AUTHOR	Mislery, Robert J.; Wilson, Mark
TITLE	Marginal Maximum Likelihood Estimation for
	Psychometric Model of Discontinuous Development.
INSTITUTION	California Univ., Berkeley. Graduate School of
	Education.; Educational Testing Service, Princeton, N.J.
SPONS AGENCY	Office of Naval Research, Arlington, VA. Cognitive and Neural Sciences Div.; Spencer Foundation, Chicago, Ill.
REPORT NO	ETS-RR-92-74-ONR
PUB DATE	Dec 92
CONTRACT	$\begin{aligned} & \text { N00014-88-K-0304; PE-61153N; PR-RR-04204; } \\ & \text { TA-RR-04204-01; WU-R\&T-4421552 } \end{aligned}$
NOTE	50 p .
PUB TYPE	Reports - Evaluative/Feasibility (142)
EDRS PRICE	MF01/PCO2 Plus Postage.
DESCRIPTORS	Bayesian Statistics; *Change; *Development; *Item Response Theory; Learning; *Maximum Likelihood Statistics; Probability; Psychological Characteristics; 'Psychometrics; Simulation; Test Items
IDENTIFIERS	EM Algori†hm; "Marginal Maximum Likelihood Statistics; *Saltus Model

Abstract

Standard item response theory (IRT) models posit latent variables to account for regularities in students' performance on test items. They can accommodate learning only if the expected changes in performance are smooth, and, in an appropriate metric, uniform over items. Wilson's "Saltus" model extends the ideas of \perp RT to development that occurs in stages, where expected changes can be discontinuous, show different patterns for different types of items, and even exhibit reversals in probabilities of success on certain tasks. Examples include Piagetian stages of psychological development and Siegler's rule-based learning. This paper deriv,s marginal maximum likelihood (MML) estimation equations for the structural parameters of the Saltus model and suggests a computing approximation based on the EM algorithm. For individual examinees, Empirical Bayes probabilities of learning-stage are given, along with proficiency parameter estimates conditional on stage membership. The MML solution is illustrated with simulated data and an example from the domain of mixed number subtraction. (Contains 29 references, 8 tables, and 1 figure.) (Author)

[^0]TO THE EDUCATIONAL RESOURCES INFORMATION CENTERIERICI

MARGINAL MAXIMUM LIKELIHOOD ESTIMATION FOR A PSYCHOMETRIC MODEL OF DISCONTINUOUS DEVELOPME': 'T

Robert J. Mislevy
Educational Testing Service

Mark Wilson
University of California, Berkeley

This research was sponsored in part by the Cognitive Science Program
Cognitive and Neural Sciences Division
Office of Naval Research, under
Contract No. N00014-88-K-0304
R\&T 4421552
Robert J. Mislevy, Principal investigator
Educational Testing Service
Princeton, New Jersey
Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December, 1992 3. REPORT TYPE A	DATES COVERED Final
4. Title and subtitle Marginal Maximum Likelihood Estimation for a Psychometric Model of Discontinuous Development 6. AUTHOR(S) Robert J. Mislevy \& Mark Wilson	5. FUNDING NUMBERS G. NOOO14-88-K-0304 PE 61153N PR RR 04204 TA RR 04204-01 WU R\&T 4421552
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Educational Testing Service // Graduate School of Educ. Rosedale Road University of California Princeton, NJ 08541 Berkeley, CA	8. PERFORMING ORGANIZATION REPORT NUMBER N/ A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Cognitive Sciences Code 1142cs Office of Naval Research Arlington, VA 22217-5000	10. SPONSORING/MONITORING agency report number N/A
11. SUPPLEMENTARY NOTES None	
12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified/Unlimited	12b. DISTRIBUTION CODE N/A

13. ABSTRACT (Maximum 200 words)

Standard item response theory (IRT) models posit latent variables to account for regularities in students' performances in test items. They can accomodate learnirg only if the expected changes in performance are smooth and, in an appropriate metric, uniform over items. Wilson's "Saltus" model extends the ideas of IRT to developmen'. that occurs in stages, where expected changes can be discontinuous, show different patterns for different types of items, and even exhibit reversals in probabilities of success in certain tasks. Examples include Piagetian stages of psychological development and Siegler's rule-based learning. This paper derives mariginal maximum liielihood (MML) estimation equations for the structural parameters of the Saltus model and suggests a computing approximation based on the EM algorithm. For individual examinees, Empirical Bayes probabilities of learning-stage are given, along with proficiency parameter estimates conditional on stage membership. The MMU solution is illustrated with simulated data and an example from the domain of mixed number subtraction.

14. SUBIECT TERMS

Cognitive diagnosis, empirical Bayes, itrm response theory, marginal maximum likelihood, mixture models, Saltus modr ${ }^{\wedge}$

15. NUMBER OF PAGES
$43+$ RDP
16. PRICE CODE
N/A
20. LIMITATION OF ABSTRACT
SAR

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).
Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87-30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Fundina Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract	PR - Project
G - Grant	TA - Task
PE - Program	WU - Work Unit
	Element

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Adciress(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
 Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, :TAR).

DOD - See DODD 5230.24, "Distribution Statements on Technical Documents."
DOE - See authorities.
NASA - See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.
DOD - Leave blank.
DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
NASA - Leave biank.
NTIS - Leave blank.

Block 13. Abstract. include a brief (Maximum 200 words) factuai summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the totai number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Blocks 17.-19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Marginal Maximum Likelihood Estimation for a Psychometric Model of Discontinuous Development

Robert J. Mislevy
Educational Testing Service
and
Mark Wilson Graduate School of Education University of California, Berkeley

The authors' names appear in alphabetical order. We would like to thank Karen Draney for computer programming, Kikumi Tatsuoka for allowing us to use the mixed-number subtraction data, and Kikumi Tatsuoka and Chan Dayton for helpful suggestions. The first author's work was supported by Contract No. N00014-88-K-0304, R\&T 4421552, from the Cognitive Sciences Program, Cognitive and Neural Sciences Division, Office of Naval Research, and by the Program Research Planning Council of Educational Testing Service. The second author's work was supported by a National Academy of Education Spencer Fellowship and by a Junior Faculty Research Grant from the Committee on Research, University of California at Berkeley.

Copyright © 1992. Educational Testing Service. All rights reserved.

Marginal Maximum Likelihood Estimation for a Psychometric
 Model of Discontinuous Development

Abstract

Standard item response theory (IRT) models posit laient variables to account for regularities in students' performances on test items. They can accommodate learning only if the expected changes in performance are smooth and, in an appropriate metric, uniform over items. Wilson's "Saltus" model extends the ideas of $\mathbb{R T}$ to development that occurs in stages, where expected changes can be discontinuous, thow different patterns for different types of items, and even exhibit reversals in probabilities of success on certain tasks. Exampies include Piagetian stages of psychological development and Siegler's rule-based learning. This paper derives marginal maximum likelihood (MML) estimation equations for the structural parameters of the Saltus model and suggests a computing approximation based on the EM algorithm. For individual examinees, Empirical Bayes probabilities of learning-stage are given, along with proficiency parameter estimates conditional on stage membership. The MML solution is illustrated with simulated data and an example from the domain of mixed number subtraction.

Key words: Cognitive diagnosis, empirical Bayes, item response theory, marginal maximum likelihood, mixture models, Saltus model

1.0 Introduction

The models of classical test theory and item response theory (IRT) characterize examinees simply in terms of their propensities to make correct answers in a domain of items-that is, their overall proficiencies. Correspondingly, the processes and the outcomes of learning can be expressed through these models only as changes in overall proficiency. This characterization falls short for problems of description and decisionmaking cast in the framework of what we are learning about how people solve problems, acquire knowledge, and increase their proficiencies (Glaser, 1981; Masters \& Mislevy, 1993; Snow \& Lohman, 1989). Learners become more competent not simply by accreting additional facts and skills, but by reconfiguring their previous knowledge, by "chunking" information to reduce memory loads, and by developing strategies and models that help them discern when and how facts and skills are relevant. When evaluating or planning instruction, the important questions may not be "How many items did this student answer correctly?" or "What proportion of the population would have scores lower than hers?", but, in Thompson's (1982) words, "What can this person be thinking so that his actions make sense from his perspective?" and "What organization does the student have in mind so that his actions seem, to him, to form a coherent pattern?" Taking this point of view, Glaser, Lesgold, and Lajoie (1987) advocate "achievement testing as ... a method of indexing stages of competence through indicators of the level of development of knowledge, skill, and cognitive process."

Models that incorporate this perspective have begun to appear in the testing literature. Examples include 'Tatsuoka's $(1983,1990)$ extension of IRT to "rule space" through the use of cognitive iask analyses, Embretson's (1985) and Samejima's (1983) models for alternative response strategies when subtask results can be observed, and Falmagne's (1989), Haertel's (1984), and Paulson's (1986) latent-class models built around the combinations of skills that tasks demand.

Wilson's (1984,1989) "Saltus" model for leorning that occurs in conceptual or developmental stages is another model of this type. Each subject is characterized by two variables, one qualitative and the other quantitative. The qualitative parameter, denoting stage membership, indicates the nature of proficiency, while the quantitative parameter indicates degree of proficiency. Although both types of parameters are unobservable, approximate solutions in early demonstrations of Saltus treated estimates of stage membership (based on total scores) as if they were known, true, parameter values, followed by "tailored simulations" to correct for some of the effects of this oversimplification. The solution offered in the present paper more properly accounts for the uncertainty associated with examinees' stage memberships, using Mislevy and Verhelst's (1990) empirical Bayesian approach for mixtures of test theory models. After reviewing the form of the Saltus model, we present marginal maximum likelihood (MML) estimation procedures and illustrate their use with simulated data and Tatsuoka's mixed number subtraction data (Klein, Birenbaum, Standiford, and Tatsuoka, 1981).

2.0 The Saltus Model

Wilson's $(1984,1989)$ Saltus model for hierarchical development generalizes the Rasch model for dichotomous test items (Rasch, 1960/1980) by positing H "developmental stages." An examinee is assumed to be in exactly one stage at the time of testing, but stage membership is not directly observed. Items are also classified into H classes. It is assumed that a Rasch model holds within each developmental stage, and the relative distances between items within a given item class are the same irrespective of developmental stage. The relative difficulties among item classes may differ from one developmental stage to another, however. The amounts by which item class difficulties vary for different stages are the "Saltus parameters." Saltus parameters can capture how certain types of items become much easier relative to others as students reconceptualize a
domain or add a new rule to their repertoire, or how certain items can actually become harder as students progress from an earlier stage to a more advanced one if they were previously answered correctly for the wrong reason. Wilson's (1989) illustrative examples concerned the development of children's proportional reasoning abilities, using balance-beam data collected by Siegler (1981), and the acquisition of subtraction rules in a Gagnéan learning hierarchy (see Gagné, 1968).

