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Abstract

Previous works have established synonymity between the notions of
uncertainty and unreliability, exploiting this in deriving marginal valuations
of travel time and scheduling under uncertainty. Whilst valid for forecasting
demand, such valuations fail to illuminate the costs of bearing unreliability -
herein referred to as the ‘reliability premium’. The paper derives marginal
valuations of travel time and scheduling at the certainty equivalent, showing
these to diverge from those under uncertainty. That divergence, which
represents the marginal valuation of reliability, raises the possibility of bias

should the costs of unreliability not be included in appraisal.
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1. Introduction

Although a precise understanding has often seemed elusive, it is widely
accepted that the reliability of transport systems may impact upon the choices
of travellers. Previous research has illuminated several facets of this
proposition, but often without the authority of comprehensive evidence on
the value of reliability to travellers. That such evidence is lacking can perhaps,
in turn, be attributed to the difficulty of formulating a research apparatus that
carries theoretical validity, is insightful, but remains practicable. These

aspirations are the concern of the present paper.

The task of reviewing relevant literature is well-served by the recent
contributions of Noland and Polak (2002) and De Jong et al. (2004), and it
would seem unnecessary to offer further commentary in this regard. Suffice
to say, De Jong et al. distinguish between three approaches to the valuation of
reliability, specifically: I) mean vs. variance of the travel time distribution, II)
percentiles of the travel time distribution, and III) scheduling models. The
present paper exploits the third approach in particular, which is founded on
the hypothesis that travellers may accommodate expectations of unreliability

through their trip scheduling.



In the analysis of trip scheduling, Small’s (1982) approach has received
considerable support. Small extends the microeconomic theory of time
allocation (Becker, 1965; De Serpa, 1971), supplementing the usual objective
problem of utility maximisation subject to money and time constraints with a
trip scheduling constraint deriving from Vickrey (1969). Implicit in Small’s
approach, however, is the assumption that scheduling choices are made
under certainty, and this would seem to impose considerable restriction on its
applicability. The usual accommodation of uncertainty - at least in terms of
microeconomic theory - is to reformulate the objective problem from the
maximisation of utility to one of maximising expected utility, as first
proposed by von Neumann & Morgenstern (1947). The latter is indeed
exploited by Noland & Small (1995), who establish merger between the works

of von Neumann & Morgenstern and Small.

Two particular, but related, properties of Noland & Small’s analysis might be
noted. First, both the choice (i.e. departure time) and pay-off (i.e. arrival time)
dimensions are represented continuously; this carries the attraction of
permitting easy calculation of the optimal departure time. Second, interest is
restricted to the morning commute of car travellers. Continuity in departure
time would appear more reasonable for car travellers than for users of public
transport services, since the latter are typically constrained by fixed service

intervals. Bates et al. (2001) develop Noland & Small further, first considering



its amenability to public transport users, and then applying the analysis to an
interest in marginal valuations of travel time and scheduling under
uncertainty. These marginal valuations derive from choices between two
public transport services, wherein each service offers a range of departure

times, and the consequent arrival times are characterised by uncertainty.

The present paper follows the basic thesis of Noland & Small and Bates et al.,
but pursues a number of extensions. Time is represented as a discrete
variable in both departure and arrival dimensions. Not only is this more
faithful to von Neumann & Morgenstern (1947), but it permits ready
accommodation of public transport users. The discrete representation,
furthermore, is amenable to one of the principal analytical tools of travel
demand analysis, namely the Random Utility Model (RUM). Aside from this
presentational distinction, the substantive contribution of the paper is to
apply the workings of Noland & Small and Bates et al. to an interest in
travellers” attitudes to risk. Specifically, the paper reconciles the transport
planner’s notion of unreliability with the microeconomist’s notion of risk (e.g.
Pratt, 1964; Arrow, 1970), and in so doing reveals the treatment of risk within
marginal valuations of travel time and scheduling under uncertainty. This
provokes the proposition of a further metric for valuing reliability, referred to
as the ‘reliability premium’. The reliability premium, which is drawn from

analogy with Pratt’s ‘risk premium’, isolates those costs arising specifically



from unreliability and, equivalently, the benefits that would transpire should
unreliability be eliminated. The paper exploits the reliability premium in
deriving a further set of marginal valuations of travel time and scheduling,
this time at the ‘certainty equivalent’. The latter valuations are then compared
with those derived under uncertainty, an exercise that serves to yield
marginal valuations of reliability per se. The paper considers the relevance of

marginal valuations of reliability for both forecasting and economic appraisal.

2. Theory of individual choice under uncertainty

Microeconomic theory of individual choice under uncertainty is founded on
the proposition that there exists some relation between an individual’s choices
under risk or uncertainty and a distribution of outcomes. This has been
exploited in the reliability literature; in the present paper we shall examine
the particular proposition that travellers choose a time of departure on the
basis of a distribution of the consequent arrival times. The interpretation of
the probability distribution has been the source of some contention in the
microeconomic literature, since it is embroiled with the dichotomy between
risk and uncertainty. Keynes (1921, 1936) and Knight (1921) are helpful in this
regard, characterising risk as situations where probabilities of outcomes are

known (or knowable), and uncertainty as situations where such probabilities



may be neither knowable nor definable. Though it offers an appealing clarity,
it would not seem crucial to the subsequent analysis that one commits to this
or any other typology. Rather the terms risk and uncertainty will, in what

follows, be used interchangeably without implication.

More central to our interest is the precise nature of the relation between an
individual’s choices under uncertainty and the distribution of outcomes; this

may be formalised in the following terms:

Let E be a finite and exhaustive set of mutually exclusive ‘events’:

E={g,..6

Let E be associated with a vector w, which is referred to as a “prospect’, and

gives the probability p, that each event g, € E will occur, together with the

pay-off w, to the individual should that event indeed occur, thus:

W = (W, ooy Wy 3 Py oeees P )

Following the usual rules of probability, it is necessarily the case that

K
> p, =1, implying that 0< p, <1 for k=1,..,K.

k=1



Let S be a finite and exhaustive set of such prospects, from which the

individual is invited to choose his or her preferred prospect:

S={W, ..}

The seminal exposition of von Neumann & Morgenstern (1947) established a
set of necessary and sufficient axioms on the above definitions such that an

individual could be represented as if choosing the prospect w, € S that yields

maximum expected utility. These axioms have subsequently been adapted in
various ways; of particular note in this regard are the contributions of
Marschak (1950), Herstein and Milnor (1953) and Fishburn (1970). In what
follows, however, we remain faithful to the original exposition, which

provides a basis for the following proposition:

For any pair of prospects w,,w, € S:

wo=w, iff Y(w,)>Y(w,)

where Y(w, ) is the expected utility of prospect w,, and is itself given by:



K
Yw,)=> p.U(w,) forall w, €S (1)

k=1

where U(w,,) is the utility deriving from pay-off w,,.

