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Abstract

A new kernel function between two labeled
graphs is presented. Feature vectors are de-
fined as the counts of label paths produced
by random walks on graphs. The kernel com-
putation finally boils down to obtaining the
stationary state of a discrete-time linear sys-
tem, thus is efficiently performed by solv-
ing simultaneous linear equations. Our ker-
nel is based on an infinite dimensional fea-
ture space, so it is fundamentally different
from other string or tree kernels based on dy-
namic programming. We will present promis-
ing empirical results in classification of chem-
ical compounds.1

1. Introduction

A large amount of the research in machine learning is
concerned with classification and regression for real-
valued vectors (Vapnik, 1998). However, much 
the real world data is represented not as vectors, but
as graphs including sequences and trees, for exam-
ple, biological sequences (Durbin et al., 1998), nat-
ural language texts (Manning ~ Schfitze, 1999), semi-
structured data such as HTML and XML (Abiteboul
et al., 2000), and so on. Especially, in the pharmaceu-
tical area, the chemical compounds are represented as
labeled graphs, and their automatic classification is of
crucial importance in the rationalization of drug dis-
covery processes to predict the effectiveness or toxicity

1An extended abstract of tlfis research has been pre-
sented in IEEE ICDM International Workshop on Active
Mining at Maebashi, Japan (Kashima & Inokuchi, 2002).
But this full paper contains much richer theoretical anal-
ysises such as interpretation as marginalized kernels, con-
vergence conditions, relationship to linear systems, and so
on.

of drugs from their chemical structures (Kramer & De
Raedt, 2001; Inokuchi et al., 2000).

Kernel methods such as support vector machines are
becoming increasingly popular for their high perfor-
mance (SchSlkopf ~ Smola, 2002). In kernel meth-
ods, all computations are done via a kernel function,
which is the inner product of two vectors in a fea-
ture space. In order to apply kernel methods to graph
classification, we first need to define a kernel func-
tion between the graphs. However, defining a ker-
nel function is not an easy task, because it must be
designed to be positive semidefinite2. Following the
pioneering work by Haussler (1999), a number of ker-
nels were proposed for structured data, for example,
Watkins (2000), Jaakkola et al. (2000), Leslie et 
(2003), Lodhi et al. (2002), and Tsuda et al. (2002)
for sequences, and Vishwanathan and Smola (2003),
Collins and Duffy (2001), and Kashima and Koyanagi
(2002) for trees. Most of them are based on the idea 
an object decomposed into substructures (i.e. subse-
quences, subtrees or subgraphs) and a feature vector
is composed of the counts of the substructures. As
the dimensionality of feature vectors is typically very
high, they deliberately avoid explicit computations of
feature values, and adopt efficient procedures such as
dynamic programming or suffix trees.

In this paper, we will construct a kernel function be-
tween two graphs, which is distinguished from the ker-
nel between two vertices in a graph, e.g., diffusion ker-
nels (Kondor & Lafferty, 2002; Kandola et al., 2003;
Lafferty ~ Lebanon, 2003) or the kernel between two
paths in a graph, e.g., path kernels (Takimoto ~ War-
muth, 2002). There has been almost no significant
works for designing kernels between two graphs except

2Ad hoc similarity functions are not always positive
semidefinite, e.g. Shimodaira et al. (2002) and Bahlmann
et ~. (2oo2).
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for the work by Giirtner (2002). We will discuss about
his kernels in Appendix.

