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Marginal Structural Models for Partial
Exposure Regimes

Stijn Vansteelandt, Karl Mertens, Carl Suetens, and Els Goetghebeur

Abstract

Intensive care unit (ICU) patients are ell known to be highly susceptible for noso-
comial (i.e. hospital-acquired) infections due to their poor health and many in-
vasive therapeutic treatments. The effects of acquiring such infections in ICU on
mortality are however ill understood. Our goal is to quantify these effects using
data from the National Surveillance Study of Nosocomial Infections in Intensive
Care

Units (Belgium). This is a challenging problem because of the presence of time-
dependent confounders (such as exposure to mechanical ventilation)which lie on
the causal path from infection to mortality. Standard statistical analyses may be
severely misleading in such settings and have shown contradicting results.

While inverse probability weighting for marginal structural models can be used
to accommodate time-dependent confounders, inference for the effect of

?ICU acquired infections on mortality under such models is further complicated
(a) by the fact that marginal structural models infer the effect of acquiring infec-
tion on a given, fixed day ?in ICU?, which is not well defined when ICU discharge
comes prior to that day; (b) by informative censoring of the survival time due to
hospital discharge; and (c) by the instability of the inverse weighting estimation
procedure. We accommodate these problems by developing inference under a new
class of marginal structural models which describe the hazard of death for patients
if, possibly contrary to fact, they stayed in the ICU for at least a given number of
days s and acquired infection or not on that day. Using these models we estimate
that, if patients stayed in the ICU for at least s days, the effect of acquiring infec-
tion on day s would be to multiply the subsequent hazard of death



by 2.74 (95 per cent conservative CI 1.48; 5.09).
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Intensive care unit (ICU) patients are well known to be highly susceptible for

nosocomial (i.e. hospital-acquired) infections due to their poor health and many invasive

therapeutic treatments. The effects of acquiring such infections in ICU on mortality are

however ill understood. Our goal is to quantify these effects using data from the National

Surveillance Study of Nosocomial Infections in Intensive Care Units (Belgium). This

is a challenging problem because of the presence of time-dependent confounders (such

as exposure to mechanical ventilation) which lie on the causal path from infection to

mortality. Standard statistical analyses may be severely misleading in such settings and

have shown contradicting results.

While inverse probability weighting for marginal structural models can be used

to accommodate time-dependent confounders, inference for the effect of ‘ICU acquired

infections on mortality under such models is further complicated (a) by the fact that

marginal structural models infer the effect of acquiring infection on a given, fixed day

‘in ICU’, which is not well defined when ICU discharge comes prior to that day; (b)

by informative censoring of the survival time due to hospital discharge; and (c) by

the instability of the inverse weighting estimation procedure. We accommodate these

problems by developing inference under a new class of marginal structural models which

describe the hazard of death for patients if, possibly contrary to fact, they stayed in the

ICU for at least a given number of days s and acquired infection or not on that day.

Using these models we estimate that, if patients stayed in the ICU for at least s days,

the effect of acquiring infection on day s would be to multiply the subsequent hazard

of death by 2.74 (95 per cent conservative CI 1.48; 5.09).

KEY WORDS: causal inference; direct effect; intermediate variables; marginal

structural models; time-dependent confounding
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1 INTRODUCTION

Intensive care unit (ICU) patients are estimated to have a 5 to 10 times higher

risk of acquiring nosocomial (i.e. hospital-acquired) infections than patients in other

hospital units, due to their poor health conditions and the many invasive therapeutic

treatments to which they are typically subjected. Such infections are believed to account

for 50% of all major complications of hospitalization. They are considered to have

a substantial impact on morbidity, mortality and medical costs (Gaynes 1997) and

thus to pose a major public health burden. In 1985, the SENIC study (Haley et al.

1985) demonstrated that surveillance of nosocomial infections can reduce infection rates

by as much as 30%, provided that sufficient infection control staff is available and

that surveillance results are used in the infection control management. Since then,

surveillance of nosocomial infections has played a fundamental role in assessing and

improving the quality of medical care.

In 1995, the Scientific Institute of Public Health – Louis Pasteur (Belgium) set

up a national surveillance network in ICUs in collaboration with the Belgian Society

for Intensive Care and Emergency Medicine (Suetens et al. 1999). The aim of this

network is twofold. First, to assist individual ICUs to obtain local incidence statistics

for ICU acquired Nosocomial Pneumonia (NP; i.e. one specific nosocomial infection)

and Bloodstream Infection. Second, to offer national statistics in parallel to guide the

interpretation of each ICU’s performance. To this end, surveillance follows a standard

protocol which is largely based on a consensus obtained at the European level in the

HELICS (Hospitals in Europe Link for Infection Control through Surveillance) project

in 1995 (Suetens et al. 2003).

In this article, we will use data collected through the network to quantify the ef-

fect of NP on subsequent mortality in ICU patients. Estimating the mortality rate

attributable to NP is however a complex problem for various reasons. First, the as-

sociation between infection and mortality is disturbed by time-dependent confounders

(i.e. time-dependent variables which simultaneously affect mortality and infection). For
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instance, daily exposure to invasive treatments such as mechanical ventilation, the pres-

ence of a central vascular catheter, parenteral feeding (i.e. feeding given by injection,

bypassing the gastrointestinal tract), ... increases the risk of NP at subsequent time

points and the poor health conditions leading to these treatments are also indicative

of an increased mortality risk. These confounders lie on the causal path from infection

to mortality because infection makes patients more prone to receive invasive therapeu-

tic treatments. Standard adjustment approaches, such as time-dependent proportional

hazards regression, will therefore usually give biased results (see for example Kalbfleisch

and Prentice 1980, Robins 1986, Robins et al. 2000, Bryan et al. 2003, Vansteelandt

2007). Second, the survival time of patients is (informatively) censored upon hospital

discharge. The decision to discharge a patient is closely related to his/her health sta-

tus, as observed by physicians, suggesting that mortality rates may differ substantially

between patients who are discharged on a given day and those who are not.