Anticipating MML estimation, we describe an estimation model in two phases. First is the Saltus item response model, which gives probabilities of correct response conditional on stage membership and proficiency. Second is a population model, which concerns the proportions of a population of examinees at each stage and the distributions of proficiency within stages.

2.1 The Saltus Item Response Model

Saltus is an extension of the Rasch model (RM) for dichotomous test items.
Under the RM, the probability that an examinee with proficiency θ will respond correctly to Item $j\left(x_{j}=1\right.$ rather than $\left.x_{j}=0\right)$ is given as

$$
\begin{equation*}
P\left(x_{j}=1 \mid \theta, \beta_{j}\right)=\Psi\left(\theta-\beta_{j}\right) \tag{1}
\end{equation*}
$$

where β_{j} is the difficulty parameter of Item j, and Ψ is the cumulative logistic distribution function; that is,

$$
\begin{equation*}
\Psi(z)=\exp (z)[1+\exp (z)] \tag{2}
\end{equation*}
$$

Under Saltus, an examinee is characterized by not just a proficiency parameter θ, but also a stage membership parameter ϕ. If there are H potential developmental stages, $\phi_{\mathrm{i}}=\left(\phi_{\mathrm{i}}, \ldots, \phi_{\mathrm{iH}}\right)$, where ϕ_{ih} takes the value of 1 if Examinee i is in Stage h and 0 if not. As with θ, values of ϕ are not observable.

Under Saltus, as under the RM , item j has a difficulty parameter β_{j}. Item j is also associated with developmental stages through the item-class indicator $\mathbf{b}_{\mathbf{j}}$. In analogy to $\boldsymbol{\phi}$,
$\mathbf{b}_{\mathrm{j}}=\left(b_{\mathrm{j}}, \ldots, b_{j H}\right)$, where $b_{j k}$ takes the value of 1 if item j belongs to item Class k, and 0 otherwise. In contrast with ϕ, however, $\mathbf{b}_{\mathbf{j}}$ is known a priori for all items.
$\mathbf{T}=\left(\tau_{\mathrm{hk}}\right)$ is an H -by-H matrix of Saltus parameters. In particular, τ_{hk} expresses an effect on the difficulty of items in Class k that applies to examinees in Stage h. The probability that an examinee with stage membership paramet $\uparrow \phi$ and proficiency θ will respond correctly to item j is given as

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{x}_{\mathrm{j}}=11 \theta, \phi, \beta_{\mathrm{j}}, \mathbf{T}\right)=\prod_{\mathrm{h}} \prod_{\mathrm{k}} \Psi\left(\theta-\beta_{\mathrm{j}}+\tau_{\mathrm{hk}}\right) \phi_{\mathrm{h}} \mathrm{~b}_{\mathrm{jk}} . \tag{3}
\end{equation*}
$$

In the sequel, $\Psi\left(\theta-\beta_{j}+\tau_{h k}\right)$ will be abbreviated as $\Psi_{j k h}(\theta)$. Note that the double product over h and k in (3) is merely a device to pick up the appropriate Saltus parameter for item j that corresponds to the developmental stage of this particular examinee, since the exponent $\phi_{\mathrm{h}} \mathrm{b}_{\mathrm{jk}}$ is one in that case and zero otherwise.

Item responses are assumed to be independent given θ and ϕ. Letting $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$ be a vector of responses to n items,

$$
\begin{equation*}
P(x \mid \theta, \phi, \beta, T)=\prod_{j} \prod_{h} \prod_{k}\left\{\Psi_{j h k}(\theta)^{x_{j}}\left[1-\Psi_{j h k}(\theta)\right]^{\left.\left(1-x_{j}\right)\right\}} \phi_{h} b_{j k} .\right. \tag{4}
\end{equation*}
$$

For brevity, we define

$$
P_{h}\left(\mathbf{x} \mid \theta, \beta_{j}, T\right)=\prod_{j} \prod_{k}\left\{\Psi_{j h k}(\theta)^{x_{j}}\left[1-\Psi_{j h k}(\theta)\right]^{\left(1-x_{j}\right)}\right\}^{b_{j k}} ;
$$

$P_{h}(\mathbf{x} \mid \theta, \beta, T)$, or $P_{h}(\mathbf{x} \mid \theta)$ for short, is the conditional probability of a response pattern \mathbf{x} given θ and membership in Stage h .

2.1.1 Restrictions to Resolve Scaling Indeterminacies

The model defined in (3) is not identified unless further restrictions are imposed on item and Saltus parameters. This can be accomplished in several ways, but once
parameters have been estimated under one set of restrictions, it is straightforward to translate them to what they would be under a different set. The following restrictions prove convenient for MML estimation:

$$
\Sigma \beta_{\mathrm{j}}=0,
$$

so that item parameters are centered around the origin;

$$
\tau_{1 k}=0 \text { for all } k
$$

so that the item parameter estimates apply directly to Stage 1 in a simple RM, but relative changes in item difficulties may apply for other stages via Saltus parameters; and

$$
\tau_{\mathrm{h} 1}=0 \text { for all } \mathrm{h},
$$

so that the item difficulty scale within each Stage h is set by restricting its Class 1 item difficulty parameters to be the same as those in Stage 1. Together, this system constitutes a necessa:y set of restrictions for identifying the model. An empirical check on the identification status of a Saltus model with a particular configuration of b 's and a particular set of data is discussed in Section 3.3.

2.1.2 A Special Case

Wilson (1989) has discussed the case in which arrival in Stage h is signaled by a drop in the difficulty of items in item Class h, relative to items in all other classes. This difficulty shift is maintained in higher stages. This structure corresponds to a set of constraints among Saltus parameters:

$$
\tau_{\mathrm{hk}}=0 \text { if } \mathrm{h}<\mathrm{k},
$$

and

$$
\tau_{\mathrm{hk}}=\tau_{\mathrm{hk}} \text { if both } \mathrm{h} \geq \mathrm{k} \text { and } \mathrm{h}^{\prime} \geq \mathrm{k} .
$$

In this case there are only H-1 unique values for Saltus parameters, which for convenience may be called simply $\tau_{2}, \ldots, \tau_{H}$.

2.2 The Population Model

For estimation purposes, we assume a population in which the proportion of examinees in each developmental Stage h is π_{h}, with $0<\pi_{h}<1$. Denote by π the vector $\left(\pi_{1}, \ldots, \pi_{H}\right)$.

The density function of θ for Stage h is denoted $g_{h}(\theta)$. We shall discuss two special cases for g : a normal solution, wherein $g_{h}(\theta)$ is distributed as $N\left(\mu_{h}, \sigma_{h}\right)$, and a (nearly) nonparametric approximation, wherein each g_{h} is characterized as a histogram over a grid of prespecified points. The weight or density at point q for Stage h is denoted ω_{hq}. For generality, we use $\boldsymbol{\alpha}$ to denote population density parameters. In the normal solution, $\boldsymbol{\alpha}=\left(\mu_{1}, \sigma_{1}, \ldots, \mu_{\mathrm{H}}, \sigma_{\mathrm{H}}\right)$; in the nonparametric approximation, $\boldsymbol{\alpha}=\left(\omega_{\mathrm{hq}}\right)$.

3.0 Marginal Estimation of Structural Parameters

Assuming the Saltus item response model, (4) is the conditional probability of a response pattern \mathbf{x}. Assuming further the population model described above, the marginal probability of \mathbf{x}, or the probability of observing \mathbf{x} from an examinee selected at random from the population, is given as

$$
\begin{align*}
\mathrm{p}(\mathbf{x}) & =\mathrm{p}(\mathbf{x} \mid \boldsymbol{\beta}, \mathbf{T}, \pi, \boldsymbol{\alpha}) \\
& =\sum_{\mathrm{h}} \pi_{\mathrm{h}} \int \mathrm{P}_{\mathrm{h}}(\mathbf{x} \mid \theta, \boldsymbol{\beta}, \mathbf{T}) \operatorname{gh}_{\mathrm{h}}(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \mathrm{d} \theta \tag{5}
\end{align*}
$$

Let $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{N}}\right)$ be the response matrix of a sample of N examinees to n test items. A realization of \mathbf{X} induces the marginal likelihood function for ($\boldsymbol{\beta}, \mathrm{T}, \boldsymbol{\pi}, \boldsymbol{\alpha}$), as the product over examinees of factors like (5):

$$
\begin{equation*}
L(X \mid \beta, T, \pi, \alpha)=\prod_{i} p\left(x_{i} \mid \beta, T, \pi, \alpha\right) \tag{6}
\end{equation*}
$$

We refer to β, T, π, and α as the structural parameters of the problem. Their number remains constant irrespective of N. The incidental parameters θ and ϕ, whose numbers
increase proportionally as N increases, have been eliminated by marginalizing over their respective distributions as in (5). MML estimation proceeds by finding the values of the structural parameters that maximize (6).

Equation (6) is an "incomplete data" likelihood function of the form addressed by Dempster, Laird, and Rubin (1977). Estimating the structural parameters would be straightforward if values of θ and ϕ were observed from each examinee along with his or her response vector \mathbf{x}; this would be a "complete data" problem. The EM algorithm maximizes the incomplete-data likelihood (6) iteratively. The E-step, or expectation step of each cycle, calculates the expectations of the sufficient statistics that the complete-data problem would require, conditional on the observed data and provisional estimates of the structural parameters. The M-step, or maximization step, solves what looks like a complete-data maximum likelihood problem using these conditional expectations of sufficient statistics. The resulting maxima for the structural parameters are improved estimates of the incomplete-data solution, and serve as input to the next E-step.

We employ the variation of the EM algorithm used by Bock and Aitkin (1981) to estimate item parameters, by Mislevy $(1984,1986)$ to estimate item parameters and population distribution parameters, and by Mislevy and Verhelst (1990) to estimate the parameters of miztures of IRT models. Saltus is in fact a special case of the mixture models addressed by Mislevy and Verhelst. The integration that appears in (5) is approximated by summation over a fixed grid of points. The E-step calculates, for each examinee, the conditional probabilities of belonging to each stage, and, within each stage, the probabilities that θ takes the various grid-point values. The grid points play the role of weighted pseudo-data points in the M-step.

