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Marginalized Multilevel Models
and Likelihood Inference
Patrick J. Heagerty and Scott L. Zeger

Abstract. Hierarchical or ‘‘multilevel’’ regression models typically pa-
rameterize the mean response conditional on unobserved latent vari-
ables or ‘‘random’’ effects and then make simple assumptions regarding
their distribution. The interpretation of a regression parameter in such
a model is the change in possibly transformed mean response per unit
change in a particular predictor having controlled for all conditioning
variables including the random effects. An often overlooked limitation of
the conditional formulation for nonlinear models is that the interpreta-
tion of regression coefficients and their estimates can be highly sensitive
to difficult-to-verify assumptions about the distribution of random ef-
fects, particularly the dependence of the latent variable distribution on
covariates. In this article, we present an alternative parameterization
for the multilevel model in which the marginal mean, rather than the
conditional mean given random effects, is regressed on covariates. The
impact of random effects model violations on the marginal and more
traditional conditional parameters is compared through calculation of
asymptotic relative biases. A simple two-level example from a study of
teratogenicity is presented where the binomial overdispersion depends
on the binary treatment assignment and greatly influences likelihood-
based estimates of the treatment effect in the conditional model. A
second example considers a three-level structure where attitudes toward
abortion over time are correlated with person and district level covari-
ates. We observe that regression parameters in conditionally specified
models are more sensitive to random effects assumptions than their
counterparts in the marginal formulation.

Key words and phrases: Generalized linear model, latent variable, logis-
tic regression, random effects model.

1. INTRODUCTION

Ž .Multilevel modeling Goldstein, 1995a refers to a
class of multivariate statistical techniques devel-
oped for the analysis of data collected in dependent
groups or ‘‘clusters.’’ Such data arise naturally in
many scientific disciplines. For example, in a longi-
tudinal study a cluster might consist of repeated
measurements over time on an individual. In tera-
tologic applications, where birth defects in labora-
tory animals exposed to a pharmaceutical sub-
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stance are studied, clusters comprise offspring
litters. Such studies may yield a multivariate re-
sponse for each offspring, indicating the presence or
absence of various types of malformation. In socio-
logic applications, clusters can be classrooms, sam-
pling districts or communities. The distinguishing
feature of clustered data is that observations within
a cluster are usually more similar to one another
than are observations from different clusters. When
this variation cannot be explained by measured
covariates, we require statistical methods for the
analysis of correlated measurements.

In many multilevel problems the scientific focus
is on the relationship between the vector of re-

Ž .sponses for cluster i, Y � vec Y , and correspond-i i j
Ž � .ing covariates X . Regression modeling of E Y Xi i j i

provides a flexible method for characterizing sys-
tematic variation and for testing relationships be-
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tween the response and predictors. However, proper
assessment of the statistical evidence, including
calculation of standard errors for regression param-
eters, requires that the clustering be properly ac-
counted for in the model and�or the estimation
method used. Several statistical models have been
developed for regression with clustered data includ-
ing hierarchical models using likelihood inference,
for example, generalized linear mixed models
Ž . ŽGLMM Zeger and Karim, 1991; Breslow and
Clayton, 1993; Wolfinger and O’Connell, 1993;

.Goldstein, 1995a and marginal models fitted by
Ž . Žgeneralize estimating equations GEE Liang and

.Zeger, 1986 .
Ž � .A ‘‘marginal’’ model is one in which E Y X isi j i

directly modeled. Marginal models for multivariate
continuous and categorical data were proposed by

Ž . Ž .Plackett 1965 and Dale 1986 . Liang and Zeger
Ž .1986 developed marginal regression methods
without requiring assumption about the complete
joint distribution of the response vectors. Such
models have proven useful for categorical response
data since few joint probability models for multi-
variate categorical data permit tractable modeling

Ž � .of the marginal means E Y X . For example,i j i
Žlog-linear models Bishop, Feinberg and Holland,

.1975 provide a flexible, valid multivariate model;
but the canonical parameterization is in terms of
the expectation of one response Y conditional oni j
the other responses Y , k � j. However, the esti-ik

Ž .mation methods used by Liang and Zeger 1986
are not likelihood based, instead relying on estimat-
ing functions and empirical variances for point and
interval estimation. This approach affords robust-
ness to misspecification of the multivariate de-
pendence structure, yet it sacrifices use of likeli-
hood-based procedures such as profile likelihood
functions or likelihood ratio tests and does not yield
estimates of multivariate probabilities. In many
situations, likelihood-based methods may be pre-
ferred, motivating the development of alternative
models.

Ž . Ž .Fitzmaurice and Laird 1993 and Azzalini 1994
showed how classical multivariate methods for cat-
egorical data could be modified to permit regression

Ž � .modeling of E Y X . Fitzmaurice and Lairdi j i
Ž .1993 reparameterized the likelihood of a canonical
log-linear model for balanced binary data in terms
of the marginal means and the higher-order, canon-
ical association parameters. Similarly, Azzalini
Ž .1994 reparameterized Markov models to allow re-
gression modeling of the induced marginal means.
Each of these approaches starts with an underlying
probability model with parameters that describe
Ž � .E Y Y : k � j . In the log-linear model, each re-i j ik

sponse is conditioned on all other responses; in the

Markov model, each response is conditioned on all
previous responses in time. Thus, Fitzmaurice and

Ž . Ž .Laird 1993 and Azzalini 1994 have both
Ž‘‘marginalized’’ models i.e., reparameterized a

model in terms of the marginal mean and addi-
.tional dependence parameters for conditional

means given other responses, or ‘‘response condi-
tional models.’’ In Section 2 we describe these ap-
proaches in more detail.

ŽGeneralized linear mixed models Stiratelli, Laird
and Ware, 1984; Zeger and Karim, 1991; Breslow

.and Clayton, 1993 comprise another class of mod-
els for dependent data. They use latent variables or
random effects b to introduce correlation amongi
observation within a cluster. In a GLMM, we typi-
cally construct a mean model for the response vari-
ables conditional on both measured covariates and

Ž � .unobserved latent variables, E Y X , b . The con-i i i
sequence of this choice is subtle but can critically

Žimpact both parameter interpretation Zeger, Liang,
.and Albert, 1988; Grabard and Korn, 1994 and the

robustness of estimates to the specification of the
Ždistribution of b Neuhaus, Hauck and Kalbfleisch,i

.1992 . In Section 2 we consider the interpretation
of marginal and conditional parameters, and in
Section 4 we evaluate bias that may arise in re-
gression estimates when the distribution of b isi
misspecified.

Several authors have discussed appropriate do-
mains of application of marginal models fitted by
GEE and generalized linear mixed models for the

Žanalysis of dependent data e.g., Zeger, Liang and
Albert, 1988; Graubard and Korn, 1994; Pendergast

.et al., 1996 . The goal of this manuscript is to
demonstrate that the choice of mean parameteriza-
tion can, and often should, be separated from the
choice of a multivariate probability model and that
likelihood methods can be used for either marginal
mean models or more traditional conditional mean
models. Specifically, we build on results of Hea-

Ž .gerty 1999 showing that an underlying latent
variable model can be used for either marginal
mean models or conditional mean models. By so
doing, a comparison of the merits of models for
marginal versus conditional means can be made
without confounding the choice by the parameteri-
zations of within-cluster association or by different
estimation methods. The marginal and conditional
methods that we explore are directly comparable
because both methods assume an underlying latent
variable structure and both can be estimated by
maximum likelihood. Our marginal mean model
can be considered a ‘‘marginalization’’ of latent
variable models in a spirit similar to the marginal-
ization of response conditional models by Fitzmau-

Ž . Ž .rice and Laird 1993 and Azzalini 1994 .
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Finally, we illustrate some of the potential ad-
vantages of adopting a full probability model for
use with a marginal mean structure. Section 5
considers two multilevel examples with binary re-
sponse variables. The first example is a now classic
data set from teratology and has a single level of
clustering. The second example is from sociology
and has three nested levels: observation within
individuals within sampling districts. We briefly
introduce these examples:

Ž .EXAMPLE 1. Teratology data. Weil 1970 pre-
sents two-level data on whether individual rat pups
survive the first 21 days of life after their mother
Ž .level 2 was exposed to a given dose of teratogen.
Let Y , j � 1, 2, . . . , N , represent the indicator ofi j i
21-day survival for individual pups born to animal
i. The scientific question concerns the impact on
birth outcomes for pups with maternal exposure to

Ž .a teratogen X � 1 relative to pups with unex-i
Ž .posed mothers X � 0 . Estimates of the marginali

Ž � .means E Y X can be used to compare the ratesi j i
of survival between pups with exposed and unex-
posed mothers. These data have previously been

Ž .analyzed by Liang and Hanfelt 1994 to demon-
strate the sensitivity of beta-binomial likelihood
inference to the assumed correlation model. This
lack of robustness motivated the investigation pre-
sented in Section 4 where the sensitivity of our
proposed likelihood-based inference to the proper
specification of the latent variable distribution is
similarly evaluated.

EXAMPLE 2. British Social Survey data. A second
example considers a three-level logistic model where

Ž .repeated binary measurements level 1 are ob-
Ž .tained on individuals level 2 who are clustered
Ž .into sampling districts level 3 . In this sociology

example the binary response Y represents thei jk
view at time k of participant j in district i toward

Žgovernmental regulation of abortion McGrath and
.Waterton, 1986 . Scientific interest is in the corre-

lation between attitudes and measured demo-
graphic covariates such as gender and religion. The
only level-1 covariate is the year of the measure-
ment, whereas all demographic characteristics are
level-2 covariates. A single level-3 covariate is de-
rived as the district mean for a level-2 covariate,
illustrating the potential importance of separating
between-cluster covariate differences from within-

Ž .cluster differences Neuhaus and Kalbfleisch, 1998 .
A marginal regression model provides a description
of the systematic variation across different subsets
of the population in the proportion favoring no
regulation of abortion. Marginalized latent variable
models provide an additional summary of the mag-

nitude of random ‘‘within-group’’ heterogeneity and
permit flexible likelihood-based inference regarding
the marginal mean structure.

2. MODELS

In this section we present an overview of several
approaches to generalized linear modeling of multi-
variate discrete data. Traditional approaches can

Žbe classified as ‘‘response conditional models’’ log-
.linear and Markov models , latent variable models

and direct marginal models. We then discuss how
marginalization of conditionally specified multi-
variate models can be used to permit likelihood-
based, marginal regression analysis.

We use notation for three-level data where Y �i
Ž .vec Y denotes a vector of response variables fori jk

cluster i. Notation for examples with fewer or
greater numbers of levels is obvious. Let X denotei
covariates associated with cluster i and let X i jk
denote covariates for observation k within subclus-
ter j. We decompose covariates into level-1, level-2

Ž .and level-3 covariates, X � X , X , X .i jk 1, i jk 2, i j 3, i
We are interested in the specification, interpreta-

tion and estimation of a parameter � which de-
scribes the joint distribution of Y given covariatesi
X . For certain models it will be natural to partitioni

Ž .this parameter � � �, � into the mean parameter
�, which specifies the first moment, and the associ-
ation parameter or variance components � .

2.1 Direct Marginal Specification

The ‘‘marginal modeling approach’’ builds sepa-
rate regressions for first, second and higher mo-

� � �ments of the joint distribution Y X . Thei i
marginal expectation of the response can be linked
to covariates using a generalized linear model,

�E Y X � � ,Ž .i jk i i jk

Ž . Ž . Mg � � � X � X � .i jk i jk i jk

Additional models are then specified for the second
Ž � .moment E Y , Y X , and possibly for thei jk i j�k � i

Ž .higher moments. For example, Dale 1986 parame-
terized the joint distribution of two binary variables
in terms of their marginal means and their pair-

Ž .wise odds ratio � Y , Y , defined asi j ik

Ž .� Y , Yi j ik

Ž . Ž .P Y � 1, Y � 1 P Y � 0, Y � 0i j ik i j ik� .
Ž . Ž .P Y � 1, Y � 0 P Y � 0, Y � 1i j ik i j ik

Ž .Molenberghs and Lesaffre 1994 , Glonek and Mc-
Ž . Ž .Cullagh 1995 and Heagerty and Zeger 1996 ex-

tend direct marginal models to vectors of binary or
ordinal responses specifying separate regression
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models for the marginal means, the pairwise odds
ratios and the higher-order contrasts among log-
odds ratio to complete the likelihood function.

