Marginal Structural Models to Estimate the Causal
Effect of Zidovudine on the Survival of HIV-Positive
Men
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Standard methods for survival analysis, such as the time-
dependent Cox model, may produce biased effect estimates
when there exist time-dependent confounders that are them-
selves affected by previous treatment or exposure. Marginal
structural models are a new class of causal models the param-
eters of which are estimated through inverse-probability-of-
treatment weighting; these models allow for appropriate ad-
justment for confounding. We describe the marginal structural
Cox proportional hazards model and use it to estimate the
causal effect of zidovudine on the survival of human immuno-
deficiency virus-positive men participating in the Multicenter
AIDS Cohort Study. In this study, CD4 lymphocyte count is

both a time-dependent confounder of the causal effect of

zidovudine on survival and is affected by past zidovudine
treatment. The crude mortality rate ratio (95% confidence
interval) for zidovudine was 3.6 (3.0—4.3), which reflects the
presence of confounding. After controlling for baseline CD4
count and other baseline covariates using standard methods,
the mortality rate ratio decreased to 2.3 (1.9-2.8). Using a
marginal structural Cox model to control further for time-
dependent confounding due to CD4 count and other time-
dependent covariates, the mortality rate ratio was 0.7 (95%
conservative confidence interval = 0.6-1.0). We compare
marginal structural models with previously proposed causal

methods. (Epidemiology 2000;11:561-570)
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Marginal structural models (MSMs) can be used to es-
timate the causal effect of a time-dependent exposure in
the presence of time-dependent confounders that are
themselves affected by previous treatment."? The use of
MSMs can be an alternative to g-estimation of structural
nested models (SNMs).3

In our companion paper we describe inverse-probabil-
ity-of-treatment weighted (IPTW) estimation of a mar-
ginal structural logistic model.* In this paper, we intro-
duce the marginal structural Cox proportional hazards
model, show how to estimate its parameters by inverse-
probability-of-treatment weighting, provide practical ad-
vice on how to use standard statistical software to obtain
the IPTW estimates, and include, as an appendix, the
SAS code necessary for the analysis. We use this Cox
proportional hazards MSM to estimate the effect of
zidovudine on the survival of human immunodeficiency
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virus (HIV)-positive men enrolled in an observational
cohort study, the Multicenter AIDS Cohort Study
(MACS). We conclude by comparing methods based on
MSMs with previously proposed methods based on g-
estimation of SNMs and on the direct estimation of the
g-computation algorithm formula.

We now begin by describing the MACS and then
summarize why standard methods for survival analysis
are not appropriate for estimating the effect of zidovu-
dine on mortality in this cohort.

The Multicenter AIDS Cohort Study and Bias
of Standard Methods
Between 1984 and 1991, the MACS enrolled 5,622
homosexual and bisexual men, with no prior acquired
immunodeficiency syndrome (AIDS)-defining illness,
from the metropolitan areas of Los Angeles, Baltimore-
Washington, Pittsburgh, and Chicago. Study partici-
pants were asked to return every 6 months to complete
a questionnaire, undergo physical examination, and pro-
vide blood samples. The design and methods of the
MACS have been described in detail elsewhere.>®

We restricted our cohort to HIV-positive men alive in
the period during which zidovudine was available for use
(that is, after study visit 5; March 1986 through March
1987). Follow-up ended at study visit 21, October 1994,

death, or 24 months after the last visit, whichever came
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first. Our analysis included the 2,178 men who attended
at least one visit between visits 5 and 21 while HIV
positive, and who did not have an AIDS-defining illness
and were not on antiretroviral therapy at the first eligi-
ble visit. By the end of the follow-up (median dura-
tion-69 months), 1,296 men had initiated zidovudine
treatment and 750 had died.

The usual approach to the estimation of the effect of
a time-varying exposure, such as zidovudine, on survival
is to model the hazard of failure at a given time as a
function of past exposure history using a time-dependent
Cox proportional hazards model. Robins’ has shown this
approach may be biased, whether or not one further
adjusts for past covariate history, whenever (1) there
exists a time-dependent covariate that is both a risk
factor for mortality and also predicts subsequent expo-
sure and (2) past exposure history predicts the risk fac-
tor. Covariates satisfying condition 1 are called time-
dependent confounders. Past CD4 count is a time-
dependent confounder for the effect of zidovudine on
survival, because it is a risk factor for mortality and a
predictor of subsequent initiation of zidovudine thera-
py,® and past zidovudine history is an independent pre-
dictor of subsequent CD4 count.® In fact, all standard
methods (for example, Cox or Poisson regression) that
predict the mortality rate at each time using a summary
of zidovudine history up to that time may produce biased
estimates of the causal effect of zidovudine whether or
not one adjusts for past CD4 count in the analysis.

Marginal Structural Cox Proportional Hazards
Model

In the absence of time-dependent confounding, a time-
dependent Cox proportional hazards model is typically
used. We treat visit 5, or the earliest subsequent visit at
which a man was HIV positive, as start of follow-up time
for our analysis. We define T to be a subject’s time of
death with time measured in months since start of fol-
low-up, and A(t) to be 1 if a subject was on zidovudine
at time t. We use overbars to represent a covariate
history so, for example, A(t) = {A(u); 0 = u < t}is
a subject’s treatment history up to t. Finally, let V be a
vector of time-independent baseline covariates mea-
sured before start of follow-up. Then the conditional
hazard of death (that is, mortality rate) Ar(t|A(t), V)
given treatment history A(t) and baseline covariates V is
modeled as

Ar(t|A(0), V) = Ao(exp(v,A(t) + y,V).
The subscript T in Ap (ffA(t), V) merely identifies this

hazard function as being that corresponding to the vari-
able T. In our analysis, the covariates in V are age,
calendar year, CD4 count, CD8 count, white blood cell
count (WBC), red blood cell count (RBC), platelets,
and presence of symptoms. Symptomatic status was de-
fined by previous presence of one or more of the follow-
ing clinical symptoms or signs: fever (temperature
>37.9°C) for =2 weeks, oral candidiasis, diarrhea for
=2 weeks, weight loss of =4.5 kg, oral hairy leukoplakia,
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or herpes zoster. We assume, for simplicity, that patients
remain on therapy once they start it and that the hazard
of death at time t depends on a subject’s zidovudine
history only through its current value, but alternative
specifications are possible. Suppose, for the moment, no
censoring occurs, that is, death times T are observed for
all subjects.