Having summarised the theory, let us conclude this section with discussion of
several issues that follow. A first point to make is that von Neumann &
Morgenstern’s (1947) axioms are not sufficient to support a continuous
representation of the pay-off dimension, as adopted by Noland & Small (1995)
and Bates et al. (2001), for which the expectations operation in (1) would
require integration. A continuous representation is in fact feasible, but must
be supported by a set of axioms that diverges from von Neumann &

Morgenstern’s; see Fishburn (1970) for further instruction.

A second point is that a discrete representation of the choice dimension
promotes ready application to RUM, as demonstrated by Marschak et al.
(1963). This contrasts with the inherently ambiguous process of ‘discretising’
a continuous dimension (e.g. Jotisankasa et al., 2004). In exploiting Marschak
et al.’s demonstration, it is useful to articulate their basis for adopting a
probabilistic representation, which is as follows. Consider an individual
faced with a repeated choice task under uncertainty. On any given repetition

of the choice task, he or she is able to order a set of prospects in terms of



expected utility, but on successive repetitions this ordering may show

variability. More formally, the probability of choosing any prospect w, € S

can be expressed as RUM, such that:

P(w,|S)=Pr{v(w,)>Y(w, )| forall w, €S, q=r )

A third point concerns the comparability of expected utility Y(w, ) across the
prospects W, € S. Baumol (1958) dismisses the conventional wisdom that

choice under uncertainty permits the mutation of utility from an ordinal
metric to a cardinal one; that is to say (1) relies indeed on the proposition that

U(w,, ) is cardinal, but this does not distract from the requirement that Y(w,)

is an entirely ordinal construct. Moreover, there is no basis for interpreting
differences in expected utility (or any ratio thereof) across prospects. Whilst
the definition of RUM (2) adheres to this requirement, it is important to
ensure that applications of RUM to forecasting or appraisal do not
inadvertently stray into cardinality. The latter possibility is considered by
Batley (2006), who demonstrates that “log sum” measurements of consumer

surplus derived from RUM carry an inference of cardinality.

Finally, it might be acknowledged that von Neumann & Morgenstern’s (1947)

analysis has been the subject of sustained assault almost ever since it was
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conceived. In the contemporary literature, experimental economists have
been active contributors, presenting instances of individual choices that
apparently violate expected utility maximisation (Kahneman & Tversky’s
(2000) compendium includes several such works). This has prompted
generalisations of von Neumann & Morgenstern’s analysis; for example,
several of the identified violations may be accommodated through non-linear

forms on the event probabilities p,, in (1); see Edwards (1955) and Kahneman

& Tversky (1979). Whilst important to acknowledge, this critique has not to
date succeeded in deposing the paradigm of expected utility maximisation,
and it would therefore seem entirely reasonable to adhere to von Neumann &

Morgenstern in what follows.

3. The theory applied to trip scheduling

The contributions of Noland & Small (1995) and Bates et al. (2001) establish
precedence in applying the theory of individual choice under uncertainty to
the context of trip scheduling. The purpose of the present section is to
explicate this application; the subsequent analysis follows these precedent
works reasonably faithfully, save for the representation of time as a discrete

variable.
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3.1. Preliminary definitions

In applying the theory outlined in section 2 to trip scheduling, it would seem
reasonable to represent choice in terms of departure time and events in terms
of arrival time, and to postulate that uncertainty derives from the distribution
of arrival times for any given departure time. With reference to Noland &
Small’s typology, this distribution could feasibly derive from recurrent delay,
from incident-related delay, or from both of the aforementioned. More

formally:

Let A be a finite and exhaustive set of arrival times:

A={a,..a}

Let D be a finite and exhaustive set of departure times:

D={d,,..d}

The latter corresponds to the choice set S, as defined in section 2:

12



S={w,,..,w,}

Let the expected utility Y, of any prospect w, € S be given by:

K
Yn = kZ::l pan kn (3)

where U is the utility deriving from the arrival time a,, having departed at

d,, and p,, is the associated event probability.

3.2 Utility function

It remains to equip utility U,, with more precise form. Whilst the theory of

section 2 would seem to impose few restrictions on such form, the trip
scheduling literature demonstrates considerable support for Small’s (1982)
utility function, and this function is straightforwardly adopted by Noland &
Small (1995) and Bates et al. (2001). In what follows, we shall ourselves follow
this convention, but in so doing demonstrate that Small’s utility function
implies particular properties with respect to travellers” attitudes to

unreliability in arrival time.

With reference to Small (1982), define utility:

13



U, =aT, + fDE, + )DL, +dL, (4)

where:

T is travel time

SDE is schedule delay early
DL is schedule delay late

L is a dummy variable that is unitary in the case of late arrival, and zero

otherwise

Hence Small’s utility function (4) can be seen to be a linear function of four
attributes - travel time, schedule delay early, schedule delay late and a
lateness dummy - where the latter three are conditioned by the ‘“preferred
arrival time’ ( PAT ) of the traveller, which we take as given. On this basis, let
us re-express the attributes of (4) in terms of our dimensions of interest -
arrival time and departure time - for given PAT :

T,=a, —d,
SDE, = max[(PAT —a, ),0]
DL, = max|[(a, — PAT)0]

L, =1 if (a, —PAT)>0, =0 otherwise

14



Now completing our application of the theory of individual choice under
uncertainty to the context of trip scheduling, let us explicate the definition of

the prospect vector, thus:

Wn = [(Tln’ s:)El’ S:)Ll’ Ll )""’(TKn’ S:)EK > s:)LK ’ LK )’ pln EARA4 pKn]

Moreover the adoption of Small’s utility function implies the proposition that
pay-offs are given by an amalgam of the four attributes of that function, three
of which are measured in time units, and the fourth as a dummy variable.
Thus while previous applications of von Neumann & Morgenstern (1947)
have focussed heavily on monetary pay-offs, it would in the present context
seem natural, and not outside the remit of the theory, to represent pay-offs in
time units. In any case, travel costs do not routinely vary by arrival time, such
that the arrival time dimension may not be readily amenable to monetisation.
That does not preclude the possibility that arrival time (in particular, lateness)
may incur incidental costs. Rather any such costs will arise as a function of
arrival time, as would seem intuitive in the case of lateness, and the attitudes
of travellers to such costs will manifest in their attitudes to the uncertainty of

arrival time.
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Let us derive a schematic representation of the utility function (4) for any

departure time d, € D, but restrict attention to a binary subset of arrival times
A c A. In particular, let A= {ai .8, }, wherein the following relations hold:
a,, <& <PAT <a,. Thatis to say, let a,, be the earliest feasible arrival time
(i-e. in free flow conditions), and let a and a,; be two further arrival times

that are defined arbitrarily save for the requirement that g falls before the

PAT and a, after the PAT .