ŽIn these marginal models, the mean or first
.moment regression parameters represent the

change in expected response, such as prevalence
with binary outcomes, per unit change in a given
predictor without conditioning on the other re-
sponses or any latent variables. Correlation among
elements of Y given X , even if reasonably at-i i
tributed to shared unobservable latent variables,
are accounted for by a separate correlation model or
pairwise association regression. For example, with

Ž .binary Y , the pairwise log-odds ratio log � Y , Yi i j ik
can be simultaneously regressed on predictors
ŽLipsitz, Laird and Harrington, 1991; Carey, Zeger

.and Diggle, 1993; Heagerty and Zeger, 1996 .
There are several advantages of a direct marginal

approach. First, the interpretation of regression co-
efficients in either the mean or the odds ratio model
does not depend on the dimension of Y as it does ini

Žcertain response conditional models see Sections
.2.2.1 and 2.4.1 for illustration . Hence clusters of

different size can be easily accommodated by
marginal models as they can in latent variable
models. Second, the interpretation of mean parame-
ters �M is invariant with respect to specification of
the association, or of higher-order models. Two data
analysts with the same mean regression but differ-
ent association models have exactly the same target
of estimation, �M. In this sense, the mean model is
‘‘separable’’ from the remainder of the model for the
joint distribution. In Section 2.3 we illustrate that
the property of mean separability does not hold for
response or latent variable conditional models.

Marginal models describe the dependence of the
means, and of the association among responses
within a cluster, on measured predictors. In some
applications investigators seek to determine
whether the observed associations are caused by
hypothesized dependence of one response on others
or by unobserved latent variables. Marginal models
do not address such questions directly.

Because marginal models separately parameter-
ize the mean and higher-order moments, it is possi-
ble to estimate mean parameters without specify-
ing the complete joint distribution of Y . Liang andi

Ž .Zeger 1986 introduced one approach, GEE, which
is an application of optimal estimating functions
Ž .Godambe, 1960 to the regression problem. Use of

ŽGEE is a natural extension of quasilikelihood Wed-
.derburn, 1974; McCullagh and Nelder, 1989 to the

multivariate response setting where one must con-
tend with additional nuisance parameters. An al-
ternative formulation of this semiparametric ap-
proach to marginal regression models was proposed

Ž .by Gourieroux, Monfort and Trognon 1984 . Even
though full likelihood specification is not necessary
to estimate mean regression parameters in a
marginal model, it is always possible and often
desirable.

2.2 Response Conditional Models

There are two main classes of models for multi-
variate data that can naturally be viewed as models
for the expected value of one response conditional
on subsets of the other responses from the same
cluster. They are effective for modeling associations
but do not admit simple models for the marginal
means.

Ž2.2.1 Log-linear models. Log-linear models Bi-
.shop, Feinberg and Holland, 1975 have been widely

used for the analysis of cross-classified discrete
Žobservations. Balanced binary vectors Y Y , Y ,i i1 i2

.. . . , Y for i � 1, 2, . . . , N can be considered as ain
cross-classification of the n component responses. A
log-linear model is constructed directly for the mul-
tivariate probabilities,

Ž .log P Y , . . . , Y� i1 ini

� � Ž0. � � Ž1.Y � � Ž2.Y YÝ Ýi i j i j i jk i j ik
j j�k

� � Ž3. Y Y Y � ��� �� Žn.Y ��� Y .Ý i jk l i j ik i l i i1 in
j�k�l

Here the canonical parameter vector � �i
Ž Ž1. Ž2. Žn.. Ž0.� , � , . . . , � is unconstrained and � is ai i i i
normalizing constant. Given covariates X it is pos-i
sible to allow � to depend on X or to extend thei i

Ž .log-linear model to describe log P Y , X when Xi i i
is also discrete. However, in either case the log-lin-
ear model results in complicated functions for the

Ž � .marginal expectations E Y X because these arei j i
obtained as sums over the response variable joint
distribution,

�E Y XŽ .i j i

�� P Y , Y , . . . , Y � 1, . . . , Y X ,Ý ž /� i1 i2 i j in ii
Y , k�jik

yielding mixtures of exponential functions of the
canonical parameters � . In a log-linear model, thei

Ž .natural canonical univariate regressions are for
the conditional expectations,

�logit E Y Y : k � jŽ .i j ik

� � Ž1. � � Ž2.YÝi j i jk ik
k

� � Ž3. Y Y � ��� �� Žn. Y .Ý Łi jk l ik i l i i l
l�jk�l
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Therefore, although log-linear models are well
suited for describing multivariate dependencies or
for modeling joint and conditional distributions,
they do not directly facilitate multivariate general-
ized linear regression modeling of the marginal
means.

2.2.2 Transition models. When a cluster of re-
Ž .sponse variables Y , Y , . . . , Y is naturally or-i1 i2 in

dered, for example in time, it is possible to con-
struct a multivariate model by decomposing the
joint distribution into a sequence of predictive dis-
tributions,

Ž .P Y , Y , . . . , Y� i1 i2 ini

n

Ž . �� P Y P Y Y : k � j .Ž .Ł� i1 � i j iki i
j�2

These models have been referred to as transition
Ž .models e.g., Diggle, Liang and Zeger, 1994 or dis-

Žcrete Markov models see MacDonald and Zucchini,
.1997, for a recent survey and are useful for model-

ing the expected value of a response conditional on
both covariates and the history of the series. Again,
it is straightforward to allow the parameters � toi
depend on covariates X but difficult to obtain sim-i

Ž � .ple expressions for E Y X since sums over thei j i
joint distribution of times 1, 2, . . . , j are required.

2.3 Latent Variable Models

Another way to model the joint distribution
� � �Y X is to postulate the existence of unobservedi i
latent variables which are shared by, and hence
introduce correlation among, the elements of Y .i
The observed data likelihood is constructed by inte-
grating over the latent variable distribution,

� � � � � � Ž � .P Y X � P Y X , b f b X db .H� i i � i i i � i i i

There are two common assumptions to simplify this
model: conditional independence among responses,

Ž . � � � �1 P Y X , b � P Y X , b ;Ł� i i i � i jk i i
j, k

and homogeneous latent variable distribution,

Ž . Ž � . Ž .2 f b X � f b .� i i � i

Ž .In this article we adopt assumption 1 because it
forms our basis for structuring the correlation

Ž .among responses within clusters. Assumption 2 is
a strong one and we consider a more general re-
gression structure for the random effects variance
components.

The most common partition of � is into �C and

� , where

� � � � Ž � .CP Y X � P Y X , b f b X db .ŁH� i i � i jk i i � i i i½ 5
j, k

Here �C are canonical regression parameters in
a GLM for the conditional expectation of the
response:

� bE Y X , b � � ,Ž .i jk i i i jk

b Ž . Cg � � � X � b � X � � b .Ž .i jk i jk i jk i jk i jk

Assumptions about b commonly used in practicei jk
include the following: mixed models where b �i jk
Z u for Z a subset of X and u is a q � 1i jk i j i jk i jk i j
vector of random effects; nested clusters where bi jk
� b � b ; and serial or spatial models where bi j i i jk
represents an autocorrelated stochastic process
Ž .Diggle, 1988 . In our notation, the parameter �
identifies the specific distribution of b from withini
its parametric family.

Multilevel models are popular in the empirical
sciences for several reasons. First, it is often rea-
sonable to posit that shared, unobserved variables
influence the response, thereby making observa-
tions within clusters correlated with one another.
Simple latent variable assumptions can lead to rel-
atively complex within-cluster associations. Second,
the multilevel regression parameter 	 C has a de-j

Ž .sirable causal interpretation Holland, 1986 as the
Ž .change in possibly transformed expected response

per unit change in X , holding the other observedj
variables and unobserved latent factors fixed. Third,
these models make possible the estimation of clus-
ter-specific regression coefficients, for example in-
tercepts, with estimates that use information from
subjects within a particular cluster but which also
borrow information from other clusters. These

Žshrinkage or empirical Bayes estimates Efron and
.Morris, 1973 are often superior to competitors

which rely only on a cluster’s own data.
In the conditional mean parameterization, the

regression contrasts �C measure the change in
transformed mean per unit change in a covariate,
controlling for all other variables including the la-
tent variables b . Because the latent variable as-i jk
sumptions determine what values of b are equiv-i jk
alent, these assumptions also determine the inter-
pretation of the parameter �C. For example, con-
sider a simple ‘‘pre�post’’ design in which daily
binary measurements are taken on each person for
one week during which they are on placebo and for
a second week during which the same subject re-
ceives active therapy. For this scenario we could

Ž b . C Cuse the following model: logit � � 	 � 	 X �i j 0 1 i j
b , where X � 0 for j � �7, �6, . . . , �1 and Xi j i j i j
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� 1 for j � 1, 2, . . . , 7. If we further assume Gauss-
Ž 2 .ian random intercepts, b � b � N 0, 
 , theni j i0

Ž b . Ž b . Ž C C .we obtain g � � g � � 	 � 	 X � bik i j 0 1 ik i0

Ž C C . C Ž .� 	 � 	 X � b � 	 for k � 0 post and j0 1 i j i0 1
Ž .� 0 pre representing the change in an individual’s

log odds comparing a day on treatment to a day off
treatment. Such interpretations lead Zeger, Liang

Ž . Cand Albert 1988 to refer to 	 as the ‘‘subject-1
specific’’ effect of treatment. However, a subject-
specific interpretation relies on the assumption that
b is constant over time. A random intercepts as-i j
sumption can be viewed as a special case of a more
general serially dependent stochastic process model

Ž . 2 � j�k �where cov b , b � 
 � and � � 1. If we relaxi j ik
the random intercepts model to allow dependence
to decay as the time separation increases, � � 1,
then the parameter 	 C no longer measures the1
change in a subject’s log odds comparing a day on
treatment to a day on placebo, because controlling
for the individual no longer ensures that the latent
variables b and b are equal. Thus, a simplei j ik
change in the latent variable assumptions now
makes 	 C both subject and time specific.1

2.4 Marginalized Response Conditional Models

In Section 2.2.1 and 2.2.2 we discussed response
conditional models and commented that these for-
mulations are attractive for describing dependence
among the elements of Y . In this section we brieflyi
review approaches that have modified the natural
parameterization of the response conditional mod-
els to allow likelihood-based estimation of marginal
mean regression parameters.

2.4.1 Marginalized canonical models. Canonical
log-linear models provide an unconstrained method
for modeling multivariate dependencies yet do not
directly allow regression models for the marginal

Ž .means. Fitzmaurice and Laird 1993 marginalized
these models to permit likelihood-based regression
estimation of the marginal means by transforming

Ž Ž1. Ž2. Žn..the canonical parameter � � � , � , . . . , � intoi i i i
� Ž Ž2. Žn..the mixed parameter � � � , � , . . . , � , wherei i i i

Ž . Ž � .� � vec � , � � E Y X . In their approachi i j i j i j i
the underlying log-linear model parameters
Ž Ž2. Žn..� , . . . , � are used to describe the covariance ofi i
the response vector while the expectations of the
response variables are directly modeled via the

Ž .marginal means. Fitzmaurice and Laird 1993
Žshowed how iterative proportional fitting Deming

.and Stephan, 1940 can be used to transform from
the mixed parameter �� to the canonical parameteri
� to evaluate the likelihood function.i

A related use of log-linear models that also per-
mits marginal regression models is presented by

Ž .Lang and Agresti 1994 and Glonek and McCul-
Ž .lagh 1995 . Each of these approaches is limited to

applications with small or moderate cluster sizes
due to computational demands. In addition, the

Ž .methods of Fitzmaurice and Laird 1993 are effec-
tively limited to balanced data since the canonical

Ž Ž2. Žn..association parameters � , . . . , � must be sepa-i i
rately modeled and estimated for each cluster
size n.