In the presence of time-dependent covariates L(t)
satisfying the conditions 1 and 2, the estimate ¥, ob-
tained by maximizing the Cox partial likelihood is an
(asymptotically) unbiased estimate of the association
parameter ;. However, it is a biased estimate of the
causal effect of zidovudine on mortality, even if we had
included the time-dependent covariates L(t) as regres-
sors in the model.

Arguing as in our companion paper,* we can eliminate
or reduce this bias by fitting the above time-dependent
Cox model with the contribution of a subject i to a
risk-set calculation performed at time t weighted by the
“stabilized” weights

swi(t) =

O pr(Ak) = a(k)|Ak — 1) = ak — 1), V = v))

k]jo pr(Ak) = ak)|A(k — 1) =

ak = 1), L(k) = Ti(k))

)

to obtain an IPTW partial likelihood estimate. In the
above A( — 1) is defined to be 0. Here, int(t) is the
largest integer less than or equal to t and k is an integer-
valued variable denoting whole months since start of fol-
low-up. Because a subject’s recorded treatment changes
at most one per month, each factor in the denominator
of swy(t) is, informally, the probability that the subject
received his own observed treatment at month k, given
his past treatment and prognostic factor history [V is
included in L(0)]. Each factor in the numerator is, in-
formally, the probability that the subject received his
observed treatment conditional on his past treatment
history and baseline covariates, but not further adjusting
for his past time-dependent prognostic factor history.
“Nonstabilized” weights w,(t), in which the numerator of
sw;(t) is replaced by 1, can be used in lieu of sw(t).
Although this choice will not influence the consistency
of our causal estimates, the stabilized weights sw;(t) are
preferred because they generally yield 95% confidence
intervals that not only are narrower (that is, more effi-
cient) but also have actual coverages rates that are closer
to 95%. In a latter section, we describe how these
stabilized inverse-probability-of-treatment weights sw(t)
can be estimated from the data.

Suppose all relevant time-dependent confounders are
measured and included in L(t). Then, weighting by
sw(t) effectively creates, for a risk set at time ¢, a pseu-
dopopulation in which (1) L(¢) no longer predicts ini-
tiation of zidovudine at t (that is, L(t) is not a confound-
er), and (2) the causal association between zidovudine
and mortality is the same as in the original study popu-
lation.! As argued in Ref 4, this implies that an [PTW
estimator, say [3;, of the parameter 7y, of our time-
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dependent Cox model will converge to a quantity S,
that can be appropriately interpreted as the causal effect,
on the log rate ratio scale, of zidovudine on mortality.
To formalize the above, we introduce counterfactual
outcomes.* For each possible treatment history a =
fa(t); 0 = t < oo}, let T, be the random variable
representing the subject’s time to death had he followed,
possibly contrary to fact, the zidovudine history a from
the start of follow-up, rather than his observed history.
For example, T; with @ such that a(t) = O fort < 2.5
and a(t) = 1fort = 2.5 is the subject’s survival time
when he started zidovudine therapy 2.5 months after the
start of follow-up. We only observe T; for those treat-
ment histories a that agree with the subject’s observed
treatment history until the subject’s observed death time
T. For these histories T; equals T. For each a, we specify
the marginal structural Cox proportional hazards model

)\T;(f|v) = Ao(t)exp(Bialt) + B,V)

where Ay (t[V) is the hazard of death at t among subjects
with baseline covariates V in the source population had,
contrary to fact, all subjects followed zidovudine history
a through time ¢, the scalar 8, and the row vector 3, are
unknown parameters, and Ay(t) is an unspecified base-
line hazard. We refer to this model as an MSM because,
within levels of V, it is a structural (that is, causal) model
for the marginal distribution of the counterfactual vari-
ables T.

The parameter B, of our MSM is the causal log rate
ratio for zidovudine. Hence, exp(B;) has a causal inter-
pretation as the ratio of the mortality (hazard) rate at
any time t had all subjects been continuously exposed to
zidovudine compared with the hazard rate at time t had
all subjects remained unexposed. B, is consistently esti-
mated by our IPTW estimator B, under the untestable
assumption of no unmeasured confounders given the
measured risk factors in L(t).! We shall make this as-
sumption with L(t) being the covariate vector with the
following elements: the most recent recorded CDA4,
CD8, WBC, RBC, platelets, presence of an AIDS-de-
fining illness, and symptomatic status before t.

It is difficult to get standard Cox model software to
compute our IPTW estimator 3, because our subject-
specific weights sw,(t) vary over time, and most standard
Cox model software programs, even those that allow for
subject-specific weights, do not allow for subject-specific
time-varying weights. The approach we shall adopt to
overcome this software problem is to fit a weighted
pooled logistic regression treating each person-month as
an observation. (In the MACS, our 2,178 men contrib-
ute 143,194 person-months of observation.) That is, we
will fit, by weighted logistic regression using weights
sw,(t), the model

logit pr[D(t) = 1|D(t — 1) = 0, A(t — 1), V] =
Bo(t) + B1A(t — 1) + B,V

where, henceforth t, like k, is integer valued denoting
whole months since start of follow-up, D(t) = 0 if a
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subject was alive in month t and 1 if the subject died in
month ¢, and By(t) is a time-specific (that is, month-
specific) intercept. This method has the advantage of
being easily programmed in many standard statistical
packages. In the unweighted case, it is essentially equiv-
alent to fitting an unweighted time-dependent Cox
model, because the hazard in any single month is small.’
However, the use of weights induces within-subject cor-
relation, which invalidates the standard error estimates
outputted by a standard logistic program (they can be
either too large or too small). To overcome this diffi-
culty, the above weighted logistic model should be fit
using a generalized estimating equations!® program (for
example, option “repeated” in SAS Proc Genmod) that
outputs “robust” variance estimators that allow for cor-
related observations. The robust variance estimator pro-
vides a conservative confidence interval for the 8. That
is, under our assumptions, the 95% confidence interval
calculated as B + 1.96 X robust standard error is guar-
anteed to cover the true B at least 95% of the time in
large samples.

