

ment.

We adopt the joint supervision of softmax loss and

marginal loss to train the CNNs for discriminative feature

learning.

L = Ls + λLm (3)

where λ is used for balancing the two loss functions.

Clearly, the CNNs supervised by joint softmax and marginal

loss are trainable and can be optimised by standard SGD.

Compared to the multibatch method [23], the softmax loss

provides separable features from a global view, and prevent

the marginal loss degrading to zeros [27].

4. Experiments

Extensive experiments results are reported in this section

on current popular and important face recognition bench-

marks, including Labelled Faces in the Wild (LFW) [10],

YouTube Faces (YTF) [28], Cross-Age Celebrity Dataset

(CACD) [3], Age Database (AgeDB) [15]and MegaFace

(a) Random

(b) Nearest Neighbour

Figure 2. Marginal loss matrix by random identity selection and

nearest neighbour selection according to feature centres. The near-

est neighbour selection can increase the probability of the effective

inter-class marginal loss.

Challenge [12]. Our approach achieves state-of-the-art per-

formance on LFW and YTF with significantly less train-

ing data (4M instead of 200M as Google FaceNet), while

we outperform other algorithms on CACD and AgeDB by a

notable amount. The proposed marginal loss also ranks 3rd

under the large training data protocol on MegaFace Chal-

lenge, the largest face identification and verification bench-

mark.

4.1. Experiment Settings

Training data. We use the MS-Celeb-1M [7] dataset as

our training data. To get a high-quality training data, we re-

rank all face images of each identity by their distances to the

identity centre [27]. For a particular identity, the face image

whose feature vector is far from the identitys feature centre

(normalised distance > 1.5) will be automatically removed.

We further manually remove the obvious noisy data from
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the farthest face images for each identity. After removing

the images of identities appearing in testing datasets, we

finally obtain a dataset which contains about 4M images of

82k unique identities.

Data prepossessing. To balance the training data for

each identity, we employ faces synthesis method proposed

in [14] to augment the training data. The generated face

images introduce new intra-class facial appearance varia-

tions, including pose, shape and expression. The preferred

choices for augmentation are faces closest to the identity

centre, because augmentation on marginal faces may am-

plify the noise. After data augmentation, there are at least

100 face images for each identity. We use five facial land-

marks (eye centres, nose tip and mouth corners) for similar-

ity transformation to normalise the face images [27]. The

faces are cropped to 112 × 96 RGB images. Following a

previous convention, each pixel (ranged between [0, 255])
in RGB images is normalised by subtracting 127.5 then di-

viding by 128.

Network Settings. We implement the proposed

marginal loss method in Tensorflow [2] with our modifica-

tions on multi-GPU implementation to hold more samples

within one batch. We employ the ResNet structure with 27
convolutional layers [27, 31], but add batch normalisation

layers [11]. We set 256 as the batch size, with 16 identities

in one batch and 16 images per identities [23]. The learn-

ing rate is started from 0.01, and divided by 10 at the 80K,

160K, 240K iterations. Total iteration is 480K. The thresh-

old θ and the error margin ξ in Equation 3 are set to 1.2 and

0.3, respectively. The in Equation 3 is set to 1.

Test settings. The deep features (512d) are taken from

the output of the fully connected layer. The score is com-

puted by the Cosine Distance of two features. Nearest

neighbour and threshold comparison are used for both iden-

tification and verification tasks. Note that, we only use a

single model for all the testing.

4.2. Experiments on the LFW and YTF datasets

We evaluate the proposed marginal loss model on two fa-

mous face recognition benchmarks, LFW (image) and YTF

(video) datasets, under unconstrained environments. LFW

dataset [10] contains 13, 233 web-collected images from

5749 different identities, with large variations in pose, ex-

pression and illuminations. Following the standard proto-

col of unrestricted with labelled outside data, we test on

6, 000 face pairs and report the experiment results in Ta-

ble 1. YTF dataset [28] consists of 3, 425 videos of 1, 595
different people. The clip durations vary from 48 frames to

6, 070 frames, with an average length of 181.3 frames. We

also follow the unrestricted with labelled outside data pro-

tocol and report the results on 5, 000 video pairs in Table 1.