2.4.2 Marginalized transition models. Azzalini
Ž .1994 showed how to marginalize first-order
Markov chains for discrete responses. Let
Ž .Y , Y , . . . , Y denote serial binary observations,1 2 T


 4Tlet Z � X denote the collection of covariatesT t t�1
for all times t � 1, 2, . . . , T and assume that Z isT

Ž .ancillary. Azzalini 1994 specified the conditional
expectations by

�logit E Y Y : j � t , Z � � � � Y ,Ž .t j T t t�1

where � is the log-odds ratio measuring the associ-
ation between any pair of successive observations.
However, rather than directly parameterize � , Az-t

Ž .zalini 1994 modeled the corresponding marginal
Ž � . Mmeans using logit E Y Z � X � . Given specifi-t T t

cation of both �M and � , joint probabilities
Ž � .P Y , Y Z as well as the likelihood contribu-� t t�1 T

Ž � .tions P Y Y , Z can be obtained analytically.� t t�1 t
This approach leaves � an implicitly defined func-t

Ž M .tion of � � � , � and covariates Z .T

2.5 Proposed Model: Marginalized Latent Variable
Model

In this section we propose a class of marginally
specified multivariate generalized linear models, or
‘‘marginalized latent variable models.’’ Our ap-
proach parallels the marginalization of response
conditional models developed by Fitzmaurice and

Ž . Ž .Laird 1993 and by Azzalini 1994 , and general-
Ž .izes the work of Heagerty 1999 . We begin with a

regression structure for the marginal means � :i jk

Ž . Ž . M3 g � � X � .i jk i jk

The second component of the model describes the
dependence among measurements within a cluster
by conditioning on a latent variable rather than on
other response variables:

Ž . b Ž .4 g � � � X � b .Ž .i jk i jk i jk

Finally, we assume that the elements of the re-
sponse vector Y are conditionally independenti
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Ž .given b � vec b and that the distribution of bi i jk i
is completely specified by the parameter � .

Ž . Ž .Our formulation in 3 and 4 is an alternative to
Žthe generalized linear mixed model Breslow and

.Clayton, 1993 which directly parameterizes the
Ž . Cconditional mean function � X � X � . Therei jk i jk

is a critical distinction between the marginal pa-
rameter �M and the conditional parameter �C. The
conditional regression coefficient �C contrasts the
expected response for different values of the mea-
sured covariates X for equivalent values of thei jk
latent variable b . The marginal coefficient doesi jk
not attempt to control for the unobserved b . Fori jk
example, a marginal gender contrast compares the
mean among men to the mean among women, while
a conditional gender contrast compares the mean
among men with b � b* to the mean amongi jk
women who also have b � b*. Interpretation ofi jk
ˆC� can be particularly difficult for multilevel mod-
els with level-2 and level-3 covariates since no di-
rect matching of b is observed for these con-i jk

Ž .trasts. See Graubard and Korn 1994 for further
discussion.

Ž . Ž .Our marginalized model in 3 � 4 also permits
conditional statements via the implicitly defined
Ž .� X , recognizing their dependence on model as-i jk

Ž .sumptions. The parameter � X is a function ofi jk
Ž . Mboth the marginal linear predictor � X � X �i jk i jk

Ž .and the random effects distribution F b and is� i jk
defined as the solution to the integral equation that
links the marginal and conditional means:

Ž . b5 � � E � ,Ž .i jk i jk

MŽ . Ž . Ž .6 h X � � h � X � b dF b ,Ž . Hi jk i jk i jk � i jk

where h � g�1. In the common case where b �i jk
� Ž .� Ž .N 0, 
 X , we can rewrite b � 
 X z,i jk i jk i jk

Ž .where z � N 0, 1 , and the integral equation
becomes

Ž . Ž . Ž . Ž .h � X � h � X � 
 X z 
 z dz ,Hi jk i jk i jk

where 
 is the standard normal density function.
Ž . Ž .Given � X and 
 X the integral equationi jk i jk

Ž .can be numerically solved for � X . See Heagertyi jk
Ž . Ž .1999 for details of the linkage between � X i jk

Ž . �1and � X when h � logit .i jk
For certain link function and mixing distribution

combinations the transformation between condi-
tional and marginal mean can be obtained analyti-
cally. For example, using a probit link function and

Ž .Gaussian random effects, b � 
 X z for z �

Ž .N 0, 1 , yields the relationship

� Ž .� 
 � Ž . Ž . � 4� � X � E � � X � 
 X z

Ž .� X
� � ,

2' Ž .1 � 
 X

Ž .showing that the marginal linear predictor � X is
Ž .a rescaling of the conditional linear predictor � X .

If the variance of the latent variable is independent
of X, then the marginal and conditional model

Žstructures will be the same i.e., linear, or additive
. Ž .in multiple covariates ; however, if 
 X depends

on covariates, then the marginal and conditional
models will have different functional forms. A key
example where heterogeneity or overdispersion is
assumed to depend on covariates is in teratologic
applications where the intralitter correlation is a

Žfunction of the dose X see Aerts and Claeskens,
1997, for a recent example using the beta-binomial

.model .
By introducing the marginally specified model,

we allow a choice as to whether the marginal mean
structure or the conditional mean structure is the
focus of modeling when using a latent variable
formulation. There exists a general correspondence

Ž . Ž .between � X and � X so that the distinction
becomes purely one of where simple regression
structure is usefully assumed and what summaries
will be presented through the estimated regression
coefficients. The choice between marginal or condi-
tional regression models can now be determined by
the scientific objectives of the analysis rather than
by the availability of only conditional multilevel
models.

2.5.1 Marginalized model parameter interpreta-
tion. For any marginal regression model, the pa-
rameter �M contrasts the means for subgroups
defined by measured covariates. For example, if we
consider a two-level logistic model with a single
cluster level binary covariate X , then 	 M �2, i

Ž � . Ž � .logit E Y X � 1 � logit E Y X � 0i j 2, i i� j� 2, i�

measures the variation in the log odds of success
‘‘between groups.’’ In the logistic-normal model, we
explicitly assume that there exists individual het-
erogeneity. But for the group contrast 	 M, we aver-
age over this distribution within each group.

The interpretation of the parameters � that
specify the random effects distribution will depend
on the particular model used. In the case of Gauss-
ian random effects, the variance components have
simple interpretations as measures of within-group
variation. In a marginally specified logistic-normal

Ž 2 .model with b � b and b � N 0, 
 , we cani j 2, i 2, i
Ž .substitute b � 
 z , where z � N 0, 1 , and reex-i j i i
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press the model for random individual variation
Ž �using the conditional expectation: logit E Yi j

. Ž .X , z � � X � 
 z . This representation showsi i 2, i i
that the variance component 
 may be interpreted
as a regression coefficient for a standardized omit-
ted covariate, with 
 contrasting individuals with

Ž .equal � X whose z differ by one unit. Since2, i i
Ž .� X is determined by X and the parameters2, i 2, i

Ž M .� , 
 , subgroups defined by X are the same as2, i
Ž .subgroups defined by � X . Therefore, 
 mea-2, i

sures the magnitude of variation in the log odds
‘‘between individuals’’ within a group, where the
group is defined by the measured covariates.

One motivation for adopting the conditionally
specified logistic-normal model is that cluster-

Žspecific effects can be estimated Zeger, Liang and
.Albert, 1988 . Since we adopt a model for the

marginal mean, 	 M cannot be given an individual
level intervention interpretation. However, we are
able to compute the corresponding conditional log

Ž .odds � X based on the marginally specified lo-i jk
gistic-normal model and can therefore provide
Ž . Ž .� X � 1 � � X as an estimate of the changei jk i jk

in log odds at the individual level. Thus, although
our regression focus is on the marginal mean, the
use of an underlying logistic-normal model yields
estimates of individual level effects as model
summaries.

3. LIKELIHOOD ESTIMATION FOR
MARGINALIZED MULTILEVEL MODELS

In this section we summarize likelihood estima-
tion for a marginally specified latent variable model.
Likelihood inference for GLMMs has been an active

Žresearch area recently McCulloch, 1997; Booth and
.Hobert, 1999 . Evaluation of the likelihood function

usually requires numerical multivariate integra-
Ž .tion over the distribution of b � vec b . Adop-i i jk

tion of a marginal mean regression adds some com-
plexity since it requires calculation of the implicitly

Ž .defined conditional mean parameter � X . How-i jk
ever, the conditional mean parameter can be easily
obtained as the solution to an integral equation
using only one-dimensional numerical integration
since linkage of the marginal and conditional means
only requires integration over the univariate
marginal distribution of b .i jk

The likelihood contribution from measurements
Ž .Y � vec Y can be constructed given the assump-i i jk

tions of conditional independence given b and thei
� � �assumption that b X follows a mixing distribu-i i

tion known up to a finite parameter � . First we
discuss a general response model�mixing distribu-
tion combination and then give details for the
three-level logistic-normal model.

3.1 General Hierarchical Models

� � �Let the distribution Y X , b be a memberi jk i jk i jk
of the exponential family with conditional canonical
parameter � b , and scale parameter 
. Then with ai jk

b Ž .canonical link function we have that � � � Xi jk i jk
� b . Assuming that response variables are condi-i jk
tionally independent given the latent variables, a
marginal likelihood function for the observed data
Y is given byi

Ž � .P Y X� i i

� b Y � c � bŽ .i jk i jk i jk Ž .� exp � d Y , 
ÝH i jk½ 5
b i j, k

Ž � .�dF b X .� i i

In general this integral cannot be obtained analyti-
cally and numerical methods are required for likeli-
hood evaluation and parameter estimation.

A growing literature exists on approaches to
maximizing the generalized linear mixed model
likelihood function. Some of the approaches include

Ž .approximate maximum likelihood ML solutions
ŽStiratelli, Laird and Ware, 1984; Goldstein, 1991;

.Breslow and Clayton, 1993 , Monte Carlo EM algo-
Ž .rithms McCulloch, 1997; Booth and Hobert, 1999 ,

ŽMonte Carlo Newton�Raphson algorithms McCul-
.loch, 1997 , direct use of numerical integration

ŽHedeker and Gibbons, 1994; Gibbons and Hedeker,
. Ž .1997 and Markov chain Monte Carlo MCMC ap-

proaches for posterior inference with Bayesian
models that also include proper priors on the re-

Žgression and variance component parameters Zeger
and Karim, 1991; Gilks, Richardson and Spiegel-

.halter, 1996 . To date, all of these algorithms have
only addressed the conditionally specified model
where the conditional mean function is directly

Ž . Cparameterized, � X � X � .i jk i jk
Modification of existing algorithms to fit the

marginalized model is possible if the implicitly de-
fined canonical parameters � b , or equivalentlyi jk
Ž . Ž M .� X , can be obtained as a function of � , � .i jk

This is achieved through numerical solution of the
Ž .convolution equation 6 that connects the marginal

and conditional mean functions. The partial deriva-
Ž .tives of � X are also required and are obtainedi jk

via implicit differentiation of the convolution equa-
tion. Details are provided in the Appendix.

To numerically evaluate the convolution equa-
tion, one can use either a general method such as

ŽGauss�Hermite quadrature Abramowitz and Ste-
.gun, 1972 or a specialized method tailored to the

link�mixture combination; for example, see Mona-
Ž .han and Stefanski’s 1992 method for the logistic-

normal model.
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3.2 Multilevel Logistic-Normal Model

Our examples focus on two-level and three-level
Ž .binary logistic models. Heagerty 1999 describes

likelihood estimation for the two-level marginalized
logistic-normal model. In this section we extend
those results to a three-level model and describe
how multilevel likelihood evaluation can be simpli-
fied using nested quadrature.