3.1 Solving the "Complete Data" Problem

This section gives the ML solution that would obtain if values of θ and ϕ were observed for each sampled respondent along with \mathbf{x}. Among the N sampled examinees, some number $\mathrm{Q} \leq \mathrm{N}$ distinct values of θ will have been observed, say $\Theta_{1}, \ldots, \Theta_{\mathrm{q}}, \ldots, \Theta_{\mathrm{Q}}$. Now define the following statistics. $I_{i h q}$ is an indicator variable that takes the value 1 if Examinee i is in Stage h and has proficiency $\Theta \mathrm{q}$, and is zero otherwise. N_{h} is the number of examinees observed to be in Stage h :

$$
\begin{equation*}
\mathrm{N}_{\mathrm{h}}=\sum_{\mathrm{i}} \phi_{\mathrm{ih}}=\sum_{\mathrm{i}} \sum_{\mathrm{q}} \mathrm{I}_{\mathrm{ihq}} . \tag{7}
\end{equation*}
$$

$N_{h q}$ is the number of examinees in Stage h with $\theta=\Theta_{q}$:

$$
\begin{equation*}
N_{\mathrm{hq}}=\sum_{\mathrm{i}} \mathrm{I}_{\mathrm{ihq}} . \tag{8}
\end{equation*}
$$

$R_{j h q}$ is the number of examinees in Stage h with $\theta=\Theta_{q}$ who responded correculy to Item j :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{jhq}}=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}} \mathrm{I}_{\mathrm{ihq}} . \tag{9}
\end{equation*}
$$

The complete data likelihood for (β, T, π, α) induced by the observation of $\mathbf{X}, \boldsymbol{\theta}$, and ϕ can be written as

$$
L^{*}(\beta, T, \pi, \alpha \mid X, \theta, \phi)=\prod_{h} P\left(N_{h} \mid \pi\right) \prod_{q} P\left(N_{h q} \mid N_{h}, \alpha\right) \prod_{j} P\left(R_{j h q} \mid N_{h q}, \beta, T\right),
$$

whence the complete data log likelihood

$$
\begin{align*}
& \lambda^{*}(\beta, T, \pi, \alpha \mid \mathbf{X}, \theta, \phi)=\sum_{h} N_{h} \log \pi_{\mathrm{h}} \sum_{\mathrm{q}} \mathrm{~N}_{\mathrm{hq}} \log \mathrm{gh}_{\mathrm{h}}\left(\Theta_{\mathrm{q}} \mid \alpha\right) \times \\
& \quad \sum_{\mathrm{j}} \sum_{\mathrm{k}} b_{j k}\left\{\mathrm{R}_{\mathrm{jhq}} \log \Psi_{j h k}\left(\Theta_{\mathrm{q}}\right)+\left(\mathrm{N}_{\mathrm{hq}}-\mathrm{R}_{\mathrm{jhq}}\right) \log \left[1-\Psi_{\mathrm{jhk}}\left(\Theta_{\mathrm{q}}\right)\right]\right\} \tag{10}
\end{align*}
$$

ML estimation for the complete data problem proceeds by solving the likelihood equations, which are obtained by setting to zero the first derivatives of (10) with respect to eacin element of ($\boldsymbol{\beta}, \mathrm{T}, \boldsymbol{\pi}, \boldsymbol{\alpha}$).

MML estimation for discontinuous development
Page 9

For elements of \boldsymbol{x}, one must impose the constraint that $\Sigma \pi_{\mathrm{h}}=1$. This can be accomplished with a Lagrangian multiplier (e.g., Mislevy, 1984, 369-370). One then obtains a closed form solution for the proportion of examinees in each stage:

$$
\begin{equation*}
\hat{\pi}_{\mathrm{h}}=\mathrm{N}_{\mathrm{h}} / \mathrm{N} . \tag{11}
\end{equation*}
$$

For elements of α, the likelihood equations are

$$
\begin{equation*}
\frac{\partial \lambda^{*}}{\partial \alpha}=\sum_{\mathrm{h}} \sum_{\mathrm{q}} \mathrm{~N}_{\mathrm{hq}} \frac{\partial \log \mathrm{~g}_{\mathrm{h}}\left(\Theta_{\mathrm{q}} \mid \alpha\right)}{\partial \alpha}=0 . \tag{12}
\end{equation*}
$$

A nonparametric ML estimate of g_{h}, for example, estimates the density at each point Θ_{q} by the proportion of examinees from Stage q observed to have that proficiency:

$$
\begin{equation*}
\hat{\omega}_{\mathrm{hq}}=\mathrm{N}_{\mathrm{h} \boldsymbol{q}} / \mathrm{N}_{\mathrm{h}} . \tag{13}
\end{equation*}
$$

If normal distributions are assumed, their means are estimated as

$$
\begin{equation*}
\hat{\mu}_{\mathrm{h}}=\mathrm{N}_{\mathrm{h}}^{-1} \sum_{\mathrm{q}} \Theta_{\mathrm{q}} \mathrm{~N}_{\mathrm{hq}} \tag{14}
\end{equation*}
$$

If each normal distribution can have a different variance, then

$$
\begin{equation*}
\hat{\sigma}_{h}^{2}=N_{h}^{-1} \sum_{q}\left(\Theta_{q}-\mu_{h}\right)^{2} N_{h q} \tag{15}
\end{equation*}
$$

if all are assumed to have the same variance, then

$$
\begin{equation*}
\hat{\sigma}^{2}=N^{-1} \sum_{h} \sum_{q}\left(\Theta_{q}-\mu_{h}\right)^{2} N_{h q} . \tag{16}
\end{equation*}
$$

Even in the complete data problem, closed form solutions for $\boldsymbol{\beta}$ and \mathbf{T} are not forthcoming. They can be estimated together without heavy calculation, however, using Newton steps for each element. From a provisional estimate z^{0} of a generic element z, an improved estimate is obtained as

$$
z^{1}=z^{0}-\left\{\left.\frac{\partial \lambda^{*}}{\partial z}\right|_{z=z^{0}}\right\}\left\{\left.\frac{\partial^{2} \lambda^{*}}{\partial z^{2}}\right|_{z=z^{0}}\right\}^{-1} .
$$

For elements of β, the constraint that $\Sigma \beta_{j}=0$ must be taken into account. Defining

$$
\beta_{n}=-\sum_{j=1}^{n-1} \beta_{j}
$$

we obtain the required first and second derivatives shown below. For Item j, for $j=1, \ldots$, n-1,

$$
\begin{equation*}
\frac{\partial \lambda^{*}}{\partial \beta_{j}}=\sum_{q} \sum_{h} \sum_{k} b_{j k}\left[N_{h q} \Psi_{j k k}\left(\Theta_{q}\right)-R_{j \mathrm{kq}}\right]-b_{\mathrm{rk}}\left[N_{\mathrm{hq}} \Psi_{\mathrm{rhk}}\left(\Theta_{q}\right)-\mathrm{R}_{\mathrm{rhq}}\right] \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \lambda^{*}}{\partial \beta_{j}^{2}}=-\sum_{\mathbf{q}} \sum_{\mathrm{h}} N_{\mathrm{hq}} \sum_{\mathbf{k}} b_{j \mathrm{jk}} \Psi_{j \mathrm{jkk}}\left(\Theta_{q}\right)\left[1-\Psi_{j h k}\left(\Theta_{q}\right)\right]+b_{\mathrm{rkk}} \Psi_{\mathrm{nhk}}\left(\Theta_{\mathrm{q}}\right)\left[1-\Psi_{\mathrm{nhk}}\left(\Theta_{\mathrm{q}}\right)\right] \tag{18}
\end{equation*}
$$

For Saltus parameter $\tau_{h k}$, for $h=2, \ldots, H$ and $k=2, \ldots, H$,

$$
\begin{equation*}
\frac{\partial \lambda^{*}}{\partial \tau_{h k}}=\sum_{q} \sum_{j} b_{j k}\left[R_{j h q}-N_{h q} \Psi_{j h k}\left(e_{q}\right)\right] \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \lambda^{*}}{\partial \tau_{h k}^{2}}=-\sum_{q} N_{h q} \sum_{j} b_{j k} \Psi_{j k k}\left(\Theta_{q}\right)\left[1-\Psi_{j k k}\left(\Theta_{q}\right)\right] . \tag{20}
\end{equation*}
$$

Note that the summations over j in (19) and (20), which include the factor $b_{j k}$, serve merely to pick up terms for only those items in item class k.

Solving the likelihood equations for $\boldsymbol{\beta}$ and \mathbf{T} requires provisional estimates of each to calculate the $\Psi_{j h k}$ terms that appear in (17) - (20). Once they are computed, a Newton step is taken for each element in $\boldsymbol{\beta}$ and \mathbf{T} to provide improved estimates. These are used again to calcuate improved estimates of the Ψ s for the next Newton step. This procedure ignores the cross second derivatives among the elements of β and T , but, from good starting values, converges rapidly nonetheless.