Figure 1: Small’s utility function, for given departure time, with o < f (ABOUT

HERE)

This is illustrated by Figure 1, which represents arrival time on the horizontal
axis, and utility on the vertical. All attributes of the utility function are ‘bad’,
ie. a,f,7,0 <0 in (4), and U is therefore drawn in the lower right quadrant

of the figure; note also that U originates at the earliest feasible arrival time

8, - Now consider the utility derived at arrival times & and a,,

respectively:

Ata=a:U=a(a -d)+ B(PAT -a)

Ata=a;: U :a(aj —d)+;/(a]. —PAT)+5

16



Consider also the utility derived as the arrival time approaches the PAT from

a, and a,, respectively:

As (PAT-a)—0: U - a(PAT-d) > a(a —d)+a(PAT -a)

As (2, ~PAT) > 0: U 5 a(PAT-d)+6 > ala, —d)-ala, - PAT)+&

We can now establish the slope of the utility function U, which for arrival
times before the PAT must be (& — ), and for arrival times after the PAT
must be (@ + ). For purposes of illustration, Figure 1 exploits Small’s (1982)
empirical finding that « < £, i.e. that travel time imposes greater disutility
than schedule delay early. This engenders the property that U is strictly
decreasing in utility, and steeper after the PAT than before. Contrariwise, if
it instead held that f# < «, then the two portions of U would show opposing
slopes, with arrival times before the PAT characterised by positive slope, and
arrival times after the PAT by negative slope. In this latter case, the absolute
slope of the first portion of U may be greater than or less than the second
portion, depending on the relative disutility of schedule delay early. Figure 2

embodies the relations f < a and |(a - ﬁ] < |(a + 7)| , such that the two

portions of U show opposing slopes, with the portion before the PAT

carrying lower absolute slope than the portion after the PAT .
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Figure 2: Small’s utility function, for given departure time, with f <a (ABOUT

HERE)

Finally, it might be observed that Figures 1 and 2 diverge from the more usual
presentation of Small’s utility function, as perhaps illustrated by Figure 1 of
Bates et al. (2001). This is because Figures 1 and 2 of the present paper
consider both travel time and scheduling parameters, whereas Figure 1 of
Bates et al. considers only scheduling parameters. The presentation adopted
in the present paper is motivated by a desire to clearly articulate the relation
of the complete utility function to the expected utility function, an interest that
we shall pursue in the following sections. Moreover, it is perhaps helpful - for
purposes of distinction - to refer to Figure 1 of Bates et al. as Small’s
‘scheduling function’, and to Figures 1 and 2 of the present paper as Small’s

‘utility function’.

3.3 Expected utility function

For reasons of brevity, this and subsequent sections will focus attention on

Small’s utility function with the property o < §, i.e. as in Figure 1,

particularly as this property carries the empirical support of Small (1982)

himself. Whilst it should be reassured that the general principles of the

18



analysis extend also to functions with the property g < «, i.e. as in Figure 2,

some differences in analysis do arise, and these are remarked upon where

relevant.

In order to promote expositional clarity, let us once again restrict

consideration to a binary subset of arrival times Ac A, where A= {ai Y },
this time imposing (at least for the moment) the restriction only that a, <a; .

For each departure time d, € D, define the prospect:

I_(Tln’ S:)E S:)LI ’ LI ) (Tjn’ j s = ) pln’ pln J

Now propagating expected utility (3) with the utility function (4), let us write

the expected utility deriving from the above prospect:

Y, ={pn[oT, + SSDE, +,8DL, +4L ]}

+{(1_ pin)[aTjn—l—ﬂSDEj +]&DL]- +d‘j]} (5)
Or more generally:
Y, = oE(T, )+ FE(SDE, )+ /E(SDL, ) + 6E(L,) ®)

19



Figure 3: Utility and expected utility functions, for given departure time, with a < 3

(ABOUT HERE)

The binary subset of arrival times in (5) permits easy translation to the
diagrammatic analysis of Figure 3, wherein three cases might usefully be
identified depending on the relation of the arrival times to the PAT , thus:

Case 1: a <a; <PAT
Case 2: PAT <a, <a,
Case 3: a < PAT <a,

Let us draw some observations relating to each of the three cases, as follows:

Case 1: @ <a; <PAT

Expected utility - labelled Y “**! in the figure - will in this case fall somewhere
on the section of the utility function U preceding the PAT ; precisely where

will depend on the probability p; that arrival time a, actually occurs.

Case2: PAT <a <a

By contrast to the previous case, expected utility Y “** will now fall
somewhere on the section of the utility function U that comes after the PAT .
Since utility is strictly decreasing in travel time, it must hold that

Y e Yol hence Case 1 dominates Case 2.

20



Case 3: a < PAT <a,

Again with reference to Figure 3, consider the pair of arrival times a™** and

Case3

8,

, which satisfy the requirements of Case 3, but are otherwise defined

Case3
j

Case 3

arbitrarily. If we identify the point at which a7’ and a;*" intersect the

utility function U, then expected utility Y’ will fall somewhere on the
straight line joining these two points. The discontinuity of U introduces

some complexities, however, as we shall see in due course.

3.4 Choice between prospects

Having derived expected utility for any departure time d, € D, let us
consider the choice between a pair of prospects W,,W, €S, which correspond
to the departure times dq,d, e D. Furthermore, let dq <d,, such that dq is

the earlier of the two departures. Since von Neumann & Morgenstern’s (1947)
axioms refer entirely to the properties of pairs, a binary choice would not
seem unreasonably restrictive. It might also be remarked that binary choice
would seem particularly amenable to implementation within Stated

Preference (SP).

Following section 2, it must hold that:

21



W, =w, iff Y, =Y, >0

w,=w, iff Y, =Y, >0

w,~w, iffboth Y, =Y, >0 and Y, =Y, >0

Since these three preference relations are dictated by the difference in

expected utility, let us derive:

Y,-Y, = ald, - d, )+ |(p, - Py NAa+ BASDE + yASDL + GAL )| )

q

where:

Aa:(aj —ai)>0
ASDE = (SDE, — SDE, )< 0
ASDL =(SDL, - SDL,)>0

AL =1if a <PAT <a;, =0 otherwise

It may therefore be seen, with reference to (7), that the difference in expected
utility is a function of the difference in departure time, as well as differences
in expected arrival time, expected schedule delay early, expected schedule
delay late and the expected lateness dummy (where the latter may otherwise

be referred to as the probability of lateness).