One existing way to describe a labeled graph as a
feature vector is to count label paths appearing in
the graph. For example, the pattern discovery algo-
rithm (Kramer ~z De Raedt, 2001; Inokuchi et al.,
2000) explicitly constructs a feature vector from the
counts of frequently appearing label paths in a graph.
For the labeled graph shown in Figure 1, a label path
is produced by traversing the vertices, and looks like

(A, e, A, d, D, a, B, c, D),

where the vertex labels A, B, C, D and the edge labels
a, b, c, d, e appear alternately. Numerous label paths
are produced by traversing the nodes in every possi-
ble way. Especially when the graph has a loop, the
dimensionality of the count vector is infinite, because
traversing may never end. In order to explicitly con-
struct the feature vector, we have to select features to
keep the dimensionality finite. The label paths may be
selected simply by limiting the path length or, more
intelligently, the pattern discovery algorithm identifies
the label paths which appear frequently in the training
set of graphs. In any case, there is an additional un-
wanted parameter (i.e. a threshold on path length or
path frequency) that has to be determined by a model
selection criterion (e.g. the cross validation error).

We will propose a kernel function based on the in-
ner product between infinite dimensional path count
vectors. A label path is produced by random walks on
graphs, and thus is regarded as a random variable. Our
kernel is defined as the inner product of the count vec-
tors averaged over all possible label paths, which is re-
garded as a special case of marginalized kernels (Tsuda
et al., 2002). The kernel computation boils down to
finding the stationary state of a discrete-time linear
system (Rugh, 1995), which can be done efficiently 
solving simultaneous linear equations with a sparse co-
efficient matrix. We especially notice that this compu-
tational trick is fundamentally different from the dy-
namic programming techniques adopted in other ker-
nels (e.g. Watkins (2000), Lodhi et al. (2002), Collins
and Duffy (2001), Kashima and Koyanagi (2002)).
These kernels deal with very large but still finite di-
mensional feature spaces and have parameters to con-
strain the dimensionality (e.g. the maximum length
of subsequences in Lodhi et al. (2002)). In order 
investigate how our kernel performs well on the real
data, we will show promising results on predicting the
properties of chemical compounds.

This paper is organized as follows. In Section 2, we
review marginalized kernels as the theoretical founda-
tion. Then, a new kernel between graphs is presented
in Section 3. In Section 4, we summarize the results of
our experiments on the classification of chemical com-
pounds. Finally, we conclude with Section 5.

2. Marginalized Kernels

A common way for constructing a kernel for struc-
tured data such as strings, trees, and graphs is to as-
sume hidden variables and make use of the probability
distribution of visible and hidden variables (Haussler,
1999; Watkins, 2000; Tsuda et al., 2002). For exam-
ple, Watkins (2000) proposed conditional symmetric
independence (CSI) kernels which are described 

K(~,~’) =~p(~lh)p(~’lh)p(h),
h

where h is a hidden variable, and a~ and m’ are visible
variables which correspond to structured data. This
kernel requires p(a~lh), which means that the genera-
tion process of ~ from h needs to be known. However,
it may be the case that p(hlm) is known instead of
p(~[h). Then we can use marginalized ke rnel (Tsuda
et al., 2002) which is described as

If(~,~’) = ~ ~ K~(z,z’)p(hl~)p(h’l~’). 
h h’

where z = [~, h] and I(~ (z, z’) is the joint kernel de-
pending on both visible and hidden variables. The
posterior probability p(hlx ) can be interpreted as a
feature extractor that extracts informative features for
classification from x. The marginalized kernel (1) 
defined as the expectation of the joint kernel over all
possible values of h and h~. In the following, we
will construct a graph kernel in the context of the
marginalized kernel. The hidden variable is a sequence
of vertex indices, which is generated by random walks
on the graph. Also the joint kernel Kz is defined as a
kernel between the sequences of vertex and edge labels
traversed in the random walk.

3. Graph Kernel

In this section, we introduce a new kernel between
graphs with vertex labels and edge labels. At the be-
ginning, let us formally define a labeled graph. Denote
by G a labeled directed graph and by IGI the number
of vertices. Each vertex of the graph is uniquely in-
dexed from 1 to IGI. Let vi E Ev denote the label
of vertex i and eij E P.z denote the label of the edge
from i to j. Figure 1 shows an example of the graphs
that we handle in this paper. We assume that there
are no multiple edges between any vertices. Our task
is to construct a kernel function K(G, G’) between two
labeled graphs G and G’.