The problem of estimating the mortality rate attributable to NP has been reviewed

by several researchers (Carlet 2001, Vincent 2003). Common practice is to fit logistic

regression models for mortality in ICU, adjusting for NP status upon ICU discharge, for

length of stay in ICU and for time-dependent variables measured prior to infection, or

to fit proportional hazards models for time to death, adjusting for NP status upon ICU

discharge or time-dependent NP status and for time-dependent variables measured prior

to infection (Mertens et al. 2006a). These analyses ignore the aforementioned prob-

lems and empirical results have therefore remained controversial, with several studies

reporting relative risk estimates for mortality ranging from neutral to severely harmful.

The present study addresses the above problems by using marginal structural models

(Hernán et al. 2000, van der Laan and Robins 2003, Bryan et al. 2004) for the analysis

of the effects of NP on health outcomes in ICUs and applying them to the Belgian

National Surveillance Study of nosocomial infections in ICUs.

We review the surveillance study in Section 2. The presence of time-dependent

confounders which also lie on the causal path from infection to mortality leads us to

consider marginal structural models, which we introduce in Section 3.1. However, stan-
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dard inference for such models cannot be applied in this study for the following reasons.

First, marginal structural models for the effect of ICU-acquired infection on death would

describe the hazard of death in the possibly hypothetical situation where the patient

acquires an (ICU-acquired) infection a given number of days since admission, but this

is not well defined when ICU discharge comes earlier. Second, time-varying exposures

(i.e. ICU acquired infection) and confounders were only recorded during the patient’s

stay in ICU, while survival times were recorded until hospital discharge, to alleviate the

problem of informative censoring. Marginal structural proportional hazards methods

cannot be directly applied to such data because they require the infection status and

confounders to be observed from the start of the study until death or censoring of the

survival time. Similar problems arise in observational studies with a mortality endpoint

where exposures are incompletely measured due to loss to follow-up or end-of-study, but

survival times are assessed much longer in time (using death registers, for instance).

To accommodate both problems, we propose a new class of marginal structural

models in Section 3.2, which express the effect of acquiring infection on a given day s on

the hazard of death if patients were kept in ICU for at least s days. We call the models

in our class marginal structural models for partial exposure regimes as each considered

‘exposure regime’ (i.e. infection path) determines the ‘exposures’ (i.e. infections) for a

given patient only up to the chosen time point s, leaving them unspecified (i.e. random

and observational) afterwards. This has the added advantage of yielding more stable

inferences since we merely aim to infer what the hazard of death for given patient would

have been if, possibly contrary to fact, the patient’s infection status on each day were

as given up to a chosen time s, and not up to end-of-study time. We derive a class of

estimators which are consistent and asymptotically normal under the considered model

and provide a reasonably efficient estimator in that class. In Section 4, we present

results obtained for the surveillance data. In Section 5, we discuss the usefulness of

marginal structural models for partial exposure regimes in other settings and provide a

comparison with structural nested models (Robins 1997b, Keiding et al. 1999).

4
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2 SURVEILLANCE STUDY ON NOSOCOMIAL INFEC-

TIONS

All ICUs in Belgian hospitals were invited to participate in this surveillance study

on a voluntary basis and data were collected on all patients admitted to the ICU and

staying more than 24 hours. Specifically, data were recorded on personal characteristics,

reasons for ICU admission and baseline health status, as well as daily indicators of

received invasive treatments and acquired infections in ICU. Nosocomial infections were

defined as infections acquired by patients after the second day of ICU stay, this to

exclude infections that were in incubation upon enrollment in the ICU. The third day

of stay in ICU will therefore be the starting point for our analysis and, hence, patients

staying less than 3 days will not be considered.

We will restrict the analysis to surveillance data collected for the year 2002 in one

of the largest hospitals, because of its reputation to have accurate daily measurements

of received invasive treatments and acquired infections. Our analysis will focus on

the effect on mortality of nosocomial pneumonia. This is one of the main nosocomial

infections, defined according to the 1995 HELICS protocol. A total of 1072 ICU patients

were analysed. Of the 100 (9.3%) patients who acquired NP in ICU (and stayed more

than 2 days), 41 (41%) died in hospital (of whom 27 died in ICU), as compared to 183

(18.8%) deaths among the 972 patients who remained NP-free in ICU (of whom 99 died

in ICU). Among patients who stayed more than 2 days in ICU, the median length of

stay in ICU was 4 days (IQR 3, 95th percentile 13) for patients without a history of

NP and 16 days (IQR 13, 95th percentile 54.5) for the remaining patients. Additional

background details on the surveillance study can be found in Mertens et al. (2006a).

A preliminary causal analysis (using marginal structural models, see Section 3.1)

involving measurements collected in ICU only (i.e. censoring survival times upon ICU

discharge) revealed highly unstable results (Mertens et al. 2006b). This was mainly

due to the high censoring rates following ICU discharge. Using patient registers, the

survival status of each patient was therefore assessed upon hospital discharge, which

5
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typically comes later than ICU discharge. This will make results much more reliable,

but at the same time complicates the analysis considerably because the exposure ‘ICU

acquired infection’ is not well defined between ICU and hospital discharge.

Throughout this article, we will use the following notation. Let for each patient in

the study, A, D, C and T be the observed times from admission in the ICU to (ICU-

acquired) NP, discharge from ICU, discharge from hospital and time to death, respec-

tively (see Figure 1). Let At be a counting process that indicates 1 for (ICU-acquired)

infection at or prior to time t and 0 otherwise, where A0 = 0 by definition and where

At is observed for all discrete times t < D. Note that A can be recovered from the path

{At, t = 0, ..., D − 1} (up to the resolution permitted by discrete time) when AD−1 = 1

and that A is ill defined otherwise. Likewise, let Dt (Ct) be a counting process that

indicates 1 if ICU (hospital) discharge happened at or prior to time t and 0 otherwise.