22



Now directing attention to Figure 4, let us translate the preceding algebraic
analysis to a diagrammatic one. The reader’s attention is first drawn to the

utility functions U, and U, which pertain to the departure times d, and d,

respectively. With reference to the horizontal axis, note that the two
departures will, assuming constant free flow travel time, have different times
for their earliest feasible arrivals (i.e. a (dq ) <a,, (d,)). The two utility
functions originate, therefore, from different points on the arrival time axis.
With reference to the vertical axis, the two functions are separated by the
constant a(d —t ), which represents the utility difference arising from the
difference in their respective departure times. Otherwise the two functions

carry the same properties, with common scheduling parameters and PAT .

Figure 4: Choice between departure times, with a < f (ABOUT HERE)

Having defined the relevant events, we can now derive the expected utility

functions relating to the prospects w, and w, ; these functions are labelled Y,

and Y, respectively in the figure. Precisely where expected utility falls on

r

these functions will be determined by the expected arrival times E(aq) and
E(a, ). If however it holds that a_, < a,, i.e. the earlier arrival time within the

prospects falls at or after the earliest feasible arrival time, it would seem

uncontroversial to make the assertion that p,, > p,, i.e. the earlier departure

23



d, is more likely to arrive at g, than the later departure d,. Though it is left

in practice to empirical investigation to identify the expected arrival times

E(aq) and E(a, ), the figure illustrates a situation where E(aq)< PAT < E(a, ),
with an outcome that Y, >, . In this situation, therefore, prospect w, would

be chosen over prospect W, .

4. Marginal valuations of travel time and scheduling, and the reliability

premium

The previous section applied the theory of individual choice under
uncertainty to trip scheduling. This equips us with the necessary theory to
now develop the principal interest of the paper, which is in the value of
reliability to an individual traveller. Whilst acknowledging that the value of
reliability has been variously defined (see de Jong et al., 2004), the following
analysis will exploit and extend Bates et al.’s (2001) definition, which is
grounded in the theory of section 3. Let us first summarise Bates et al.’s

definition, before considering its extension.

4.1 Bates et al.’s marginal valuations of travel time and scheduling under uncertainty

24



Following Bates et al., the reliability of arrival time may be represented in
terms of the event probabilities of von Neumann & Morgenstern’s (1947)

analysis; with reference to (5), for example, any change in reliability (i.e. p,
and p;) will impact upon expected arrival time and, by implication, expected

travel time, expected schedule delay early, expected schedule delay late, and
the expected lateness dummy. Applying this representation of reliability to
empirical investigation, Bates ef al. devise and implement a binary choice SP
experiment, and from this data infer marginal valuations of expected travel
time, expected schedule delay early, expected schedule delay late and the

expected lateness dummy.

Let us illustrate the nub of Bates et al.’s empirical investigation, but within the
context of our own working. We begin by supplementing the expected utility
function (5) with a variable representing travel cost, noting importantly that
cost is indexed by departure time but not by arrival time. More formally, for

any prospect w, € S let:

Y. =Y, +4c, (8)

where ¢, is the travel cost of prospect w,. Adopting (8), let us return to the

choice between the pair w,w, € S. Critical to this choice is the point at

25



which the individual is indifferent between the prospects; re-working (7) we

can establish that:

If YAq ~Y. =0 then:

#lc, —c,)=ald, —d, )+ |(p, — Py (eAa+ BASDE + yASDL + SAL)| )

The proposition now emerges that an individual traveller might be willing to
exchange an adjustment in cost difference, i.e. the left-hand side of (9), for
adjustments in one or more of the travel time and scheduling differences, i.e.
the right-hand side of (9). Accepting this proposition of exchange, it would
seem a relatively small extension to isolate the rate of exchange between
travel cost and each constituent of expected utility, and thereby derive
marginal valuations of expected travel time, expected schedule delay early,
expected schedule delay late, and the expected lateness dummy. For
example, let us derive marginal valuation of expected travel time Vo(E(T)),

thus:

IfY -Y

q r

=0 then:

B.r.6=0

¢(Cr _Cq)z a{lE(aq)_ E(ar )J+ (dr - dq )}
(e —¢J)

Vo(E(T))= = lE(aq)_ E(a, )J+(dr _dq)

(10)

<R

26



Marginal valuations of expected schedule delay early Vo(E(SDE)), expected
schedule delay late VO(E(SDL)), and the expected lateness dummy Vo(E(L))

can be derived analogously, as shown in Appendix A.

4.2 Attitudes to unreliability

The exposition of section 3 would, in applying the theory of individual choice
under uncertainty to the reliability of arrival time, seem to establish
synonymity between the microeconomist’s notion of uncertainty (or risk) and
the transport planner’s notion of unreliability. This in turn provokes an
interest in reconciling Bates et al.’s marginal valuations of travel time and
scheduling under uncertainty with established microeconomic methods for
valuing the risk inherent in prospects. In pursuing this interest one might,
rekindling the earlier discussion in section 3.2, distinguish between attitudes
to risky monetary outcomes and attitudes to risky time outcomes. Whilst the
former have attracted considerable research attention, the latter have not,

hence the opportunity for further investigation.

To this end, let us consider the particular concept of the ‘risk premium” (Pratt,

1964), which carries an appealing intuition and commands considerable
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support across the microeconomic community. The risk premium arises from
the relation between the expected utility function and its underlying utility
function, and is crucially dictated by the individual’s attitude towards risk.
Before proceeding to the risk premium, let us then consider attitudes to risk as
they apply to our interest in the reliability of arrival time. We begin by

deriving the utility of the expected arrival time, thus:

U(E(a,))=a[E(a,)-d, ]+ g max[(PAT - E(a, )).0]+ y max[(E(a, ) - PAT),0]+ &L(E(a, )

where:
E(a,)= pna +({1-p,)a, (11)

L(E(a,))=1 if (E(a,)- PAT)>0, =0 otherwise

Then comparing the utility of the expected arrival time to expected utility,
Jensen’s inequality (see for example Johansson, 1991) provides a basis for the
following inferences:

= If Y,=U(E(a,)) then the traveller is ‘risk neutral in arrival time’
= If Y, >U(E(a,)) then the traveller is ‘risk preferred in arrival time’
= If Y, <U(E(a,)) then the traveller is ‘risk averse in arrival time’

It remains to establish the prevalence of these three relations, which again

invokes the same three cases as section 3.3:
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Case 1: a <a; <PAT
This always yields the equality Y, =U(E(a,)), such that the traveller exhibits

risk neutrality.

Case2: PAT <a <a,
The equality Y, =U(E(a,)) again holds, and an inference of risk neutrality may

therefore be drawn.

Case 3: a <PAT <a,

This case is more ambiguous, and it is instructive to introduce the further

dichotomy:

Case 3.1: E(a, )< PAT

Where Case 3 holds and the expected arrival time is earlier than the PAT , the
difference between expected utility and utility of the expected arrival time is

given by the quantity:

Y, ~U(E(a,))=(1- p,, )|l - PAT )+ r{a, - PAT)+ oL, |

Since f,7,0 <0 and 0< p,, <1 by definition, and (aj - PAT)> 0 by

assumption, it must be the case that Y, <U(E(a,)). The traveller therefore
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exhibits risk aversion. This can be confirmed through reference to Figure 3,
wherein the utility function U lies above the expected utility function Y

throughout the interval [a,, PAT].

