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Marginal Maximum Likelihood Estimation for a Psychometric

Model of Discontinuous Development

Abstract

Standard item response theory (IRT) models posit latent variables to account for

regularities in students' performances on test items. They can accommodate learning

only if the expected changes in performance are smooth and, in an appropriate metric,

uniform over items. Wilson's "Saltus" model extends the ideas of IRT to development

that occurs in stages, where expected changes can be discontinuous, .low different

patterns for different types of items, and even exhibit reversals in probabilities of success

on certain tasks. Examp:es include Piagetian stages of psychological development and

Siegler's rule-based learning. This paper derives marginal maximum likelihood (MML)

estimation equations for the structural parameters of the Saltus model and suggests a

computing approximation based on the EM algorithm. For individual examinees,

Empirical Bayes probabilities of learning-stage are given, along with proficiency

parameter estimates conditional on stage membership. The MML solution is illustrated

with simulated data and an example from the domain of mixed number subtraction.

Key words: Cognitive diagnosis, empirical Bayes, item response theory, marginal

maximum likelihood, mixture models, Saltus model
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1.0 Introduction

The models of classical test theory and item response theory (IRT) characterize

examinees simply in terms of their propensities to make correct answers in a domain of

itemsthat is, their overall proficiencies. Correspondingly, the processes and the

outcomes of learning can be expressed through these models only as changes in overall

proficiency. This characterization falls short for problems of description and decision-

making cast in the framework of what we are learning about how people solve problems,

acquire knowledge, and increase their proficiencies (Glaser, 1981; Masters & Mislevy,

1993; Snow & Lohman, 1989). Learners become more competent not simply by

accreting additional facts and skills, but by reconfiguring their previous knowledge, by

"chunking" information to reduce memory loads, and by developing strategies and

models that help them discern when and how facts and skills are relevant. When

evaluating or planning instruction, the important questions may not be "How many items

did this student answer correctly?" or "What proportion of the population would have

scores lower than hers?", but, in Thompson's (1982) words, "What can this person be

thinking so that his actions make sense from his perspective?" and "What organization

does the student have in mind so that his actions seem, to him, to form a coherent

pattern?" Taking this point of view, Glaser, Lesgold, and Lajoie (1987) advocate

"achievement testing as ... a method of indexing stages of competence through indicators

of the level of development of knowledge, skill, and cognitive process."

Models that incorporate this perspective have begun to appear in the testing

literature. Examples include Tatsuoka's (1983, 1990) extension of IRT to "rule space"

through the use of cognitive task analyses, Embretson's (1985) and Samejima's (1983)

models for alternative response strategies when subtask results can be observed, and

Falmagne's (1989), Haertel's (1984), and Paulson's (1986) latent-class models built

around the combinations of skills that tasks demand.

8
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Wilson's (1984, 1989) "Saltus" model for le-ming that occurs in conceptual or

developmental stages is another model of this type. Each subject is characterized by two

variables, one qualitative and the other quantitative. The qualitative parameter, denoting

stage membership, indicates the nature of proficiency, while the quantitative parameter

indicates degree of proficiency. Although both types of parameters are unobservable,

approximate solutions in early demonstrations of Saltus treated estimates of stage

membership (based on total scores) as if they were known, true, parameter values,

followed by "tailored simulations" to correct for some of the effects of this

oversimplification. The solution offered in the present paper more properly accounts for

the uncertahlty associated with examinees' stage memberships, using Mislevy and

Verhelst's (1990) empirical Bayesian approach for mixtures of test theory models. After

reviewing the form of the Saltus model, we present marginal maximum likelihood

(MML) estimation procedures and illustrate their use with simulated data and Tatsuoka's

mixed number subtraction data (Klein, Birenbaum, Standiford, and Tatsuoka, 1981).

2.0 The Saltus Model

Wilson's (1984, 1989) Saltus model for hierarchical development generalizes the

Rasch model for dichotomous test items (Rasch, 1960/1980) by positing H

"developmental stages." An examinee is assumed to be in exactly one stage at the time

of testing, but stage membership is not directly observed. Items are also classified into H

classes. It is assumed that a Rasch model holds within each developmental stage, and the

relative distances between items within a given item class are the same irrespective of

developmental stage. The relative difficulties among item classes may differ from one

developmental stage to another, however. The amounts by which item class difficulties

vary for different stages are the "Saltus parameters." Saltus parameters can capture how

certain types of items become much easier relative to others as students reconceptualize a

9
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domain or add a new rule to their repertoire, or how certain items can actually become

harder as students progress from an earlier stage to a more advanced one if they were

previously answered correctly for the wrong reason. Wilson's (1989) illustrative

examples concerned the development of children's proportional reasoning abilities, using

balance-beam data collected by Siegler (1981), and the acquisition of subtraction rules in

a Gagnean learning hierarchy (see Gagne, 1968).

Anticipating MML estimation, we describe an estimation model in two phases.

First is the Saltus item response model, which gives probabilities of correct response

conditional on stage membership and proficiency. Second is a population model, which

concerns the proportions of a population of examinees at each stage and the distributions

of proficiency within stages.

2.1 The Saltus Item Response Model

Saltus is an extension of the Rasch model (RM) for dichotomous test items.