Censoring

The analysis just described assumes that there is no
dropout or censoring by end of follow-up. We define the
censoring indicator C(t) to be 1 if a subject is right-
censored by time t and C(t) = O otherwise, where a
subject is right-censored if he either dropped out of the
study or reached the administrative end of follow-up
alive. To estimate 3; in the presence of censoring, we fit
a weighted Cox model in which, for a subject at risk at
month t, we use the weight sw,(t) X sw/ (t), where

swi(e) =

pr[C(k) = 0|C(k — 1) =
ﬁ 0, Ak —1) =a(k—1),V=uy]
o prIC(k) =0|C(k — 1) =0, A(k — 1) =
a(k = 1), L(k = 1) = T(k — 1)]

where C( — 1) and A( — 1) are defined to be 0. sw(t) is,
informally, the ratio of a subject’s probability of remain-
ing uncensored up to month t, calculated as if there had
been no time-dependent determinants of censoring ex-
cept past zidovudine history, divided by the subject’s
conditional probability of remaining uncensored up to
month t. The denominator of the product sw,(t) X sw]
(t) is, informally, the probability that a subject had had
his observed zidovudine and censoring history through
month t. Because sw,(t) and sw] (t) are unknown, they
must be estimated from the data as described below.
Weighting by sw,(t) X sw] (t) produces a consistent
estimate of the causal parameter 3, under the assump-
tion that the measured covariates are sufficient to adjust
for both confounding and selection bias due to loss to
follow-up.*

Estimation of the Weights
The practical problem faced by the investigator is how
to obtain the quantities sw,(t) X sw] (t) necessary to run
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the pooled weighted logistic regression model. Consider
first the estimation of sw;(t). We need to estimate con-
sistently the denominator and numerator of sw,(t) for
each subject and time point. Because any subject starting
zidovudine was assumed to remain on it thereafter, we
can regard the time to starting zidovudine as a failure
time variable and model the probability of starting
zidovudine through a pooled logistic model that treats
each person-month as an observation and allows for a
time-dependent intercept. Specifically, we can, for ex-
ample, fit the model logit pr [A(k) = OA(k — 1) =
0, L(k)] = ayk) + o L(k) + «a V and obtain
estimates & = (&y(k), &, &,) for the unknown parame-
ters. [t is only necessary to fit the model for subjects alive
and uncensored in month k who had yet to begin zidovu-
dine (that is, the 85,116 person-months in the MACS
with A(k — 1) = 0).

The estimated predicted values pi(k) = expit
(ao(k) + & L(k) + &, V,) from this model are the
estimated probabilities of subject i not starting zidovu-
dine in month k given that zidovudine had not been
started by month k — 1, where expit(x) = e¥/(1 +
e¥). Our estimate of the denominatl(()r of sw,(k) for person
M pu) if subject i did
to month k and is

i in month k is the product p,(k)=
zidovudine up
t—1
Ei(k) =[1—p,(0)] Ml;lo pi(u) if subject i started zidovudine at
month ¢ for t = k. [Note that, in calculating p(k), we
have used our assumption that no subject stops zidovu-
dine once begun.] Similarly, we estimate the numerator
of sw,(k) by fitting the above logistic model except with
the covariates L(k) removed from the model.
There is a small but important technical detail we
have yet to discuss. For our IPTW estimates of B to be

not start

TABLE 1. Inverse-Probability-of-Treatment = Weighted
Estimates of the Causal Effect of Zidovudine Therapy on
Mortality in the Multicenter AIDS Cohort Study

Unweighted estimates™ RR 95% CI
Unadjusted 3.55 2.95-4.27
Only baseline covariates 2.32 1.92-2.81
Invalid
Valid 95% Model-Based
Weighted estimatest ~ RR Conservative CI 95% CI
Stabilized weights 0.74 0.57-0.96 0.62-0.87
Nonstabilized weights ~ 0.76 0.54-1.05 0.71-0.80

RR = mortality rate ratio (zidovudine users vs nonusers); CI = confidence
interval.

* Noncausal models, shown for comparison purposes only. The unadjusted model
includes only the time-varying intercept and zidovudine use (yes or no). The
model with baseline covariates includes also: age, calendar year (1985, 1986,
1987-89, or 1990-1993), CD4 (<200, 200-499, or =500/ul), CD8 (<500;
500-999; or =1,000 per ul), WBC (<3,000; 3,000-4,999; or =5,000 per ul),
RBC (<35, 35-44, or =45 X 10° per ul), platelets (<150, 150-249, or =250 X
10° per pl), presence of symptoms (yes if fever, oral candidiasis, diarrhea, weight
loss, oral hairy leukoplakia, or herpes zoster, or no if otherwise).

+ Weights calculated as described in the text using data on baseline covariates
plus most recent CD4, CD8, WBC, RBC (<30, 30-39, or =40 X 10° per ul),
platelets, presence of symptoms, presence of AIDS-defining illness, and previous
zidovudine use.