In Table 1, we compare the proposed marginal loss

method against many existing state-of-the-art models, in-

Methods Images LFW (%) YTF (%)

DeepID [20] 99.47 93.20

VGG Face [17] 2.6M 98.95 97.30

Deep Face [24] 4M 97.35 91.40

Fusion [25] 500M 98.37

FaceNet [18] 200M 99.63 95.10

Baidu [13] 1.3M 99.13

Center Loss [27] 0.7M 99.28 94.9

Range Loss [31] 1.5M 99.52 93.70

Multibatch [23] 2.6M 98.8

Aug [14] 0.5M 98.06

Softmax Loss 4M 98.87 94.16

Marginal Loss 4M 99.48 95.98

Table 1. Verification performance of different methods on LFW

and YTF datasets

cluding DeepID [20], VGG Face [17], Deep Face [24],

Fusion [25], FaceNet [18], Baidu [13], Center Loss [27],

Range Loss [31], Multibatch [23], Aug [14], and our base-

line softmax loss. From the results, we can see that the

joint softmax and marginal loss outperforms the softmax

loss by a significant margin (from 98.87% to 99.48% in

LFW and from 94.16% to 95.98% in YTF), which indicates

that the proposed marginal loss can enhance the discrimina-

tive power of the deeply learned face features. Our method

even obtains similar performance with FaceNet [18], which

is trained on a largest private dataset with several million

identities.

4.3. Experiments on the CACD and AgeDB datasets

The CACD dataset is a face dataset for age-invariant face

recognition, containing 163,446 images from 2,000 celebri-

ties with labelled ages. It includes varying illumination,

pose variation, and makeup to simulate practical scenario.

However, the entire CACD dataset contains some incor-

rectly labelled samples and some duplicate images. Fol-

lowing the state-of-the-art configuration [3], we test the pro-

posed method on a subset of CACD [3], CACD-VS, which

consists of 4000 image pairs (2000 positive pairs and 2000

negative pairs) and have been carefully annotated.

We follow the ten-fold cross-validation rule to compute

the face verification rate and compare our result with the ex-

isting methods in this dataset. As can be seen from Table 2,

the proposed marginal loss significantly outperforms all the

published results [4, 6, 3, 26] on this dataset, even surpass-

ing the human-level performance with a clear margin. Even

though our method has not explicitly trained on age-related

data, the marginal loss is, to some extent, robust against age

variations.

To further observe the influence of age variations on face

recognition, we give the recognition results on the AgeDB.
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Methods Acc (%)

High-Dimensional LBP [4] 81.6

Hidden Factor Analysis [6] 84.4

Cross-Age Reference Coding [3] 87.6

LF-CNNs [26] 98.5

Human Average 85.7

Human Voting 94.2

Centre Loss [27] 97.475

Marginal Loss 98.95

Table 2. Verification performance of different methods on CACD

Methods 5 Yr 10 Yr 20 Yr 30 Yr

VGG Face [17] 93.15 92.18 89.15 85.08

Centre Loss [27] 95.93 95.15 93.07 90.72

Marginal Loss 98.12 97.95 97.15 95.75

Table 3. Verification performance (%) of different methods under

different year gaps (5 years, 10 years, 20 years, and 30 years) on

AgeDB

The experiments were conducted on a subset of the final

version of AgeDB, as AgeDB was further extended by the

time it became publicly available [15]. AgeDB is an in-

the-wild dataset with large variations in pose, expression,

illuminations, and age. AgeDB contains 12, 240 images

of 440 distinct subjects, such as actors, actresses, writers,

scientists, and politicians. Every image is annotated with

respect to the identity, age and gender attribute. The mini-

mum and maximum ages are 3 and 101, respectively. The

average age range for each subject is 49 years. There are

four groups of test data with different year gaps (5 years, 10
years, 20 years and 30 years, respectively). Each group has