Under the RM, the probability that an examinee with proficiency 0 will respond correctly

to Item j (xj=1 rather than xj4) is given as

P(xj=1I 0, 13j) ='P (0-13j), (1)

where 5.
J

is the difficulty parameter of Item j, and 1/ is the cumulative logistic distribution

function; that is,

'P(z) = exp(z)/[1+exp(z)]. (2)

Under Saltus, an examinee is characterized by not just a proficiency parameter 0,

but also a stage membership parameter 0. If there are H potential developmental stages,

Oi = (4)il, , Ih), where Oils takes the value of 1 if Examinee i is in Stage h and 0 if not.

As with 0 , values of $ are not observable.

Under Saltus, as under the RM, item j has a difficulty parameter 5j. Item j is also

associated with developmental stages through the item-class indicator bi. In analogy to $,

]U
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bj = (bpi, , bi/i), where bik takes the value of 1 if item j belongs to item Class k, and 0

otherwise. In contrast with tp, however, bi is known a priori for all items.

T = (thk) is an H-by-H matrix of Saltus parameters. In particular, thk expresses

an effect on the difficulty of items in Class k that applies to examinees in Stage h. The

probability that an examinee with stage membership paramet-r and proficiency 6 will

respond correctly to item j is given as

P( xj=110, $, T) =11 T(0-13j+ThkAhbjk. (3)

In the sequel, '11(0-Pj-Khk) will be abbreviated as nkh(0). Note that the double product

over h and k in (3) is merely a device to pick up the appropriate Saltus parameter for item

j that corresponds to the developmental stage of this particular examinee, since the

exponent (1)hbjk is one in that case and zero otherwise.

Item responses are assumed to be independent given 0 and 4). Letting x

(x1, . , xh) be a vector of responses to n items,

P( x 10, 4), p, T) = 111111 { 'Irjhk(0)xj[1- 1Filik(0)](1 -xj)} 4)hbjk (4)
j h k

For brevity, we define

Ph(X 10, (3j, T) =11 n tqiihk(0)xj[ppihko ))i_i-xj, }bp(
j k

Ph(x 10,13, 'I), or Ph(x 10) for short, is the conditional probability of a response pattern x

given 0 and membership in Stage h.

2.1.1 Restrictions to Resolve Scaling Indeterminacies

The model defined in (3) is not identified unless further restrictions are imposed

on item and Saltus parameters. This can be accomplished in several ways, but once

1 1
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parameters have been estimated under one set of restrictions, it is straightforward to

translate them to what they would be under a different set. The following restrictions

prove convenient for MML estimation:

ERj = 0,

so that item parameters are centered around the origin;

tiik = 0 for all k,

so that the item parameter estimates apply directly to Stage 1 in a simple RM, but relative

changes in item difficulties may apply for other stages via Saltus parameters; and

thi = 0 for all h,

so that the item difficulty scale within each Stage h is set by restricting its Class 1 item

difficulty parameters to be the same as those in Stage 1. Together, this system constitutes

a necessary set of restrictions for identifying the model. An empirical check on the

identification status of a Saltus model with a particular configuration of b's and a

particular set of data is discussed in Section 3.3.

2.1.2 A Special Case

Wilson (1989) has discussed the case in which arrival in Stage h is signaled by a

drop in the difficulty of items in item Class h, relative to items in all other classes. This

difficulty shift is maintained in higher stages. This structure corresponds to a set of

constraints among Saltus parameters:

Thk = 0 if h<k,

and

Thk = 'Ch k if both h>k and h'>k.

In this case there are only H-1 unique values for Saltus parameters, which for

convenience may be called simply T2, . . . , TH.
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2.2 The Population Model

For estimation purposes, we assume a population in which the proportion of

examinees in each developmental Stage h is rch, with 0<ch<1. Denote by it the vector

(It n1-1)'

The density function of 0 for Stage h is denoted gh(0). We shall discuss two

special cases for g: a normal solution, wherein gh(0) is distributed as N(gh, ,3h), and a

(nearly) nonparametric approximation, wherein each gh is characterized as a histogram

over a grid of prespecified points. The weight or density at point q for Stage h is denoted

(%q. For generality, we use a to denote population density parameters. In the normal

solution, a = al, , GH); in the nonparametric approximation, a = (cohq).

3.0 Marginal Estimation of Structural Parameters

Assuming the Saltus item response model, (4) is the conditional probability of a

response pattern x. Assuming further the population model described above, the

marginal probability of x, or the probability of observing x from an examinee selected at

random from the population, is given as

P(x) = p(x 113, T, n, a)

= ichi Ph(x I 0,0,T)gh(0 I ct)d0 . (5)

Let X = (x1, . , xN) be the response matrix of a sample of N examinees to n test items.

A realization of X induces the marginal likelihood function for (II; T, 1r, a), as the product

Over examinees of factors like (5):

L(X T, n, a). n p(xi I 13, T, n, a). (6)

We refer to fS, T, x, and a as the structural parameters of the problem. Their number

remains constant irrespective of N. The incidental parameters 0 and $, whose numbers

13
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increase proportionally as N increases, have been eliminated by marginalizing over their

respective distributions as in (5). MML esiimation proceeds by finding the values of the

structural parameters that maximize (6).

Equation (6) is an "incomplete data" likelihood function of the form addressed by

Dempster, Laird, and Rubin (1977) . Estimating the structural parameters would be

straightforward if values of 0 and were observed from each examinee along with his or

her response vector x; this would be a "complete data" problem. The EM algorithm

maximizes the incomplete-data likelihood (6) iteratively. The E-step, or expectation step

of each cycle, calculates the expectations of the sufficient statistics that the complete-data

problem would require, conditional on the observed data and provisional estimates of the

structural parameters. The M-step, or maximization step, solves what looks like a

complete-data maximum likelihood problem using these conditional expectations of

sufficient statistics. The resulting maxima for the structural parameters are improved

estimates of the incomplete-data solution, and serve as input to the next E-step.