Further, define Lt to be a vector of time-dependent variables collected in the ICU at

day t, which is observed for all t < D. Here, L0 is a vector of baseline variables collected

upon admission to the ICU. In our analyses, it consists of age, gender, reason for ICU

admission, acute coronary care, multiple trauma, presence and type of infections upon

ICU admission, prior surgery, baseline antibiotic use and the SAPS score. The latter is

a severity score based on a set of 15 clinical parameters predicting the mortality risk of

a patient admitted to the ICU (Le Gall et al. 1993). Further, Lt, t > 0 is a vector of

invasive therapeutic treatment indicators collected on day t, consisting of indicators of

exposure to mechanical ventilation, central vascular catheter, parenteral feeding, pres-

ence and/or feeding through naso- or oro-intestinal tube, tracheotomy intubation, nasal

intubation, oral intubation, stoma feeding and surgery. Discharge from the ICU defines

the end of follow-up for all measured variables, except survival time T , which is censored

by discharge from the hospital. For any vector Z = (Z0, ..., ZK) we use Zt to denote the

history (Z0, ..., Zt) up to and including day t. Throughout, we assume that infection

and discharge on day t can only be affected by time-dependent variables measured on

previous days (and thus not by time-dependent variables measured on the same day).

6
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3 MARGINAL STRUCTURAL MODELS FOR PARTIAL

EXPOSURE REGIMES

3.1 Marginal Structural Models

Time-dependent multi-state models for event history analysis (Andersen and Keid-

ing 2002) may appear naturally suited for addressing the multi-state nature (see Figure

1) of our problem. However, when the goal is to estimate the effect of acquiring infection

on a given day in ICU on subsequent mortality, such approaches (as well other standard

regression approaches) are typically biased whether or not one adjusts for the relevant

past confounder history (Robins 1997b). For the unadjusted analysis, this is so because

these analyses ignore time-varying confounders, like mechanical ventilation which in-

creases the subsequent risk of infection and death. For the adjusted analysis, this is so

when (as often) these time-varying confounders lie on the causal path from infection to

mortality, because standard regression adjustment for such post-infection measurements

then introduces bias. This problem of adjusting for internal time-dependent covariates

has been known for a long time in the survival literature (Kalbfleisch and Prentice 1980),

but solutions to it have emerged only relatively recently. One such solution, which is

getting increasingly popular among statisticians and epidemiologists, is to use marginal

structural Cox regression models (Hernán et al. 2001). We briefly review these models

in this section.

Let Ta express the counterfactual survival time (Rubin 1978, Robins 1986) which

an ICU patient would, possibly contrary to fact, have had under a given infection

path a = (a1, a2, ..., aK) following which the patient is infected on day t since ICU

admission if at = 1 and uninfected if at = 0, and where K represents end-of-study

time. Then a marginal structural Cox regression model is a Cox regression model for

the counterfactual survival time Ta, possibly conditional on baseline covariates V . It

thus expresses how the hazard of death would have been if, possibly contrary to fact,

all subjects in the population had followed infection path a. A simple example of a
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marginal structural model is

λa(t|V ) = λ0(t) exp
(

β1at + β′

2V
)

(1)

where λa(t|V ) is the hazard of death at time t among subjects with baseline covariates

V , had they all followed infection path a, λ0(t) is an unknown baseline hazard of death

at time t and β1, β2 are unknown parameters. In model (1), exp(β1) expresses the

causal rate ratio at time t of acquiring infection at time t. This represents the ratio of

the mortality (hazard) rate at any time t had all patients with baseline covariates V

acquired infection at time t compared to the mortality (hazard) rate at time t had these

patients acquired no infection up to time t. Further, λ0(t) expresses the hazard of death

for patients with V = 0 had they followed an infection path in which they acquire no

infection. The model’s name ‘marginal’ expresses that the model does not involve time-

dependent confounders. Adjustment for such confounders happens by fitting the model

to data from a pseudo-population in which there are no time-varying confounders (but

the target effect is the same). This pseudo-population is constructed by reweighting

subjects in the risk set at each time t by the inverse of the product of the conditional

probabilities of the observed infection path up to time t, given the history of time-varying

confounders (Hernán et al. 2001).

In our study, inference for marginal structural Cox models is not directly applicable

to estimate the hazard of death under each infection path because the exposure status

‘ICU acquired infection’ is not well defined between ICU discharge and death or cen-

soring of the survival time, by the same token that A is ill defined for subjects who get

discharged uninfected from the ICU. Because our goal is to estimate the effect of ICU

acquired infection on mortality, it would be natural to define patients uninfected during

the entire study when they were not infected upon ICU discharge. However, this would

make standard estimators for marginal structural models irregular (Robins et al. 2000)

because there would be patients with certain prognostic factors (namely, patients who

are discharged from ICU and were uninfected upon discharge) who are precluded from

becoming infected under this definition. This follows from the assumption of experi-

mentation in the assignment of infection (van der Laan and Robins 2003), according to
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which, at each time t,

0 < P (At = 1|At−1, Lt−1, Dt, V ) < 1 with probability 1.

One solution is to view the infection and ICU discharge status of a patient at

each time as a joint exposure by defining an infection path to be any regime (d, a, as)

in which a patient, while alive, will be discharged from the ICU on day d and either

acquire infection on a given day s < d (if a = 1) or stay uninfected during his/her stay

in ICU (if a = 0). Thus, patients following regime (d, a, as) = (d, 0, 0) stay uninfected in

ICU and are discharged at time d; patients following regime (d, a, as) = (d, 1, s) acquire

infection at time s < d (and not earlier) and are discharged at time d (and not earlier).