Ž .Let b � vec b , where b � b � b repre-i i jk i jk 2, i j 3, i
sents shared but unobserved level-2 and level-3

Ž .effects. We further assume that b � 
 X2, i j 2 2, i j
Ž . Ž . Ž .z , z � N 0, 1 , and b � 
 X z , z � N 0, 1 ,i j i j 3, i 3 3, i i i

are mutually independent. Let � be parameters
Ž . Ž .that identify 
 X and 
 X .2 2, i j 3 3, i

The observed data likelihood for a level-3 cluster
i is a mixture over the level-2 and level-3 random
effects distributions. By the assumption that re-
sponse variables are independent conditional on b ,i
the likelihood function is

Ž M .L � , �i

Ž . �7 � P Y � y X ,ŽŁ ŁH H i jk i jk i jk
b bj k3, i 2, i j

�b , b dF dF.2, i j 3, i b b2, i j 3, i

y i jkŽ . Ž .8 � h z , zŁ ŁH H i jk i j i½z zj ki i j

1�yi jkŽ . Ž .� 1 � h z , z 
 z dzi jk i j i i j i j 5
Ž .� 
 z dz ,i i

where

Ž .h z , zi jk i j i

Ž . Ž . Ž .� h � X � 
 X z � 
 X z .i jk 2 2, i j i j 3 3, i i

Simple univariate integration allows evaluation of
Ž . Žthe inner integrals in equation 8 over the distri-

. Ž .bution of z , denoted by L z , usingi j i j i

Ž . Ž � .L z � w exp y log h z , zÝ Ýi j i t i jk i jk t i½
t k

�Ž . Ž .� 1 � y log 1 � h z , z ,i jk i jk t i 5
Ž � .where w , z represent the quadrature weightst t

and evaluation points. In this integral, the variable
z is an offset in the conditional linear predictor.i

Ž .The outer integral in 8 can then be evaluated by

MŽ . Ž . Ž .L � , � � exp log L z 
 z dzÝHi i j i i i
zi j

�Ž .� w exp log L zÝ Ýs i j s
s j

so that nested quadrature can be employed for
evaluation of the likelihood function. Calculation of
the score equations and the information matrix
similarly requires numerical integration and re-

Ž . Ž . Ž .quires derivatives of � X , 
 X and 
 Xi jk 2 2, i j 3 3, i
Ž M .with respect to � , � . Details regarding the

Ž .derivatives of � X are given in the Appendix.i jk
Ž .Gibbons and Hedeker 1997 provide further algo-

rithm details for conditionally specified three-level
probit and logistic models.

3.3 Empirical Bayes Estimation of bi jk

Given point estimates for the mean parameters
�M and the variance components � , we can esti-

˜mate the random effect b by b , the mode of thei jk i jk
� � �posterior distribution b Y , X , fixing the pa-i jk i i

rameters at their estimated values. Finding the
posterior mode corresponds to solving the posterior
score equations for b given byi

��b
�1i jk

�0 � var Y bŽ .Ý i jk i jkž /� bj, k

�ˆ ˆŽ .� Y � h � X � b � � b ,½ 5i jk i jk i jk i i

Ž .where � � cov b .i i
Empirical Bayes estimates allows estimation of

conditional means �b . In Section 5 we show howi jk
these can be compared to the marginal means �i jk
to communicate the relative magnitudes of system-
atic variation attributable to covariates, and un-
measured variation represented by the latent
variables.

4. BIAS DUE TO MODEL
MISSPECIFICATION

One advantage to using estimating equations to
estimate marginal regression parameters is that
inference can be made robust to misspecification of

Ž .the dependence model. Liang and Zeger 1986 show
Ž .that the working model used for cov Y does noti

ˆ Mimpact the consistency of � , the root of the esti-
mating equations. It is therefore important to as-
sess the sensitivity of likelihood-based estimation
methods to their additional assumptions. In this
section we assume that the mean model is correctly
specified and focus on the impact of misspecifica-
tion of the latent variable distribution.
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Ž .Neuhaus, Hauck and Kalbfleisch 1992 have
studied the impact of assuming b � F when in2, i
truth b � G. They show that the logistic-normal2, i

Ž .maximum-likelihood estimate MLE of a condition-
ally specified mean parameter has bias of less than
20% when random effects are nonnormally dis-
tributed. These results suggest that likelihood-
based mean estimates using a Gaussian latent
variable model may be moderately insensitive to
distributional assumptions.

We explore a potentially more serious form of
bias that arises due to incorrectly assuming that
the variance of the random effects is independent of
the covariates. In particular, we consider a two-level
model where the random effects variance differs
according to a level-2 binary covariate. We assess
the impact of this form of model misspecification on
both the marginally specified and the conditionally
specified mean parameters. Our investigation is
motivated in part by observations made while con-
ducting the analysis for the example presented in
Section 5.1.

Specifically, suppose that

� Ž .logit E Y X , X , b � � X � b ,Ž .i j 1, i j 2, i 2, i i 2, i

Ž � . 2V b X � 0 � 
2, i 2, i 0

and
Ž � . 2V b X � 1 � 
2, i 2, i 1

Ž � . 2and that we incorrectly assume V b X � 
 .2, i i
Ž . Ž .Let � � �, 
 , 
 and let �* � �, 
 , 
 be an0 1

element of the subspace where 
 � 
 . White0 1
Ž .1982 shows that the misspecified MLE �* con-

verges to the value �* such that

�
Ž .E log P Y ; X , �* � 0.Ý � i i½ 5� �*i

To find the value �* corresponding to a given �, we
use Monte Carlo integration to compute the 2ni

Ž .probability vector P Y ; X , � and then numericallyi i
solve for �*. That is, we compute the probability
Ž .P Y � y; X , � for every possible binary responsei i

vector y and use these as weights to solve the score
equations for pseudodata composed of each of the

ni Ž2 possible response vectors Rotnitzky and Wypij,
.1994 .

We consider values for 
 and 
 that range0 1
between 0.0 and 3.0 in the conditionally specified
model

�logit E Y X , X , bŽ .i j 1, i j 2, i 2, i

� 	 C � 	 CX � 	 CX � b ,0 1 1, i j 2 2, i 2, i

where j � 1, 2, 3, 4, X � 0 for j � 1, 2 and X1, i j 1, i j
� 1 for j � 3, 4, and X � 0 for half the clusters2, i
and X � 1 for the other half. Although we stud-2, i
ied a range of different parameter values we pre-

C Ž .sent results for a single value � � �2.0, 1.0, 0.5
Ž .to illustrate bias as a function of 
 , 
 .0 1

Figure 1a shows the relative bias in the level-2� Ccovariate estimate 	 due to incorrectly assuming2
that the heterogeneity is constant. For example,
when 
 � 1.0 and 
 � 2.0 the MLE for 	 C con-0 1 2
verges to 1.34, a relative bias of �34%. The bias
can be potentially large, ranging from �80% to
�75% for the range of parameter values consid-
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FIG. 1. Asymptotic relative bias in the maximum likelihood estimate of the treatment contrast when 
 � 
 is incorrectly assumed.0 1
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� Cered. There was little asymptotic bias in 	 , the1

estimated coefficient for the covariate that varies
within cluster, X . These results suggest that if1, i j
scientific interest is in conditionally specified con-

Ž .trasts across clusters level-2 , then the dependence
model must be correctly specified otherwise severe
bias may result.

We also considered the analogous marginally
specified latent variable model where

� M M Mlogit E Y X , X � 	 � 	 X � 	 XŽ .i j 1, i j 2, i 0 1 1, i j 2 2, i

M Ž .with � � �2.0, 1.0, 0.5 to illustrate bias as a
function of the variance components. Figure 1b
shows the bias in the level-2 covariate estimate�M
	 . The asymptotic relative bias ranges from2
�10% to �15%, indicating that the MLE for the
marginal contrast is much less sensitive to variance
component specification.

These asymptotic bias calculations illustrate the
Ž .following points: 1 conditional contrasts for

within-cluster covariates may not be sensitive to
� � � Ž .correct specification of b X ; 2 conditional2, i i

contrasts for between-cluster covariates can be
� � �highly sensitive to assumptions regarding b X2, i i

Ž .with potentially severe bias; and 3 marginally
specified coefficient ML estimates may be biased
due to variance component misspecification but the
magnitude of the bias is generally small.

In this section we have considered just one form
of model misspecification. Other types of model vio-
lation are also important to explore, including mean
misspecification through omitting covariates, and
other potential violations of the random effects
model such as assuming a random intercept when
there is serial correlation in the response.

5. EXAMPLES

In this section we apply the new marginal multi-
level model to the data sets described in Sections
1.1 and 1.2.

5.1 Two-Level Data: Weil Teratology Experiment

Ž .Weil 1970 presents data where the 21-day sur-
vival of pups from the litters of 16 exposed and 16
unexposed rats is compared. Let Y denote thei j

Ž .survival of pup j, j � 1, 2, . . . , N level-1 , born toi
Ž .animal i, i � 1, 2, . . . , m level-2 . The single covari-

ate of interest is a level-2 binary indicator of the
treatment assignment of the mother. The raw data

Ž .are published in Liang and Hanfelt 1994 .
In each group the proportion that survive can be

summarized by weighted averages of the proportion
surviving for each mother, p � Ý w p �Ý w , whereˆ ˆi i i i i
p � Ý Y �N . Using w � 1 yields simple averagesî j i j i i

Ž .of the individual proportions: p X � 0 � 0.893 andˆ
Ž .p X � 1 � 0.746 and a difference in log odds ofˆ

Ž . Ž .logit 0.746 � logit 0.893 � �1.05. Using w � Ni i
yields an estimator that simply divides the total
number of surviving pups by the total number born,
Ž . Ž .p X � 0 � 0.899 and p X � 1 � 0.772 with theˆ ˆ

treatment log odds contrast, �0.961. We can sum-
marize the litter-to-litter variation in each treat-
ment group by calculating the standard deviation of

Ž . Žthe empirical logits, log Y � 1�2 � log N � Y �i i i
.1�2 , where Y � Ý Y . In the control group thisi j i j

standard deviation is 0.895 while in the treatment
group it is 1.614. These data summaries suggest
that the probability of pup survival is reduced for
exposed mothers and that there is more between-
litter variation in the exposed group. We can use a
marginalized two-level logistic model to obtain
model-based estimates of these components of vari-
ation and to perform confirmatory tests of the ob-
served trends.

5.1.1 Marginally specified models. Consider the
marginal linear logistic mean model

� M Mlogit E Y X � 	 � 	 X ,Ž .i j 2, i 0 1 2, i

where X � 1 if mother was exposed to the chemi-2, i
cal agent and 0 otherwise. Heterogeneity is intro-
duced via the conditional logistic normal model

� Ž .logit E Y X , b � � X � b ,Ž .i j 2, i 2, i 2, i 2, i

� � �where b X is assumed to be Gaussian with2, i 2, i
Ž .standard deviation 
 X that may depend on2 2, i

the level-2 covariate, mother’s exposure status. We
make the standard assumption that conditional on
b the response variables Y and Y are indepen-2, i i j ik
dent Bernoulli random variables.

Table 1 shows the fitted marginal parameter esti-
mates for a model that assumes a common variance

Ž . Ž . Žcomponent 
 X � 0 � 
 X � 1 referred to as2 2
.Model 2 , for a model that allows separate hetero-

Ž .geneity parameters Model 3 and for a null model
Ž . Ž .Model 1 . A likelihood ratio test of H : 
 X � 00 2

Ž .� 
 X � 1 yields a change in deviance of 2 �2
Ž .118.20 � 116.33 � 3.74 and a p-value of 0.053.
Allowing the within-group heterogeneity to differ

Žfor the treatment groups yields the estimates 
 Xˆ2
. Ž .� 0 � 0.451 and 
 X � 01 � 0.451 � 1.362 �ˆ2

1.816. Thus these data suggest a minor amount of
litter-to-litter variation in the control group but
substantial variation within the treated group. The

Ž .separate variance components model Model 3 re-
ˆMsults in the point estimate 	 � �1.069 with a1

Ž .95% confidence interval of �2.00, �0.14 . Using
Ž .a common variance component Model 2 results in

ˆMa 20% smaller point estimate 	 � �0.867 with a1
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TABLE 1
Ž .Logistic-normal model estimates for teratology data presented in Weil 1970 ; a single binary covariate is used,

where X � 1 for animals in the treatment group and X � 0 for animals in the control groupi i

Model 1 Model 2 Model 3

Coefficient Estimate s.e. Estimate s.e. Estimate s.e.