3.1. Random Walks on Graphs

The hidden variable h = (hi,..., hz) associated with
graph G is a sequence of natural numbers from 1 to
IGI. Given a graph G, h is generated by a random walk
as follows: At the first step, hi is sampled from the
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Figure 1. an example of graphs with labels

initial probability distribution Ps (h). Subsequently, 
the i-th step, the next vertex hi is sampled subject to
the transition probability Pt (hi [hi-1), but the random
walk may also end with probability pq(hi-1):

IGI
~,pt(jll) + pq(i) = 1.
j=l

(2)

The posterior probability for the label path h is de-
scribed as

l
p(hlG) = p, (hi) H Pt (hi Ih~-1)pq (hl),

i=2

where t is the length of h.
When we do not have any prior knowledge, we cab
set Ps to be the uniform distribution, the transition
probability Pt to be an uniform distribution over the
vertices adjacent to the current vertex, and the ter-
mination probability pq to be a constant. Also gaps
(Lodhi et al., 2002) can be incorporated by setting the
transition probabilities appropriately.

3.2. Joint Kernel

Next we define the joint kernel K~ assuming that the
hidden sequences h and h’ are given for two graphs G
and G~, respectively. When the random walk is done
as described in h, the traversed labels are listed as

~)hl ehlhaVh2eh2haVha " " 

Assume that two kernel functions, K(v,v I) and
K(e, el), are readily defined between vertex labels and
edge labels, respectively. We constrain both kernels
If(v, v~), K(e, e’) tobenonnegative3. An example
of the vertex label kernels is

K(v, v’) = 5(v = (3)

where 5 is a function that returns 1 if its argument
holds, 0 otherwise. If the labels are defined in ~, the
Gaussian kernel

K(v, v’) ---- exp(- II ~’ - "’ II= 12°"2) (4)
3This constraint will play an important role in proving

the convergence of the marginMized kernel in Section 3.4.

would be a natural choice (SchSlkopf ~ Smola, 2002).
The joint kernel is defined as the product of the label
kernels as follows:

o (t # t’)
= 1-L=~ K (eh,_, h,, %~_, h~ ) K~(z,z’) K(vh,,v~h,) 

K(~h,, eh;) (e = ~’)

where z = (G, h).

3.3. Efficient Computation

The marginalized kernel (1) is the expectation of Kz
over all possible h and h~, which is described as

K(G,G’)
oo t.

£=1 h h~ i=2
l

v:(hl) l-I p~(h} h’ j_l)Pq(h~) 
j=2

l

K(vh,, v~i) H K(ehk_, hk, dh’k_,,h’k)K(vhk, Vi’ ),
k=2

where ~-~h := 7~)h?l "’’~-])al" The straightforward
enumeratmn is obwously impossible, because t spans
from 1 to infinity. Nevertheless we have an efficient
way to compute this kernel as shown below. By rear-
ranging the terms, the kernel has the following nested
structure.

L
g(a,a’)= lim E E s(h~,hl)x (5)

L--+oo

(Et(h2, h~,hl, h~l) (Et(h3, h~3, h2, 

where

8(hl,hl) := ps(hllPl,(hl)I~(Vh,,Vth~)

q(ht,h~) := pq(ht)pq(h~)

Let us further simplify (5) 

L

K(G,G’)= lim ~ ~ 8(hl,hl)r~(hl,hl)
L-+ oo

£=1 hl,h~
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where for g _~ 2,

and rl(hl,hl) := q(hl,h]). Replacing the order of
summation, we have the following:

K(C,C’)

where
L

hi) := hi).
t----1

Thus we need to compute R~(hl,hl) to obtain
K(G,G’).