Case 3.2 PAT < E(a,)

Where Case 3 continues to hold but the expected arrival time is now later than
the PAT, the difference between expected utility and utility of the expected

arrival time becomes:

Y, -U(E(a,))= p.[B(PAT —a )+ y(PAT - & )-dL ]

where L=1L, = L(E(a,))

In a similar manner to before, f,7,0 <0 and 0< p,, <1 by definition, and
(PAT —a ) > 0 by assumption. Unlike Case 3.1, however, it cannot be
determined a priori which of Y, and U(E(a,)) will be the greater. Rather one

must defer to the empirical outcome, which will be dictated by the proximity

of the arrival times a and a ; to the PAT . With reference to Figure 3, for

example, the utility function U lies above the expected utility function Y for

any arrival time in the interval [PAT, a, J ; 1.e. risk aversion. Contrast this with

Figure 5, wherein the expected utility function intersects the vertical segment
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of the utility function, and the utility function therefore lies below the

expected utility function throughout the interval [PAT, a, J ; i.e. risk preference.

Figure 5: Utility and expected utility functions, for given departure time, with a < 3

(ABOUT HERE)

Before moving on, it should be acknowledged that Polak (1987) pursues
similar interests to the above, albeit with different focus. Polak devotes
careful attention to the form of his utility function, postulating that the
function should be monotonically decreasing in travel cost and demonstrate a
constant degree of risk aversion to travel cost (see Pratt (1964) and Arrow
(1970) for discussion of measures of risk aversion); contrast this with the
present paper, which is founded on attitudes to time risk rather than cost risk.
Adopting an exponential form as a working representation of the postulated
properties, Polak seeks to identify, in a similar manner to section 3.4 above,
the preferred departure time of an individual traveller. Then developing
ideas further, he introduces the notion of the ‘safety margin’, as proposed by
Gaver (1968) and Knight (1974), and establishes a relationship between the

magnitude of the safety margin and the degree of risk aversion.

4.3 The reliability premium
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Returning to our own analysis, let us now develop Pratt’s (1964) concept of
the risk premium in the context of trip scheduling. As a precursor, let us first
introduce the concept of a ‘certainty equivalent’, which in the present context
may be defined as follows. The certainty equivalent relating to any prospect

W, € S is the arrival time &, that yields the same utility with certainty as the

expected utility of the prospect. In Cases 1 and 2 of the previous section, both
of which imply risk neutrality, utility and expected utility are one and the
same, and the notion of a certainty equivalent is therefore somewhat

tautological.

Of rather more interest is Case 3, since it carries a potential for risk aversion.
Subsequent discussion will reveal an intuition that, in developing the
certainty equivalent for Case 3, the certainty equivalent should be constrained
to fall within the interval of arrival times defined by the prospect, i.e.

a, <8, <a,. Letus for the moment simply accept this requirement and, by

analogy to Cases 3.1 and 3.2, distinguish between cases where the certainty

equivalent falls before and after the PAT , as follows:

Case 3.3: a <&, < PAT
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In developing this case, let us establish - by way of assertion - equivalence
between expected utility and the utility deriving from the certainty

equivalent, i.e.

Let Y, =a(&, —d,)+ B(PAT —&,), where a <& < PAT

Rearranging, we can then identify the certainty equivalent:

5 _ Yo +ad, - fPAT

12
n ((l _ ﬂ) ( )

Case 3.4: PAT <&, <a,

Now repeating the same exercise, but for a certainty equivalent later than the

PAT :

Let Y, =a(d, —d,)+y(&, - PAT)+dL(4))

where L(3,)=1 if (&, — PAT)>0, =0 otherwise, and PAT <3, < a;

Rearranging:
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~ Y, +ad, +PAT -4AL(7,)
a. =
(@+7)

n

Note that, with reference to earlier discussion in section 3, the denominator of
the certainty equivalent for Cases 3.3 and 3.4 is given by the slope of the
relevant section of the utility function. Whilst the above working carries an
apparent clarity, it might however be cautioned that the properties of the
function - more particularly, its discontinuity - carry the implication that an
exact certainty equivalent is not empirically guaranteed. Nevertheless, let us

proceed to the definition of the risk premium.

In general terms, the risk premium measures the individual’s willingness-to-
pay, in units of the pay-off, to avoid the risk of choosing an uncertain
prospect. Or more succinctly, the risk premium measures the ‘cost of risk
bearing’. Applying these definitions to our interest in the reliability of arrival
time, the risk premium - or in present parlance, the ‘reliability premium’” -
measures, for a given departure time, the delay in arrival time (with its
consequent impacts on travel time, schedule delay early, schedule delay late
and the lateness dummy) that the individual would be willing-to-pay in
exchange for eliminating the unreliability. The reliability premium thus
measures the costs borne by the traveller that arise specifically from

unreliability in arrival time.

34



Now adopting greater formality, define the reliability premium:

K, =max[(&, - E(a,)).0] (13)

Since the pay-off is in this instance defined on a bad (i.e. arrival time), the
expected pay-off must be subtracted from the certainty equivalent in order to

yield the reliability premium K. Note the requirement on the sign of K,

which implies that a non-zero reliability premium is representative of risk
averse behaviour. The reliability premium is illustrated diagrammatically in
Figures 6 and 7, again with o < f. Figure 6 considers an expected late arrival,
and demonstrates that a traveller would yield equal utility from the prospect

Y, and the certain arrival time &,, thereby identifying the reliability premium
to be the distance &, — E(a, ). Figure 7 applies analogously to the case of an

expected early arrival, with similar result; the traveller would be indifferent
between the prospect and a certain arrival time just early of the PAT . Whilst
Figures 6 and 7 would seem reasonably clear, the discontinuity of U
introduces some complexities; if in particular Y intersects the vertical
segment of U in the manner of Figure 5, then the certainty equivalent may
fall before the expected arrival time, such that the risk premium becomes zero

in accordance with (13).
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Figure 6: The reliability premium of an expected late arrival, for given departure time,

with a < B (ABOUT HERE)

Figure 7: The reliability premium of an expected early arrival, for given departure

time, with o < # (ABOUT HERE)

If we now extend discussion of the reliability premium to consider the
relation f < «, then it is apparent that further complexities arise. With
reference to Figure 8, which omits some labelling in the hope of promoting

clarity, the opposing slopes of the two segments of U yield the pair of

certainty equivalents &, and &, . It might be noted that, whereas &, falls

within the interval [ai,aj J, a, doesnot. Furthermore, whilst &, falls after the

expected arrival time and therefore yields the possibility of a non-zero

reliability premium (acknowledging again the possibility of a zero reliability

!