3.2 Solving the Incomplete Data Problem

We make the simplifying assumption that θ parameters can take only Q possible values, namely $\Theta_{1}, \ldots, \Theta_{\mathrm{Q}}$. These values will play the role of the observed values Θ_{q} discussed in the preceding section. In any actual application of the Saltus model, neither the values of θ_{i} nor ϕ_{i} are known, so neither will be the values of the indicator variables $I_{i h q}$. If the values of the structural parameters β, T, π, and α were known, however, it would be possible to calculate the expected values of the $I_{i h q}$ s given $x_{i} s$:

$$
\begin{align*}
\tilde{\mathrm{I}}_{\mathrm{iqq}} & =\mathrm{E}\left(\mathrm{I}_{\mathrm{hqq}} \mid \mathbf{x}_{\mathrm{i}}, \boldsymbol{\beta}, \mathrm{~T}, \pi, \alpha\right) \\
& =\frac{\pi_{\mathrm{h}} \mathrm{~g}_{\mathrm{h}}\left(\Theta_{\mathrm{q}} \mid \boldsymbol{\alpha}\right) \mathrm{P}_{\mathrm{h}}\left(\mathbf{x}_{\mathrm{i}} \mid \Theta_{\mathrm{q}}, \boldsymbol{\beta}, \mathrm{~T}\right)}{\sum_{\mathrm{k}} \pi_{\mathrm{k}} \sum_{\mathrm{r}} \mathrm{~g}_{\mathrm{k}}\left(\Theta_{\mathrm{q}} \mid \boldsymbol{\alpha}\right) \mathrm{P}_{\mathrm{k}}\left(\mathbf{x}_{\mathrm{i}} \mid \Theta_{\mathrm{r}}, \boldsymbol{\beta}, \mathrm{~T}\right)} . \tag{21}
\end{align*}
$$

In the E-step of the EM approach to maximizing the marginal likelihood function (6), one evaluates (21) using provisional estimates of $\boldsymbol{\beta}, \mathrm{T}, \boldsymbol{\pi}$, and $\boldsymbol{\alpha}$. From these, one obtains expectations of the summary statistics defined in (7) - (9); call them $\widetilde{\mathrm{N}}_{\mathrm{h}}, \widetilde{\mathrm{N}}_{\mathrm{hq}}$, and $\widetilde{\mathrm{R}}_{\mathrm{jhq}}$. Note that the Θ_{q} values play the role that observed θ values played in the complete data solution. Now, however, rather than observed counts of examinees at such a point, we have expected values of those counts.

In the M-step, one uses $\widetilde{\mathrm{N}}_{\mathrm{h}}, \widetilde{\mathrm{N}}_{\mathrm{hq}}$, and $\widetilde{\mathrm{R}}_{\mathrm{jhq}}$ in place of their observed counterparts to solve facsimiles of the complete data likelihood equations via (11) - (20). Cycles of Eand M -steps are continued until successive changes are suitably small. Because the EM algorithm can be slow to converge, accelerating methods such as Ramsay's (1975) may be employed.

Equation (21) will be recognized as an application of Bayes theorem, giving the posterior probability that $\theta_{\mathrm{i}}=\Theta_{\mathrm{q}}$ and $\phi_{\mathrm{ih}}=1$ after observing x_{i}. The nomializing constant
in the denominator is an approximation of $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$ as given in (5). During the E-step, one may therefore accumulate the sum $-2 \Sigma \log p\left(x_{j}\right)$ to track the performance of improvement in fit over cycles, or to compare the fit of various values of structural parameters. For example, one can evaluate the impact of setting a particular Saltus parameter to zero, or compare a normal solution with equal variances in all stages against a solution that permits different variances.

3.3 Approximating the Information Matrix

Under the grid-point approximation described above, a method described by Louis (1982, Section 3.2) provides an approximation of the observed information matrix for MML estimates of the structural parameters in the Saltus model. For brevity, denote the parameter (β, T, π, α) by η. Louis' approximation is a sum over subjects of crossproducts of expected complete-data log likelihood first derivatives:

$$
I(\eta)=\sum_{i}\left[\sum_{h} \sum_{q} \frac{\partial \lambda^{*}\left(\eta \mid x_{i} \mathrm{I}_{\mathrm{ihq}}=1\right)}{\partial \eta} \tilde{\mathrm{I}}_{\mathrm{inq}}\right]\left[\sum_{\mathrm{h}} \sum_{\mathrm{q}} \frac{\partial \lambda^{*}\left(\eta \mid \mathrm{x}_{\mathrm{i}} \mathrm{I}_{\mathrm{inq}}=1\right)}{\partial \eta^{\prime}} \tilde{\mathrm{I}}_{\mathrm{inq}}\right]
$$

The required terms for β and T are simplified versions of (17) and (19) respectively:
and

Incorporating the constraint that the π^{\prime} 's must sum to one, we obtain for π_{h}, for $h=1, \ldots$, H-1,

$$
\frac{\partial \lambda^{*}\left(\eta \mid \mathbf{x}_{\mathrm{i}} \mathrm{I}_{\mathrm{iqq}}=1\right)}{\partial \pi_{\mathrm{h}}}=\pi_{\mathrm{h}}^{1}-\pi_{\mathrm{H}_{\mathrm{h}}} .
$$

For means and variances in the normal solution,

$$
\frac{\partial \lambda^{*}\left(\eta \mid x_{i} I_{i \mathrm{inq}}=1\right)}{\partial \mu_{h}}=\frac{\Theta_{\mathrm{q}}-\mu_{\mathrm{h}}}{\sigma_{\mathrm{h}}^{2}}
$$

and

$$
\frac{\partial \lambda^{*}\left(\eta \mid x_{i} I_{\mathrm{hq}}=1\right)}{\partial \sigma_{h}^{2}}=\frac{\left(\Theta_{\mathrm{q}}-\mu_{h}\right)^{2}-\sigma_{h}^{2}}{2 \sigma_{h}^{4}} .
$$

If the observed information matrix is positive definite and the solution is the global maximum of the likelihood, its inverse is a large-sample approximation of the sampling variance of the MML estimates. In particular, square roots of the diagonal entries of I^{-1} are large-sample standard errors.

In addition to indicating the precision with which structural parameters have been estimated, the observed information matrix contributes to an understanding of the identification status of the model. As noted above, resolving the scale indeterminacies is necessary but not sufficient for identification. Another necessary condition is that the true information matrix be positive definite. Since the observed information matrix is a consistent estimate of the information matrix, a positive definite observed information matrix is supportive evidence of local identification. That is, in the neighborhood of the MML estimates, changes in parameter values imply changes in modelled response probabilities. The reader is referred to McHugh (1956) and Goodman (1974) for additional discussion of these issues in the closely-related context of latent class analysis.

3.4 Starting Values

The closer starting values are to final estimates, the fewer EM cycles will be required. Good starting values for the Saltus model can be based on Wilson's (1989) approximate estimation procedures. Modified slightly to conform to the identifying constraints specified in this presentation, the required steps are as follows.

1. Assign each examinee to a stage based on his observed response pattern. This will be straightforward in those cases in which successive stages imply greater probabilities of correct response to all items; total scores then identify "most likely" values of stage membership. In other cases, however, total scores will not suffice--as when moving to a higher stage means higher probabilities of success for some item classes, but lower probabilities for classes of items formerly answered correctly for the wrong reasons. Here provisional assignments for some examinees will depend on their relative successes in contrasting item classes. If it is still not possible to identify a most likely stage from among two or more possibilities, assign the examinee to one of them at random.
2. Use as initial estimates of π the proportions of examinees provisionally assigned to the stages. If no examinees have been assigned to a stage, use a small value such as $.25 / \mathrm{H}$ as the starting value for that stage and adjust other probabilities accordingly.
3. Obtain estimates of item and person parameters under the simple Rasch model independently for each stage, using only the examinees provisionally assigned to that stage. If an item has a zero or perfect score, assign it a logit value based on Cohen's (1979) approximation for an item with a score of 1 or 1 less than the maximum score, respectively. Linearly transform the results so that
a. the item parameter estimates for Stage 1 are centered at zero, and b. the average item difficulty for item Class 1 takes the same value in all stage calibrations.
4. Use as starting values for β the item parameter estimates from the Stage 1 calibration run.
5. To calculate starting values for $\boldsymbol{\alpha}$, use person ability estimates from each stage's calibration run, rescaled by the linear transformations applied to item difficulties applied in Step 3 above. For example, if normal distributions have been posited, calculate the mean and standard deviation of rescaled $\hat{\theta}$'s of the examinees provisionally assigned to each stage.
6. Calculate the average item difficulty in each item Class k in each rescaled calibration run h, denoting the results $\beta_{h k}$. Use as starting values for T the values

$$
\tau_{\mathrm{hk}}=\bar{\beta}_{\mathrm{hk}}-\bar{\beta}_{1 \mathrm{k}}, \quad \mathrm{~h}=2, \ldots, \mathrm{H} ; \mathrm{k}=2, \ldots, \mathrm{H} .
$$

If additional constraints have been posited among τ 's, appropriate averages or contrasts of the values so obtained may be used.

4.0 Empirical Bayes Estimates of Examinee Parameters

Once final estimates of structural parameters have been obtained, posterior probabilities of stage membership can be calculated for any examinee, and θ can be estimated conditional on stage membership. One begins by evaluating the expectations of the indicator variables $I_{\text {ihq }}$ as shown in (21), using the MML estimates of β, T, π, and $\boldsymbol{\alpha}$. For a response vector $\mathbf{x}_{\mathbf{i}}$, the empirical Bayes approximation of probability of membership in Stage h is given as

$$
\begin{equation*}
\mathrm{P}\left(\phi_{\mathrm{ih}}=1 \mid \mathrm{X}_{\mathrm{i}}\right)=\sum_{\mathrm{q}} \tilde{\mathrm{I}}_{\mathrm{ihq}} . \tag{22}
\end{equation*}
$$

Conditional on membership in Stage h, the posterior expectation of θ is approximated as

$$
\begin{equation*}
\bar{\theta}_{\text {ih }}=\mathrm{E}\left(\theta \mid \phi_{\mathrm{ih}}=1, \mathbf{x}_{\mathrm{i}}\right) \approx \sum_{\mathrm{q}} \Theta_{\mathrm{q}} \tilde{\mathrm{I}}_{\mathrm{inq}} / \sum_{\mathrm{q}} \tilde{\mathrm{I}}_{\text {ihq }}, \tag{23}
\end{equation*}
$$

and the posterior variance is

$$
\begin{equation*}
\operatorname{Var}\left(\theta \mid \phi_{\mathrm{ih}}=1, \mathbf{x}_{\mathrm{i}}\right) \approx\left(\sum_{\mathrm{q}} \Theta_{\mathrm{q}}^{2} \tilde{I}_{\mathrm{ihq}} \cdot \vec{\theta}_{\mathrm{ih}}^{2} \sum_{\mathbf{q}} \tilde{\mathrm{I}}_{\mathrm{ihq}}\right) / \sum_{\mathrm{q}} \tilde{\mathrm{I}}_{\mathrm{ihq}} \tag{24}
\end{equation*}
$$

5.0 Example 1: Simulated Data

This section describes a modest simulation comparing the performance of the MML algorithm with a solution treating examinees' stage memberships as if they were known true parameter values. Wilson's (1984) original approximations were based on a joint maximum likelihood (JML) estimation algorithm, and proceeded by first using an auxiliary algorithm to place each person into one or the other of the Saltus stages. This classification was not altered in the course of the algorithm. Under these circumstances, there is no mixture present, so the model is considerably simplified. The approach was found to give poor results under even generous conditions, and Wilson devised a correction based on "tailored simulations" to bring the estimates of the Saltus parameters closer to generating values. This was not a very satisfactory situation, and, in part, motivated this paper. In this simulation, we use an MML algorithm rather than a JML algorithm to estimate the remaining item and examinee-group parameters, to focus the comparison on the way examinee group membership is handled. In addition we judged that "tailored simulation", although somewhat efficacious in the previous work, should not be a part : f the comparison. It is a complex and time-consuming process that few analysts would perform in practice.