We employ the variation of the EM algorithm used by Bock and Aitkin (1981) to

estimate item parameters, by Mislevy (1984, 1986) to estimate item parameters and

population distribution parameters, and by Mislevy and Verhelst (1990) to estimate the

parameters of mixtures of IRT models. Saltus is in fact a special case of the mixture

models addressed by Mislevy and Verhelst. The integration that appears in (5) is

approximated by summation over a fixed grid of points. The E-step calculates, for each

examinee, the conditional probabilities of belonging to each stage, and, within each stage,

the probabilities that 0 takes the various grid-point values. The grid points play the role

of weighted pseudo-data points in the M-step.
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3.1 Solving the "Complete Data" Problem

This section gives the ML solution that would obtain if values of 0 and 4) were

observed for each sampled respondent along with x. Among the N sampled examinees,

some number Q<_.N distinct values of 0 will have been observed, say 81, ..., 8q,..., 8Q.

Now define the following statistics. Iihq is an indicator variable that takes the value 1 if

Examinee i is in Stage h and has proficiency 8q, and is zero otherwise. Nh is the number

of examinees observed to be in Stage h:

Nh = Oih

q

Nhq is the number of examinees in Stage h with 0=8q:

Nhq = I Iihq.

(7)

(8)

Rihq is the number of examinees in Stage h with 0=0q who responded correctly to Item j:

= Xij Iihq

(9)

The complete data likelihood for (5, T, 7C, a) induced by the observation of X, e,

and 4) can be written as

013,T,2t,a I X,0,0) = P(Nh I 70111/(Nhq I Nh,a)Il P(Rjhq I Nhq,P,T)

whence the complete data log likelihood

X,*(11,T,n,a I X,0,$) = E Nh log nh E Nha log gh(8q I a) x
h q

J k
bjk {RjhglogWihk(N)+(NhcrRihq)log[1-Wjhk(eq)]

(10)

MIL. estimation for the complete data problem proceeds by solving the likelihood

equations, which are obtained by setting to zero the first derivatives of (10) with respect

to each element of (5, T, x, a).

15
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For elements of x, one must impose the constraint that Eich=1. This can be

accomplished with a Lagrangian multiplier (e.g., Mislevy, 1984, 369-370). One then

obtains a closed form solution for the proportion of examinees in each stage:

7Ch =

For elements of a, the likelihood equations are

ax,* alog gk(el a)
as Nhq acc

A nonparametric ML estimate of gh, for example, estimates the density at each point Oq

(12)

by the proportion of examinees from Stage q observed to have that proficiency:

fr."I h NhciNh.

If normal distributions are assumed, their means are estimated as

(13)

= Nh-lE eqNhc,
q (14)

If each normal distribution can have a different variance, then

10-1V fia \210
Oh V-704) INN ;

q (15)

if all are assumed to have the same variance, then

0 = N-1E E, (804)2Nhq
h q (16)

Even in the complete data problem, closed form solutions for 11 and T are not

forthcoming. They can be estimated together without heavy calculation, however, using

Newton steps for each element. From a provisional estimate z0 of a generic element z, an

improved estimate is obtained as

{
z o= z

DX

az
ia2x*

z=z° }I az2
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For elements of 13, the constraint that Ei3.r0 must be taken into account. Defining

n-1

Pn =
RR

we obtain the required first and second derivatives shown below. For Item j, for j=1, ,

n-1,

and

ax,* 2 2, j,k090-Riql-bniaNNIPTigjeq)-12Q (17)

u1-1 q h k

a2a,*
= I Niz boi,k(eqp-xp,,,(ea bnenhocji-Trthk(ea . (18)

arg q h

For Saltus parameter Thk, for h=2, , H and k=2, , H,

and

b.* [Rjig-Nhqglihk (eq)1
q

a2),,*
= -E Nhqy, boi,,,c(eji-xweciA .

ate q

(19)

(20)

Note that the summations over j in (19) and (20), which include the factor bik, serve

merely to pick up terms for only those items in item class k.

Solving the likelihood equations for f3 and T requires provisional estimates of

each to calculate the kis terms that appear in (17) - (20). Once they are computed, a

Newton step is taken for each element in 13 and T to provide improved estimates. These

are used again to calculate improved estimates of the 'ifs for the next Newton step. This

procedure ignores the cross second derivatives among the elements of 0 and T, but, from

good starting values, converges rapidly nonetheless.

17
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3.2 Solving the Incomplete Data Problem

We make the simplifying assumption that 9 parameters can take only Q possible

values, namely 81, . . . , 8Q. These values will play the role of the observed values elq

discussed in the preceding section. In any actual application of the Saltus model, neither

the values of 0. nor 0i are known, so neither will be the values of the indicator variables

Iihq. If the values of the structural parameters 0, T, IC, and a were known, however, it

would be possible to calculate the expected values of the Iih s given xis:

nh gh(eql a) Ph(Xileq, T)

E nk gk(eql a) Pk(x der, 13, T)
k r

(21)

In the E-step of the EM approach to maximizing the marginal likelihood function

(6), one evaluates (21) using provisional estimates of 0, T, n, and a. From

these, one obtains expectations of the summary statistics defined in (7) - (9); call them

Nh, F.Thq, and Rjhq. Note that the 8q values play the role that observed 0 values played

in the complete data solution. Now, however, rather than observed counts of examinees

at such a point, we have expected values of those counts.