+ The model-based intervals are not valid for weighted models because they fail
to account for the within-subject covariances induced by weighting.
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TABLE 2. Inverse-Probability-of-Treatment = Weighted
Estimates of the Parameters of a Marginal Structural Model
for the Causal Effect of Zidovudine on Mortality in the
Multicenter AIDS Cohort Study

Parameter Robust Conservative
Covariates* Estimate Standard Error 95% CL
Zidovudine —0.301 0.132 —0.559, —0.043
Age at baseline 0.038 0.008 0.224, 0.053
Baseline CD4, per pl
<200 1.913 0.136 1.645, 2.180
200-499 0.634 0.088 0.461, 0.806
=500 0.000
Baseline CD8, per ul
<500 —0.648 0.122 —0.888, —0.409
500-99 —0.477 0.087 —0.648, —0.306
=1000 0.000
Baselirie WBC, per
n
<3000 0.790 0.085 0.375, 1.205
3000-4999 0.273 0.420 0.106, 0.440
=5000 0.000
Baseline RBC, X107,
per wl
<35 0.231 0.420 —0.593, 1.055
35-45 0.254 0.105 0.048, 0.460
=45 0.000
Baseline platelets,
X107, per ul
<150 0.616 0.129 0.364, 0.869
150-249 0.189 0.087 0.019, 0.359
=250 0.000
Presence of 0.618 0.086 0.448, 0.787
symptoms
Calendar year at
baseline
1985 0.405 0.426 —0.431, 1.240
1986 0.440 0.432 —0.408, 1.287
1987-89 0.250 0.442 —0.617, 1.120
1990-93 0.000

CL = confidence limits.

* Weighted logistic model including the covariates listed in the table plus a
time-varying intercept (not shown). Weights were estimated by si,(t) X s (t)
as defined in the text.

consistent, it is necessary that the denominator of sw(t)
be consistently estimated. To do so, we cannot estimate
a separate intercept ay(k) for each month k. Rather, we
need to “borrow strength” from subjects starting zidovu-
dine in months other than k to estimate ay(k). This can
be accomplished by assuming that ay(k) is constant in
windows of, say, 3 months. An alternative approach is to
assume the ay,(k) are a smooth function of k and thus can
be estimated by smoothing techniques (such as regres-
sion splines, smoothing splines, or kernel regression).!!

To correct for censoring, we estimate swj(k) in a
manner analogous to the estimation of sw,(k) except
with A(k) replaced by C(k) as the outcome variable,
with A(k — 1) added as an additional regressor, and not
conditioning on A(k — 1) = 0 but rather on C(k —
1) = 0.

Causal Effect of Zidovudine in the Multicenter
AIDS Cohort Study

Using a standard Cox proportional hazards model—or
the equivalent pooled logistic regression model—with
no covariates, the crude mortality rate ratio for zidovu-

dine was 3.6 (95% confidence interval-3.0-4.3). The
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TABLE 3. Estimated Probability of Having One’s Own Observed Treatment History [Estimated Denominator of sw;(t)] and
Censoring History [Estimated Denominator of sw] (t)] at 24 and 84 Months of Follow-Up, Multicenter AIDS Cohort Study

Mean SD Median IQR Minimum Maximum
24 Months (N = 2,063)
Probability of having observed
zidovudine history
Given baseline covariates* 0.52 0.34 0.69 0.77 0.005 0917
Given time-varying covariatesT 0.54 0.35 0.68 0.82 0.002 0.939
Probability of being uncensored
Given baseline covariates* 0.96 0.08 0.99 0.04 0.228 0.997
Given time-varying covariatesT 0.96 0.08 0.99 0.04 0.199 0.997
84 Months (N = 836)
Probability of having observed
zidovudine history
Given baseline covariates™® 0.11 0.17 0.01 0.22 0.001 0.556
Given time-varying covariatesT 0.15 0.24 0.02 0.26 0.001 0.728
Probability of being uncensored
Given baseline covariates™* 0.78 0.17 0.86 0.08 0.244 0.932
Given time-varying covariatest 0.78 0.17 0.86 0.08 0.256 0.940

SD = standard deviation, IQR = interquartile range.

* Age (years), calendar year (1985, 1986, 1987-1989, or 1990-1993), CD4 (<200, 200-499, or =500 per ul), CD8 (<500; 500-999; =1,000 per ul), WBC (<3,000;
3,000-4,999; or =5,000 per ul), RBC (<35, 35-44, or =45 X 10° per ul), platelets (<150, 150-249, or =250 X 10°/ul), presence of symptoms (yes if fever, oral
candidiasis, diarrhea, weight loss, oral hairy leukoplakia, or herpes zoster, or no otherwise), and previous zidovudine use.

+ Baseline covariates plus most recent CD4, CD8, WBC, RBC (<35, 35-44, =45 X 10° per ul), platelets, presence of symptoms, or presence of an AIDS-defining

illness.

addition of the baseline covariates V to the model de-
creased this rate ratio to 2.3 (1.9-2.8).

To adjust further for confounding due to the time-
dependent factors L(t), we estimated the parameters of
our marginal structural Cox model by calculating a sta-
bilized weight sw,(t) X sw] (t) for each person-month
and fitting a weighted pooled logistic model. The esti-
mated causal mortality rate ratio exp(B,) was 0.7 (95%
conservative confidence interval-0.6-1.0), indicating
that, under our assumptions, zidovudine therapy appears
to decrease the risk of death. When nonstabilized
weights @,(t) X @f(t) were used, the rate ratio was
virtually identical but the 95% conservative confidence
interval was 30% wider, compared with the stabilized
results (Table 1). We also report the invalid model-
based intervals obtained using an ordinary weighted
logistic regression program that does not account for
within-subject correlations. The point estimates and
95% conservative confidence intervals for each of the
parameters of our marginal structural Cox model are
displayed in Table 2.