Two-class Saltus item-response data were generated in a 2×2 design, based on the following two factors:

- The number of items in each Saltus class: moderate (10) or small (4). One would expect more difficulty recovering parameters with the smaller number of items, because less information is available about examinees' stage memberships.
- The value of the discontinuity parameter τ_{22} moderate (1.5) or small (0.5). One would expect the smaller discontinuity value to cause more difficulty in parameter
recovery, again because classification of examinees according to stage membership is more problematic.

Each condition was replicated ten times, with 500 simulees drawn from each of two normally-distributed examinee stage groups, with means of -1.5 and 0.5 and standard deviations 'ff .25 . Saltus parameters were estimated for each replication under both the MML approach with a normal distribution and the " $\hat{\phi}$ as ϕ " approach.

Table 1 gives the generating values and the averages of the parameter estimates over the ten replications for the 10 -items-per-class conditions, for both the moderate and small discontinuity conditions. There were ten items in each of two Saltus levels (items 1 to 10 and 11 to 20 , respectively), with difficulties uniformly spread from -1.5 to 1.5 .

Insert Table 1 about here

Consider first the combination of conditions that was expected to provide the best results, namely moderate number of items and moderate discontinuity. For the mixture model algorithm (column 3), the item parameters have been estimated quite well and the size of the Saltus stage groups is quite accurate, but the Saltus parameter has been underestimated by 0.11 , or about 7 to 8 percent of its value. The ability distributions have been recaptured well. The " $\hat{\phi}$ as ϕ " approach (column 4), estimates item difficulties in the right order, but inflated away from zero. The Saltus parameter is overestimated by almost 300 percent, although the proportional representation of the Saltus stage groups is about right. The mean of the lower group is over a half a logit above its generating value, and its standard deviation is somewhat larger than it should be. The second stage's mean is well-estimated, and its standard deviation is also too large. Wilson's "tailored simulations" would have reduced the overestimation of the Saltus parameter, but would not have addressed any of the other problems.

MML estimation for discontiruous development
Page 18

The fifth column of Table 1 shows MML results for the small discontinuity condition. Compared to the moderate discontinuity condition, the item parameters are slightly deflated towards zero, and the size of the Stage 1 group has been estimated as .54 rather than .50 . The Saltus parameter has again been underestimated, this time by 28 percent of its generating value. The stage means have both been overestimated somewhat, but their standard deviations behaved differently: the first is about twice as large as the generating value, while the second is only half as large. Column 6 contains the results for the " $\hat{\phi}$ as ϕ " anproach. Here the item difficulties are inflated away from zero to about the same extent that the mixture model estimates were deflated back towards zero, and the size of Stage 1 group has been estimated as .56 rather than .50 . Once again the Saltus parameter is greatly overestimated, this time by 500 percent. Both stage means have shrunk towards zero considerably, and both standard deviations are inflated, although to different degrees.

Table 2 presents generating values and results for the 4 -items-per-class conditions. Among MML estimates (column 3), the item parameters have been estimated quite well and the size of the Saltus stage groups is quite accurate, but the Saltus parameter has again been underestimated, by about 10 percent. The ability distributions have been recaptured fairly well, although the standard deviation of the Stage 2 group is underestimated. The " $\hat{\phi}$ as ϕ " approach (column 4) shows an entirely different picture. The item difficulties are in the right order, but all are inflated away from zero somewhat. The Saltus parameter is overestimated by almost 200 percent, and the size of the Stage 1 group is overestimated. The mean of this lower group is almost logit above its generating value while the Stage 1 group's mean is less than it should be. Both standard deviations are overestimated.

[^1]The fifth column of Table 2 shows the MML results for the small discontinuity condition. Compared to the moderate discontinuity condition, the item parameters have been deflated towards zero, and the size of Stage 1 group has been overestimated even more. The Saltus parameter has again been underestimated-essentially as zero. The stage group means have both been overestimated again, but their standard deviations have behaved differe. ly: the first is about twise as large as the generating value, the second is about half as large. Column 6 contains the corresponding " $\hat{\phi}$ as ϕ " results. Here the item difficulties are slightly inflated away from zero, and the size of the Stage 1 group has been considerably overestimated. Once again the Saltus parameter is greatly overestimated, this time by 300 percent. Both stage group means have been reduced towards a common value, while both standard deviations are inflated.

In summary, the most salient of the results from the simulations are as follows:

1. Under the moderate number of items condition, and the moderate discontinuity condition, MML gives very good parameter recovery, with the exception of an underestimate of the Saltus parameter of an order somewhat less than 10 percent.
2. Under the mixed conditions (i.e., the "better" condition for one factor, and the "poorer" condition for the other), the mixture model gives good parameter recovery.
3. Under the small number of items condition and the small discontinuity condition, the mixture model condition gives a noticeably poorer estimation of several parameters, especially the Saltus paramet 3 .
4. The " ϕ as ϕ " approach gives uniformly poor estimates for the Saltus parameter, invariably overestimating it. The other parameters follow roughly the same relative patterns as for the MML results, although they are wor e in almost all cases.

6.0 Example 2: Mixed Number Subtraction

The data analyzed in this example are responses of 325 junior high school students to 20 open-ended items dealing with mixed-number subtraction, gathered by Kikumi Tatsuoka and her colleagues. More detailed descriptions of the data and extensive cognitive analyses of the domain can be found in Klein, Birenbaum, Standiford, and Tatsuoka (1981), and an analysis based on Tatsuoka's "rule-space" approach appears in Tatsuoka (1990). We neglect many aspects of this rich data set in the following example, in order to illustrate how the Saltus model captures a key feature of in the domain: increasing competence possesses both qualitative and quantitative aspects, as learners master procedures and become more proficient in applying them. We contrast the Saltus solution with an analysis based on the RM shown as (1) and the 2-parameter logistic item response model:

$$
P\left(x_{j}=1 \mid \theta, \alpha_{j}, \beta_{j}\right)=\Psi\left[\alpha_{j}\left(\theta-\beta_{j}\right)\right]
$$

where α_{j}, the item slope parameter, indicates the sensitivity to which the probability of a correct response to item j reacts to changes in θ. Items with high values of α_{j} are considered to be good at discriminating high from low competence, from the perspective of the 2 PL .

Table 3 presents the text of the items, percents-correct, and item parameter estimates under the RM and 2PL. These item parameters were obtained with Mislevy and Bock's (1989) PC BILOG program, assuming a normal distribution for θ and setting the scale so that the arithmetic mean of the estimated βs was 0 and the geometric mean of the α s was 1. Because we renumbered the items in order to group them in Saltus classes, the original Klein et al. item numbers are also shown. The item classes are based on whether an item requires two key procedures for its solution: finding a common denominator, and converting between mixed numbers and improper fractions. Items in Class 1 require neither, items in Class 2 require finding a common denominator, items in

Class 3 require converting, and possibly finding a common denominator as well. This implies that the qualitative aspect of students' is signaled by acquiring the commondenominator skill, then the converting skill. This path of development is not necessary either logically or psychologically, but it is not unreasonable to posit in this example because it accords with the instructional sequence.

Insert Table 3 about here

There is a clear pattern in the percentages of correct response. The items in each item class are of similar difficulty, and the average difficulties increase from the first class, to the second, to the third, with average percents correct of $.73, .55$, and .34 . The RM difficulty parameters reflect this pattern directly, since they are nearly linear transformation of logits. The RM of the probabilities would suggest increasing competence to take the form of uniformly increasing chances of correct response on all items, in the logit metric. The 2PL would also posit linear increases in items' logits of correct response, but allow for faster or slower rates from one item to another, in proportion to their α parameters. Note the systematically higher 2PL slopes for the Class 2 and Class 3 items. The 2PL represents a substantially better fit to the actual response data, improving BLLOG's chi-square index of comparative fit by 416 at the cost of 20 additional parameters (i.e., slopes).

Tables 4 through 6 present the results of the MML Saltus analysis, with normal distributions fitted within developmental stages. The Saltus solution offers a slightly greater improvement over the RM than does the 2PL-449 chi-square units at the cost of 12 additional parameters ($4 \tau \mathrm{~s}, 3$ means and standard deviations, and 2 independent proportions). The Saltus βs in Table 4 are item difficulty parameters for examinees in Stage 1. They are more spread out than those of the RM, indicating that for these examinees, exhibiting a large gap between the items in Class 1 and the items in Classes 2
and 3. The gap closes considerably when we look at the difficulty estimates that pertain to Stage 2 examinees; Class 2 items become just as easy for these students as Class 1 items. The shift is by the amount of the τ_{22} parameter in Table 5. Class 3 items still remain relatively difficult for Stage 2 examinees. The discontinuity associated with examinees in Stage 3 is the drop in difficulty of Class 3 items.

Insert Tables 4-6 about here

In addition to the shifts in relative item difficulties, the developmental stages are also distinguished in terms of their θ distributions (noting, of course, that θ has a different meaning for each stage, in terms of its implications for success on items from different classes). Figure 1 illustrates the relative locations of item difficulties and examinee distributions for the three stages. The locations of the Class 1 items set the scale; they are identical across the three panels. Being in Stage 1 typically implies middling chances of answering Class 1 items correctly, and practically no chance at Class 2 or 3 items. The Stage 2 line shows a noticeably higher θ distribution and a marked drop in the relative difficulty of Class 2 items. The Stage 3 line shows a slightly higher θ distribution and a marked drop in the relative difficulties of Class 3 items. These patterns are reflected in Table 7, which combines stage means with item parameters to give typical probabilities of correct response to each item from examinees of different classes.

Insert Figure 1 and Table 7 about here

Table 8 further details the discontinuities that Saltus can accomodate by showing observed responses and modeled probabilities for five examinees. We see that...

- Examinee 4 got only half the items right, in a pattern spread across item classes.