MŽ .Marginal mean 	
Intercept 1.540 0.263 2.031 0.395 2.175 0.286
Treatment �0.867 0.507 �1.069 0.476

Ž .Level 2 heterogeneity 
2
Intercept 1.476 0.345 1.345 0.332 0.451 0.572
Treatment 1.362 0.777

log L �119.63 �118.20 �116.33

Model 1* Model 2* Model 3*

Coefficient Estimate s.e. Estimate s.e. Estimate s.e.
CŽ .Conditional mean 	

Intercept 2.103 0.355 2.624 0.483 2.254 0.340
Treatment �1.080 0.626 �0.565 0.669

Ž .Level 2 heterogeneity 
2
Intercept 1.476 0.345 1.345 0.332 0.451 0.572
Treatment 1.362 0.777

log L �119.63 �118.20 �116.33

Ž .95% confidence of �1.96, 0.13 . We see that the
specification of the covariance model has some im-
pact on the estimated treatment effect as reflected
in the marginal mean.

5.1.2 Conditionally specified models. Alterna-
tively, we may consider use of the traditional condi-
tional logistic-normal parameterization

� C Clogit E Y X , b � 	 � 	 X � b ,Ž .i j 2, i i 0 1 2, i 2, i

� � � � 2Ž .�where b X � N 0, 
 X . The key differ-2, i 2, i 2 2, i
ence in this approach is that the mean parameter
�C contrasts differences in the measured covariates
for fixed values of the unobserved random effect
b . When there is level-1 variation in covariates2, i
this conditional contrast becomes a pure within-
cluster contrast. However, in this example the
treatment covariate is a level-2 variable and as
such there is no direct observable contrast between
X � 1 and X � 0, where b � b . Such a2, i 2, i� 2, i 2, i�

contrast, although not directly observed, is esti-
ˆCmated by the coefficient 	 and can justifiably be1

considered an extrapolation of the data.
Table 1 shows the fitted conditional parameter

Žestimates for both the common heterogeneity Model
. Ž .2* and the separate heterogeneity Model 3* vari-

ance components models. In this simple scenario
with a single binary covariate there is an exact
correspondence between the marginal and the con-

ditional mean specifications. This is seen by the
fact that the maximized log-likelihoods and vari-
ance component estimates are identical. However,
using the conditionally specified mean in Model 3*

ˆCyields a treatment contrast of 	 � �0.565 with a1
Ž .95% confidence interval of �1.88, 0.75 . If we as-

Ž . Ž .sume that 
 X � 0 � 
 X � 1 , then the condi-2 2
tional contrast nearly doubles with the point esti-

ˆCmate 	 � �1.08 and 95% confidence interval1
Ž . Ž .�2.31, 0.15 Model 2 . These regression models
illustrate that the conditionally specified mean esti-
mates and inferences are considerably more sensi-
tive to the variance component assumptions, partic-
ularly for covariates that only vary between, and
not within, clusters.

5.1.3 Profile likelihood. One advantage of likeli-
hood-based inference is that interval estimation
and hypothesis testing need not rely solely on the

ˆasymptotic normality of �. Likelihood or profile
likelihood functions can be used to display the evi-
dence in the data regarding key parameters. Figure
2 shows the profile likelihood functions for the
marginal and conditional treatment contrast pa-
rameters. In the marginally specified model the


 Mprofile likelihood function corresponds to log L 	 ;1
ˆM M MŽ . Ž .4	 	 , � 	 , where � represents the varianceˆ0 1 1
components. Using the profile likelihood based on
the assumption of separate variance components

Ž .yields 95% likelihood ratio LR confidence inter-
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(b) Marginal Contrast - Profile Likelihoods

Ž . Ž .FIG. 2. Profile likelihood curves for the treatment contrast parameter a using conditionally specified models and b using marginally
Ž . Ž .specified models: solid lines profile likelihoods under the variance components model that assumes 
 � 
 ; dashed lines profile0 1

Ž .likelihoods under the model that assumes 
 � 
 ; vertical dashed lines MLE for the mean contrast under the separate variance0 1
Ž . 2Ž .components model; horizontal dashed lines at �1�2 times the 95th percentile of a � 1 , showing the profile likelihood confidence

interval limits.

M Ž . C Ž .vals 	 � �2.05, �0.15 and 	 � �1.92, 1.01 .1 1
The LR confidence interval for the marginal param-
eter is only slightly larger than the Wald-based
interval while for the conditional parameter the LR
interval is skewed to the right, with the upper limit
at 1.01 compared to 0.75 when constructed using
the Wald statistic.

5.1.4 Components of variation: graphical dis-
plays. Since the logistic-normal standard deviation
estimate is on the scale of the line predictor, we can

ˆMŽ .directly compare the magnitude of 
 X to 	 .ˆ 2, i 1
To display these components of variation we plot

ˆ ˜Ž .the estimated conditional log odds � X � b2, i 2, i
using approximate empirical Bayes estimates of the
latent variables, as discussed in Section 3.3. In
Figure 3 the marginal group contrast is displayed
as the difference between the solid lines, and the
within-group heterogeneity is seen by the variation
among the individual empirical Bayes estimates.
This graphical representation of both data and
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(a) Common heterogeneity
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(b) Separate heterogeneity

ˆ ˜Ž .FIG. 3. Teratology data: estimated conditional log odds � X � b using empirical Bayes estimates of individual effects are representedi i
Ž . Ž . Ž . Ž .by � ; empirical logits logit Y �N are represented by the open circles 	 . Values of logit Y �N that are infinite are represented withi i i i

Ž .either � or �. The solid horizontal lines show the marginal log odds � X , and the dashed horizontal lines show the conditional logi
ˆŽ .odds � X .i
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model components facilitates the relative compari-
Ž .son of the controlled treatment assignment and

Ž .uncontrolled individual animal variation effects.
The display of empirical Bayes estimates is also
useful as a model diagnostic since it suggests that
the degree of heterogeneity may be larger in the
treatment group. One caveat is that the distribu-
tion of estimated random effects is known to under-

Žrepresent the true variability Shen and Louis,
.1998 .

5.1.5 Comparison with beta-binomial and quasi-
Ž .likelihood approaches. Liang and Hanfelt 1994

used both the beta-binomial model and quasilikeli-
hood to analyze these data. The beta-binomial model

ˆMwith a single overdispersion parameter gives 	 �1
Ž .�0.665 with a confidence interval CI of

Ž .�1.57, 0.24 . Allowing separate dispersion parame-
ˆMters results in 	 � �1.129 with 95% CI1

Ž .�2.04, �0.22 showing that regression inferences
from the beta-binomial model can also be very sen-
sitive to the covariance assumptions. Using quasi-

Ž .likelihood methods Liang and Hanfelt 1994 obtain
ˆMthe point estimate 	 � �0.961 using a scale vari-1

Žance model with scale parameter 
 � 1.46 in the0
unexposed group and 
 � 4.74 in the exposed1

ˆM.group , and 	 � �1.070 using a beta-binomial1
Žvariance function with an intralitter correlation of

� � 0.05 in the unexposed group and � � 0.46 inˆ ˆ0 1
.the exposed group . One advantage to our model

formulation is that the heterogeneity parameters
are on the scale of the linear predictor, thus facili-
tating interpretation of the magnitude of overdis-
persion. Finally, although we focus on likelihood

Ž .inference in this manuscript, Heagerty 1999 dis-
Ž .cusses how quasilikelihood estimating functions

can also be used to estimate the multilevel model
parameters.

5.2 Three-Level Data: British Social Survey

Wiggins, Ashworth, O’Muircheartaigh and Gal-
Ž .braith 1990 describe data obtained through the

British Social Attitudes Panel Survey conducted
from 1983 through 1986. Subjects were asked
whether they thought the law should allow an abor-
tion in each of seven scenarios. Approximately 30%
of the subjects replied ‘‘yes’’ to all seven cases,
indicating that there should be no legal or govern-
mental regulation of abortion. Our analysis of these
data are for the derived response 1 �‘‘the law
should permit abortion for each of the seven situa-
tions,’’ 0 �‘‘there exist some situations where the
law should not allow abortion.’’ Logistic regression
analysis of this response considers how the propor-
tion of subjects whose opinion is summarized as ‘‘no

legal restriction’’ versus ‘‘possible legal restriction’’
varies as a function of covariates.

The data we analyze are based on 264 partici-
pants that responded at each of the 4 study waves
Ž .annually from 1983 through 1986 and have com-
plete covariate information. Our analysis is primar-
ily intended to illustrate the statistical method-
ology, but it also complements earlier analyses
Ž .Wiggins et al., 1983 . Details regarding the design
of the survey can be found in McGrath and Water-

Ž .ton 1986 . Since the data were sampled by polling
district, the resulting data structure has nested

Ž .clusters, with observations level-1, n � 1,0561
Ž .nested within individuals level-2, n � 264 nested2

Ž .within districts level-3, n � 54 .3
Let Y denote the response for district i, subjecti jk

j and year k with k � 1, 2, 3, 4. Let X �i jk
Ž .X , X , X denote the complete covariate1, i jk 2, i j 3, i
vector for observation Y . In this example, thei jk
level-1 covariates are the indicator variables for
time, X � 1 if year � k, for k 
 2, while the1, i jk
level-2 covariates represent demographic character-

Žistics of the subjects including social class middle,
. Župper working, lower working , gender male, fe-

. Žmale and religion Protestant, Catholic, other,

.none . We also use a derived level-3 covariate, X ,3, i
which is the percentage of the subjects within the
district that are Protestant. Such a variable allows
us to illustrate the decomposition of religion con-
trasts into both within-cluster and between-cluster

Ž .comparisons Neuhaus and Kalbfleisch, 1998 . This
variable is potentially of substantive interest since
it measures the religious context or environment
for the individuals in contrast to their own religious
affiliation.

5.2.1 Marginally specified models. We first con-
sider the following regression model for the

Ž .marginal log odds � X :i jk

Ž . �� X � logit E Y XŽ .i jk i jk i jk

� 	 M � �M X � �M X � 	 M X .0 1 1, i jk 2 2, i j 3 3, i

The multilevel model is completed with the second
conditional assumption

�logit E Y X , z , zŽ .i jk i jk 2, i j 3, i

Ž . Ž .� � X � 
 X z � 
 zi jk 2 2, i j 2, i j 3 3, i

Ž . Ž .for z � N 0, 1 and z � N 0, 1 mutually inde-2, i j 3, i
Ž .pendent. We assume throughout that 
 X does3 3, i

not depend on X and is therefore simply a scalar.3, i
Ž .We consider several models that allow 
 X to2 2, i j

depend on each of the demographic variables.
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Table 2 shows the results for several marginal-
ized multilevel models. The ‘‘Independence’’ model
is an ordinary logistic model which ignores the data

ˆ Mclustering and for which the point estimate � is
M Ž .consistent for � Liang and Zeger, 1986 but the

standard errors may be grossly incorrect. Model 1
fits a simple multilevel model with a scalar 
 and2

ˆ M
 . We see that its point estimate � is quite3
comparable to the ordinary logistic regression esti-
mate. However, the resulting standard errors are
substantially different. For variables that vary
within cluster, such as the indicators for year, the
logistic-normal model standard errors are smaller
by approximately 25%. For variables that vary be-
tween clusters, the positive correlation results in
standard errors that are larger by 40�60%. The
resulting correction to the standard errors has a
major impact on inference regarding the regression
contrasts. This is not surprising given that the
level-2 heterogeneity parameter is estimated as 
̂2
� 2.14, which represents substantial random indi-
vidual-to-individual variation. The heterogeneity
estimate 
 � 0.82 measures the unexplained dis-ˆ3
trict-to-district variation.