The joint causal effect of discharge and infection in the ICU on the hazard of death

can be expressed in function of baseline covariates V through a marginal structural

Cox models for multiple interventions (Hernán et al. 2000, Robins et al. 2003). The

following is a simple example of such model:

λ(d,a,as)(t|V ) = λ0(t) exp
{

(β1 + β2(t − s))aI(t ≥ s) + (β3 + β4(t − d))I(t ≥ d) + β′

5V
}

(2)

with d > s, λ(d,a,as)(t|V ) the hazard of death at time t among subjects with baseline

covariates V , had they all been exposed to infection path (d, a, as), λ0(t) is an unknown

baseline hazard of death at time t, and β1, β2, β3, β4, β5 are unknown parameters. In

particular, exp {β1 + β2(t − s)} is the causal rate ratio at time t of acquiring infection

at time s, s ≤ t, s < d. This represents the ratio of the mortality (hazard) rate at

any time t had all patients with baseline covariates V acquired infection at time s

compared to the mortality (hazard) rate at time t had these patients experienced the

same discharge time, but no infection up to (but not including) time t. Note that the

causal effect parameter in the considered models has limited relevance from a public

health perspective. First, it expresses the effect of acquiring NP at a given time on

mortality in the hypothetical and unrealistic scenario where we would keep the patients

in ICU until some given, later time. Second, by comparing the same group of patients

under 2 possible infection histories, all other things - including time of discharge from

9
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the ICU - being equal, exp {β1 + β2(t − s)} represents only the direct effect of acquiring

infection at time s on mortality at time t under model (2). As such, it does not capture

the indirect effect of infection on death that may arise when infection prolongs the time

of stay in the ICU, which may itself affect mortality risk. Furthermore, estimates for the

parameters in model (2) are highly unstable as a result of inverse weighting by small

probabilities in the estimation procedure (Hernán et al. 2000, Robins et al. 2003).

This is due to a lengthy follow-up for a limited number of patients and because many

collected time-dependent variables are extremely predictive for censoring due to ICU

discharge. In the next section, we develop a more appropriate solution.

3.2 Marginal Structural Models for Partial Infection Paths

We conclude from the previous discussion that inferring the effect of acquiring

infection on a given day in ICU requires fixing the length of stay in ICU because this

effect is not entirely well defined when ICU discharge comes prior to that day. At the

same time, however, fixing the length of stay in ICU is problematic because (a) this is

not feasible in practice (and hence the practical meaning of the estimated effect becomes

more difficult under a hypothetical scenario which fixes the length of stay in ICU), and

(b) by doing so, we miss the indirect effect of infection on mortality through modifying

the length of stay in ICU. Rather than fixing the discharge time of patients up to the

study end, we will therefore infer mortality rates under infection paths in which patients

stay in the ICU for at least s days and acquire infection or not at that time (i.e. we fix the

discharge status of a patient only up to the time of infection). Specifically, we redefine

an infection path (a, s) to be any path in which a patient, while alive, stays in the ICU

for at least s days and acquires infection (if a = 1) or not (if a = 0) on day s. Thus,

under path (s, a) = (s, 0), patients are uninfected in the ICU up to day s, their infection

status being unspecified thereafter; under path (s, a) = (s, 1), patients are uninfected

in the ICU up to day s and acquire infection on day s. By analyzing mortality rates

of ICU patients in the population following uniform application of different infection

paths, we will be able to answer causal questions like ‘What would be the effect of
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acquiring infection at time s on the mortality rate of ICU patients if they stayed in the

ICU for at least s days?’. At the same time, we will be solving the problem that the

infection status is unknown or ill defined after ICU discharge because we only consider

regimes which fix the infection status of patients during their stay in ICU. Note that

these infection paths are partially random and observational, and thus generalize the

deterministic treatment regimes of Robins (1997a) which specify the treatment at each

time from start till end of study.

For a given path (s, a), let T(s,a) be the random variable representing the subject’s

time from admission in the ICU to death had he/she, possibly contrary to fact, experi-

enced infection regime (s, a) rather than his/her own infection history, all other things

being equal. We can then express the causal effect of infection in the ICU on the hazard

of death through the marginal structural Cox model:

λ(s,a)(t|V ) = λ0(t) exp
{

(β1s + β2a)I(t ≥ s) + β′

3V
}

(3)

Here, λ(s,a)(t|V ) is the hazard of death at time t among subjects with baseline covariates

V , had they all been exposed to infection regime (s, a), λ0(t) is an unknown baseline

hazard of death at time t, and β1, β2, β3 are unknown parameters. Note that λ0(t) =

λ(0,0)(t|0) is the hazard of death at time t among patients with V = 0 and is hence, in

principle, directly estimable from the observed data. In addition, note that exp(β2) is

the causal rate ratio at time t of acquiring infection at any time s, s ≤ t. It represents the

ratio of the mortality (hazard) rate at any time t had all patients with baseline covariates

V stayed in ICU up to at least time s and acquired infection at that time compared to

the mortality (hazard) rate at time t had these patients also stayed in ICU up to at least

time s but acquired no infection up to that time. By fixing the discharge status only

up to the time of infection, exp(β2) represents the overall effect of acquiring infection

at time s on mortality at time t under model (3). We call (3) a marginal structural

model for partial exposure regimes to express that it determines each exposure regime

only for a fixed time period, contrary to the more standard marginal structural models

of Section 3.1.

11
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3.3 Inference

In this section, we develop inference for the parameters indexing marginal structural

models for partial infection paths under the assumption of no-unmeasured-confounders

that, for each path (s, a) and at each time t ≤ s, survivors with prognostic factors

L̄t−1, Āt−1, Dt−1 = 0 and V (compatible with the regime (s, a)) have the same haz-

ard of infection and ICU discharge at time t regardless of their counterfactual survival

time T(s,a); that is, (At, Dt) ∐ T(s,a)|L̄t−1, Āt−1, Dt−1 = 0, T > t for each time t and

each infection path (s, a). This assumption is reasonable when (a) the physician’s de-

cision to discharge a patient from the ICU at time t is based only on observed daily

patient characteristics which were recorded in L̄t−1, Āt−1 and V , and (b) in addition,

all time-dependent confounders for the association between infection and death (i.e. all

prognostic factors for death that affect a patient’s susceptibility to NP) are recorded in

the database (and accounted for).

Even if all patients were observed until the study end or death, analysis tools for

marginal structural Cox models as described in Hernán et al. (2000) would not be di-

rectly applicable to fit model (3) under these assumptions. This is because, unlike in

usual marginal structural models, each infection path is fixed for only a limited period

of time and becomes observational afterwards. Below, we give a practical algorithm

for obtaining consistent and asymptotically normal (CAN) estimators for the parame-

ter β = (β1, β2, β3)
′ indexing model (3) in the absence of unmeasured time-dependent

confounders. The motivation for this algorithm is given in the Appendix, where the

resulting estimates are defined via weighted partial likelihood estimation.