ten split of face images, and each split contains 300 positive

examples and 300 negative examples. The face verification

evaluation metric is just the same with LFW. In Table 3, we

compare the proposed marginal loss to the baseline meth-

ods, VGG Face [17] and Centre Loss [27]. The proposed

marginal loss significantly outperforms the baseline meth-

ods and can keep the high accuracy level even on the subset

of 20 years gap. When the year gap increases, all of the

methods experience a noticeable performance drop, which

indicates that age variation is still very challenging espe-

cially when the year gap is larger than 30 years. Figure 3

shows some positive pairs from the subset of 30 years gap.

As the face appearance changes dramatically, face verifica-

tion on this dataset is very challenging.

4.4. Experiments on the Mega­face Challenge

MegaFace datasets [12] are recently released as the

largest testing benchmark, which aims at evaluating the

performance of face recognition algorithms at the million

Figure 3. Positive sample pairs from AgeDB with the gap of 30

years. Facial appearances undergo dramatical changes in this time

span.

scale of distractors. MegaFace datasets include gallery set

and probe set. The gallery set, a subset of Flickr photos

from Yahoo, consists of more than one million images from

690K different individuals. The probe sets are two exist-

ing databases: Facescrub [16] and FGNet [1]. Facescrub is

a publicly available dataset that containing 100K photos of

530 unique individuals, in which 55, 742 images are males,

and 52, 076 images are females. FGNet is a face ageing

dataset, with 1002 images from 82 identities. Each identity

has multiple face images at different ages (ranging from 1
to 69).

In Figure 4, we give two example probe identities from

FaceScrub and FGNet. We put the Cosine Distance be-

tween each face and the identity feature centre on the left

bottom. There is cropped version of FaceScrub images pro-

vided by MegaFace, but our method uses a different crop

size (112× 96). As a result, we crop and rescale faces from

the original images in FaceScrub. We also put the face ID

number on the top left of each face image in order to refine

the noisy faces. (We use the same visualisation method to

manually refine our training data MS-Celeb-1M [7]. An-

notators can learn the identity from the first several face

images and remove the noisy and misaligned faces from

the end.) Compared to FaceScrub face images, the faces

from FG-Net exhibit larger appearance variations due to the

long age span, especially for the childhood face images.

The intra-class variance dramatically increases the difficulty

when using the FG-Net faces as the probe images.

There are two testing scenarios (identification and veri-

fication) under two protocols (large or small training set).

The training set is defined as large if it contains more than

0.5M images and 20K subjects. Our training data belongs
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(a) FaceScrub

(b) FGNet

Figure 4. Example probe face images from FaceScrub dataset and

FGNet dataset. Compared to FaceScrub face images, the faces

from FG-Net exhibit larger appearance variations due to the long

age span, especially for the childhood face images. The intra-class

variance dramatically increases the difficulty when using the FG-

Net faces as the probe images.

to the large training set, so we follow the protocol of large

training set.

Face Identification. Face identification aims at match-

ing a given probe image to the ones with the same person in

the gallery. The MegaFace gallery contains different scale

of distractors, from 10 to 1 million, leading to increasing

challenge during testing. In face identification experiments,

we present the results by Cumulative Match Characteris-

tics (CMC) curves. It reveals the probability that a correct

gallery image is ranked on top-K. The results are shown

in Figure 5. When using FaceScrub as the probe set, the

proposed marginal loss obtains the state-of-the-art result

among the most recent public results. Taking FGNet as the

probe set, Google FaceNet obtains the best result by a large

margin, which indicates Google FaceNet is very robust un-

der age variations.