premium should Y intersect the vertical segment of U ), &, falls before the

expected arrival time and will never therefore yield a non-zero reliability

premium. Hence, we arrive at an intuition for the constraint a <&, <3a,

introduced at the outset of this section.
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Figure 8: The reliability premium of an expected early arrival, for given departure

time, with f < a

Before proceeding, it is useful to distinguish the notion of the reliability
premium from the aforementioned notion of the safety margin, in that each
derives from a different reference point. Whereas the reliability premium
derives from the reference point of the certainty equivalent, the safety margin
derives from the reference point of the PAT . This provokes the important
distinction that the safety margin pertains only to early arrivals, whereas the
reliability premium may pertain to either early (i.e. Figure 7) or late (i.e.
Figure 6) arrivals. Indeed, the necessarily theoretical discussion above might
be embellished with the remark that the reliability premium offers rationale
for a practice that is widely applied in the public transport industry, thus. An
operator, if faced with the situation presented in Figure 6, could introduce an

increased journey time (i.e. &, —d,, such that the individual incurs a late

arrival) and still maintain market share (i.e. maintain the individual’s level of

utility at Y,), provided it could ensure full reliability of service (i.e. move from

the expected utility function Y to the utility function U ).

4.4 Reconciling the reliability premium with Bates et al.
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Having introduced two alternative notions of the value of reliability - the
reliability premium (section 4.3) and Bates et al.’s (2001) marginal valuations
of travel time and scheduling under uncertainty (section 4.1) - let us now seek
to reconcile them. To this end, and exploiting the analysis of the previous
section, we can re-express expected utility as the utility at the certainty

equivalent:
Y, =U(&,)=a'(d, —d,)+ B max|[(PAT — &, )0]+ y'max[(&, — PAT ),0]+5L(&,)

If the individual traveller is risk averse then we can substitute for &, using the

risk premium K, thus:

Y, = a'[E(a,)+ K, —d, ]+ #'max[(PAT - E(a,) - K, ),0]
+y'max[(E(a, )+ K, — PAT),0]+ 6L(E(a,)+K,)

(14)
Should we now introduce travel cost to (14) in the manner of (8), then we can
derive a further set of marginal valuations, but this time at the certainty
equivalent. For example, let us derive marginal valuation of travel time at the

certainty equivalent:

IfY -Y =0 then:

a " g.7.6=0
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Vo(T)=== : (15)

(KoK, )+|Ela,)-E( )]+ (d, -d,)

a
¢

Marginal valuations - at the certainty equivalent - of schedule delay early,
schedule delay late and the lateness dummy are more complicated. Whilst it

is reasonable to restrict attention to Case 3 (i.e. & < PAT < a; ), remembering
that the reliability premia K, and K, are pertinent only to conditions of risk
aversion, this does not constrain the certainty equivalents &, and &, to fall

either side of the PAT . Rather it is necessary to define three further
possibilities, as extensions of Cases 3.3 and 3.4, thus:

Case 3.5: a,,a <PAT

q> =

Case 3.6: PAT <4&,,&

Case 3.7: 4, < PAT <&

Table I displays the complete set of marginal valuations at the certainty
equivalent, with the first three columns discriminating by the above three
cases. Of particular interest is whether these marginal valuations at the
certainty equivalent accord with those previously derived under uncertainty.
For purposes of this comparison, it is useful to consider how (10) and (A1) to

(A3) apply to Case 3, and these are given in the final column of Table I.
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Table I: Marginal valuations of travel time and scheduling under uncertainty and at

the certainty equivalent (ABOUT HERE)

With reference to Table I, comparison of the marginal valuations of travel
time under uncertainty and at the certainty equivalent, which are given by
a/¢ (i.e. from equation (15)) and @'/¢ (i.e. from equation (10)) respectively,
reveals that the denominators of the two valuations differ by the quantity

(Kq - K, ) These valuations will therefore be equal only if K, = K. Whilst

the latter equality may feasibly hold, there is no a priori basis for necessarily
expecting this result, and it would seem quite possible that marginal
valuation of travel time under uncertainty will differ from that at the certainty

equivalent.

Now consider marginal valuation of the lateness dummy. In Cases 3.5 and
3.6, the marginal valuations under uncertainty and at the certainty equivalent

(i.e. 6/¢ and &'/¢ respectively) will be equal if ¢, =c, . In Case 3.7, similar
equality will arise if both p, =1 and p, =0. Note in passing that, as section

3.4 has already considered, one would in practice expect the inequality

Piq > P; to hold, which would be consistent with equality between marginal
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valuations of the lateness dummy under uncertainty and at the certainty

equivalent.

Finally, the marginal valuations of schedule delay early (,B /6.5'/ ¢) and
schedule delay late (7// b, 7'/ ¢) show similar differences in their formulae
when comparing uncertainty with the certainty equivalent. It would however
seem more difficult to predict the outcome a priori, and one must instead defer

to empirical investigation.

That notwithstanding, the preceding theoretical argument has illuminated the
possibility that marginal valuations of travel time and scheduling at the
certainty equivalent will show discrepancy from the same valuations under
uncertainty. Whether theoretical discrepancy results in empirical discrepancy
remains to be seen, and this provokes a call for future work addressing such
matters. Should the discrepancy be confirmed empirically, then it carries
important interpretation as the individual traveller’s willingness-to-pay (now
in monetary units) to eliminate unreliability in arrival time. For example, the
quantity (/¢ —a/¢) represents the individual’s willingness-to-pay to
eliminate unreliability in arrival time, specifically as it impacts upon travel
time; it might therefore be referred to as the ‘marginal valuation of reliability

in travel time’. Similar interpretations apply to the other constituents of
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Small’s (1982) utility function; the quantity (/¢ — 3/4) might be referred to

as the ‘marginal valuation of reliability in schedule delay early’, and so on.

5. The prevalence and distribution of benefits from the reliability premium

Whilst marginal valuations of travel time and scheduling under uncertainty
are in themselves perfectly adequate for purposes of forecasting individual
choice under uncertainty, it is only through their comparison to marginal
valuations of travel time and scheduling at the certainty equivalent that the
effect of unreliability in arrival time on choice can be revealed. Such insight
might usefully inform public transport operators as to the effects of changes
in reliability on the individual traveller’s choice of departure time. More
generally, the minimisation of risk may be an important policy aspiration, and
marginal valuations of reliability could, to this end, offer a useful means of

discriminating between alternative investment options.