Now let us restate this problem in terms of linear sys-
tem theory (l~ugh, 1995). The following recursive re-
lationship holds between rk and rk-1 (k >_ 2):

(7)

Using (7), the recursive relationship for 2~L also holds
as follows:

T

RL(hl, hl) -- rl(hl, hl) Jr E rk(hl, 
k=2

T

= r’(hl’ hl) + E t( i’j, hl ’hl)rk-’(i’J)
k=2 i,j

= rl(ha,hl)+ Et(i,j, hl,hl)RL_l(i,j). (8)
i,j

Thus RL is perceived as a discrete-time linear sys-
tem (Rugh, 1995) evolving as the time L increases.
Assuming that RL converges, (see Sec. 3.4 for the con-
vergence condition), we have the following equilibrium
equation:

R~o (h,, hi) = rl (h~, hl) + E t(i, j, hi, hl)R~ (i, 
i,j

(9)
Therefore, the computation of the marginalized ker-
nel finally comes down to solving linear simultaneous
equations (9) and substituting the solutions into (6).

Computing the kernel requires solving a linear equa-
tion with a [G][G’[ x ]G[[G’] coefficient matrix. How-
ever, the matrix is actually sparse because the number
of non-zero elements is less than c21GllGq where c is
the maximum degree. Therefore, we can employ vari-
ous kinds of efficient numerical algorithms that exploit
sparsity (Barrett et al., 1994). In our implementation,
we employed a simple iterative method that updates
current solutions by using (8) until convergence start-
ing from -~l(hl, hl) = rl(hl, h~).

3.4. Convergence Condition

The convergence condition needed to justify (9) is de-
scribed as follows:
Theorem 1. The infinite sequence
limL~oo R L(hl,hll) converges for any hi E
{1,...,ICl} and hl {1,...,la’l}, if the fol-
lowing inequality holds for io E {1,...,lal} and
j0 e {1,..., la’l},

[al [a’l
E E t(i,j, io,jo)q(i,j) < q(io,jo). (10)
ira’ j=l

(proof) Rt(Iq, hl) can also be described as

Rt(hl,hl) q( hl,hl) +

’ (zE E t(h2’h~’hl’hl) t(ha’h~a’h2’h’2)x
i=2 h2,h’ 2 \ha,h~

¯ .. t(hi,h~,hi_l,hi_l)q(hi,h ...

l

:= q(h,, hi) hi),
i=2

where ui (i > 2) denotes the i-th term of the se-
ries. According to the ratio test, this series con-
verges if limsupi_.colui(hl,h])l/[ui_l(hl,h]) I < 1.
Since K(v, v’) and K(e, d) are nonnegative as previ-
ously defined, ui(hl, h]) >_ O, and thus what. we need
to prove is lim sup/~ ui(hl, hl)/ui-l(hl, hl) < 1. For
this purpose, it is sufficient to show

~;(h,, hi)
< 1 (11)

ui-l(hl, hi)

for all i. The two terms in (11) are written 

ui(hl,hl)= E ai_,(hi_l,h’i_a, hi, hi) (12)
hi-I t,hi-1

E t(hi, h}, hi-l, h~_l)q(hi, h}),
h,,h~

ui_,(h,,hl) = ~, ai-,(h,-1, hi_,, h,, hl)q(hi_l, h;_,),
1hi-1 ,hi_l

(13)
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where

hi-1 (hi-l, h’i_l, hi, h~) .-’-
/

t(h3, h ,h2,

(’" ( t(hi-2’h:-2’hi-3’h:-8)xh,_,,hi_
"

t(hi-l,h~_l,hi-2, h~_2)) "").

Notice that ai-x(hi-x, hi_l, hi, h~) > 0 as well. Sub-
stituting (12) and (13) into (11), we 

a,-l(h,-,,h1,-1, hl,h’ ) 
!hi-l,hi_1

E t(hi, h~, hi-l, h~_l)q(hi, 
hi~h~

< E ai-l(hi-l’h~-l’hl’hll)q(hi-l’h~-l)"
¯ !

h,-l,hi_l

Both sides of this inequality are the linear combina-
tions of ai-l(hi-1, hi-1, hi, h~) with nonnegative coef-
ficients. In order to prove the inequality, it is sufficient
to prove the following inequalities for coefficients:

Et(i,j, io,jo)q(i,j) < q(io,jo), Vi0,j0,
i,j

which we have assumed to hold in (10). []

The condition (10) seems rather complicated, but 
can have a simpler condition, if the termination prob-
abilities are constant over all vertices.