The stabilized weights were calculated by means of
four pooled logistic regression models, as described in the
previous section. In two of the models the outcome was
“initiation of zidovudine.” Using the estimated predicted
values from each of these models, we calculated two
quantities for each observation: the probability of each
person having his own observed zidovudine history up to
month t given baseline covariates V, and, then, given
also time-varying covariates L(t). Similar models were fit
for the outcome “censoring,” after adding zidovudine
history as a time-varying dichotomous variable indicat-
ing whether the subject had started zidovudine by
month ¢t — 1.

Table 3 shows the center and dispersion parameters of
the distribution of the four estimated probabilities at two
arbitrary time points: 24 and 84 months of follow-up.

The estimated probabilities of having one’s own ob-
served zidovudine history at 24 months of follow-up,
given time-varying covariates, range from 0.939 to
0.002. This would be translated into (nonstabilized)
inverse-probability-of-treatment weights ,t) ranging
from 1.06 (1/0.939) to 500 (1/0.002). Thus, in the
pseudopopulation, some observations would be repre-
sented by 1.06 copies of themselves, whereas others
would be represented by 500 copies. The use of stabilized
inverse-probability-of-treatment weights sd(t) “normal-
izes” or stabilizes the range of these inverse probabilities
and increases the efficiency of the analysis by preventing
just a few people from contributing most of the obser-
vations in the pseudopopulation. Thus, the values sd(t)
for t = 24 are centered around 1.01 and show a nar-
rower range (0.14-6.67).

The estimated probabilities of being uncensored at 24
months follow a more peaked distribution, tightly cen-
tered around values close to 1 (0.96). This is expected, as
95% of the men were uncensored at 24 months of
follow-up. Inverse probabilities @(t) range from 1.00
(1/0.997) to 5.03 (1/0.199). The stabilized weights
si(t), fort = 24, are centered around 1 and range from
0.93 to 1.23. The estimated probabilities of being un-
censored at 84 months are lower, as expected.

The distribution of the final weights, which combine
information on zidovudine and censoring history, is pre-
sented in Figures 1 and 2 for several follow-up times (a
logarithmic transformation was applied for display pur-
poses only). Two sets of weights were estimated: the
stabilized weights sib,(t) X sdf (t) and the nonstabilized
weights @,(t) X @ (t). The distribution of stabilized
weights is symmetric and centered around 1 at all times,
whereas its variance increases over time. The distribu-
tion of the nonstabilized weights is skewed, and its
variance greatly exceeds that of the stabilized weights.
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FIGURE 1. Distribution of stabilized weights SW. The

box for each group shows the location of the mean (*),
median (middle horizontal bar) and quartiles (border hori-
zontal bars). Vertical lines extend to the most extreme ob-
servations which are no more than 1.5 X IQR beyond the
quartiles. Observations beyond the vertical lines are plotted
individually, if they lie within the limits of the frame.
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FIGURE 2. Distribution of nonstabilized weights SW.
The box for each group shows the location of the mean (*),
median (middle horizontal bar) and quartiles (border hori-
zontal bars). Vertical lines extend to the most extreme ob-
servations which are no more than 1.5 X IQR beyond the
quartiles. Observations beyond the vertical lines are plotted
individually, if they lie within the limits of the frame.

The weight estimates were robust with respect to the
method used to estimate the time-dependent baseline
logit ay(k) in the logistic models for zidovudine and
censoring, provided that sufficient flexibility was al-
lowed. The weights in Figures 1 and 2 were obtained by
modeling the time-dependent intercept ay(k) with nat-
ural cubic splines with five knots (on months 23, 44, 71,
94, and 100, which correspond to the percentiles 5, 27.5,
50, 72.5, and 95, respectively).!!

Adjusting for Time-Dependent Confounders in
a Cox Model

We also fit a standard (unweighted) time-dependent
Cox model in which we included, at each month t, the
current value L(t) of the time-dependent covariates, the
baseline covariates V, and the treatment A(t). We ob-
tained a point estimate of 0.4 (95% confidence interval-
0.3-0.5) for the zidovudine coefficient, which was con-
siderably less than our stabilized IPTW estimate of 0.7.
Nevertheless, as discussed in section 7.1 of our compan-
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ion paper,* because the covariates in L(t) are affected by
earlier treatment, the zidovudine coefficient cannot be
causally interpreted as either the overall zidovudine ef-
fect or the direct effect of zidovudine mediated by path-
ways not through the covariates L(t). In contrast, under
our assumption of no unmeasured confounders, the co-
efficient of zidovudine in our marginal structural Cox
model represents the overall effect of zidovudine.

More specifically, if we had included in the above
covariate-adjusted time-dependent Cox model both a
term for current zidovudine exposure [that is, A(t)] and
several terms for past zidovudine exposure {for example,
cumulative months on treatment before t [cum(t)], and
the indicator A(t — 6) of whether a subject was on
treatment 6 months previously}, then, in the absence of
unmeasured confounders and model misspecification,
the coefficient of A(t) would have a causal interpreta-
tion but the coefficients cum(t) and A(t — 6) would
not, because only current zidovudine does not affect
L(t). The coefficient of A(t) would represent the effect
on a log rate ratio scale of recent zidovudine on mortality
in month t within strata defined by zidovudine and
covariate history up to t and would generally differ from
the coefficient B, of A(t) in our MSM, as the coefficients
in the two models represent different causal contrasts.
[Indeed, it can be shown that if our MSM is correct and
B, is nonzero, the causal rate ratio for current zidovudine
in the covariate and past treatment-adjusted time-de-
pendent Cox model will not be constant over strata
defined by past treatment and covariate history. Hence,
we would need to include interaction terms between
A(t) and the variables L(t), A(t — 6), and cum(t) in our
covariate and past treatment-adjusted time-dependent
Cox model to avoid model misspecification.] However,
as mentioned above, the coefficient (estimated to be
0.4) of A(t) in the covariate-adjusted time-dependent
Cox model that does not include terms for past zidovu-
dine exposure does not have a causal interpretation,
because past treatment is a confounder for current treat-
ment and thus must be adjusted for. This is true even
under the null hypothesis of no direct, indirect, or over-
all effect of zidovudine on mortality whenever, as will be
essentially always the case, a component of L(t), say
RBC, and mortality in month t have an unmeasured
common cause (for example, the baseline number of
bone marrow stem cells); adjusting for a variable L(t)
affected by past zidovudine makes past zidovudine a
noncausal independent (protective) risk factor for mor-
tality within strata of L(t) and A(t), and thus, to estimate
the effect of recent zidovudine exposure, past zidovudine
must be controlled as a confounder in the analysis.