In the M-step, one uses Nh, Fthq, and Rjhq in place of their observed counterparts

to solve facsimiles of the complete data likelihood equations via (11) - (20). Cycles of E-

and M-steps are continued until successive changes are suitably small. Because the EM

algorithm can be slow to converge, accelerating methods such as Ramsay's (1975) may

be employed.

Equation (21) will be recognized as an application of Bayes theorem, giving the

posterior probability that 0i=8q and Oih=1 after observing xi. The normalizing constant

18
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in the denominator is an approximation of p(xi) as given in (5). During the E-step, one

may therefore accumulate the sum -2 E log p(xi) to track the performance of

improvement in fit over cycles, or to compare the fit of various values of structural

parameters. For example, one can evaluate the impact of setting a particular Saltus

parameter to zero, or compare a normal solution with equal variances in all stages against

a solution that permits different variances.

3.3 Approximating the Information Matrix

Under the grid-point approximation described above, a method described by

Louis (1982, Section 3.2) provides an approximation of the observed information matrix

for MML estimates of the structural parameters in the Saltus model. For brevity, denote

the parameter (5, T, R, a) by n. Louis' approximation is a sum over subjects of cross-

products of expected complete-data log likelihood first derivatives:

[E I ax*(T I x q,4)

h q an
[E ax*(11 x

h q an, kg]

The required terms for fi and T are simplified versions of (17) and (19) respectively:

and

ax,*(n X ihrf4.)
= DP)1(0,4)-x0 - [ lnh(EV-xii]

a x,*(ii I x .,I =1) _ bin[xj-41,,,om
?Clan

j

Incorporating the constraint that the it's must sum to one, we obtain for ith, for h=1, .

H-1,

ax*en x ihq=1)

arch

1 9
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For means and variances in the normal solution,
aaArt x 8q-ph

aph

and
aA,*(TII x ihq=1) _(0q-ple-cg

as:g 2

If the observed information matrix is positive definite and the solution is the

global maximum of the likelihood, its inverse is a large-sample approximation of the

sampling variance of the MML estimates. In particular, square roots of the diagonal

entries of I-1 are large-sample standard errors.

In addition to indicating the precision with which structural parameters have been

estimated, the observed information matrix contributes to an understanding of the

identification status of the model. As noted above, resolving the scale indeterminacies is

necessary but not sufficient for identification. Another necessary condition is that the

true information matrix be positive definite. Since the observed information matrix is a

consistent estimate of the information matrix, a positive definite observed information

matrix is supportive evidence of local identification. That is, in the neighborhood of the

MML estimates, changes in parameter values imply changes in modelled response

probabilities. The reader is referred to McHugh (1956) and Goodman (1974) for

additional discussion of these issues in the closely-related context of latent class analysis.

3.4 Starting Values

The closer starting values are to final estimates, the fewer EM cycles will be

required. Good starting values for the Saltus model can be based on Wilson's (1989)

approximate estimation procedures. Modified slightly to conform to the identifying

constraints specified in this presentation, the required steps are as follows.
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1. Assign each examinee to a stage based on his observed response pattern. This

will be straightforward in those cases in which successive stages imply greater

probabilities of correct response to all items; total scores then identify "most

likely" values of stage membership. In other cases, however, total scores will not

suffice--as when moving to a higher stage means higher probabilities of success

for some item classes, but lower probabilities for classes of items formerly

answered correctly for the wrong reasons. Here provisional assignments for some

examinees will depend on their relative successes in contrasting item classes. If it

is still not possible to identify a most likely stage from among two or more

possibilities, assign the examinee to one of them at random.

2. Use as initial estimates of n the proportions of examinees provisionally assigned

to the stages. If no examinees have been assigned to a stage, use a small value

such as .25/H as the starting value for that stage and adjust other probabilities

accordingly.

3. Obtain estimates of item and person parameters under the simple Rasch model

independently for each stage, using only the examinees provisionally assigned to

that stage. If an item has a zero or perfect score, assign it a logit value based on

Cohen's (1979) approximation for an item with a score of 1 or 1 less than the

maximum score, respectively. Linearly transform the results so that

a. the item parameter estimates for Stage 1 are centered at zero, and

b. the average item difficulty for item Class 1 takes the same value in all

stage calibrations.

4. Use as starting values for 13 the item parameter estimates from the Stage 1

calibration run.

21
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5. To calculate starting values for a, use person ability estimates from each stage's

calibration run, resealed by the linear transformations applied to item difficulties

applied in Step 3 above. For example, if normal distributions have been posited,

calculate the mean and standard deviation of resealed 8's of the examinees

provisionally assigned to each stage.

6. Calculate the average item difficulty in each item Class k in each resealed

calibration run h, denoting the results13hk. Use as starting values for T the values

hic = Di* 131k h=2, H; k=2, ..., H.

If additional constraints have been posited among T's, appropriate averages or

contrasts of the values so obtained may be used.