1. First we identify, for each infection regime (s, a), those patients in the database

whose observed infection history is compatible with the regime (s, a). Specifically,

for each time t, we construct a vector of variables (St, A
∗

t ) which takes a given value

(s, a) for given patient at that time if that patient’s observed infection regime up

to time t is compatible with the regime (s, a) (i.e. if the patient’s data up to

time t could have been obtained under the regime (s, a)). That is, for given s,

12
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(St, A
∗

t ) = (s, 1)(= (s, 0)) for given patient at time t if that patient was in the

ICU at time s ≤ t and acquired NP at that time (stayed NP-free up to that

time). Contrary to inference for ordinary marginal structural models, the data

for a given patient at a given time may be compatible with (and may hence carry

information about) multiple infection regimes. This is because the considered

regimes are partly observational. For instance, if a patient’s data are compatible

with regime (s, 0) at time t (i.e. if the patient was in the ICU and uninfected at

time s), then they are compatible with all regimes (u, 0) for u < s. Henceforth,

they may appear multiple times in the database corresponding to different values

of St.

2. Next, for all infection regimes (s, a) jointly, we fit a proportional hazards model

using only the data compatible with the given regime and weighting each observa-

tion by inverse the probability of following that regime to account for the selective

nature of our subsample. Specifically, having added the variables St and A∗

t to

the database, we fit the time-dependent Cox model

λ(t|St, A
∗

t , V ) = λ∗

0(t) exp
(

β∗

1St + β∗

2A∗

t + β∗′

3 V
)

(4)

as an analog to (3), where the contribution of a patient to the risk set at time t is

weighted by the stabilized weights

swi(t, St, Āt, D̄t, L̄t−1, V ) =

St
∏

k=1

P {Ak|Ak−1 = Dk = 0, V }

P
{

Ak|Ak−1 = Dk = 0, L̄k−1, V
} (5)

×
P {Dk = 0|Ak−1 = Dk−1 = 0, V }

P
{

Dk = 0|Ak−1 = Dk−1 = 0, L̄k−1, V
}

The impact of inversely weighting by the denominator probabilities is to remove

the association between exposure (At, Dt) and time-varying confounders at each

time t (i.e. the impact is to eliminate time-varying confounders), while leaving

the causal effect of interest unchanged. The numerator probabilities in (5) are

allowed to be misspecified by the fact that model (3) is conditional on V .

Because standard software for PH regression does not allow to reweight the risk sets

at each time, we do this by fitting a weighted pooled logistic regression model using
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generalized estimating equations, treating each patient-day as an observation and using

regression splines to fit the time effect (Hernán et al. 2000). Unbiasedness of the

estimating equations requires use of the independence working correlation (Vansteelandt

2007). Note that, because we wish to assess the impact of acquiring infection in ICU on

a given day, information regarding the end of the infection episode and regarding the

infection status outside the ICU is irrelevant.

The weights (5) differ from the usual stabilized weights for marginal structural

models (Hernán et al. 2000, 2001) in that they consider the joint treatment process

given by infection and discharge at each time and do this only up to the artificial time

St. Note that they involve the discharge process to account for the fact that, at each

time t, those subjects who are still in the ICU (i.e. for whom we have information on

the infection history) may form a selective subset of the study population. Note also

that, by using generalized estimating equations to fit model (4), we account for the

potentially strong correlation arising in the augmented dataset which may contain the

same observations multiple times (corresponding to different values of St).

To deal with censoring of the survival status due to hospital discharge, we proceed

under the additional assumption of sequentially ignorable censoring (Robins 1997a).

For our data, this assumption states that among subjects with a given observed past

ĀtD , D̄t, L̄tD−

, V , where tD = min(t, D − 1) and tD− = min(t, D) − 1, the censored

and uncensored subjects at time t have the same survival time distribution; that is,

C ∐ T |ĀtD , D̄t, L̄tD−

, V, T > t, C > t for each time t. At a given time t, this assumption

could be reasonable for short term survival chances because we have available a large and

detailed collection of prognostic factors for survival that also predict time of discharge

from the ICU. However, for given t, it is questionable for the longer term because we

lack data monitoring the health status of patients after leaving the ICU. In our study,

the median length of stay in hospital after ICU discharge was 8 days (IQR 10, 5%

percentile 0, 95% percentile 50).

Under the assumption of sequential ignorability, we can correct the above analysis

for sequentially ignorable censoring by further weighting the contribution of each patient
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to the risk set at time t by the stabilized weights

swc(t, ĀtD , D̄t, C̄t−1, L̄tD) =
t

∏

k=1

P
(

Ck = 0|ĀkD
, D̄k, Ck−1 = 0, V

)

P
(

Ck = 0|ĀkD
, D̄k, Ck−1 = 0, L̄kD−

, V
) (6)

where the numerator and denominator probabilities equal 1 when Dk = 0. Here, we

implicitly assume that the event of hospital discharge does not causally affect survival.

We conclude that fitting model (4) and weighting each patient’s contribution to the

risk set at time t by the product of (5) and (6) produces a consistent estimator for the

causal rate ratio provided that the measured (time-dependent) covariates are sufficient

to adjust for time-dependent confounding and censoring due to hospital discharge.

4 DATA ANALYSIS

We first consider the unadjusted time-dependent PH model

λ(t|At) = λ0(t) exp (β1At)

To enhance comparability with later results, we fitted this model via unweighted pooled

logistic regression using generalized estimating equations with regression splines for

the time effect. The estimate of the hazard ratio of death comparing patients who

acquired infection prior to time t and those who did not, was 1.89 (95 per cent confidence

interval (CI) 1.32; 2.71). When adding baseline covariates (SAPS score and reasons for

admission to the ICU) to the model, the estimated hazard ratio was no longer significant

and equalled 1.37 (95 per cent CI 0.93; 2.04). A more detailed overview of various

conventional analysis results for these data and a discussion of the biases incurred by

standard regression methods can be found in Mertens et al. (2006a).