Though intrinsic to marginal valuations of reliability, arguably the more
significant contribution of the reliability premium is to economic appraisal.
As Pearce and Nash (1981) observe, the projected benefits of any transport
scheme - which may include benefits from improved reliability - should

mitigate for the cost of inherent risk, and failure to do so introduces the
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possibility of bias. Hence it would seem crucial to make explicit statement of
the cost of unreliability in arrival time to the individual traveller (or
equivalently, the benefit of eliminating that unreliability), which for any

prospect W, € S is given by:

Vo(K,,)=a'/¢*[&, - E(a, )]+
B' ¢ {max[(PAT - &, ),0]- max[(PAT - E(a, )).0]} +
7' /¢* {max|(&, — PAT ),0]- max[(E(a, ) - PAT ).0]} +

n

&'/¢*|L(&,)- L(E(a,))]

(16)

Noting importantly that the potential benefit of eliminating unreliability
manifests only under circumstances of risk aversion, let us consider the
prevalence of such benefit in relation to the same three cases considered

earlier.

Case 1: a <a; <PAT
In this case, there would be nil benetfit (i.e. VO(Kn ) =0 in (16)) to the traveller

from the elimination of unreliability; this is because the traveller exhibits risk

neutrality.

Case2: PAT <a <a,

This would yield the same outcome as Case 1.
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Case 3: a < PAT <a,

The traveller might or might not realise benefit from the elimination of

unreliability, as follows:

Case 3.1: E(a,)< PAT
There would be unambiguous benefit (i.e. Vo(K, ) > 0), since the traveller

exhibits risk aversion.

Case 3.2 PAT < E(a,)

The prevalence of benefit would depend on the proximity of the arrival times

8, and a, to the PAT, and their consequent effect on attitudes to

unreliability.

Since the above outcomes are dictated by the relation of the arrival times &,
and a; to the PAT, one could therefore expect the prevalence of benefit to
vary by the departure times d, € D. That is to say, one might reasonably

expect relatively early departures to pertain to Case 1, relatively late

departures to Case 2, and intermediate departures to Case 3.
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It should be emphasised, however, that the above conclusions apply
specifically to the case of an individual traveller. If, as is more common in
practice, one is interested in a sample of travellers, say the users of a
particular public transport departure, then the sample would typically
demonstrate some heterogeneity in respect of the PAT . The implication
follows that, for any improvement in the reliability of arrival time for that
service, some users might realise a benefit from that improvement, whilst
others might not. The total benefit to the sample would therefore depend on
the number of beneficiaries, and their individual valuations of the reliability
premium. With reference to (2), interest in a sample of individuals is often
developed through a re-interpretation of RUM, with ‘repetitions” becoming
‘individuals’, and probabilities of choice deriving from differences in the
preferences of individuals across the sample. Irrespective of whether it
derives from intra-individual or inter-individual variability in preferences,
extension of the reliability premium to accommodate RUM would give rise to
distributed marginal valuations of travel time and scheduling, as well as to

distributed marginal valuations of reliability in travel time and scheduling.

Aside from the matter of aggregation, a further restriction of the above
analysis is to a binary subset of arrival times, and it is appropriate to
acknowledge that the clarity of Case 3 becomes compromised once the set of

arrival times is extended beyond the binary. In such circumstances, the
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relation between the utility of the expected arrival time and expected utility
remains pertinent but must be revealed empirically. That said, and with
reference to the aspirations outlined in the introduction to this paper, it might
be argued that a binary subset of arrival times would bring appealing
convenience to SP analysis of the reliability premium. In short, the binary
case is far from abstract. In contrast to Case 3, the unambiguous results of

Cases 1 and 2 readily extend to trinomial or larger arrival time sets.

6. Worked example of the reliability premium

Let us now illustrate the theoretical exposition of the reliability premium by
means of a worked example, noting that we will restrict attention to a single
individual and therefore avoid the complications of aggregation just
mentioned. With reference to Table II, which quantifies all times in minutes
after midnight, consider a one-way commute with a departure time profile of
420 (i.e. 7:00am) to 495 (i.e. 8:15am), in increments of 5 minutes. Arrival
times are similarly defined in increments of 5 minutes, and reveal a minimum
journey time of 30 minutes (i.e. a,;,, =450). This could be representative of a
high-frequency scheduled public transport service; alternatively, it could be a
discrete approximation to a car-based journey. The body of the table displays

the event probabilities by departure and arrival times. It might be observed
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that the subset of arrival times varies by departure time, and contains
between two and five possible arrivals. Since the problem is more general
than the binary subset of arrival times considered above, analysis of Case 3

must therefore defer to the empirical results that follow.

Table 1I: Pay-off matrix for worked example (ABOUT HERE)

In focussing on the reliability premium, it is unnecessary to explicitly consider
travel cost, and we therefore proceed with the formulations of utility and
expected utility given by (4) and (6) respectively. Let us populate these with
the estimates of «, #,7 and 6 from Model (1) of Small (1982), specifically
a=-0.106, f=-0.065, y =-0.254 and 6 =-0.58, noting that o < #. Letus
assume also that PAT =525 (i.e. 8:45am). Figure 9 plots the various attributes
of expected utility - expected travel time, expected schedule delay early,
expected schedule delay late, and the expected lateness dummy - against
expected arrival time. The properties of this figure accord with those of
previous presentations in the literature, for example Figure 2 of Bates et al. (

2001), and confirm the position of the PAT at 525.

Figure 9: Expected travel time, SDE, SDL and lateness dummy vs. expected arrival

time (ABOUT HERE)
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Figure 10 plots, for each departure time, expected utility Y and utility of the
expected arrival time U(E(a)). It might be remarked that many of the
departure times are inferior, in that their maximum utility falls short of the
minimum utility of other departures. On this basis, we can restrict attention
to departure times in the range 450 to 475. Indeed expected utility is
maximised within this range, specifically at 465. Comparing the plots of Y
and U(E(a)), it can be observed that expected utility and utility of the
expected arrival time coincide for the vast majority of departure times; these
departures pertain to Cases 1 and 2 (i.e. their respective arrival times fall
either always before or always after the PAT ). By contrast, the two plots
diverge for the 465, 470 and 475 departures, each of which pertains to Case 3
(i.e. their respective arrival times straddle the PAT ). More specifically,
expected utility is less than the utility of the expected arrival time for the 465
and 470 departures, whereas the reverse applies for the 475 departure. Hence
with reference to the discussion of section 4.2, it may be seen that the
preferred departure time of 465 is relatively risky in comparison to other

available departures.

Figure 10: Expected utility and utility of expected arrival time, by departure time

(ABOUT HERE)
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Finally, let us consider an example of the reliability premium, taking the
particular case of the 465 departure (since this departure is characterised by
risk aversion). The empirical utility function for this departure is shown in
Figure 11; this follows the characteristic shape of the theoretical utility
functions in Figures 1 and 3 to 7, with distinct sections before and after the
PAT , and a < . The empirical expected utility function, by contrast, cannot
be shown in the manner of the theoretical examples, since we have expanded
the set of arrival times beyond the binary. Suffice to say, the arrival time

window extends from 510 to 530, hence the points labelled Y .