4.0 Empirical Bayes Estimates of Examinee Parameters

Once final estimates of structural parameters have been obtained, posterior

probabilities of stage membership can be calculated for any examinee, and 0 can be

estimated conditional on stage membership. One begins by evaluating the expectations

of the indicator variables Iihq as shown in (21), using the MML estimates of 13, T, n, and

a. For a response vector xi, the empirical Bayes approximation of probability of

membership in Stage h is given as

P(4)ih=1 I Xi) Iihq . (22)
q

Conditional on membership in Stage h, the posterior expectation of 0 is approximated as

= E(0 I Oih=1,Xi) ithq,
q q

(23)

and the posterior variance is

Var(0 4ih=1, Xi) = (E 492qiihq iihq)/X iihq (24)
q q

22
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5.0 Example 1: Simulated Data

This section describes a modest simulation comparing the performance of the

MML algorithm with a solution heating examinees' stage memberships as if they were

known true parameter values. Wilson's (1984) original approximations were based on a

joint maximum likelihood (JML) estimation algorithm, and proceeded by first using an

auxiliary algorithm to place each person into one or the other of the Saltus stages. This

classification was not altered in the course of the algorithm. Under these circumstances,

there is no mixture present, so the model is considerably simplified. The approach was

found to give poor results under even generous conditions, and Wilson devised a

correction based on "tailored simulations" to bring the estimates of the Saltus parameters

closer to generating values. This was not a very satisfactory situation, and, in part,

motivated this paper. In this simulation, we use an MML algorithm rather than a JML

algorithm to estimate the remaining item and examinee-group parameters, to focus the

comparison on the way examinee group membership is handled. In addition we judged

that "tailored simulation", although somewhat efficacious in the previous work, should

not be a part f the comparison. It is a complex and time-consuming process that few

analysts would perform in practice.

Two-class Saltus item-response data were generated in a 2x2 design, based on the

following two factors:

The number of items in each Saltus class: moderate (10) or small (4). One would

expect more difficulty recovering parameters with the smaller number of items,

because less information is available about examinees' stage memberships.

The value of the discontinuity parameter t22: moderate (1.5) or small (0.5). One

would expect the smaller discontinuity value to cause more difficulty in parameter
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recovery, again because classification of examinees according to stage

membership is more problematic.

Each condition was replicated ten times, with 500 simulees drawn from each of two

normally-distributed examinee stage groups, with means of -1.5 and 0.5 and standard

deviations ')f .25. Saltus parameters were estimated for each replication under both the

MML approach with a normal distribution and the "3 as 4)" approach.

Table 1 gives the generating values and the averages of the parameter estimates

over the ten replications for the 10-items-per-class conditions, for both the moderate and

small discontinuity conditions. There were ten items in each of two Saltus levels (items 1

to 10 and 11 to 20, respectively), with difficulties uniformly spread from -1.5 to 1.5.

Insert Table 1 about here

Consider first the combination of conditions that was expected to provide the best

results, namely moderate number of items and moderate discontinuity. For the mixture

model algorithm (column 3), the item parameters have been estimated quite well and the

size of the Saltus stage groups is quite accurate, but the Saltus parameter has been

underestimated by 0.11, or about 7 to 8 percent of its value. The ability distributions

have been recaptured well. The "3 as 4)" approach (column 4), estimates item difficulties

in the right order, but inflated away from zero. The Saltus parameter is overestimated by

almost 300 percent, although the proportional representation of the Saltus stage groups is

about right. The mean of the lower group is over a half a logit above its generating value,

and its standard deviation is somewhat larger than it should be. The second stage's mean

is well-estimated, and its standard deviation is also too large. Wilson's "tailored

simulations" would have reduced the overestimation of the Saltus parameter, but would

not have addressed any of the other problems.

'4
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The fifth column of Table 1 shows MML results for the small discontinuity

condition. Compared to the moderate discontinuity condition, the item parameters are

slightly deflated towards zero, and the size of the Stage 1 group has been estimated as .54

rather than .50. The Saltus parameter has again been underestimated, this time by 28

percent of its generating value. The stage means have both been overestimated

somewhat, but their standard deviations behaved differently: the first is about twice as

large as the generating value, while the second is only half as large. Column 6 contains

the results for the "$ as 4)" approach. Here the item difficulties are inflated away from

zero to about the same extent that the mixture model estimates were deflated back

towards zero, and the size of Stage 1 group has been estimated as .56 rather than .50.

Once again the Saltus parameter is greatly overestimated, this time by 500 percent. Both

stage means have shrunk towards zero considerably, and both standard deviations are

inflated, although to different degrees.

Table 2 presents generating values and results for the 4-items-per-class

conditions. Among MML estimates (column 3), the item parameters have been estimated

quite well and the size of the Saltus stage groups is quite accurate, but the Saltus

parameter has again been underestimated, by about 10 percent. The ability distributions

have been recaptured fairly well, although the standard deviation of the Stage 2 group is

underestimated. The "$ as 4" approach (column 4) shows an entirely different picture.

The item difficulties are in the right order, but all are inflated away from zero somewhat.

The Saltus parameter is overestimated by almost 200 percent, and the size of the Stage 1

group is overestimated. The mean of this lower group is almost logic above its generating

value while the Stage 1 group's mean is less than it should be. Both standard deviations

are overestimated.