To adjust for time-dependent confounding, we extended our data set to include the

variables St and A∗

t for each patient at each time t. Next, we calculated stabilized weights

by means of 6 pooled logistic regression models for the numerator and denominator

weights in (5) and (6). To build parsimonious models, we used the following conservative

approach. In the first stage, all main effects were added and then sequentially removed if
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non-significant at the 10% level (ignoring correlations between outcomes from the same

patient). In the second stage, interaction terms considered to be plausible by clinicians

were added if significant following the same criterion. Time-dependent information on

exposure to invasive treatments was summarized in terms of the presence/absence of

the treatment on each of the 2 previous days and by the total number of previous days

on invasive treatments. Furthermore, splines were used to model the time effect in all

models.

Using the estimated predicted values from these models we calculated the probabil-

ity of each patient having his/her observed infection status up to time t, given baseline

variables and then also given time-dependent variables L̄t−1. We fitted similar models

for the probability of ICU and hospital discharge, the latter after also adjusting for

the infection and ICU discharge history. To avoid unstable weights, we considered only

infection regimes (s, a) with 3 ≤ s ≤ 11. This implies that the estimated effect of

infection on the hazard of death pertains only to infection regimes where infection is

acquired during the first 11 days (starting from day 3). Note however that we included

all observed person-days in the analysis. Further, to avoid unstable weights, we in-

cluded baseline covariates in the marginal structural model as this enables the inclusion

of baseline covariates in the numerator weights (and hence increases their stability).

Figure 1 displays the distribution of the natural logarithm of the stabilized weights

as a function of time. The boxes run from the first to the third quartile and the whiskers

from the first to the 99th percentile. The overall distribution of the stabilized weights

had a median and mean of 0.81 and 0.93, an interquartile range and standard deviation

of 0.48 and 1.94 and 1% and 99% percentiles of 0.048 and 3.89 (min. 0.0039, max.

123.48), respectively. Among weights greater than 5, the 99, 75 and 50 percentiles are

100.59, 11.70 and 8.69 for partial exposure regimes. Among weights smaller than 0.2,

the 1, 25 and 50 percentiles are 0.0066, 0.069 and 0.12 for partial exposure regimes.

We estimated the parameters of the MSM (4) by fitting a weighted GEE regression

model. Because the effect of keeping the patient in the ICU up to time St on the hazard

of death at time t was considered a nuisance, we modelled the effect of St in model
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(4) using regression splines. Our causal estimate of the hazard ratio for infection was

2.74 (95 per cent conservative CI 1.48; 5.09). We conclude that under any regime in

which patients stay in ICU for at least a given number of days s, the effect of acquiring

infection on day s is to multiply the subsequent hazard of death by 2.74. Figure 2 shows

estimated survival curves for the study population along with 95% confidence intervals,

and predicted survival curves in the hypothetical scenario where all patients acquire

infection at the third day of their stay in the ICU. It illustrates the severe estimated

impact of ICU acquired infection on mortality. Confidence intervals were obtained using

the robust standard error with independence working covariance matrix. By not taking

into account the estimation of the weights, this yields an asymptotically conservative

confidence interval for our causal parameters (Robins et al. 2000).

To examine the stability of this result to extreme weights, we additionally evaluated

the effect of infection on mortality for infection regimes with 3 ≤ s ≤ smax = 7, 8, 9 and

10. The weights are more stable for these analyses by the fact that the product in (5)

runs over a smaller number of time points. The results are displayed in Table 1 and show

that the effect size and significance stay the same despite the increasing stability of the

weights. Finally, we performed an ad-hoc procedure whereby stabilized weights smaller

than 0.2 or greater than 5 were truncated at 0.2 and 5, respectively. It yielded a hazard

ratio of 2.50 (95 per cent conservative CI 1.45; 4.31), suggesting once more robustness

to the extreme weights. Allowing for an interaction between infection status and the

number of days since acquiring the infection, revealed that (on the hazard scale) the

effect of acquiring infection on a given day s increases non-significantly with 2.8% (95%

conservative CI -1.2%; 6.7%, P 0.17) per day since acquiring infection. Likewise, there

was no indication that the effect of infection in ICU on the hazard of death depends on

the time at which it was acquired (P-value 0.29).
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5 DISCUSSION

The goal of this paper was to quantify the effect of acquiring NP in ICU on subse-

quent mortality. Because standard statistical analyses of data for ICU patients may be

severely misleading due to the presence of time-varying confounders, and have shown

controversial results in this context, we have proposed to use analyses of marginal struc-

tural models instead. Unlike many standard analyses, the latter take into account the

time order in which infection, mortality data and time-dependent confounders were

collected and succeed to correct for time-dependent confounders that lie on the causal

path from NP to mortality. Inference for marginal structural models was however not

directly applicable to our data because

(a) the infection status of patients was not well defined subsequent to ICU discharge,

an event which lies itself on the causal path from infection to mortality.

(b) the required weights in the weighted estimating equations for standard marginal

structural models would be highly unstable as there was a lengthy follow-up for several

patients and because many collected time-dependent variables were extremely predictive

of ICU discharge.

To accommodate these problems we have proposed to model mortality rates fol-

lowing partial infection paths. Patients under any such regime stay in the ICU up to

a given time s, at which they may or may not acquire infection. We believe that the

results obtained from such models are useful in the present context for various reasons.

First, they enable us to assess the effect of acquiring infection on a given day s in the

hypothetical situation where all patients stayed in the ICU for at least s days. Second,

they solve the problem mentioned in (a) without fixing the discharge time after the

event of infection; that is, without fixing variables that possibly lie on the causal path

from infection to mortality. Third, the required weights in the weighted estimating

equations are more stable under these models than under standard marginal structural

models. This is because the fixed episode of the infection regime is now limited up to

a given time s (rather than up to the study end) so that the weights merely involve
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the first s time points and, hence, are less affected by lengthy follow-up with frequent

infection measurements.