Model 1 is based on the assumption that
� � �b X does not depend on the covariates X .2, i j 2, i j 2, i j
In Models 2 through 4, we relax this strong as-
sumption. Use of these models serves to character-
ize person-to-person variation as a function of per-
son-level characteristics and allows an assessment
of the sensitivity of the mean parameter estimates
to the simple assumption used in Model 1. Compar-
ing Models 1 and 3 with a likelihood ratio test, we
find moderate evidence that there is greater varia-
tion among women than among men, with a change

Ž .in deviance of 3.12 p-value � 0.077 . Model 3 esti-
Ž .mates the variation among males as 
 X � 0ˆ2 2, i j4

Ž .� 1.69 and among females as 
 X � 1 � 1.69ˆ2 2, i j4
� 0.87 � 2.56. One interpretation of these esti-
mates is that women appear to respond more simi-
larly over time than do men. Choice of the level-2
heterogeneity model does impact point estimates
and standard errors of the marginal mean regres-
sion parameters. However, the fluctuation in the
point estimates is small, on the order of �10% as
seen in Table 2.

The mean regression models decompose religion
contrasts into within-cluster contrasts and be-

TABLE 2
Marginal mean models for British Social Survey data

Independence Model 1 Model 2 Model 3 Model 4

( ) ( ) ( ) ( ) ( )Coefficient Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

MŽ .Marginal mean 	
Ž . Ž . Ž . Ž . Ž .Intercept �0.792 0.287 �0.763 0.393 �0.753 0.393 �0.751 0.390 �0.740 0.395
Ž . Ž . Ž . Ž . Ž .Year: 2 �0.433 0.200 �0.446 0.153 �0.417 0.156 �0.438 0.154 �0.453 0.152
Ž . Ž . Ž . Ž . Ž .Year: 3 0.038 0.191 0.025 0.144 0.031 0.145 0.040 0.145 0.014 0.144
Ž . Ž . Ž . Ž . Ž .Year: 4 0.181 0.189 0.165 0.143 0.172 0.144 0.147 0.144 0.155 0.142
Ž . Ž . Ž . Ž . Ž .Class: upper working �0.328 0.191 �0.348 0.216 �0.335 0.215 �0.326 0.216 �0.370 0.215
Ž . Ž . Ž . Ž . Ž .Class: lower working �0.431 0.167 �0.267 0.208 �0.269 0.208 �0.272 0.206 �0.300 0.208
Ž . Ž . Ž . Ž . Ž .Gender �0.279 0.140 �0.349 0.205 �0.364 0.206 �0.315 0.205 �0.320 0.205
Ž . Ž . Ž . Ž . Ž .Religion: catholic �0.421 0.341 �0.384 0.480 �0.416 0.476 �0.406 0.477 �0.389 0.471
Ž . Ž . Ž . Ž . Ž .Religion: other �0.601 0.250 �0.634 0.360 �0.657 0.366 �0.700 0.365 �0.712 0.343
Ž . Ž . Ž . Ž . Ž .Religion: none 0.718 0.179 0.707 0.256 0.653 0.260 0.678 0.253 0.704 0.258
Ž . Ž . Ž . Ž . Ž .% protestant 0.858 0.298 0.799 0.479 0.806 0.472 0.768 0.475 0.796 0.483

Ž .Level 2 heterogeneity 
2
Ž . Ž . Ž . Ž .Intercept 2.140 0.238 2.274 0.316 1.689 0.338 2.433 0.404

Ž .Class: upper working 0.342 0.513
Ž .Class: lower working �0.460 0.599

Ž .Gender 0.871 0.464
Ž .Religion: catholic �0.581 0.946
Ž .Religion: other �1.143 0.661
Ž .Religion: none �0.301 0.589

Ž .Level 3 heterogeneity 
3
Ž . Ž . Ž . Ž .Intercept 0.818 0.295 0.724 0.308 0.788 0.287 0.847 0.281

log L �622.57 �531.92 �531.04 �530.36 �530.55
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Žtween-cluster contrasts Neuhaus and Kalbfleisch,
.1998 . The variable %Protestant is a district-level

covariate measuring the proportion of the sampled
subjects that are Protestant. The coefficient esti-

Ž .mate for this variable is 0.768 Model 3 indicating
increasing odds of response among subjects that
live in districts with a higher proportion of Protes-

Žtants. The categorical religion contrasts Catholic,
.other, none, with the reference Protestant are then

interpreted as comparing response rates among
subjects whose religious affiliation differ but who

Žlive within similar districts the percentage of
.Protestants are equal . Nonsignificantly lower rates

are observed among Catholics and other, while sig-
nificantly higher rates are observed among those
that report no religion.

5.2.2 Conditionally specified models. The condi-
tionally specified multilevel model is given by

�logit E Y X , b , bŽ .i jk i jk 2, i j 3, i

� 	 C � X �C � X �C
0 1, i jk 1 2, i j 2

� X 	 C � b � b ,3, i 3 2, i j 3, i

Ž .where we assume b � 
 X z , z �2, i j 2 2, i j 2, i j 2, i j
Ž . Ž .N 0, 1 , and b � 
 z , z � N 0, 1 , mutually3, i 3 3, i 3, i

independent. Table 3 presents model estimates for
conditionally specified models with different as-

Ž .sumptions regarding 
 X . Comparison of2 2, i j
Model 1* to the corresponding marginal Model 1 in
Table 2 shows the well-known relationship that
ˆC ˆM� � � � Ž	 � 	 for logistic-normal models Zeger, Liangj j

.and Albert, 1988; Neuhaus and Jewell, 1993 . In
this example we see differences on the order of
50�85%. However, the key distinction is in the
interpretation of these parameters. For example,

ˆCthe conditional gender contrast 	 � �0.600 com-2, 3
pares the log odds of a woman favoring no abortion
restrictions compared to a man who otherwise has
identical covariates, both X and b . Since thei jk i jk
b are unobserved and since the same personi jk
cannot be both a man and a woman, we cannot
empirically control for b . In this sense, a condi-i jk
tional mean contrast for gender represents an ex-
trapolation of the model to this unobservable sce-
nario. It is possible to observe the difference in log
odds for women compared to men that are other-
wise equivalent with respect to measured covari-
ates X . An estimate of this is given by the corre-i jk

ˆsponding marginal contrast, such as 	 � �0.3492, 3
in Model 1.

Allowing dependence of 
 on covariates has a2
substantial impact on point estimates of �C as seen

TABLE 3
Conditional mean models for British Social Survey data

Model 1* Model 2* Model 3* Model 4*

( ) ( ) ( ) ( )Coefficient Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

CŽ .Conditional mean 	
Ž . Ž . Ž . Ž .Intercept �1.388 0.685 �1.279 0.693 �1.001 0.665 �1.452 0.679
Ž . Ž . Ž . Ž .Year: 2 �0.761 0.266 �0.770 0.267 �0.758 0.266 �0.760 0.267
Ž . Ž . Ž . Ž .Year: 3 0.060 0.252 0.060 0.252 0.062 0.252 0.060 0.252
Ž . Ž . Ž . Ž .Year: 4 0.300 0.251 0.299 0.250 0.303 0.250 0.303 0.250
Ž . Ž . Ž . Ž .Class: upper working �0.623 0.378 �0.587 0.427 �0.667 0.374 �0.708 0.374
Ž . Ž . Ž . Ž .Class: lower working �0.499 0.361 �0.310 0.405 �0.513 0.356 �0.658 0.371
Ž . Ž . Ž . Ž .Gender �0.600 0.358 �0.738 0.354 �0.876 0.389 �0.477 0.356
Ž . Ž . Ž . Ž .Religion: catholic �0.609 0.803 �0.653 0.730 �0.725 0.782 �0.376 0.950
Ž . Ž . Ž . Ž .Religion: other �1.049 0.604 �1348 0.616 �1.319 0.615 �0.487 0.586
Ž . Ž . Ž . Ž .Religion: none 1.263 0.452 0.861 0.469 1.019 0.445 1.384 0.481
Ž . Ž . Ž . Ž .% protestant 1.458 0.837 1.541 0.778 1.129 0.809 1.456 0.821

Ž .Level 2 heterogeneity 
2
Ž . Ž . Ž . Ž .Intercept 2.138 0.236 2.776 0.592 1.642 0.294 2.450 0.408

Ž .Class: upper working �0.005 0.769
Ž .Class: lower working �1.135 0.662

Ž .Gender 0.994 0.494
Ž .Religion: catholic �0.498 1.055
Ž .Religion: other �1.222 0.668
Ž .Religion: none �0.348 0.608

Ž .Level 3 heterogeneity 
3
Ž . Ž . Ž . Ž .Intercept 0.816 0.295 0.619 0.320 0.790 0.285 0.835 0.282

log L �531.83 �529.42 �529.71 �530.35
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by comparing Models 1* through 4* in Table 3.
Using likelihood ratio tests to compare Model 3* to
Model 1* results in a change of deviance of 4.24,
with p-value 0.039. Adopting Model 3*, where het-
erogeneity depends on gender, results in a 46%
change in the estimate of the conditional gender
contrast, from �0.600 to �0.876; the t-statistics
for testing 	 C � 0 also change dramatically from
�1.68 for Model 1* to �2.25 in Model 3*. The
values of the other level-2 and -3 regression coeffi-
cients in the conditional model vary by as much as
a factor of 2 as the assumptions about the random
effects vary.

The level-1 contrast for year is a pure within-
cluster contrast and appears quite insensitive to
the latent variable assumptions. These conditional
contrasts are also estimable without making any
assumptions regarding the distribution of b �2, i j
b using conditional likelihood methods to elimi-3, i

Žnate the level-2 and level-3 random effects Con-
.away, 1989 . A conditional likelihood approach is

not possible for level-2 and level-3 covariates since
these do not vary within the lowest level of cluster-
ing and are therefore totally eliminated from the
conditional likelihood.

6. DISCUSSION

This paper presents an alternate formulation of
the popular multilevel model in which the marginal
rather than the conditional mean given latent vari-
ables is modeled as a function of covariates. Our
marginalization of the multilevel model is analo-

Ž .gous to that of Fitzmaurice and Laird 1993 and
Ž .Azzalini 1994 for conditional models given ob-

served variables.
The regression coefficients in marginal multilevel

models represent contrasts in the expected re-
sponse given observed covariates, averaged over
unobserved latent variables. As such, these param-
eters are directly estimable from the data and are
reasonably insensitive to misspecification of the as-
sumptions about the latent variable distribution as
we have illustrated through bias calculations and
two examples. Regression coefficients from the tra-
ditional conditional formulation of the multilevel
model represent contrasts between the expected
response holding both the observed covariates and
the unobserved latent variables fixed. While such
contrasts can have desirable causal interpretations
and are therefore of substantive interest, they may
not be directly observable and hence can be model-
based extrapolations of the data. As is the case with
all extrapolations, they can be highly sensitive to
the choice of model as again illustrated by the bias
calculations and in the two logistic regression
examples.

Often the motivation for including random effects
in a multilevel regression model is simply to ac-
count for correlation among clustered observations.
In discussing the role of statistical models, David

Ž .Cox 1990 comments:

It is important to distinguish the parts of the
model that define aspects of subject matter
interest, the primary aspects, and the sec-
ondary aspects that indicate efficient methods

Žof estimation and assessment of precision page
.171 .

Especially in empirical models, it is desirable
Žthat parameters e.g., contrasts, regression co-

.efficients and the like have an interpretation
largely independent of the secondary features

Ž .of the models used page 173 .

Therefore, if the primary objective of analysis is to
make inference regarding the mean response as a
function of multilevel covariates then a marginal-
ized model may be preferred. Alternatively, if the
main scientific interest is in the variance compo-
nents � , then the conditionally specified model
may be preferable.