Face Verification. For face verification, the algorithm
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Figure 5. CMC curves of dierent methods with 1M distractors on

Set 1. The results of other methods are provided by MegaFace

team.

should decide a given pair of images is the same person

or not. 4 billion negative pairs between the probe and

gallery datasets are produced in the MegaFace dataset. We

compute the True Accept Rate (TAR) and False Accept

Rate (FAR) and plot the Receiver Operating Characteris-

tic (ROC) curves of different methods in Figure 6. When

using FaceScrub as the probe set, the proposed marginal

loss still obtains the state-of-the-art result among the most

recent public results. Taking FGNet as the probe set, the

proposed marginal loss witnesses a dramatical performance

drop because our training data contains fewer age variations

compared to Google’s 500M private training data.

To meet the practical high precision demand, face recog-

nition models should achieve high performance against mil-

lions of distractors. In this case, only Rank-1 identification

rate with at least 1M distractors and verification rate at a
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Figure 6. ROC curves of different methods with 1M distractors on

Set 1. The results of other methods are provided by MegaFace

team.

low false accept rate (e.g.,106) are very meaningful [12].

We include the top 3 methods from the latest MeagaFace

Challenge1 leadboard under Large and Small protocol in

Table 4 and Table 5.

From these results we have the following observations.

First, large-scale training data usually perform better when

taking FaceScrub and FGNet as the probe set. Second,

FGNet dataset is more challenging than FaceScrub dataset.

Most of the methods experience a dramatical performance

drop, except for the Google FaceNet. Taking FaceScrub as

the probe set, the proposed marginal loss ranks 3rd on both

face identification and verification tasks under the large pro-

tocol. Our method even outperforms the Google FaceNet

by 9.782% on face identification and 6.167% on face veri-

fication, respectively, which confirms the advantage of the

proposed marginal loss. Taking FGNet as the probe set, our

Methods protocol Id (%) Ver(%)

YouTu Lab Large 83.290 91.340

DeepSense V2 Large 81.298 95.993

Vocord deepVo1.2 Large 80.258 77.143

Google FaceNet v8 Large 70.496 86.473

GRCCV Small 77.677 74.887

SphereFace Small 75.766 90.045

DeepSense Small 70.983 82.851

Centre Loss [27] Small 65.234 76.516

Marginal Loss Large 80.278 92.640

Table 4. FaceScrub results: identification rates and verification

TAR at 106 FAR of different methods on MegaFace.

Methods protocol Id (%) Ver(%)

Google FaceNet v8 Large 74.594 75.550

SIATMMLAB Large 71.247 67.954

DeepSense V2 Large 63.632 56.767

SIAT MMLAB Small 55.304 50.144

SphereFace Small 47.555 40.094

DeepSense Small 43.540 29.610

Marginal Loss Large 66.432 43.703

Table 5. FGNet results: identification rates and verification TAR

at 106 FAR of different methods on MegaFace.

method still ranks 3rd on face identification task. Due to

the limitation of age variation within our training data, the

performance drop is inevitable.

5. Conclusion

In this paper, we have proposed a new loss function, re-

ferred to as marginal loss. The marginal loss can minimise

the intra-class variances as well as maximise the inter-class

distances. By combining the marginal loss with the softmax

loss to jointly supervise the learning of CNN, the discrim-

inative power of the deeply learned features can be highly

enhanced for robust face recognition. We utilise MS-Celeb-

1M, a public available large-scale training data, to train the

CNN model. Extensive experiments on several large scale

face benchmarks, such as LFW, YTF, CACD, AgeDB, and

MegaFace, have convincingly demonstrated the effective-

ness of the proposed approach. Due to the limitation of the

age variance in our training data, the proposed method ex-

periences a performance drop when there is large year gap.

In the future, we will try to propose an age-invariant method

to alleviate this problem.

Acknowledgement Stefanos Zafeiriou was partially

funded by EPSRC project EP/N007743/1 (FACER2VM),

as well as by the European Community Horizon 2020

[H2020/2014-2020] under grant agreement no. 688520

(TeSLA).

66



References

[1] Fg-net aging database, www-prima.inrialpes.fr/fgnet/.2002.

5

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467, 2016.