Lemma 1. If pq(i) = pq(j) = 7 for any i and j, 
infinite sequence limL-.c~ RL(hl, hl) converges 

1
K(v, v’)K(e, e’) < (1 - 2" (14)

(proof) Due to the assumption, q(i, j) = q(io, j0) 9.

Thus it is sufficient to prove Y]4,j t(i, j, io, jo) < 1, that
is,

Ept(ilio)P’t(jljo)K(vi, vj)K(eioi,ejoj) < 1. (15)
i,j

Due to Relation (2), we observe that

~pt(ilio)p’t(jlJo ) = ~pt(i[io) ~p~(JlJo) = (1-7)2.
i,j i j

Thus (15) holds if all the coefficients satisfy
K(vl, vj)K(eioi, ejoj) < 1/(1 - ~. []
Apparently, the above lemma holds for ~ > 0 if
K(.,.) < 1. Standard label kernels such as (3) 
(4) satistfy this condition.

Figure 2. A chemical compound is conventionally repre-
sented as an undirected graph (left). Atom types and
bond types correspond to vertex labels and edge labels,
respectively. The edge labels ’s’ and ’d’ denote single and
double bonds, respectively. As our kernel assumes a di-
rected graph, undirected edges are replaced by directed
edges (right).

4. Experiments

We applied our kernel to prediction of the properties
of chemical compounds. A chemical compound can
naturally be represented as an undirected graph by
considering the atom types as the vertex labels, e.g.
C, C1 and H, and the bond types as the edge labels,
e.g. s (single bond) and d (double bond). For 
graph kernel, we replaced an undirected edge by two
directed edges (Figure 2) since the kernel assumes di-
rected graphs.

4.1. Pattern Discovery Algorithm

We compare our graph kernel with the pattern-
discovery (PD) method by Kramer and De Raedt
(2001) that is one of the best state-of-the-art meth-
ods in predictive toxicology. As in our graph kernel,
each feature is constructed as the count that a partic-
ular label path appears in the graph4. There are other
methods which count more complicated substructures
such as subgraphs (Inokuchi et al., 2000), but we fo-
cus on Kramer and De Raedt (2001) whose features
are similar to ours.

Assume that we have n graphs G1,..., Gn. Also let
us define #(h, G) as the number of appearances of 
label path h in G. The PD method identifies a set of
all label paths 7/which appear in more than m graphs:

7/= {hi ~5(#(h, Gi) > O) > 
i=1

where the parameter m is called the minimum support
parameter. Furthermore, it is possible to add extra
conditions, e.g., selecting only the paths frequent in a
certain class, and scarce in the other classes. Then the
feature vector of G based on the identified label paths

4Notice that the definition of label paths is different
from ours in several points, e.g. a vertex will not be visited
twice in a path. See Kramer and De Raedt (2001) for
details.
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is built as

G -+ (#(hi, G),..., #(hln I , G)), (16)

whose dimensionality is tile cardinality of 7/. The
PD method is useful for extracting comprehensive fea-
tures. However, as the minimum support parameter
gets smaller, the dimensionality of feature vectors be-
comes so huge that a prohibitive amount of computa-
tion is required. Therefore, the user has to control the
minimum support parameter m, such that the feature
space does not lose necessary information and, at the
same time, computation stays feasible.

The PD method contrasts markedly with our method.
Our kernel method puts emphasis on dealing with in-
finite, but less interpretable features, while the PD
method trys to extract a relatively small number of
meaningful features. Looking at the algorithms, our
method is so simple that it is described by just one
equation (9), while the PD method’s algorithm 
rather complicated (De Raedt ~ Kramer, 2001).