The RM and the 2PL accomodate this pattern well. Saltus handles it with a posterior concentrated on Stage 3, with a low θ value. There are enough Class 2
and Class 3 items correct to believe the student is beginning to use common denominator and converting procedures, but is not working with accuracy and consistency; this concords with missing two of the six easy Class 1 items.

- Examinee 7 got half the Class 1 items right, three of the Class 2 items, and none of the Class 3 items. From the point of view of the RM and 2PL, some correct Class 3 responses would be expected. Saltus Stage 2 accords well with pattern, accounting for a dropoff between Class 2 and Class 3 items for students at this stage.
- Examinee 12 got two Class 1 items right, one Class 2 item, and no Class 3 items. All models and all stages within Saltus agree in the predictions about the Class 1 items, but Saltexs Stage 1 accords with this pattern best. For a student low in Class 1, correct answers to Class 2 and Class 3 items would be more rare than the RM or 2 PL would predict.
- Examinee 18 answered all Class 1 and Class 2 items correctly, but only three Class 3 items. This is a prototypical example of a Saltus Stage 2 pattern. For a student with this many correct responses, the RM and 2PL predict relatively fewer successes on Class 1 and 2 items, and relatively more successes on Class 3 items.
- Examinee 536 also has Stage 2 as most probable stage under Saltus with a posterior probability of .67 . There is an appreciable .33 probability for Stage 3, however, since half of the Class 3 items were answered correctly.

In this example, the improvements of fit over the Rasch model offered by both the 2PL and Saltus clearly indicate that there is more going on in the data than the RM can capture. The Saltus approach the potential role of theories about learning in the domain to provide inferences about the nature of students' competencies.

MML estimation for discontinuous development

7.0 Conclusion

This paper has described a marginal maximum likelihood (MML) estimation algorithm for Wilson's $(1984,1989)$ Saltus model. The algorithm's performance was compared with that of joint maximum likelihood (JML), in which estimates of subjects' unobservable Saltus group memberships based on their total scores are treated as known. Substantial improvements were observed for tests of moderate length (10 items per class) and short length (4 items per class), in which misclassification of subjects is most likely to occur. Biases in estimates of structural parameters were eliminated almost competely for the moderate-length test, but not for the short test. In addition to reducing estimation biases, MML provides standard errors for item and Saltus parameter estimates that appropriately incorporate uncertainty due to imperfect information about examinees' Saltus group memberships.

References

Bock, R. D., and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.

Cohen, L. (1979). Approximate expressions for parameter estimates in the Rasch model. British Journal of Mathematical and Statistical Psychology, 32, 113-120.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society (Series B), 39, 1-38.

Embretson, S.E. (1985). Multicomponent latent trait models for test design. In S.E. Embretson (Ed.), Test design: Developments in psychology and psychometrics. Orlando: Academic Press.

Falmagne, J-C. (1989). A latent trait model via a stochastic learning theory for a knowledge space. Psychometrika, 54, 283-303.

Gagné, R.M. (1968). Learning hierarchies. Educational Psychologist, 6, 1-9.
Glaser, R. (1981). The future of testing: A research agenda for cognitive psychology an ${ }^{\text {d }}$. psychometrics. American Psychologist, 36, 923-936.

Glaser, R., Lesgold, A., \& Lajoie, S. (1987). Toward a cognitive theory for the measurement of achievement. In R. Ronning, J. Glover, J.C. Conoley, \& J. Witt (Eds.), The influence of cognitive psychology on testing and measurement: The Buros-Nebraska Symposium on measurement and testing (Vol. 3). Hillsdale, NJ: Erlbaum.

Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215-231.

Haertel, E.H. (1984). An application of latent class models to assessment data. Applied Psychological Measurement, 8, 333-346.

Klein, M.F., Birenbaum, M., Standiford, S.N., \& Tatsuoka, K.K. (1981). Logical error analysis and construction of tests to diagnose student "bugs" in addition and
subtraction of fractions. Research Report 81-6. Urbana, IL: Computer-based Education Research Laboratory, University of Illinois.

Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226-233.

Masters, G., \& Mislevy, R.J. (1993). New views of student learning: Implications for educational measurement. In N. Frederiksen, R.J. Mislevy, \& I.I. Bejar (Eds.), Test theory for a new generation of tests. Hillsdale, NJ: Erlbaum.

McHugh, R.B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331-347.

Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49, 359-381.
Mislevy, R. J. (1986). Bayes model estimation in item response models. Psychometrika, 51, 177-195.

Mislevy, R.J., \& Bock, R.D. (1989). PC-BILOG 3: Item analysis and test scoring with binary logistic models. Mooresville, IN: Scientific Software Inc.

Mislevy, R. J., and Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195-215.

Paulson, J.A. (1986). Latent class representation of systematic patterns in test responses. Technical Report ONR-1. Portland, OR: Psychology Department, Portland State University.

Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40, 361-372.

Rasch, G. (1960/1980). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research/Chicago: University of Chicago Press (reprint).

Samejima, F. (1983). A latent trait model for differential strategies in cognitive strategies. ONR Research Report 83-1. Knoxville, TN: University of Tennessee.

Siegler, R.S. (1981). Developmental sequences within and between concepts. Monograph of the Society for Research in Child Development, 46.

Snow, R.E., \& Lohman, D.F. (1989). Implications of cognitive psychology for educational measurement. In R.L. Linn (Ed.), Educational measurement (3rd Ed.) (pp. 263-331). New York: American Council on Education/Macmillan.

Tatsuoka, K.K. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345-354.

Tatsuoka, K.K. (1990). Toward an integration of item response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, \& M.G. Shafto, (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 453-488).

Hillsdale, NJ: Erlbaum.
Thompson, P.W. (1982). Were lions to speak, we wouldn't understand. Journal of Mathematical Behavior, 3, 147-165.

Wilson, M. (1984). A Psychometric model of hierarchical development. Unpublished doctoral dissertation, University of Chicago.

Wilson, M. (1989). Saltus: A psychometric model of discontinuity in cognitive development. Psychological Bulletin, 105(2), 276-289.

Table 1
Generating Values and Estimates for the Moderate Number-of-Items Condition

Parameter	Generating Values	$\tau_{22}=1.5$		$\tau_{22}=0.5$	
		Marginal Solution	Solution treating $\hat{\phi}$ as ϕ	Marginal Solution	Solution treating $\hat{\phi}$ as ϕ
β_{1}	-1.50	-1.52	-2.25	-1.45	-1.89
β_{2}	-1.40	-1.37	-2.15	-1.38	-1.86
β_{3}	-1.30	-1.32	-2.11	-1.29	-1.79
β_{4}	-1.20	-1.20	-2.02	-1.16	-1.68
β_{5}	-1.10	-1.08	-1.92	-1.06	-1.60
β_{6}	-1.00	-0.98	-1.84	-0.87	-1.44
β_{7}	-0.90	-0.92	-1.78	-0.90	-1.47
β_{8}	-0.80	-0.74	-1.64	-0.74	-1.33
β_{9}	-0.60	-0.58	-1.51	-0.57	-1.20
β_{10}	-0.50	-0.43	-1.38	-0.42	-1.07
β_{11}	0.50	0.44	1.09	0.45	0.94
β_{12}	0.60	0.59	1.30	0.57	1.07
β_{13}	0.80	0.79	1.56	0.75	1.26
β_{14}	0.90	0.85	1.65	0.83	1.35
β_{15}	1.00	0.97	1.82	1.00	1.54
β_{16}	1.10	1.10	1.99	1.08	1.63
β_{17}	1.20	1.19	2.13	1.14	1.70
β_{18}	1.30	1.32	2.27	1.27	1.86
β_{19}	1.40	1.39	2.34	1.34	1.94
β_{20}	1.50	1.50	2.45	1.43	2.06
τ_{22}	-	1.39	4.37	0.36	2.44
π_{1}	0.50	0.50	0.51	0.54	0.56
π_{2}	0.50	0.50	0.49	0.46	0.44
μ_{1}	-1.50	-1.54	-0.91	-1.37	-0.80
μ_{2}	0.50	0.60	0.49	0.66	-0.27
σ_{1}	0.25	0.25	0.40	0.51	0.87
σ_{2}	0.25	0.21	0.43	0.13	0.45

Table 2
Generating Values and Estimates for the Small Number-of-Items Condition

		$\tau_{22}=1.5$		$\tau_{22}=0.5$	
Parameter	Generating				
	Values	Marginal Solution	Solution treating $\hat{\phi}$ as ϕ	Marginal Solution	Solution treating
β_{1}	-1.50	-1.45	-1.72	-1.37	-1.64
β_{2}	-1.20	-1.19	-1.46	-1.07	-1.38
β_{3}	-1.00	-0.98	-1.27	-0.84	-1.17
β_{4}	-0.50	-0.45	-0.80	-0.29	-0.70
β_{5}	0.50	0.49	0.86	0.37	0.72
β_{6}	1.00	0.94	1.24	0.83	1.16
β_{7}	1.20	1.18	1.45	0.99	1.32
β_{8}	1.50	1.46	1.70	1.38	1.70
τ_{22}	-	1.38	2.95	-0.09	1.55
π_{1}	0.50	0.51	0.55	0.59	0.63
π_{2}	0.50	0.50	0.45	0.41	0.37
μ_{1}	-1.50	-1.46	-0.61	-1.21	-0.64
μ_{2}	0.50	0.58	-0.21	1.09	-0.06
σ_{1}	0.25	0.24	0.76	0.47	0.77
σ_{2}	0.25	0.10	0.48	0.08	0.39