Comparison of Marginal Structural Models with
Previously Proposed Methods

Before introducing MSMs, Robins and co-workers intro-
duced three methods for estimation of the causal effect
of a time-varying treatment in the presence of time-
varying confounders: the parametric g-computation al-
gorithm formula estimator,!>!® g-estimation of structural
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nested models,'>'*1> and the iterative conditional expec-
tations (ICE) estimator.>!2 [PTW estimation of MSMs
constitutes a fourth method. When (1) both treatment
and the confounders are discrete variables, (2) they are
measured at only a few time points, and (3) the study size
is large, then estimation can be carried out using fully
saturated models (that is, nonparametrically), and all
four methods are precisely equivalent. They differ when,
owing to sparse multivariate data, one must introduce
modeling assumptions.

ICE estimators can only rarely be used, because they
often lead to logically incompatible models and will not
be discussed further.!? Of the remaining three methods,
inference based on SNMs and MSMs is preferable to
that based on the parametric g-computation algorithm.
The reason is that MSM and SNM models, in contrast
to models based directly on the conditional probabilities
in the g-computation algorithm formula, include param-
eters that represent the null hypothesis of no treatment
effect.'>!> As a consequence, when using the parametric
g-computation algorithm estimator, it is quite difficult to
determine whether one’s confidence interval for the
treatment effect includes the null hypothesis of no ef-
fect.

MSMs have two major advantages over SNMs. Al-
though useful for survival time outcomes, continuous
measured outcomes (for example, blood pressure), and
Poisson count outcomes, logistic SNMs cannot be con-
veniently used to estimate the effect of treatment on
dichotomous (0, 1) outcomes unless the outcome is
rare.>1? This is because logistic SNMs cannot be fit by
g-estimation. In contrast, as we have seen,* IPTW esti-
mation of logistic MSMs can be used to estimate the
effect of a time-dependent treatment on a binary out-
come.

The second major advantage of MSMs is that they
resemble standard models, whereas SNMs do not. For
example, the logistic MSM described in our companion
paper* and the Cox proportional hazards MSM described
here are the natural way to extend the ordinary logistic
and time-dependent Cox models to allow for estimation
of causal effects. The close resemblance of MSMs to
standard statistical models makes their application more
intuitive for researchers and easier for programmers.

Nevertheless, SNMs have a number of advantages
over MSMs. For example, as discussed in Ref 4, MSMs
should not be used to estimate effects in studies (such as
occupational cohort or cancer screening studies) in
which, at each time k there is a covariate level [(k) such
that all subjects with that level of the covariate are
certain to receive the identical exposure a(k).!?

A second major drawback of MSMs is that one must
be able to specify a correct model for the conditional
probability of exposure,

pr(Ak) = a()[L(k) = T(k), A(k — 1) = a(k — 1)),

for each time k up to end of follow-up. This is unfortu-
nate because, if the L(k) and A(k) are discrete, we could
use nonparametric saturated models for small values of k,
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(say k = 0, 1, 2), but for large k we require strong
modeling assumptions, as there are many variables in
I(ky = (I(0), K1), ..., I(k)) and in a(k — 1). It is
unlikely that these modeling assumptions would be pre-
cisely correct. Furthermore, even when these modeling
assumptions are correct, if the distribution of the stabi-
lized weights is highly variable and skewed as a result of
very strong covariate-treatment associations, 95% con-
fidence intervals based on IPTW estimation of an MSM
will be very wide and may fail to cover the true param-
eter at least 95% of the time, unless the sample size is
very large.

The use of g-estimation of SNMs overcomes the
above difficulties. For example, one can use SNMs to
estimate the effect of an exposure on mortality in occu-
pational cohort studies."*!¢ Similarly, one can unbi-
asedly estimate the causal parameter of a SNM without
having to model the probability of treatment given the
past through end of follow-up. Instead, in the setting of
a discrete A(k) and L(k) described above, one can un-
biasedly estimate the parameters of SNMs by using a
saturated model for the probability of exposure A(k)
given the past for k = 0,1,2 periods and ignoring expo-
sure at later periods, thus preventing bias due to mis-
specification of the model for exposure. Of course, as
always in statistical analysis, there will be a loss of
efficiency of estimation associated with this protection
against bias. Finally, in the presence of strong covariate-
treatment associations, theoretical arguments imply that
it should be possible to construct confidence intervals
based on g-estimation of SNMs that are both narrower
and have better coverage properties than those based on
IPTW estimation of MSMs. However, further research is
required to see whether this theoretical prediction is
borne out in practice.

Another advantage of SNMs over MSMs is that,
although MSMs are useful for estimating the causal
effect of the prespecified treatment regime a (for exam-
ple, always treat, treat on alternate months, etc), they
are much less useful than SNMs for modeling the inter-
action of treatment with a time-varying covariate and
for estimating the effect of dynamic treatment plans in
which treatment on a given month is decided in part on
the basis of a subject’s evolving covariate history."* It is
important to recognize that actual medical treatment
regimes are usually dynamic, because if a patient devel-
ops a toxic reaction to a drug, the drug must be stopped.
Nonetheless, causal questions concerning prespecified
treatment plans, such as estimating the effect of a con-
tinuous exposure at a certain level vs no exposure, are of
great interest in many areas of epidemiology, including
nutritional and environmental.