4

[3] B.-C. Chen, C.-S. Chen, and W. H. Hsu. Cross-age reference

coding for age-invariant face recognition and retrieval. In

European Conference on Computer Vision, pages 768–783.

Springer, 2014. 2, 3, 4, 5

[4] D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimension-

ality: High-dimensional feature and its efficient compression

for face verification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3025–

3032, 2013. 4, 5

[5] C. Gentile and M. K. Warmuth. Linear hinge loss and aver-

age margin. In Advances in neural information processing

systems, volume 11, pages 225–231, 1998. 2

[6] D. Gong, Z. Li, D. Lin, J. Liu, and X. Tang. Hidden factor

analysis for age invariant face recognition. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2872–2879, 2013. 4, 5

[7] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m:

A dataset and benchmark for large-scale face recognition. In

European Conference on Computer Vision, pages 87–102.

Springer, 2016. 1, 3, 5

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016. 1

[9] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European Conference on Com-

puter Vision, pages 630–645. Springer, 2016. 1

[10] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.

Labeled faces in the wild: A database for studying face

recognition in unconstrained environments. Technical re-

port, Technical Report 07-49, University of Massachusetts,

Amherst, 2007. 2, 3, 4

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 4

[12] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and

E. Brossard. The megaface benchmark: 1 million faces for

recognition at scale. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4873–

4882, 2016. 1, 2, 3, 5, 7

[13] J. Liu, Y. Deng, T. Bai, Z. Wei, and C. Huang. Targeting ulti-

mate accuracy: Face recognition via deep embedding. arXiv

preprint arXiv:1506.07310, 2015. 4

[14] I. Masi, A. T. Trn, T. Hassner, J. T. Leksut, and G. Medioni.

Do we really need to collect millions of faces for effective

face recognition? In European Conference on Computer

Vision, pages 579–596. Springer, 2016. 4

[15] S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kot-

sia, and S. Zafeiriou. Agedb: The first manually collected

in-the-wild age database. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shop, 2017. 2, 3, 5

[16] H.-W. Ng and S. Winkler. A data-driven approach to clean-

ing large face datasets. In Image Processing (ICIP), 2014

IEEE International Conference on, pages 343–347. IEEE,

2014. 5

[17] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In BMVC, volume 1, page 6, 2015. 1, 4, 5

[18] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 815–823, 2015. 1, 4

[19] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1

[20] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning

face representation by joint identification-verification. In

Advances in neural information processing systems, pages

1988–1996, 2014. 1, 4

[21] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-

v4, inception-resnet and the impact of residual connections

on learning. arXiv preprint arXiv:1602.07261, 2016. 1

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015. 1

[23] O. Tadmor, T. Rosenwein, S. Shalev-Shwartz, Y. Wexler, and

A. Shashua. Learning a metric embedding for face recogni-

tion using the multibatch method. In Advances In Neural

Information Processing Systems, pages 1388–1389, 2016. 2,

3, 4

[24] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1701–1708, 2014. 1,

4

[25] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web-scale

training for face identification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2746–2754, 2015. 4

[26] Y. Wen, Z. Li, and Y. Qiao. Latent factor guided convo-

lutional neural networks for age-invariant face recognition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4893–4901, 2016. 4, 5

[27] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discrimina-

tive feature learning approach for deep face recognition. In

European Conference on Computer Vision, pages 499–515.

Springer, 2016. 1, 2, 3, 4, 5, 7

[28] L. Wolf, T. Hassner, and I. Maoz. Face recognition in uncon-

strained videos with matched background similarity. In Com-

puter Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 529–534. IEEE, 2011. 2, 3, 4

[29] X. Wu, R. He, Z. Sun, and T. Tan. A light cnn for

deep face representation with noisy labels. arXiv preprint

arXiv:1511.02683, 2015. 1

67



[30] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

1

[31] X. Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao. Range

loss for deep face recognition with long-tail. arXiv preprint

arXiv:1611.08976, 2016. 1, 2, 3, 4

68