Table 3
Item Text, Percents-Correct, and Saltus Difficulty Parameter Estimates

Item	Tatsuoka Item \#	Text	Percent Correct	RM Difficulty	$2 \mathrm{PL}$ Difficulty	$\begin{gathered} \text { 2PL } \\ \text { Slope } \end{gathered}$
Saltus Class 1 Items						
1	6	$\frac{6}{7}-\frac{4}{7}=$. 79	-1.36	-1.46	. 77
2	8	$\frac{2}{3}-\frac{2}{3}=$. 71	-. 92	-1.23	. 44
3	9	$3 \frac{7}{8}-2=$. 69	-. 86	-3.97	. 12
4	12	$\frac{11}{8}-\frac{1}{8}=$. 71	-. 94	-. 97	. 65
5	14	$3 \frac{4}{5}-3 \frac{2}{5}=$. 75	-1.16	-1.10	. 85
6	16	$4 \frac{5}{7}-1 \frac{4}{7}=$. 74	-1.09	-1.05	. 81
Saltus Class 2 Items						
7	1	$\frac{5}{3}-\frac{3}{4}=$. 50	-. 04	. 29	1.04
- 8	2	$\frac{3}{4}-\frac{3}{8}=$. 56	-. 31	. 06	1.68
9	3	$\frac{5}{6}-\frac{1}{9}=$. 51	-. 05	. 31	1.36
10	5	$4 \frac{3}{5}-3 \frac{4}{10}=$. 61	-. 51	-. 89	. 27
Saltus Class 3 Items						
11	4	$3 \frac{1}{2}-2 \frac{3}{2}=$. 37	. 54	. 86	1.96
12	7	$3-2 \frac{1}{5}=$. 33	. 76	1.10	. 98
13	10	$4 \frac{4}{12}-2 \frac{7}{12}=$. 31	. 84	1.08	2.28
14	11	$4 \frac{1}{3}-2 \frac{4}{3}=$. 37	. 56	. 89	1.25
15	13	$3 \frac{3}{8}-2 \frac{5}{6}=$. 31	. 82	1.10	4.58
16	15	$2-\frac{1}{3}=$. 38	. 49	. 84	1.08
17	17	$7 \frac{3}{5}-\frac{4}{5}=$. 34	. 69	1.02	1.15
18	18	$4 \frac{1}{10}-2 \frac{8}{10}=$. 41	. 37	. 73	1.03
19	19	$7-1 \frac{4}{3}=$. 26	1.10	1.31	1.75
20	20	$4 \frac{1}{3}-1 \frac{5}{3}=$. 31	. 84	1.11	1.61

Table 4
Saltus Item Parameter Estimates

Item	β	SE(β)	Implied Within-Stage Difficulty		
			Stage 1	Stage 2	Stage 3
Saltus Class 1 Items					
1	-2.94	. 15	-2.94	-2.94	-2.94
2	-2.34	. 14	-2.34	-2.34	-2.34
3	-2.26	. 14	-2.26	-2.26	-2.26
4	-2.38	. 14	-2.38	-2.38	-2.38
5	-2.66	. 14	-2.66	-2.66	-2.66
6	-2.57	. 14	-2.57	-2.57	-2.57
Saltus Class 2 Items					
7	0.00	. 16	0.00	-2.85	-1.20
8	-0.52	. 16	-0.52	-3.37	-1.73
9	-0.02	. 16	-0.02	-2.88	-1.23
10	-0.94	. 16	-0.94	-3.79	-2.14
Saltus Class 3 Items					
11	1.32	. 18	1.32	0.32	-1.80
12	1.77	. 18	1.77	0.77	-1.36
13	1.97	. 18	1.97	0.96	-1.16
14	1.36	. 18	1.36	0.35	-1.77
15	1.93	. 18	1.93	0.93	-1.19
16	1.20	. 18	1.20	0.20	-1.93
17	1.64	. 18	1.64	0.64	-1.49
18	0.95	. 18	0.95	-0.05	-2.18
19	2.51	. 19	2.51	1.51	-0.62
20	1.97	. 18	1.97	0.96	-1.16

Table 5
Saltus Parameter Estimates (Standard Errors in Parentheses)

	Examinee Stage		
Item Class	1		
1	0.00^{*}	0.00^{*}	3
2	0.00^{*}	$2.85(0.20)$	$1.21(0.13)$
3	0.00^{*}	$1.00(0.09)$	$3.13(0.08)$

${ }^{*}$ Fixed at zero for model identification.

Table 6
Saltus Examinee-Stage Estimates

Parameter	Stage 1	Stage 2	Stage 3
π	0.45	0.25	0.31
μ	-2.27	-0.77	-0.44
σ	0.68	0.90	0.85

Table 7
Modelled Average Percent-Correct for Saltus Classes

Item	Stage 1	Stage 2	Stage 3
Saltus Class 1 Items			
1	0.66	0.90	0.92
2	0.52	0.83	0.87
3	0.50	0.82	0.86
4	0.53	0.83	0.87
5	0.60	0.87	0.90
6	0.57	0.86	0.89
Average	0.56	0.85	0.89
Saltus Class 2 Items			
7	0.09	0.89	0.68
8	0.15	0.93	0.78
9	0.10	0.89	0.69
10	0.21	0.95	0.85
Average	0.14	0.92	0.75
Saltus Class 3 Items			
11	0.03	0.25	0.80
12	0.02	0.18	0.71
13	0.01	0.15	0.67
14	0.03	0.25	0.79
15	0.01	0.16	0.68
16	0.03	0.28	0.82
17	0.02	0.20	0.74
18	0.04	0.33	0.85
19	0.01	0.09	0.54
20	0.01	0.15	0.67
Average	0.02		
		0.20	

Table 8, continued
Posterior Distributions for Selected Subjects

Model	Posterior for θ			Observed responses and Modeled Probabilities of Correct Response																			
	p	Mean	SD	Class 1 Items				Class 2 Items						Class 3 Items									
Examinee 18																							
Observed				1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	1	0	1	0	0
RM	-	. 45	. 29	. 9	. 8	. 8	. 8	. 8	. 8	. 6	. 7	. 6	. 7	. 5	. 4	. 4	. 5	. 4	. 5	. 4	. 5	. 3	. 4
2PL	-	. 64	. 23	. 9	. 8	. 8	. 8	. 9	. 8	. 7	. 7	. 7	. 8	. 5	. 5	. 4	. 5	. 5	. 5	. 5	. 6	. 4	. 4
Saltus Stage 1	. 00	-. 33	. 46	. 9	. 9	. 9	. 9	. 9	. 9	. 4	. 6	. 4	. 7	. 2	. 1	. 1	. 2	. 1	. 2	. 1	. 2	!	. 1
Stage 2	. 98	-. 21	. 50	. 9	. 9	. 9	. 9	. 9	. 9	. 9	1.0	. 9	1.0	. 4	. 3	. 2	. 4	. 2	. 4	. 3	. 5	. 2	. 2
Stage 3	. 02	-. 94	. 44	. 9	. 8	. 8	. 8	. 9	. 8	. 6	. 7	. 6	. 8	. 7	. 6	. 6	. 7	. 6	. 7	. 6	. 8	. 4	. 6
Examinee 536																							
Observed				1	0	1	1	1	1	1	1	1	1	0	0	1	0	1	1	1	0	0	1
RM	-	. 60	. 30	. 9	. 8	. 8	. 8	. 5	. 8	. 7	. 7	. 7	. 8	. 5	. 5	. 4	. 5	. 4	. 5	. 5	. 6	. 4	. 4
2PL	-	1.12	. 19	. 9	. 9	. 9	. 9	. 9	. 9	. 8	. 8	. 8.	. 8	. 6	. 6	. 6	. 6	. 6	. 7	. 6	. 7	. 5	. 6
Saltus Stage 1	. 00	-. 12	. 45	. 9	. 9	. 9	. 9	. 9	. 9	. 5	. 6	. 5	. 7	. 2	. 1	. 1	. 2	. 1	. 2	. 2	. 3	. 1	. 1
Stage 2	. 67	. 05	. 50	1.0	. 9	. 9	. 9	. 9	. 9	1.0	1.0	1.0	1.0	. 4	. 3	. 3	. 4	. 3	. 5	. 4	. 5	. 2	. 3
Stage 3	. 33	-. 74	. 45	. 9	. 8	. 8	. 8	. 9	. 9	. 6	. 7	. 6	. 8	. 7	. 7	. 6	. 7	. 6	. 8	. 7	. 8	. 5	. 6

Figure 1
Modelled Saltus Item Locations and Class Membership Distributions

Dr. Rictard Durn

Unimemy of Caltorrie

Dr. Grorye Enptorel K. Divioc of Educuiand Suntis
Emory Usimaicy
270 Fiblurm

240 Remert Bios sive 350
Roctrina 10 20BSatis
D. Mmetal L Pur

Farrsidex Co
z20 Norto Varnoo Sime
Aringlem VA 2 ml
Dr. Looners Falt
Lindquin Cerxar
lor Menirment
Univariny of lowe
low Cry, in seas
Dr. Rictard L Furpuog
Amariond Collaye Tming
1.0. Bax 18
jom Cry. LA S20
Dr. Gurtwis Facter
Lindigane 5
A 1010 Vian
AUSIRLA
De Myron Fiand
US ATr ithencurver
DAPEFRR
The Perajon
Wmbingea DC 20820000
Mr. Faul Foley
Now Parsornod Rabo Cemer
San Diena CA 2 2S2400
Oric. Drpertent ef
Compurar Simove
Grorge Mmon Utivaring
Frifis VA 2000
De. Rowar D. Ciblocm
Universiy of Rinoin x OMimpo
NPI HONA, MC 913
922 South Wood Surm
Crigen II serts
Dc. Jumice Gintern

Univerinty of Manoctumore
Schooi ol Eturatice
Ambers, MA \#nem
De Rover Giner

- Devioperax Concr

Unimonicy of Pimunety
ysp OHine serma
Formen PA 1590
D. Sumn Redmen

Prebot conjm Bor as Vandertizk Unimuripy Nombile JN 57:3

Dr. Treothy Golinaid
Deparment α Pryctology
Uningrity of New Matio
Abuquition NM 8731

Dr. Sonopt Meluntion
Nivy Personeal Rembrt
und Drmopnax Come Cole 14
Sm Dizga CA mass 1000
Ann Med
oo Dr. Mintal Laviee
Elueatioad Puytuolegy
210 Eluation 845
Urmanity of Wincis
Onapain 11 61001
De. Tinochy Mrin
ACT
. Q yem Ms
tow Cry, U 5ex
Dr. Rober Mricy
Esuestional Thums Sirin Procmon NJ CeSil

Dr. Ino Molerne
Froukit Socisie Weermeteppen
Rijkennersites Groninges
Groce Xivieursat $2 / 1$
97275 Gronioten The NETHERLNNDS

Dr. E Murati
Eduntiond Tating Sinvice
Rombatic Rood
Prisamon NJ 0ESM
Dr. Rava Nandatumas
Edicauoral Sudiea
Hinard Hall Roce 2L3E
Univerimy of Detrome
Newert DE 19716
Acodemie Proges it Reased Beaned
Novel Tefnneal Truining Compend
Code N4:
NAS Mexphin (7)
Mulingon, TN 303G
Dr. W. Alen Nimenamer
University of Otubotes
Deparument of Myybology
Nermes OK 7301
Hend Peroonsed Syterm Dopereme NPRDC (Code 12)
Sea Diega CA s21524000
Dirmerer
Trainisg Smaters Depertarex
NPRDC (Cobe 14)