Fiqure 11: Utility and expected utility functions for d =465 (ABOUT HERE)

For the 465 departure, we can calculate the expected arrival time (11), giving

E(a,s)=515.25, and the certainty equivalent (12), giving &, =517.90. Then

applying these to the reliability premium (13), we can calculate

K es = 8,65 — E(8,45) = 2.65, such that a certain arrival time 2.65 minutes later
than the expected arrival time would yield the same utility as the expected
utility of the prospect. Finally, the value of this reliability premium is, with

reference to (16), given by:
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VO(K465):{a';ﬂ’}<2.65

Contrast this with the 460 departure, where Y,,, =U(E(a,, )) and Vo(K,,,)=0 .

Hence elimination of unreliability in arrival time would for the 465 departure
(i.e. Case 3) yield an additional benefit to the individual, but there is no

possibility of similar benefit for the 460 departure (i.e. Case 1).

7. Summary and conclusion

Unreliability is endemic in many transport systems, and this stimulates
interest in whether and how unreliability impacts upon the choices of
travellers. The paper pursued specific interest in the effect of unreliability in
arrival time on scheduling choice. Following the precedent of Noland &
Small (1995) and Bates et al. (2001), this was developed through the marriage
of Small’s (1982) utility function with von Neumann & Morgenstern’s (1947)
theory of individual choice under uncertainty. Arising from the latter union
is the proposition that unreliability imposes disutility on the traveller. Hence

the potential for benefit should unreliability be reduced or indeed eliminated.
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In contrast to the precedent works on reliability, the present paper adopted a
discrete representation of time, motivated in particular by a desire to promote
implementation within the apparatus of RUM and SP. The substantive
contribution of the paper, however, was the scope of the theoretical
exposition, which offered significant extensions beyond the extant reliability
literature. With reference to the theoretical literature on attitudes to risk (e.g.
Pratt, 1964; Arrow, 1970), the paper considered the implications of Small’s
utility function for travellers” attitudes to unreliability in arrival time, and in
particular identified circumstances under which travellers would be risk
averse. Inresponse to the latter observation, and drawing analogy with
Pratt’s (1964) concept of the risk premium, the paper introduced the notion of
the ‘reliability premium’. This measures, for a given departure time, the delay
in arrival time that the individual would be willing-to-pay in exchange for

eliminating unreliability in arrival time.

The paper then sought to reconcile this consideration of attitudes to risk with
Bates et al.’s (2001) marginal valuations of travel time and scheduling under
uncertainty. The latter arise from the proposition that an individual traveller
would, in choosing between prospects, be willing to exchange travel cost for
expected travel time, expected schedule delay early, expected schedule delay
late, and the probability of late arrival. Exploiting the reliability premium, the

paper established a basis for comparison between marginal valuations of
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travel time and scheduling under uncertainty, and analogous valuations
derived at the certainty equivalent. This comparison revealed the theoretical
possibility that the two sets of valuations might show discrepancy. Should
this theoretical discrepancy manifest in empirical discrepancy - which
remains to be seen - then it carries important interpretation as the marginal

valuation of reliability in arrival time.

Whilst marginal valuations of travel time and scheduling under uncertainty
are adequate for demand forecasting, economic appraisal should mitigate the
projected benefits of a scheme against the costs of risk bearing, and this is
where the reliability premium becomes pertinent. It is crucial to acknowledge
that reliability benefits arise only under the particular circumstances of risk
aversion, and that risk aversion is, in the terms of the utility function, dictated
by the relation of the possible arrival times to the preferred arrival time.
Moreover, the prevalence of benefit will likely vary by departure time for
given preferred arrival time. This assumes a single individual however; once
the analysis is extended to a sample of individuals, the outcome will be
complicated by heterogeneity in the preferred arrival time and, it follows,
heterogeneity in the prevalence and magnitude of reliability benefits. Thus
for any particular departure time, an improvement in the reliability of arrival

time might yield benefit for some travellers but no benefit for others.
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Appendix A: Derivation of Vo(E(SDE)), Vo(E(SDL)) and Vo(E(L))

=0 then: (A1)

=0 then: (A2)

=0 then: (A3)
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Figure 1: Small’s utility function, for given departure time, with o <

arrival time
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Figure 2: Small’s utility function, for given departure time, with f <«

arrival time
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Figure 3: Utility and expected utility functions, for given departure time, with a < 3

arrival time
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Figure 4: Choice between departure times, with o < 8

arrival time
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Figure 5: Utility and expected utility functions, for given departure time, with a < 3

arrival time
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Figure 6: The reliability premium of an expected late arrival, for given departure time,
with a <

arrival time
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Figure 7: The reliability premium of an expected early arrival, for given departure
time, with a <

arrival time
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Figure 8: The reliability premium of an expected early arrival, for given departure
time, with < a
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Figure 9: Expected travel time, SDE, SDL and late penalty vs. expected arrival time
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Figure 10: Expected utility and utility of expected arrival time, by departure time
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Figure 11: Utility and expected utility functions for d = 465
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Table I: Marginal valuations of travel time and scheduling under uncertainty and at the certainty equivalent

CERTAINTY EQUIVALENT UNCERTAINTY
Case 3.5: Case 3.6: Case 3.7: Case 3:
a,.a, < PAT PAT <4&,.4 a,<PAT <3§ a, < PAT <a,
i’ (Cr B CCI) (Cr - Cq) g
4 (K, - K, )+[Ela,)- E(a )]+ (d, - d,) [E(a,)-E(@)]+(d. -d,) | ¢
E (Cr - Cq) 0 (Cr - Cq) (Cr - Cq) é
¢ (Kr - Kq)+ lE(ar )_ E(aq )J PAT - KCI - E(a’q) l(piq - pir XPAT - ai )J ¢
L' 0 (r_cq) (Cq_cr) (Cr_Cq) Z
¢ (K, - K, )+[Ela,)-E@)] | K, +E(a)-PAT | [(p, — pyNa, ~PAT)] | ¢
5’ (c, -¢c,) 5
e 0 0 Cq -G ( ) _
¢ ( ) pir - piq ¢
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Table II: Pay-off matrix for worked example

O 0O 0O 0 0 0 Q0 0 Q0 0 0 Q0 Q0 Qa0 Q

420.00
425.00
430.00
435.00
440.00
445.00
450.00
455.00
460.00
465.00
470.00
475.00
480.00
485.00
490.00
495.00

a a a a a a a a a a a a a a a a a a a a a a
450.00 455.00 460.00 465.00 470.00 475.00 480.00 485.00 490.00 495.00 500.00 505.00 510.00 515.00 520.00 525.00 530.00 535.00 540.00 545.00 550.00 555.00
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