Insert Table 2 about here

2F
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The fifth column of Table 2 shows the MML results for the small discontinuity

condition. Compared to the moderate discontinuity condition, the item parameters have

been deflated towards zero, and the size of Stage 1 group has been overestimated even

more. The Saltus parameter has again been underestimatedessentially as zero. The

stage group means have both been overestimated again, but their standard deviations have

behaved differa ly: the first is about twice as large as the generating value, the second is

about half as large. Column 6 contains the corresponding "$ as 0" results. Here the item

difficulties are slightly inflated away from zero, and the size of the Stage 1 group has

been considerably overestimated. Once again the Saltus parameter is greatly

overestimated, this time by 300 percent. Both stage group means have been reduced

towards a common value, while both standard deviations are inflated.

In summary, the most salient of the results from the simulations are as follows:

1. Under the moderate number of items condition, and the moderate discontinuity

condition, MML gives very good parameter recovery, with the exception of an

underestimate of the Saltus parameter of an order somewhat less than 10 percent.

2. Under the mixed conditions (i.e., the "better" condition for one factor, and the

"poorer" condition for the other), the mixture model gives good parameter

recovery.

3. Under the small number of items condition and the small discontinuity condition,

the mixture model condition gives a noticeably poorer estimation of several

parameters, especially the Saltus parametr.

4. The "3 as 0" approach gives uniformly poor estimates for the Saltus parameter,

invariably overestimating it. The other parameters follow roughly the same

relative patterns as for the MML results, although they are wor. e in almost all

cases.
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6.0 Example 2: Mixed Number Subtraction

The data analyzed in this example are responses of 325 junior high school

students to 20 open-ended items dealing with mixed-number subtraction, gathered by

Kikumi Tatsuoka and her colleagues. More detailed descriptions of the data and

extensive cognitive analyses of the domain can be found in Klein, Birenbaum, Standiford,

and Tatsuoka (1981), and an analysis based on Tatsuoka's "rule-space" approach appears

in Tatsuoka (1990). We neglect many aspects of this rich data set in the following

example, in order to illustrate how the Saltus model captures a key feature of in the

domain: increasing competence possesses both qualitative and quantitative aspects, as

learners master procedures and become more proficient in applying them. We contrast

the Saltus solution with an analysis based on the RM shown as (1) and the 2-parameter

logistic item response model:

P(xj=110, aj, 13j) = tli[aj(0-(3j)],

where aj, the item slope parameter, indicates the sensitivity to which the probability of a

correct response to item j reacts to changes in 0. Items with high values of aj are

considered to be good at discriminating high from low competence, from the perspective

of the 2PL.

Table 3 presents the text of the items, percents-correct, and item parameter

estimates under the RM and 2PL. These item parameters were obtained with M:slevy

and Bock's (1989) PC BILOG program, assuming a normal distribution for 0 and setting

the scale so that the arithmetic mean of the estimated 13s was 0 and the geometric mean of

the as was 1. Because we renumbered the items in order to group them in Saltus classes,

the original Klein et al. item numbers are also shown. The item classes are based on

whether an item requires two key procedures for its solution: finding a common

denominator, and converting between mixed numbers and improper fractions. Items in

Class 1 require neither, items in Class 2 require finding a common denominator; items in
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Class 3 require converting, and possibly finding a common denominator as well. This

implies that the qualitative aspect of students' is signaled by acquiring the common-

denominator skill, then the converting skill. This path of development is not necessary

either logically or psychologically, but it is not unreasonable to posit in this example

because it accords with the instructional sequence.

Insert Table 3 about here

There is a clear pattern in the percentages of correct response. The items in each

item class are of similar difficulty, and the average difficulties increase from the first

class, to the second, to the third, with average percents correct of .73, .55, and .34. The

RM difficulty parameters reflect this pattern directly, since they are nearly linear

transformation of logits. The RM of the probabilities would suggest increasing

competence to take the form of uniformly increasing chances of correct response on all

items, in the logit metric. The 2PL would also posit linear increases in items' logits of

correct response, but allow for faster or slower rates from one item to another, in

proportion to their cc parameters. Note the systematically higher 2PL slopes for the Class

2 and Class 3 items. The 2PL represents a substantially better fit to the actual response

data, improving BILOG's chi-square index of comparative fit by 416 at the cost of 20

additional parameters (i.e., slopes).

Tables 4 through 6 present the results of the MML Saltus analysis, with normal

distributions fitted within developmental stages. The Saltus solution offers a slightly

greater improvement over the RM than does the 2PL 449 chi-square units at the cost of

12 additional parameters (4 TS, 3 means and standard deviations, and 2 independent

proportions). The Saltus 13s in Table 4 are item difficulty parameters for examinees in

Stage 1. They are more spread out than those of the RM, indicating that for these

examinees, exhibiting a large gap between the items in Class 1 and tk items in Classes 2
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and 3. The gap closes considerably when we look at the difficulty estimates that pertain

to Stage 2 examinees; Class 2 items become just as easy for these students as Class 1

items. The shift is by the amount of the 't22 parameter in Table 5. Class 3 items still

remain relatively difficult for Stage 2 examinees. The discontinuity associated with

examinees in Stage 3 is the drop in difficulty of Class 3 items.

Insert Tables 4-6 about here

In addition to the shifts in relative item difficulties, the developmental stages are

also distinguished in terms of their 0 distributions (noting, of course, that 0 has a different

meaning for each stage, in terms of its implications for success on items from different

classes). Figure 1 illustrates the relative locations of item difficulties and examinee

distributions for the three stages. The locations of the Class 1 items set the scale; they are

identical across the three panels. Being in Stage 1 typically implies middling chances of

answering Class 1 items correctly, and practically no chance at Class 2 or 3 items. The

Stage 2 line shows a noticeably higher 0 distribution and a marked drop in the relative

difficulty of Class 2 items. The Stage 3 line shows a slightly higher 0 distribution and a

marked drop in the relative difficulties of Class 3 items. These patterns are reflected in

Table 7, which combines stage means with item parameters to give typical probabilities

of correct response to each item from examinees of different classes.