- San Diaga CA-R2s2-400

Libnry. NPRDC
Code O4l
Sm Diega, CA 52152-6mo
Limarias
Siml Cenker lor Applied Rovert
in Arifral loteliymane
Nimi Reward Lavorucery
Cove $\$ \$ 10$
Wmbingean $D C$ 20075-5000
Orrae α N Nowl Renarth
Code 112CS
400N Quixy Surwat
Artinpion VA 202175010
(6 Copin)
Spoint Ansuart for Remerte Marlegenent
Ond of Rivil Persorad (TESSOUT)
Deperneers of the Now
Wimbingor $D C$ 203sasion
Or. Judith Ormerat
Mar Scep 2311
NASA Ames Rewarch Cmorer Mottus Fied CA rass
D. Purar 2 gurbiny

Ehurptione Tonias Smuint
Remadele Road
Primman 10031
Wyon M Smines
Americm Counci on Puration
GED Truing Sirvien guite 20
One Dupat Crict NW
Wariagen DC 2ews
Dupt of Admi. ingine fineme Cote 54
Nivel Pourgitute Sdeod
Moninty, CA stig-sime
Dr. Petre Frolit
Spori at Eduction
Univeriay of Cuffomi
Brtery, CA ©TRO
De Mat D Dedent
ACT
P. O. 色號

How Ciny. M seots
Mr. Sunc Reiv
Deperment of Pyptodiog
Univirivy of Calfornin
Rivinide CA O2SI
Mr. Lavip Rexames
Universing of Iucoin
Deperement of Savinie
101 Wron trol
78 Soult Write 5
Chapion 14 6100
Dr. Doceld Rukin
Seatiniar Deperavers
Siencr Caver. Raed at
1 Onfors Surex
Haverd Univeriny
Cambidgen MA teat
Dr. Funito Senaina
Deperumers of Prebolong
Univertury ol Tumpine 3108 Alwain Pary 8140 locerine IN STM-N+0

Dr. Mary Satrez
100 Purtide
Coremen cape
Mr. Robert Smeme
NIIf EHen His
Depersert of Pyphotoy
Unimricy of Minomen

Dr. Vaide L Snat
Deperterix of imatein Ensinmaies
Sute Unimariay © Now Yed
30 Lowner D bel H Brata NY 200

Mr. Ridenti 1. 5umpeo
Graducte School of Elvinioe
Unimminy of Cariforia
Sman Ratione en asis

Ehveriomal Tooing Sirvite
Prinmen NOMI
Dr. Know Rornem
7.8. 24 Eugenerter

Fujan 51
LABAN
De. Rundell Surnere Noal Rawerd Laberan Cole 350
cis Ontoot Awrine sw. Wratingon DC 2007sion

De
ACT

five Cosi IN seas
Dr. Maxta Inpaix Shewioed Twing trave

Dr. Wrion suet
Urinnixy of Eation
Deprerex of Sming
101 train
72 Soup Wintas
Onnmin 1 (150
D. Arri Themela

Fhuntious Teving Sarive
MG Step 0 TT
Primung ND OSH
Dr. Dovil Tine
Typhomerie Linderany
Cles 327h Dovie Hell
Usiveriny ol Nerth Coppige
Utivariy ol Nort Corping
Mr. Troent 2 Trone
Feberw Expris Corperation
Humo Ruscuras Developaner
303 Difmeter Rov. Sives 501
Manplis 5N 3513
Mr. Gary Thenmmot
Uringrigy of triois
Edurational Bratoleg
Clappiph il 4 ara
Dr. Hownd Waine
Eductional Tectios Siviet Prienter NO CHSI

Vrosing Wia
Ocrime of Nowt Tumen
Code 27
300 North Oungy Sirua Araprea VA zentrs000

Dr. Miatran T. Wollor
Univercicy of
WreconionNimeter
Edinational Prymblogy Drit
Cow 413
Mingring, w/ 58en
Dr. Minp NiA Fract
Eduasiond Tring Surio
Mal Sepp 3T
Finetcen 80030
Dr. Tamen A. Wham
FAA Acndory
T.O. Ber 240

Othmon Chy, on 7518
Dr. Dovil 2. wion
Neso Brion Hat
Usiviring of Mreatet
UsEriny Ring

Dr. Dountas Weril
Cets 15
Non Pruonal thD Cooter
Sn Dina CA min-ma
Corman Mriny
Repr
Permentinem
Solntse 20
D. 5000 5Gin

D. Survie Gex

Eroote AFB TX Teasscol

Jotre hiopties Univarisy
Dequrtmen α Poytaioy

Proc Edowrd Hanrell
Sctool of Edraxion
Scarfort CA groor-30

Dr. Dekenn Horpied
Univerity of Drocie
$\$ 1$ Gaty Drive

Dr. Pasich R. Horrwen Comperter Soence Daparisum Ancrapole MD 2100.500

M1 Reteres Hether
Now. Personned RaD Cater
San Dirga CA $92152-400$
Dr. Theown M. Hinct
ACI
P. O. Ber 168

Dr. Pous W. Hollans
Rualorue Tmins Samee, 21-T
Premeron NS CSHI
rof Lutz F. Hornte
imuint fur Perctrologe
WWTH Amaten
D $\$ 100$ Aleden
WEST GERMANY
Me Jura S Hourt
Cambenge Unownty Prim
0 Wear Luh Suras

Dr. Wiliatu Howet
Obid' Scimuns
AFHRICA

Dr. Hugm Huych Uner or Cart Cero
Colventer SC 220
Dr. Marin J. Ippai
Canter for the Surly of
vaivion snd imuruace
F. C. Bor ssss

200 Re Lenen
THE NETHERLANDS
Dr. Rover Jomatone

- 4 Cowpula Ent Dep Unnetary of Soutb Corcise Coluentian SC 2720

De. Yurwer 200ther
Univerify of Tinoi
Depery inx of gimino
101 Hini Hoy

 Gridure Saboo of Mrosters Rugers, Tbe Sue Vriminty of Nes Serme Nourt x M Ente
 Prohrgh 8A 8201
D. Mintal Jut

Depertenp of tryeviey
Sthentry fort

D. 12 L Livi

Cole 40/JK
Su Diepa CA 24525000
Dr. Miehael Kopin
US Arry Remarch lanionte
sool Eiseabown Avenue

Dr. Jeramy ivipeciet
Deperterex of
10S Abartald Hn.
Usiverinty of Grory
M. HenRion

Urivarisy of turais
Dupruars ar scating
-
Onnin ti 619

Dr. Portem Itis
Depariment of Prepolong
Gidale Tennomern Sut
Muriturnera $3 \mathbf{1 7} 372$
Dr. Suptheon Fin
KED
26 Uneranore
3noul
SOUTH TOREA
D. G. Otfer Fnym

S0I North Diope Sirma
P. O. Ber 3107

Uaiveriny of Temouris
Aunis IX 5780

Countrerhand Ehnion
Remart Lempamy
Un-miver

Dr. Patriet Ryman AFRR1/MOE1

Ma Coroty Lane 2sis Spmaritit kod Spencorvis MD zian

Rebrill Lineran
Counmin (G-w/)
US Can Gur
2100 cood S. SW
Wabinglat DCzeprapl
Or. Mictent Inive
Ehwarent Topherog
210 Efurxion tiot
1310 South cix env
Unimatisy of E 0

Dr. Onetat Luris
Ehurational Treing Gurvive
Priengen NU eS484001
Me tivinderat Li
Uainering of itroin
Deprering of Smining
201 INocikit
35 South Wrigte s

Unary
Nivet Trining Oyphat Ontr
123co Revarch Pattury
Ormala FL yencions
Or. Mrrin C Iin
Orudinie Sctool
of Education BNST
Tolman Hay
Univerisy al Crroraia
finting, CA Nro
Dr. \#ctert L Lion
Corpne Box 2θ
Unimering of Colarnas
Bourinct 0 moscers
Lejoco Ise (Alwe IMrary)

Divition
1.0. Bor 458

Sn Dinga CA 2323sex
Dr. Minarillatan
ACT

1. O Ben IA

Ho On, 14 524
Dr. Gearge 8 Macrenty
Depertern of Maminginat
Satintian Endution
Coliege of Elumion
Uaidaning of Maryiod
Calnef Pat MO 2010
D. Evan Mana

Cuorye Mmon thinaring
400 Univarity Dive
Frinch VA gine
Dr. Pari Matanty
Comer for Now Andris 401 Ford Arnane 19. Sa Men Angendia VA zenperens

De. Intas R Mant
Hume
400 Eprount Drive
Sin Oing Catma
Mr. Orimopor Mocmiter
Uaimerity of ynuie
Depernares of Themalers
$\cos E$ Drial Se

Dr. Soment Mckinney
Esweaticad Tetins Sarviot

Dr. Dowid Wing Strool el Elumbin mod Socied Poify Notromint Uoivariny Enmerice il umo
Dr. Bruen wixeme
D.parmeex α Enconional

Probety
U mintriny α rime
Urimen it ation
Dr. Mart Wimon
School al Educmion
Univirity of Cabicomi
Putiong CA 9r720
Dr. Eutrox Winotod
Deperisex α Pymolicy
Emon Uaiverisy Allanch OA sure

Dr. Manio F. Wracod PERSEREC
*9 Proife Sch Swine 856
Monurery. CA 9390
Me. Johs H. Wolle
Kiny Pernonged RaD Cert
San Diega. CA S2152,40
Dr. Kenuro Yamaneoto
63-9T
Edvalional Turing Servies
Rowedale Roed

Me Duans Yan
Esucational Teuling Serviee
Prinortons NJ Cos 41
Dr. Wenty Yen
CTBMCGTH H
Ded Monte Reatarth Pat
Montery, CA 93940
Dr. Jowpt L Youms
Riaconal Soines Foundation
Roors 330
Woo G Surve N.W.
Wrangion DC 205so

[^0]:
 $* \quad$ Reproductic..s supplied by EDRS are the best that can be made is ; from the original document.

[^1]: Insert Table 2 about here