Our results are more generally useful for assessing the causal effect of a time-varying

exposure in observational studies. First, they directly accommodate situations where ex-

posures are not collected up to the time where outcomes are assessed. This may happen

in settings where the mortality status of patients is assessed at the time of data analysis

(i.e. later than end-of-follow-up) through death registers, or where each patient’s treat-

ment is closely monitored for only a limited time period. By not fixing treatment levels

observed after this time period, the proposed models succeed to isolate the overall effect

of treatment over the given period on outcome. Second, our results extrapolate less

from the observed data by making fewer untestable assumptions. Specifically, to draw

inference about infection regimes (s, a) with s < smax, the no-unmeasured-confounders

assumption relates only to the hazard of infection and ICU discharge at time points

t < smax. Third, they have the further advantage of yielding more stable weights in the

weighted estimating equations and still yielding meaningful answers to the causal ques-

tion. The former will be especially clear in studies where most patients have lengthy

follow-up with frequent treatment measurements. Alternative proposals to deal with

unstable weights have been made by Joffe et al. (2004) and by Yu and van der Laan

(2006). Joffe et al. (2004) consider the effect of treatments received after the beginning

of a moving partition. While this approach is clearly valuable in certain study settings,

it does not allow to assess the impact of early infections for the long survivors and

would not be successful in our setting because most infection events happened early on

in the study. Yu and van der Laan (2006) use so-called doubly-robust estimators for the

marginal structural model parameters. These are computationally more complex, but

have the advantage of yielding CAN estimators for the causal parameters when either

the model for the weights in the estimating equations holds, or some model for the

counterfactual survival distribution. When reasonable models can be postulated for the

latter, such doubly-robust estimators allow to truncate extreme weights in the weighted

estimating equations and thus to achieve a better finite-sample performance. It remains

to be seen how such doubly-robust estimators can be constructed and how they would
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perform for the marginal structural models proposed in this article.

Alternatively, we could have chosen to assess the effect of avoiding infection among

patients who acquired infection on a given day (with given prognostic factors). Such

effect may be different from the effect identified in this article because infection might

be more harmful for those who actually were infected. At the same time, it might

have greater public health relevance since clinicians may be primarily interested in the

effect of infection on mortality among those who actually were infected. Structural

nested distribution models (Robins 1997a, Keiding et al. 1999) can be used to assess

such effects. These are models for the effect of a change in infection status on survival

time among patients with a given history of measured time-dependent confounders and

infection. By describing causal effects within subpopulations with a given observed

infection history, these models may tend to extrapolate less from the observed data and

may yield more stable inferences because estimation does not involve inverse probability

weighting. Because inference for these models is more complicated and does not allow

the use of standard software, they have not frequently been used so far. We have

therefore chosen to adopt marginal structural models in this article and plan to report

on structural nested models elsewhere. Standard inference for the latter models would

not be directly applicable by the same problem that the infection status is ill defined

for patients who are discharged uninfected from the ICU, even if we would define those

patients uninfected. Indeed, the blipped-down survival times in these models express

what would be the survival time if there was no infection prior to ICU discharge, but

the infection status after ICU discharge equalled the observed infection status. Because

the latter may depend on the observed infection status prior to ICU discharge, these

blipped-down survival times are not guaranteed to be independent of observed infection

conditional on the observed past. Hence, G-estimation (Robins 1997a, Keiding et al.

1999), which relies on this conditional independence assumption, may fail.

Finally, it also remains to be seen how sensitive conclusions are to the untestable

assumptions that there are no unmeasured time-varying confounders for the effect of

infection on mortality and that censoring is sequentially ignorable. The former as-
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sumption implies that among patients with prognostic factors L̄t−1, Āt−1, Dt−1 = 0, the

causal effect of infection and ICU discharge is the same regardless of their infection and

ICU discharge status at time t. This may not be entirely relevant because we anticipate

the causal effect of infection to be greater among the infected and we may lack sufficient

prognostic factors conditional on which this is no longer so. The assumption of se-

quentially ignorable censoring may also be questioned because the decision to discharge

patients from hospital is intimately connected to their health status, about which no

information was recorded after ICU discharge. A sensitivity analysis can and remains

to be undertaken as in Brumback et al. (2004).

APPENDIX

Let us first assume there is no censoring due to hospital discharge. Under this

assumption, we will construct (up to asymptotic equivalence) all unbiased estimating

functions for β indexing model M for the observed data
(

T, D, ĀD, L̄D

)

defined by the

law of the infection and discharge process under sequential randomization (SRA, i.e.

the assumption of no unmeasured confounding for infection and ICU discharge):

f
{

DD+1 = 1|ĀD, D̄D = 0, L̄D, V
}

D
∏

t=1

f
{

At, Dt = 0|Āt−1, D̄t−1 = 0, L̄t−1, V
}

(7)

where f is an unknown probability function, and by the (discrete-time) marginal mul-

tiplicative intensity model:

λ(s,a)(t|V ) = λ0(t) exp
(

β′W
)

(8)

for t ≥ 0, a = 0, 1, s = 1, ..., K for a given integer constant K > 0, where W =

W (a, s, t, V ) is a known function of a, s, t and V . Note that model (3) is a special case

of (8) with β = (β1, β2, β3)
′ and W (a, s, t, V ) = (sI(t ≥ s), aI(t ≥ s), V ). Upon noting

that the assumption of CAR-SRA equivalence (Robins, Rotnitzky and Scharfstein 1999)

continues to hold when the length D of the infection period is random, the derivation

is similar to the construction of CAN estimators for parameters indexing a conditional
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mean model under CAR (i.e. coarsening at random). Application of Theorem 1.3 in

van der Laan and Robins (2003) shows that, up to asymptotic equivalence, all CAN

estimators of β under model M can be obtained by solving an estimating equation

based on estimating functions in the set {U}+ TSRA, where U is an arbitrary unbiased

estimating function for β under this model and where TSRA is the tangent space (Bickel

et al. 1993) for the infinite-dimensional parameters indexing the infection and discharge

process (7), which is assumed to satisfy the SRA assumption. A similar argument as

in Theorem 1.2 (van der Laan and Robins 2003) shows that TSRA = TSRA,1 + TSRA,2

where

TSRA,1 =

{

D
∑

s=1

Z
(

Ās, D̄s, L̄s−1, V
)