The marginal multilevel model parameterizes the
mean regression model the same way that has been

Ždone in marginalized log-linear models Fitzmaurice
.and Laird, 1993 . It has the advantage, however,

Ž .that the parameterization of cov Y and higher-i
order moments does not depend on the dimension
of Y so that models can be used effectively withi
data sets such as our two examples in which the
number of responses varies across clusters.

The marginal multilevel model has a distinct
advantage over other likelihood-based marginal

Žmodel approaches e.g., Molenberghs and Lesaffre,
1994; Lang and Agresti, 1994; Heagerty and Zeger,

.1996 in that fairly simple latent variable assump-
tion with a parsimonious number of parameters
can lead to rich classes of models for the association
among observations from the same cluster. Alterna-
tive approaches, such as using pairwise log-odds
ratios and higher-order contrasts, often require a
large number of parameters to account for associa-
tion patterns.

We estimate the marginal mean regression mod-
els discussed here using full maximum likelihood
but they can also be estimated using estimating

Ž .equations GEE . Hence, this marginal formulation
of the multilevel model allows us to separate two

Ž .distinct issues: 1 whether a marginal or condi-
Ž .tional given latent variables regression is appro-

priate to address a particular scientific question;
Ž .and 2 whether full likelihood or estimating func-

tion estimation is favored. Like Liang and Zeger
Ž .1986 , we have shown through examples that the
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mean regression parameters in the marginal multi-
level model are reasonably insensitive to the as-
sumed form of the covariance structure. Further
work on the relative merits of estimation using a
marginal multilevel model likelihood versus an es-
timating equation approach is warranted.

APPENDIX

( )Calculation of � X and Derivativesi jk

Numerical evaluation of the integral in equation
Ž .6 can be accomplished with excellent accuracy for
a wide range of parameter values using either a
general numerical integration method such as

ŽGauss�Hermite quadrature Abramowitz and Ste-
.gun, 1972 or a specialized method such as least

Ž . Žmaximal approximants LMA Monahan and Ste-
.fanski, 1992 .

� Ž . �Given � X , � , we use Newton�Raphson toi jk
Ž .solve for the implied conditional parameter � X .i jk

For this we require

�
Ž .A � h � Xi jk i jkŽ .�� X i jk

Ž . Ž ..� h� � X � b dF b ,H i jk i jk � i jk

which we also obtain numerically.
For maximum likelihood estimation of marginal-

ized models we require derivatives of the deconvo-
Ž . Ž .lution solution, � X , with respect to � X andi jk i jk

� . Use of the chain rule then yields derivatives
with respect to the �M. Necessary derivatives can
be obtained via implicit differentiation of the convo-
lution equation. Consider the case of Gaussian ran-

Ž . Ž .dom effects, b � 
 X z, where z � N 0, 1 . De-i jk i jk
fine

	 Ž .B � h z
 z dz ,Hi jk i jk


 Ž .C � h 
 z dz ,Hi jk i jk


 Ž .D � h z
 z dz ,Hi jk i jk


 2 Ž .E � h z 
 z dz ,Hi jk i jk

� Ž . Ž . � 	where h � h � X � 
 X z , h �i jk i jk i jk i jk
Ž . Ž . Ž . 
� h x �� x evaluated at � X � 
 X z and hi jk i jk i jk

2 Ž . 2 Ž . Ž .� � h x �� x evaluated at � X � 
 X z.i jk i jk
Using these expressions we can write the re-

quired derivatives as

Ž . 	�� X �i jk i jk� ,Ž .�� X Ai jk i jk

Ž .�� X Bi jk i jk� � ,Ž .�
 X Ai jk i jk

22 Ž . Ž .� � X �� Xi jk i jk
� � � C A ,i jk i jk i jk2 ½ 5Ž .�� XŽ .�� X i jki jk

2 Ž .� � X i jk

Ž . Ž .�� X �
 Xi jk i jk

Ž . Ž .�� X �� Xi jk i jk� � Ci jkŽ . Ž .�� X �
 Xi jk i jk

Ž .�� X i jk� D A ,i jk i jkŽ .�� X i jk

2 Ž .� � X i jk
2Ž .�
 X i jk

2Ž . Ž .�� X �� Xi jk i jk� � C � 2 Di jk i jk½ Ž . Ž .�
 X �
 Xi jk i jk

� E A ,i jk i jk5
	 
 Ž .where � and � are the derivatives of h xi jk i jk

Ž .evaluated at � X .i jk
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Comment
Emmanuel Lesaffre and Bart Spiessens

The authors have combined the best of two worlds.
Their approach allows a marginal interpretation of
the parameters combined with a computational
flexibility. On top of this, the approach also permits
the estimation of subject-specific parameters.
Therefore, this paper is an important contribution
to the development of statistical models which al-
low an easy interpretation of the so-called fixed-ef-
fects parameters and at the same time not suffering
from too many practical restrictions on the dimen-
sions of the problem.

It is recognized that the focus of the paper was on
establishing a model which allows maximum inter-
pretability and practical flexibility. However, the
authors give the impression that it does not matter
much whether linearity in the covariates is as-
sumed on the marginal or the conditional level. Is
not checking for goodness-of-fit an essential part in
applied statistics? In their examples no mention is
made on which level, conditional or marginal, it is
best to assume linearity in the covariates. In this
respect, we are also interested to know what the

Ž .functions � X look like when linearity is as-i jk
sumed on the marginal level.

Further, the authors give the impression that
they are offering a free lunch. With computing
capabilities that rapidly increase, it may not seem
to be too important that procedures should be fast

Žin practice. The multivariate Dale model Molen-
.berghs and Lesaffre, 1994 is a natural extension of

the logistic regression model in the case of repeated

Emmanuel Lesaffre is Professor; Bart Spiessens is
research assistant, Faculty of Medicine, Biostatisti-
cal Centre K. U. Leuven, U. Z. St. Rafael, Kapucij-
nenvoer 35, B-3000 Leuven, Belgium.

ordinal data. Yet, despite its elegance, problems of
dimensions higher than 5 cannot be tackled in a
reasonable amount of time at this moment. We
wonder whether similar problems occur for the
marginalized conditional approach when more than
two random effects need to be assumed. Further,
we would welcome some details on how stable their
computational procedure is when solving the inte-
gral equations. Even for so-called robust proce-
dures, such as the Gauss�Hermite method, one
needs to be cautious in simple situations. Indeed,
we recently came across a logistic random-effects
model which, when applied to a dermatological clin-

Ž .ical trial, De Backer et al., 1998 yielded a highly
significant treatment effect at baseline although
the trial was randomized. A nonsignificant treat-
ment effect was obtained with a marginal model.

ŽThis analysis was done with MIXOR Hedeker and
.Gibbons, 1996 and with an own-written GAUSS

program using 10 quadrature points. The nonsignif-
icant result disappeared only when the number of
quadrature points approached 30, much more than
what is generally recommended. Furthermore, the
treatment effect kept on changing when increasing
the number of quadrature points further.

Furthermore, it would be useful to warn the user
that the random-effects presentation of association
between measurements is just a paradigm. At the
end of the day, the user is just maximizing a
marginalized model, which may or may not corre-
spond to an underlying hierarchical model. This is
already true in the most simple case of a linear

Žmixed model see Lesaffre, Verbeke and Kenward,
.2000 .

We would like to conclude by congratulating the
authors on a very nice and elegant paper that will
certainly have an important impact on the way we
will analyze future studies with correlated data.
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Comment
John M. Neuhaus

This paper provides data analysts with effective
new likelihood-based methods for analyzing clus-
tered and longitudinal data and reemphasizes the
importance of using statistical methods that mea-
sure covariate effects of scientific interest. Heagerty
and Zeger provide valuable contributions to fitting
marginal models to clustered and longitudinal data.
However, I believe that the authors’s approach for
estimating conditional model parameters does not
outperform existing approaches. The authors’s ap-
proach is best suited to provide likelihood-based
marginal or population-averaged analysis of clus-
tered and longitudinal data as an alternative to the
estimating equations-based estimators and meth-
ods that approaches such as GEE1 and GEE2 pro-
vide. The authors’s approach for marginal model
parameters enjoys all the advantages of likelihood-
based methods. For example, one can test hypothe-
ses using likelihood ratio procedures, construct
likelihood-based confidence intervals and validly
apply the approach when data are missing at
random.

It would be interesting to compare the authors’s
likelihood approach for marginal models to Gold-

Ž .stein’s 1995a first-order marginal quasilikelihood
Ž .MQL approach for multilevel models. In particu-
lar, it would be interesting to compare the esti-
mates from MQL fits to the teratology and British
Social Survey data to the authors’s marginal model
estimates. The MQL approach approximates the

Ž .mixed model integral in 6 using a Taylor series
Ž .expansion about no random effects i.e., b � 0 . As

Ž .Neuhaus and Segal 1997 point out, the first-order
MQL approach estimates the parameters of
marginal models fitted to clustered and longitudi-
nal data rather than those of conditional models.
The MQL approach involves an approximate likeli-
hood that one can use to carry out any likelihood-
based procedure for a flexible class of dependence
structures based on random effects. Widely avail-
able commercial software fits the MQL approach.

Since the conditionally specified model also de-

John M. Neuhaus is Professor, Department of Epi-
demiology and Biostatistics, University of Califor-

Žnia, San Francisco, California 94143-0560 e-mail:
.john@biostat.ucsf.edu .

termines the marginal mean, one can use deconvo-
lution methods to estimate the parameters of the
conditional model. However, this will involve more
work than simply fitting the conditional model.
Methods to fit single random effect conditional
models extend easily to cases where the random
effects distribution depends on covariates and to a
few nested random effects. In general, I do not find
the objective of finding a single model that can
provide estimates of both population-averaged and
conditional covariate effects particularly com-
pelling. One should simply fit a model, or set of
models, that measures covariate effects of scientific
interest.

The authors’s analyses of the two data sets com-
plement the investigation of Neuhaus, Hauck and

Ž .Kalbfleisch 1992 of the effects of mixing distri-
bution misspecification and point out additional
problems with the conditional model parameters
associated with cluster-level covariates. When the
variability of the random effects depends on a co-
variate, one would expect that inference about that
covariate will depend on the correct specification of
the random effects model. Indeed, different as-
sumptions about dependence of random effects on
covariates lead to noticeably different parameter
estimates of both the marginal and conditional
models. The conditional model estimates are more
sensitive to assumptions about random effects de-
pendence than are marginal estimates but condi-
tional treatment effects in Table 1 and conditional
level-2 covariate effects in Table 3 are not of scien-
tific interest. As the authors point out, conditional
models measure change in the expected value of the
response associated with a unit increase in a co-
variate among observations with the same random

Ž .effect e.g., within clusters . Such changes never
occurred in the teratology data set and it makes
little sense to fit a conditional model in this case to
produce an extrapolation to what the treatment
effect might have been had the same experimental
unit received both treatments. Conditional model
estimates of the effects of cluster-level covariates
may be sensitive to misspecification of the depen-
dence of random effects on cluster-level covariates
but this is a nonissue since one should not report
conditional estimates for such covariates in the
first place. A similar argument applies to the level-2
covariates in the British Social Survey data.
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While the authors present two data sets that
exhibit random effects distributions that differ by
the levels of a covariate, further investigation into
the amount and kind of data one would need to
detect such differences seems worthwhile. Semi-

Ž .parametric mixture models e.g., Lindsay, 1995
yield nonparametric estimates of the mixing distri-
bution and provide a measure of the amount of
information a data set contains about this distribu-
tion. Fitting such models to binary data typically
results in nonparametric distribution estimates
with very few points of support, indicating that the
data contain little information to distinguish be-
tween competing mixing distributions. Allowing the
mixing distribution to depend on covariates is anal-
ogous to allowing interaction between covariates
and random effects. Since data requirements to
detect significant interaction are often large, one
would expect that one would need very large data
sets to detect dependence of random effects distri-
butions on covariates.