Discussion

We have used a marginal structural Cox proportional
hazards model to estimate the causal effect of zidovudine
on mortality of HIV-positive patients in the MACS.
This method was used because standard statistical meth-
ods are not appropriate when there exists time-depen-
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dent confounding by variables, such as CD4 count, that
are affected by previous exposure.

Because of the presence of confounding, the crude
mortality rate ratio for zidovudine was 3.6 (95% confi-
dence interval-3.0-4.3), erroneously suggesting that
zidovudine increased risk of death. The rate ratio esti-
mated by the (unweighted) standard model that in-
cluded only baseline covariates, and that therefore does
not adjust for time-dependent confounding, was 2.3
(95% confidence interval-1.9-2.8), which still suggests
a detrimental effect of zidovudine.

In fact, the mortality rate ratio for zidovudine was 0.7
(95% conservative confidence interval-0.6—1.0) in the
weighted analysis that provides, under our assumptions,
an unbiased estimate of the causal rate ratio, exp(f3,), of
the marginal structural Cox model, because the
weighted analysis appropriately adjusts for time-depen-
dent confounders affected by earlier treatment.

The difference between the unweighted and weighted
estimates is an indication of the amount of confounding
due to the time-dependent prognostic factors. The
weights can be interpreted as the number of copies of
each observation that are necessary to form a pseudopo-
pulation in which censoring does not exist and in which
the time-dependent prognostic factors do not predict
initiation of zidovudine history (that is, treatment is
unconfounded).

Like all causal inferences, the validity of our analyses
depends on a number of assumptions. First, we assume
that the information on month of zidovudine initiation
and month of death is accurate. Second, we assume that
the measured covariates in L(t) are sufficient to adjust
for both confounding and selection bias due to loss to
follow-up. This assumption implies that we have avail-
able, for each month ¢, accurate data recorded in L(t) on
all time-dependent covariates that (1) are independent
predictors of death and (2) independently predict the
probability of starting zidovudine and/or of being cen-
sored in that month. Unfortunately, as in all observa-
tional studies, these two assumptions cannot be tested
from the data. In our analysis, we assume that this goal
has been realized, while recognizing that, in practice,
this assumption would never be precisely or sometimes
even approximately true. Recently, Robins et al.'® have
developed extensions of IPTW estimation of MSMs that
allow one to evaluate the sensitivity of one’s estimates to
increasing violation of these fundamental assumptions.

Third, we assume that the models for initiation of
zidovudine and censoring, given the past, are correctly
specified. Fourth, we assume that our MSM for the effect
of zidovudine on mortality, within levels of baseline
covariates V, is correctly specified.

Although the stated assumptions may seem heroic,
note that in point-exposure studies the same assump-
tions (accurate information, no unmeasured confound-
ers, noninformative censoring, and no misspecification
of the model) are required to give a causal interpretation
to the parameters of standard statistical models. Further-
more, when studying the effect of a time-dependent
treatment such as zidovudine, the assumptions of MSMs
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are less restrictive than those of standard methods;
MSMs do not require the absence of time-dependent
confounding by variables affected by previous exposure.
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APPENDIX

SAS CODE FOR THE MARGINAL STRUCTURAL COX
PROPORTIONAL HAZARDS MODEL

In this appendix, we provide SAS code to fit the Cox
proportional hazards MSM described in the text. The
original MACS data file contains one record per man,
but here we use a transformed, or pooled, file (MAIN)
with each person-month as a separate record. This file
format is necessary to fit pooled logistic models. The
code used to generate the pooled dataset from the orig-
inal one is available from the first author upon request.
The records in the file MAIN must be sorted by patient
identification number (variable ID) and, within each ID
level, by month of follow-up (MONTH).

The SAS code shown below is organized as follows.
First, we use Proc Logistic to fit four pooled logistic
models (two for the probability of remaining off zidovu-
dine and two for the probability of remaining uncen-
sored) and obtain their predicted values. Second, we use
a SAS data step to calculate the weights for each person-
month from the predicted values of the previous four
models. Last, we use Proc Genmod to fit the final
weighted pooled logistic model that estimates the causal
parameter of interest and its robust standard error.

The outcome variable in models 1 and 2 is a dichot-
omous variable A indicating whether the patient had
started (A = 1) or remained off (A = 0) zidovudine on
that month. When the option “descending” is not spec-
ified, Proc Logistic models the probability that the out-
come variable is 0. Hence, models 1 and 2 model the
probability of remaining off zidovudine. The “where”
statement restricts the analysis to patients not previously
on zidovudine by specifying that either month of fol-
low-up (MONTH) is less than or equal to month of
onset of zidovudine (ZDV_M) or zidovudine was never
initiated during the follow-up period (ZDV_M is coded
as missing, if this is the case). Model 1 includes as
regressors a time-dependent intercept and the baseline
covariates V: baseline age, calendar year, CD4, CDS,
WBC, RBC, platelets, and presence of symptoms. Model
2 includes, in addition, the time-dependent covariates
L(t): most recently available CD4, CD8, WBC, RBC,
platelets, symptoms, and AIDS-defining illness. We es-
timate the time-dependent intercept by a smooth func-
tion of the time since beginning of follow-up (MONTH)
using natural cubic splines with five knots. To do so, we
need to include, as regressors, the variables MONTHI,
MONTH2, and MONTH3, that are specific polynomial
functions of MONTH (calculated with the cubic splines
SAS macro RCSPLINE in survrisk.pak, by Frank Harrel,
which is publicly available on http://jse.stat.ncsu.edu: 70/
1s/software/sas).

The outcome variable in models 3 and 4 is a dichot-
omous variable C indicating whether the patient was
censored (C = 1) or uncensored (C = 0) in that month.
Thus, models 3 and 4 model the probability of remaining
uncensored for each person-month. All available per-
son-months are used. Model 3 includes the baseline
covariates and the time-dependent intercept, whereas
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model 4 includes the time-dependent covariates (to
which we add A) as well.