4.2. Datasets

We used two datasets, the PTC dataset (Helma et al.,
2001) and the Mutag dataset (Srinivasan et al., 1996).

The PTC dataset is the results of the following phar-
maceutical experiments. Each of 417 compounds is
given to four types of test animals: Male Mouse (MM),
Female Mouse (FM), Male Rat (MR) and Female
Rat (FR). According to their carcinogenicity, each
compound is assigned one of the following labels:
{EE, IS, E, CE, SE, P, NE, N} where CE, SE and P in-
dicate "relatively active", and NE and N indicate "rel-
atively inactive", and EE, IS and E indicate "can not
be decided". In order to simplify the problem, we re-
labeled CE, SE and P as "positive", and NE and N
as "negative". The task is to predict whether a given
compound is positive or negative for each type of test
animals. Thus we eventually had four two-class prob-
lems.

In the Mutag dataset, the task is defined to be a two-
class classification problem to predict whether each of
the 188 compounds has mutagenicity or not.

Each statistics of the datasets are summarized in Table
1.

4.3. Experimental Settings and Results

Assuming no prior knowledge, we defined the proba-
bility distributions for random walks as follows. The
initial probabilities were simply uniform, i.e. Ps (h) 
1/]GI, Vh. The termination probabilities were deter-
mined as a constant 7 over all vertices. The transition
probabilities Pt (hlho) were set as uniform over adjacent
vertices. We used Equation (3) as the label kernels.
In solving the simultanous equations, we employed a
simple iterative method (8). In our observation, 20-30

Table 1. Several statistics of the datasets such as num-
bers of positive examples (#positive) and negative exam-
pies (#negative), ma:dmum degree (max. degree), maxi-
mum size of graphs (max. ICl), average size of graphs (avg.
lal), and numbers of vertex labels (IE[,,) and edge 
bels (]E]~).

MM Phi MR FR MUTAG

#POSITIVE 129 143 152 121 125
#NEGATIVE 207 206 192 230 63
MAX. IG] 109 109 109 109 40
AVG. ]G[ 25.0 25.2 25.6 26.1 31.4
MAX. DEGREE 4 4 4 4 4
E]~ 21 19 19 20 8
Y;.]~ 4 4 4 4 4

Table 2. Classification accuracies (%) of the pattern dis-
covery method. ’MinSup’ shows the ratio of the minimum
support parameter to the number of compounds m/n.

h~[INSUP MM FM MR FR MUTAG

0.5% 60.1 57.6 61.3 66.7 88.3
1% 61.0 61.0 62.8 63.2 87.8
3 % 58.3 55.9 60.2 63.2 89.9
5 % 60.7 55.6 57.3 63.0 86.2
10 % 58.9 58.7 57.8 60.1 84.6
20% 61.0 55.3 56.1 61.3 83.5

iterations were enough for convergence in all cases. For
the classification algorithm, we used the voted kernel
perceptron (Freund &: Shapire, 1999), whose the per-
formance is known to be comparable to SVMs. In the
pattern discovery method, the mininmm support pa-
rameter was determined as 0.5, 1,3,5, 10, 20% of the
number of compounds, and the simple dot product
in the feature space (16) was used as a kernel. 
our graph kernel, the termination probability 7 was
changed from 0.1 to 0.9.

Table 2 and Table 3 show the classification accuracies
in the five two-class problems measured by leave-one-
out cross validation. No general tendencies were found
to conclude which method is better (the PD was bet-
ter in MR, FI~ and Mutag, but our method was better
in MM and FM). Thus it would be fair to say that
the performances were comparable in this small set
of experiments. Even though we could not show that
our method is constantly better, this result is still ap-
pealing, because the advantage of our method lies in
its simplicity both in concepts and in computational
procedures.
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Table 3. Classification accuracies (%) of our graph kernel.
The parameter "t is the termination probability of random
walks, which controls the effect of the length of label paths.