Insert Figure 1 and Table 7 about here

Table 8 further details the discontinuities that Saltus can accomodate by showing

observed responses and modeled probabilities for five examinees. We see that...

Examinee 4 got only half the items right, in a pattern spread across item classes.

The RM and the 2PL accomodate this pattern well. Saltus handles it with a

posterior concentrated on Stage 3, with a low 0 value. There are enough Class 2

2 9
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and Class 3 items correct to believe the student is beginning to use common

denominator and converting procedures, but is not working with accuracy and

consistency; this concords with missing two of the six easy Class 1 items.

Examinee 7 got half the Class 1 items right, three of the Class 2 items, and none

of the Class 3 items. From the point of view of the RM and 2PL, some correct

Class 3 responses would be expected. Saltus Stage 2 accords well with pattern,

accounting for a dropoff between Class 2 and Class 3 items for students at this

stage.

Examinee 12 got two Class 1 items right, one Class 2 item, and no Class 3 items.

All models and all stages within Saltus agree in the predictions about the Class 1

items, but Saltus Stage 1 accords with this pattern best. For a student low in Class

1, correct answers to Class 2 and Class 3 items would be more rare than the RM

or 2PL would predict.

Examinee 18 answered all Class 1 and Class 2 items correctly, but only three

Class 3 items. This is a prototypical example of a Saltus Stage 2 pattern. For a

student with this many correct responses, the RM and 2PL predict relatively fewer

successes on Class 1 and 2 items, and relatively more successes on Class 3 items.

Examinee 536 also has Stage 2 as most probable stage under Saltus with a

posterior probability of .67. There is an appreciable .33 probability for Stage 3,

however, since half of the Class 3 items were answered correctly.

In this example, the improvements of fit over the Rasch model offered by both the

2PL and Saltus clearly indicate that there is more going on in the data than the RM can

capture. The Saltus approach the potential role of theories about learning in the domain

to provide inferences about the nature of students' competencies.
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7.0 Conclusion

This paper has described a marginal maximum likelihood (MML) estimation

algorithm for Wilson's (1984, 1989) Saltus model. The algorithm's performance was

compared with that of joint maximum likelihood (JML), in which estimates of subjects'

unobservable Saltus group memberships based on their total scores are treated as known.

Substantial improvements were observed for tests of moderate length (10 items per class)

and short length (4 items per class), in which misclassification of subjects is most likely

to occur. Biases in estimates of structural parameters were eliminated almost competely

for the moderate-length test, but not for the short test. In addition to reducing estimation

biases, MML provides standard errors for item and Saltus parameter estimates that

appropriately incorporate uncertainty due to imperfect information about examinees'

Saltus group memberships.
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Table 1

Generating Values and Estimates for the Moderate Number-of-Items Condition

Parameter

P1

P2

133

04

05

136

07

138

P9

1310

1311

1312

P13

1314

13 15

1316

1317

P18

1319

1320

*122

'x1

1E2

N.1

P-2

01

a

T22=1.5 1224.5
Generating

Values

Marginal Solution

Solution treating

$ as 0

Marginal Solution

Solution treating

$ as 4)

-1.50 -1.52 -2.25 -1.45 -1.89

-1.40 -1.37 -2.15 -1.38 -1.86

-1.30 -1.32 -2.11 -1.29 -1.79

-1.20 -1.20 -2.02 -1.16 -1.68

-1.10 -1.08 -1.92 -1.06 -1.60

-1.00 -0.98 -1.84 -0.87 -1.44

-0.90 -0.92 -1.78 -0.90 -1.47

-0.80 -0.74 -1.64 -0.74 -1.33

-0.60 -0.58 -1.51 -0.57 -1.20

-0.50 -0.43 -1.38 -0.42 -1.07

0.50 0.44 1.09 0.45 0.94

0.60 0.59 1.30 0.57 1.07

0.80 0.79 1.56 0.75 1.26

0.90 0.85 1.65 0.83 1.35

1.00 0.97 1.82 1.00 1.54

1.10 1.10 1.99 1.08 1.63

1.20 1.19 2.13 1.14 1.70

1.30 1.32 2.27 1.27 1.86

1.40 1.39 2.34 1.34 1.94

1.50 1.50 2.45 1.43 2.06

1.39 4.37 0.36 2.44

0.50 0.50 0.51 0.54 0.56

0.50 0.50 0.49 0.46 0.44

-1.50 -1.54 -0.91 -1.37 -0.80

0.50 0.60 0.49 0.66 -0.27

0.25 0.25 0.40 0.51 0.87

0.25 0.21 0.43 0.13 0.45
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Table 2

Generating Values and Estimates for the Sm211 Number-of-Items Condition

Parameter

T22=1.5 T22=0.5

Generating

Values

Marginal Solution

Solution treating

$ as $

Marginal Solution

Solution treating

$ as 4)