−E
[

Z
(

Ās, D̄s, L̄s−1, V
)

|Ās−1, D̄s−1, L̄s−1, V
]

: Z arbitrary
}

TSRA,2 =
{

Z
(

ĀD, D̄D+1, L̄D, V
)

−E
[

Z
(

ĀD, D̄D+1, L̄D, V
)

|ĀD, D̄D, L̄D, V
]

: Z arbitrary
}

To determine an unbiased estimating function U under model M, let Ut,(s,a) (Ts,a, V ; β)

be an unbiased estimating function for β in the full data model defined by the full data

(Ts,a, V ), restriction (8) just for the given t and the given infection path (s, a). Because

(8) is a multiplicative intensity model, such estimating functions follow from standard

results on such models. In particular, it may be the discrete-time partial likelihood

score

{

W (s, a, t, V ) −

∑n
i=1 W (s, a, t, Vi)I(Ti,s,a ≥ t) exp (β′W (s, a, t, Vi))

∑n
i=1 I(Ti,s,a ≥ t) exp (β′W (s, a, t, Vi))

}

dN(t)

where Ti,s,a is the realization of Ts,a for the ith subject and dN(t) indicates 1 if the

counterfactual survival time Ts,a ∈]t − 1, t] for the considered subject. Define

U =
K

∑

t=1

t−1
∑

s=1

1
∑

a=0

I {As = a, As−1 = 0, Ds = 0} sws,aUt,(s,a) (Ts,a, V ; β)
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where we define

sws,a(Ls−1) =
P {As = a, Ds = 0|As−1 = Ds−1 = 0, V }

P
{

As = a, Ds = 0|As−1 = Ds−1 = 0, L̄s−1, V
}

×
s−1
∏

k=1

P {Ak = Dk = 0|Ak−1 = Dk−1 = 0, V }

P
{

Ak = Dk = 0|Ak−1 = Dk−1 = 0, L̄k−1, V
}

where we ignore the dependence of sws,a on random variables for ease of notation.

Then U is an unbiased estimating function in model M. Indeed, first note that U is

a function of the observed data because replacing Ts,a by T yields the same full data

function under the consistency assumption that we observe Ts,a = T for subjects with

As = a, As−1 = 0, Ds = 0. Furthermore, for s < t − 1 and provided that the sequential

randomization assumption holds,

E
[

I {As = a, As−1 = 0, Ds = 0} sws,a(Ls−1)Ut,(s,a) (Ts,a, V ; β)
]

= E
[

E
[

I {As = a, Ds = 0} sws,a(Ls−1)|As−1 = Ds−1 = 0, L̄s−1, Ts,a

]

×I {As−1 = Ds−1 = 0}Ut,(s,a) (Ts,a, V ; β)
]

= E
[

E
[

I {As = a, Ds = 0} sws,a(Ls−1)|As−1 = Ds−1 = 0, L̄s−1

]

×I {As−1 = Ds−1 = 0}Ut,(s,a) (Ts,a, V ; β)
]

= E [P {As = a, Ds = 0|As−1 = Ds−1 = 0, V }

I {As−1 = Ds−1 = 0} sws−1,0(Ls−2)Ut,(s,a) (Ts,a, V ; β)
]

= ... = E
[

Ut,(s,a) (Ts,a, V ; β)P {As = a, Ds = 0|As−1 = Ds−1 = 0, V }

s−1
∏

k=1

P {Ak = Dk = 0|Ak−1 = Dk−1 = 0, V }

]

= 0

where the last equality is true because the estimating functions Ut,(s,a) (Ts,a, V ; β) are

conditionally unbiased given V . We conclude that U is an unbiased estimating function.

The result now follows by noting that solving an estimating equation with estimating

function U is mathematically equivalent to fitting the time-dependent (discrete-time)

multiplicative intensity model

λ(t|V ) = λ0(t) exp
(

β′W (A∗

t , St, t, V )
)

23

Hosted by The Berkeley Electronic Press



where λ0(t) is an unknown baseline hazard, where A∗

t , St, t > 0 are defined as in Section

3.3, and where the risk set at each time is weighted by the weights (5).

It further follows from Theorem 1.2 in van der Laan and Robins (2003) that for

given estimating function U , the choices Z
(

Ās, D̄s, L̄s−1, V
)

= E
(

U |Ās, D̄s, L̄s−1, V
)

and Z
(

ĀD, D̄D+1, L̄D, V
)

= E
(

U |ĀD, D̄D+1, L̄D, V
)

are optimal in the sense that they

yield an efficient estimator of β under model M in the class of estimators obtained by

solving estimating equations in the class {U} + TSRA for given U . Finally, the above

methods are easily adapted to handle sequentially ignorable censoring following the lines

of Robins et al. (1994) and to account for estimation of the parameters indexing the

infection and discharge process (7). It also follows from Theorem 2.4 in van der Laan

and Robins (2002) that we obtain an asymptotically conservative confidence interval for

our causal parameters by not taking into account estimation of the weights, provided

that the unknown parameters in the models for the weights are efficiently estimated.
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models for partial infection paths with 3 ≤ s ≤ smax.
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7 0.065 3.50 0.0071 25.94 2.75 1.48; 5.12

8 0.064 3.49 0.0061 35.91 2.66 1.43; 4.94
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Figure 1: Multi-state model: directed arrows show the possible transitions from one

state to another.

Figure 2: Boxplots of the natural logarithm of the stabilized weights in function of time

t.
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Figure 3: Marginal survival curve (directly estimated from the observed data) with

95% confidence intervals (top 3 lines) and predicted survival curves following immediate

infection (based on the marginal structural model) with approximate 95% confidence

intervals (bottom 3 lines) (the bottom 95% confidence interval acknowledges imprecision

on the estimated causal effect, but ignores imprecision on the estimated survival curve).

Left: from 3 to 140 days after ICU admission; Right: from 3 to 20 days after ICU

admission.
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