For each model, we output a new data file (option
“out =" in Proc Logistic) that contains, for each person-
month, the original variables plus the predicted values
from the model (option “p="). As an example, the first
Proc Logistic creates the data set MODEL1 with its
predicted values as the variable PZDV_0.

In the following data step, we merge the four output
files in the file MAIN_W that contains the predicted
values from the four logistic models. We then compute
the numerator K2 0 and the denominator K2 W of the
sw] (t) from models 3 and 4.

Similarly, we calculate the numerator K1.0 and the
denominator K1_W of the weights sw,(t) for months in
which the subject has not yet started zidovudine from
models 1 and 2. For a month in which a subject did
begin zidovudine, we multiply by 1 minus the predicted
value. For months subsequent to starting zidovudine, we
no longer update K1.0 and K1_W. Then we use the
numerators and denominators to calculate the “stabi-
lized” weights sw,(t) X sw/ (t) (STABW), and use the
denominators alone to calculate the “nonstabilized”
weights w,(t) X w] (t) (NSTABW).

Finally, we call Proc Genmod to fit a weighted pooled
logistic model for survival to obtain consistent estimates
of the parameters of our Cox MSM. The outcome vari-
able of this model, D, is a dichotomous variable indicat-
ing whether the patient died (D = 1) or remained alive
(D = 0) in that month. The program will provide robust
standard errors for the model parameters when the op-
tion “repeated” is included. The patient identification
variable and the independent working correlation ma-
trix (“subject = ID/type = ind”) must be specified. We
fit the model using the stabilized weights by specifying
the variable STABW in the “scwgt” statement. Speci-
fying the variable NSTABW fits the model with non-
stabilized weights.

The SAS code given below can also be used to fit the
logistic MSM of our companion paper.* The only differ-
ence is that the final weighted logistic model in Proc
Genmod includes a single observation per person using
as outcome variable the logistic variable Y of our com-
panion paper, rather than the survival variable D con-
sidered in this paper.

/* MopEL 1 *#/
proc logistic data=MAIN;
where MONTH <= ZDV_M or ZDV_ M=
model A=AGE_0 YEAR 01 YEAR 02 YEAR 03
CD4.01 CD4.02 CD8.01 CD8.02
WBC_01 WBC_02 RBC_.01 RBC_02
PLAT_01 PLAT_02 SYMPT.0
MONTH MONTHI1-MONTHS3;
output out=modell p=pzdv_0;
run;

/* MODEL 2 */
proc logistic data=MAIN;
where MONTH<=ZDV_m or ZDV_ M=
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model A=AGE 0 YEAR 01 YEAR 02 YEAR 03
CD4.01 CD4.02 CD8.01 CD8.02
WBC_01 WBC_02 RBC.01 RBC.02
PLATE 01 PLATE 02 SYMPT_0
CD4.1 CD4.2 CD8.1 CD8.2
WBC.1 WBC 2 RBC_1 RBC 2
PLAT_1 PLAT 2 SYMPT AIDS
MONTH MONTHI1-MONTH?3;

output out=model2 p=pzdv_w;

run;

/¥ MoDEL 3 */
proc logistic data=MAIN;
model C=A AGE 0 YEAR 01 YEAR 02 YEAR 03
CD4 01 CD4.02 CD8.01 CD8 02
WBC_01 WBC_.02 RBC.01 RBC .02
PLATE. Ol PLATE.02 SYMPT.0
MONTH MONTHI1-MONTH3;
output out=model3 p=punc_0;
run;

/* MODEL 4 */
proc logistic data=MAIN;
model C=A AGE_0 YEAR 01 YEAR 02 YEAR 03
CD4.01 CD4.02 CD8.01 CD8.02
WBC_01 WBC_02 RBC_.01 RBC_02
PLATE 01 PLATE 02 SYMPT.0
CD4.1 CD4.2 CD8.1 CDS8 2
WBC_1 WBC_2 RBC_1 RBC_2
PLAT_1 PLAT_2 SYMPT AIDS
MONTH MONTHI1-MONTH3;
output out=model4 p=punc_w;
run;

data main_w;
merge modell model2 model3 model4;
by ID MONTH;
[* variables ending with _O refer to the numerator of the
weights
variables ending with _w refer to the denominator of
the weights */
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[* reset the variables for a new patient */
if first.id then do;
k1.0=1; k2.0=1; kl.w=1; k2Zw=1;
end;
retain k1.0 k2.0 kl_w k2_w;
[* Inverse probability of censoring weights */
k2 0=k2 0*punc_0;
k2 w=k2 w¥*punc w;
[* Inverse probability of treatment weights */
[* patients not on zidovudine */
if zdv_m>day or zdv_.m =. then do;
k1_0=k1_0*pzdv_0;
kl_w=kl_w*pzdv_w;
end;
[* patients that start zidovudine this month */
else if zdv_.m=day then do;
k1.0=k1_0*(1-pzdv_0);
k1l w=kl_w*(1-pzdv_w);
end;
[* patients that have already started zidovudine */
else do;
k1.0=k1.0;
kl w=kl w;
end;
[* Stabilized and non stabilized weights */
stabw=(k1.0%*k2_0)/(k1_w*k2_w);
nstabw=1/(kl_w*k2_w);

run;

proc genmod data=main w;
class id;
model D=A AGE 0 YEAR 01 YEAR 02 YEAR 03
CD4.01 CD4.02 CD8.01 CD8.02
WBC_01 WBC_02 RBC_.01 RBC_02
PLAT 01 PLAT_02 SYMPT.0
MONTH MONTHI1-MONTH3/
link=logit dist=bin;
scwgt stabw;
repeated subject=ID/ type=ind;
run;