131 -1.50 -1.45 -1.72 -1.37 -1.64

i32 -1.20 -1.19 -1.46 -1.07 -1.38

03 -1.00 -0.98 -1.27 -0.84 -1.17

04 -0.50 -0.45 -0.80 -0.29 -0.70

35 0.50 0.49 0.86 0.37 0.72

P15 1.00 0.94 1.24 0.83 1.16

137 1.20 1.18 1.45 0.99 1.32

08 1.50 1.46 1.70 1.38 1.70

't22 1.38 2.95 -0.09 1.55

n 1 0.50 0.51 0.55 0.59 0.63

n2 0.50 0.50 0.45 0.41 0.37

1.1.1 -1.50 -1.46 -0.61 -1.21 -0.64

P.2 0.50 0.58 -0.21 1.09 -0.06

al 0.25 0.24 0.76 0.47 0.77

02 0.25 0.10 0.48 0.08 0.39



Table 3

Item Text, Percents-Correct, and Saltus Difficulty Parameter Estimates

Item

Tatsuoka

Item # Text

Percent

Correct

RM 2PL

Difficulty Difficulty

2PL

Slope

Saltus Class 1 Items

1 6

2 8

3 9

4 12

5 14

6 16

Saltus Class 2 Items

7 1

8 2

9 3

10 5

Saltus Class 3 Items

11 4

12 7

13 10

14 11

15 13

16 15

17 17

18 18

19 19

20 20

6
7

_4
7
i i =
3i-2=

8 -I =
345-3i=
44 -14 =

5 3 -
3 4
3 3 -
4 8
5
6 9

.1. _

45 -30 =

3 2 -21=
3-23 =

412.-22-=
44-24=
3i-2i=
2-4=
7i-t=

4116 21 =
7-14=
44-14=

.79

.71

.69

.71

.75

.74

.50

.56

.51

.61

.37

.33

.31

.37

.31

.38

.34

.41

.26

.31

-1.36

-.92

-.86

-.94

-1.16

-1.09

-.04

-.31

-.05

-.51

.54

.76

.84

.56

.82

.49

.69

.37

1.10

.84

-1.46

-1.23

-3.97

-.97

-1.10

-1.05

.29

.06

.31

-.89

.86

1.10

1.08

.89

1.10

.84

1.02

.73

1.31

1.11

.77

.44

.12

.65

.85

.81

1.04

1.68

1.36

.27

1.96

.98

2.28

1.25

4.58

1.08

1.i5

1.03

1.75

1.61

3?



Table 4

Saltus Item Parameter Estimates

Implied Within-Stage Difficulty

Item L. SE(13) Stage 1 Stage 2 Stage 3

Saltus Class 1 Items

1 -2.94 .15 -2.94 -2.94 -2.94

2 -2.34 .14 -2.34 -2.34 -2.34

3 -2.26 .14 -2.26 -2.26 -2.26

4 -2.38 .14 -2.38 -2.38 -2.38

5 -2.66 .14 -2.66 -2.66 -2.66

6 -2.57 .14 -2.57 -2.57 -2.57

Saltus Class 2 Items

7 0.00 .16 0.00 -2.85 -1.20

8 -0.52 .16 -0.52 -3.37 -1.73

9 -0.02 .16 -0.02 -2.88 -1.23

10 -0.94 .16 -0.94 -3.79 -2.14

Saltus Class 3 Items

11 1.32 .18 1.32 0.32 -1.80

12 1.77 .18 1.77 0.77 -1.36

13 1.97 .18 1.97 0.96 -1.16

14 1.36 .18 1.36 0.35 -1.77

15 1.93 .18 1.93 0.93 -1.19

16 1.20 .18 1.20 0.20 -1.93

17 1.64 .18 1.64 0.64 -1.49

18 0.95 .18 0.95 -0.05 -2.18

19 2.51 .19 2.51 1.51 -0.62

20 1.97 .18 1.97 0.96 -1.16



Table 5

Saltus Parameter Estimates (Standard Errors in Parentheses)

Item Class
Examinee Stage

1 2 3

1 0.00* 0.00* 0.00*

2 0.00* 2.85 ( 0.20) 1.21 ( 0.13)

3 0.00* 1.00 ( 0.09) 3.13 ( 0.08)

Fixed at zei for model identification.



Table 6

Saltus Examinee-Stage Estimates

Parameter Stage 1 Stage 2 Stage 3
it 0.45 0.25 0.31

I-L
-2.27 -0.77 -0.44

a 0.68 0.90 0.85



Table 7

Modelled Average Percent-Correct for Saltus Classes

Item Stage 1 Stage 2 Stage 3

Saltus Class 1 Items

1 0.66 0.90 0.92

2 0.52 0.83 0.87

3 0.50 0.82 0.86

4 0.53 0.83 0.87

5 0.60 0.87 0.90

6 0.57 0.86 0.89

Average 0.56 0.85 0.89

Saltus Class 2 Items

7 0.09 0.89 0.68

8 0.15 0.93 0.78

9 0.10 0.89 0.69

10 0.21 0.95 0.85

Average 0.14 0.92 0.75

Saltus Class 3 Items

11 0.03 0.25 0.80

12 0.02 0.18 0.71

13 0.01 0.15 0.67

14 0.03 0.25 0.79

15 0.01 0.16 0.68

16 0.03 0.28 0.82

17 0.02 0.20 0.74

18 0.04 0.33 0.85

19 0.01 0.09 0.54

20 0.01 0.15 0.67

Average 0.02 0.20 0.73
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Figure 1

Modelled Saltus Item Locations and Class Membership Distributions
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