MM FM MR FR MUTAG

0.I 62.2 59.3 57.0 62.1 84.3
0.2 62.2 61.0 57.0 62.4 83.5
0.3 64.0 61.3 56.7 62.1 85.1
0.4 64.3 61.9 56.1 63.0 85.1
0.5 64.0 61.3 56.1 64.4 83.5
0.6 62.8 61.9 54.4 65.8 83.0
0.7 63.1 62.5 54.1 63.2 81.9
0.8 63.4 63.4 54.9 64.1 79.8
0.9 62.8 61.6 58.4 66.1 78.7

5. Conclusion

In this paper, we introduced a new kernel between
graphs with vertex labels and edge labels in the frame-
work of the marginalized kernel. We defined the ker-
nel by using random walks on graphs, and reduced
the computation of the kernel to solving a system of
linear simulataneous equations. As contrasted with
the pattern-discovery method, our kernel takes into
account all possible label paths without computing fea-
ture values explicitly. The structure we dealt with in
this paper is fairly general, as it includes sequences,
trees, DAGs and so on. Thus, applications of this
kernel are by no means limited to chemical com-
pounds. Promising targets would be DNA and RNA
sequences with remote correlations, HTML and XML
documents, distance graphs of 3-D protein structures,
and so on. Recently, we found that our kernel can
also be interpreted as an instance of the rationM ker-
nels (Cortes et al., 2003) over probability semiring. 
this interpretation, the probability distributions over a
graph are considered as a weighted automaton. In fu-
ture works, we would like to explore how to deal with
infinite dimensions when another semiring is adopted.

Appendix: Relation to Exponential and
Geometric Kernels for Labeled Graphs

Here we review the exponential and geometric kernels
between graphs proposed by G~rtner (2002) and de-
scribe the relation to our kernel. Although his kernels
are defined in a quite different formulation from ours,
we relate them by using the same notations.

His kernels are defined as the inner product of two
]E~I x levi feature matrices M(G) and M(G’),

K(G,G’)= E E Ma,,a=(C)m~a,,a=(a’),

al----1 a2----1

where the feature matrix is defined as

O<3

Ma"a2(C) = E E p(h],ht)J(vh, =o’a,)J(Vh, = o’a.,),
£=1 hl,ht

(17)
and Ev = {ITl,O’2,.. ",¢W’.I}"
Notice that the probability p(hl, hi) is denoted as

p(hl, he) ps(hl)pq(he) X

p,(h p,(h, Ih,_,).
h~

Let T be a lal × ICl matrix where Tij = p,(jli).
Also, let S and Q be IGI x IE. ] matrices where S~j =

= and = pq(i) (v, = respec-
tively. By means of these matrices, the feature matrix
is rewritten as

oo

M(G) = ~ S’rT’-IQ.
t.= l

In his settings, the parameters Ps,Pt and pq do not
have stochastic constraints, i.e. P8 (i) = 1 and pq (i) 
1 for any vertex i. Therefore, S = Q := L, where
Lij = ~(vi = j).

The feature vector of geometric kernel, M(G) 
y~°=l LT(flE)tL, is obtained by setting T = fiE,
where E is the adjacency matrix of G and fl is a con-
stant to assure convergence.
In the case of exponential kernel, M is defined as
M(G) = 7~=I(LT(flE)t-IL)/(~- 1)!, which still re-
sults in a similar form.

As seen in (17), the primary difference from our ap-
proach is that they only take the vertex labels at both
ends (hl,ht) into account. Although this simplifica-
tion allows to keep the size of the matrices small, it
might be harmful when contiguous labels are essen-
tial as in chemical compounds. Another difference is
that they do not use an infinite dimensional feature
space. Although they also compute the infinite sum in
Equation (17), the infinite sum is for obtaining levi2

dimensional feature vectors.
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