The most striking feature of Table 3 is the insen-
sitivity of the conditional estimates corresponding
to the year effects to different assumptions about
random effects. The year effects are purely within-
person covariates and are exactly the kinds of ef-
fects conditional models are designed to estimate.
Conditional models are best suited to estimating
the association of within-cluster changes in a co-
variate with within-cluster changes in the outcome.
Such associations are often of central scientific in-
terest in studies with covariates that vary within

clusters and�or over time. Purely within-cluster
covariates are orthogonal to all covariates that are
constant within clusters, including random effects.
Thus, conditional models for purely within-person
covariates separate models for covariate effects from
models for response dependence, as does the au-
thors’s approach for marginal models. A conditional
likelihood analysis of the year effects would yield
estimates and standard errors very similar to those
in Table 3 and would not involve the specification of
a random effects distribution. When sufficient
statistics for the random effects exist, as with gen-
eralized linear mixed models with a canonical link
function, the conditional likelihood approach pro-
vides effective, intuitively appealing estimates of
the effects of within-cluster changes in covariates.
With noncanonical link functions one can effect an
analogous analysis by decomposing covariates into
within- and between-cluster components and fitting
a mixed effects model with such covariates to
changes in the outcome, as in Neuhaus and

Ž .Kalbfleisch 1998 .
In summary, the authors provide an effective,

new likelihood-based approach for fitting marginal
models to clustered and longitudinal data. How-
ever, existing mixed effects models and conditional
likelihood approaches provide more straightfor-
ward, computationally efficient estimates of the as-
sociations of within-cluster covariate changes with
changes in the outcome than the authors’s condi-
tional approach.

Comment
Stephen W. Raudenbush

This article is a major contribution to statistical
methods for multilevel data and, in particular, for
generalized linear models with nested random ef-
fects. It provides a single, likelihood-based ap-
proach to inference about conditional regression

Žmodels which assess associations between X and
.Y holding constant the random effects and

Žmarginal models which assess associations be-

Stephen W. Raudenbush is Professor, School of Ed-
ucation, University of Michigan, 610 East Univer-
sity, Ann Arbor, Michigan 48109.

tween X and Y based on averaging over the ran-
.dom effects . Until now, the two kinds of regression

models have been artificially separated by limita-
tions in available methods of statistical estimation.

Ž .In particular, maximum likelihood ML was avail-
able for conditional but not marginal regression
models.

Moreover, likelihood-based methods also pro-
duce-empirical Bayes estimates of random effects.
These estimates are useful in many applications

Žincluding small-area estimation cf. Morris, 1983;
.Tsutakawa, 1988 . The fact that these have been

available only within the conditional model tended
to reinforce the notion that the conditional model
provides a richer summary of evidence than does
the marginal model.
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The current article enables the scientist to simul-
taneously estimate the marginal and conditional
mean structure, providing also empirical Bayes
summaries for random effects. Of course, the trans-
formed marginal and conditional mean cannot both
be linear in the covariates. But the approach leaves
that choice to the analyst. The availability of likeli-
hood inference for both models places this choice on
a more principled footing.

A key question is this: Should the choice between
the marginal and conditional linear regression
models be based on purely statistical grounds, such
as robustness? Or, should that choice be prescribed
entirely by the substantive aims of the study? The
authors show that ‘‘regression parameters in condi-
tionally specified models are more sensitive to ran-
dom effects assumptions than their counterparts in
the marginal formulation.’’ Because these assump-
tions are hard to check, the argument is that the
marginal model is often or even typically preferable
to the conditional model. Thus, it appears that the
choice between the two linear models can often be
made on statistical grounds.

There is a logical problem, however. If condi-
tional regression results vary as a function of as-
sumptions, at least some of them must also differ
from marginal results regarding the apparent asso-
ciation between X and Y. That the marginal an-
swer is robust does not make it a better answer
unless the scientific question truly requires a
marginal inference. Thus, some systematic ap-
proach is needed to classify the inferential goals
in multilevel analyses to guide choice between
conditional and marginal inference for regression
coefficients.

To develop such a classification, I draw upon the
Ž .seminal work of Lindley and Smith 1972 , whose

hierarchical construction of the multilevel model
pinpoints possible targets of inference in a way that
my colleagues and I have found extremely informa-

Žtive cf. Raudenbush, 1988; Bryk and Raudenbush,
.1992 .

LEVEL 1

The first level of the model describes the associa-
tion between the observed data Y , i � 1, . . . , n, andi

Ž .unobservable random quantities � � � b , re-i i
Žferred to in Bayesian language as parameters cf.

.Lindley and Smith, 1972 , but known elsewhere as
Žlatent variables or random coefficients cf. Long-

.ford, 1993 . Often, � � � � Z b , in the languagei i i i
of the current article, where b is a random effecti
and Z is the random effects design matrix. Wei

Ž � .thus have f Y � , i � 1, . . . , n, as the ‘‘level-1’’i i
model. For example, Y might be a vector of re-i

peated measurements on subject i, while the ele-
Žments of � are individual growth parameters Lairdi

.and Ware, 1982 . Alternatively � might be an ef-i
fect size estimated by Y in each of n experimentsi
Žcf. Raudenbush and Bryk, 1985; Morris and Nor-

.mand, 1992 . Other possibilities include the case
where Y is regressed on X in each of n schoolsi i
and � is a vector of school-specific regression coef-i
ficients. In some cases, Y are the observed datai

Žand � are the ‘‘complete’’ data for subject i cf.i
.Goldstein, 1995b, Chapter 4 . Or Y might be thei

fallible data and � are the ‘‘true’’ values of the datai
Ž .cf. Raudenbush and Sampson, 1999a so that
Ž � . Ž .f Y � is a measurement model Fuller, 1987 .i i

LEVEL 2

The second level of the model specifies, in
Bayesian terms, an exchangeable prior distribution

Ž � .for � . We thus have p � 	, D , where 	 arei i
regression coefficients and D is the variance�co-
variance matrix of b . This second-level distributioni
might also be called the distribution of the latent
variables or the random coefficients. Here
Ž � .p � 	, D specifies the distribution of growth pa-i

rameters across a population of repeatedly ob-
served subjects, the distribution of effect sizes
across replicated experiments, the distribution of
school-specific regression coefficients across a popu-
lation of schools or the distribution of the complete

Ž .data or ‘‘true scores’’ across survey respondents.

MARGINALIZATION

The two levels of the model then lead to the
marginalization

n

Ž � . Ž � . Ž � . Ž .q Y 	 , D � f Y � p � 	 , D d� . 1ŁH i i i
i�1

Prior to publication of the current article, 	 � 	 C

involved the ‘‘conditional’’ linear regression param-
eters for the relevant nonlinear link function. The
current article creates the option of parameterizing
	 � 	 M, that is, the marginal linear regression
model.

TARGETS OF INFERENCE

Ž � .The first target of inference is q Y 	, D , which
governs the association between X and Y. Based on
the current article, likelihood inference is now
available for conditional and marginal parameteri-
zations of 	. These focus on the X�Y relationship.
This target of inference represents the scenario in
the introduction to the article. The subject-matter
consideration is whether one wants to hold con-
stant the random effect in assessing the X�Y asso-
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ciation. If the appeal of each of these options seems
similar, one might opt for marginal inference on
robustness considerations, although this decision
does not really avoid the logical problem mentioned
above.

Ž � .The second target of inference is f Y � , for � ,i i i
i � 1, . . . , n. One seeks an inference about the
growth parameters of a particular subject, the ef-
fect size of a particular study or the regression
coefficients in a particular school. Empirical Bayes

ˆ ˆŽ � .methods, based on p � Y, 	 � 	, D � D provide
a reasonable approach for estimating this distribu-
tion if the number of clusters is large. Such infer-
ence had been available within the framework of
the conditional regression interpretation. The cur-
rent article allows such inference for both marginal
and conditional parameterizations. The choice of
marginal versus conditional version of 	 here
should presumably not have an appreciable effect
on inference.

The third target of inference is the distribution of
Ž � .the latent variables themselves, that is, p � 	, D .i

This would clearly be the target in a missing data
model. In that case one attempts to estimate the
parameters of the complete-data distribution from
the incomplete data, based on the assumption the

Ždata are missing at random Little and Rubin,
.1987 . Another case involves a measurement model,

standard in education, wherein Y is a vector ofi

binary responses, each indicating a correct or incor-
rect response to a question on a test, and � is thei
ability of examinee i. Here 	 describes the associa-
tions between covariates, X, and student ability,
while D might describe the dispersion of ability in

Ž .the population of students cf. Bock, 1989 . Note
that 	 and D contain information about the regres-
sion of one element of � conditional on other ele-i

Žments cf. Lillard and Farmer, 1998; Raudenbush
.and Sampson, 1999b . It would appear that, for this

third target of inference, the conditional model must
be the model of choice. After all, it is the distribu-
tion of the latent data that is of interest, not the
distribution of Y.

Ž .In sum, for target 1 there is a choice and it may
Ž .make a difference; for 2 there is a choice that

Ž .should not make a difference; for 3 the conditional
model is the only choice that fits conceptually.

As the authors point out, there is a serious poten-
tial problem with conditional inference in the case
of these nonlinear link functions. Results may be
sensitive to distributional assumptions that are
hard to check. When marginal inference is not a
viable choice conceptually, the remaining strategy
appears to be sensitivity analysis. Inferences about
	 C and D must be checked against alternative
plausible assumptions about distributional family

Žand the structure of variation at each level cf.
.Seltzer, 1993 .

Rejoinder
Patrick J. Heagerty and Scott L. Zeger

We agree with Stephen Raudenbush that
marginal and conditional multilevel regression
models have been ‘‘artificially separated’’ by associ-
ation with different methods of estimation.
Marginal models are commonly fitted using esti-
mating equations while conditional models are typi-
cally associated with likelihood and Bayesian esti-
mation methods. In this article we have attempted
to carefully separate the form of the regression
model from procedures used to estimate model pa-
rameters. Our focus on the use of a marginally
specified mean model with a likelihood construction
traditionally used for conditionally specified models
allows an unconfounded focus on the difference
between the marginal and conditional regression
models. Likelihood estimation in nonlinear hierar-
chical models remains challenging in many situa-

tions and our use of numerical quadrature is in-
tended to illustrate the feasibility of our approach
rather than be the definitive computational meth-
od of estimation. We are grateful to Emmanuel
Lesaffre, Bart Spiessens, John Neuhaus and
Stephen Raudenbush for their thoughtful commen-
tary which helps to illuminate important issues
relating to the choice of a regression model and
issues pertaining to estimation and robustness.
First we comment on statistical models and then
discuss parameter estimation.

MODELS

Raudenbush addresses the fundamental question
of when to consider use of a marginal versus condi-
tional multilevel regression model and provides a
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clear and comprehensive classification driven by
the scientific aims of analysis. We completely agree
that the substantive goals should dictate the choice
of regression model. Our demonstration of the sen-
sitivity of certain parameter estimates is intended
to emphasize that conditional regression estimates
for between-cluster covariates suffer both in their
interpretation and in their estimation; they are
essentially extrapolations. In fact, Neuhaus goes so
far as to say that ‘‘one should not report conditional
estimates for such covariates in the first place.’’
Additional discussions of the appropriate domain of
application for marginal and conditional models

Ž .have been given in Graubard and Korn 1994 and
Ž .Neuhaus, Kalbfleisch and Hauck 1991 . More re-

cently, related issues of collapsibility and causal
inference have been discussed in Greenland, Robins

Ž .and Pearl 1999 . We hope this article, and the
thoughtful discussion, helps clarify the distinction
between the marginal and the conditional multi-
level regression formulation so that data analysts
can make an informed choice that satisfies their
specific scientific objectives.

Ž .Lesaffre and Spiessens L&S remind us that
assessing model fit is also an important part of any
data analysis. Whether a variable can be modeled
linearly on either the marginal or conditional scale
can be assessed empirically, and deviations from
linearity can be accommodated by generalizing the
regression form. We make no assertions as to where
it is ‘‘best’’ to assume linearity since this decision
should be guided by both substantive consideration
and empirical evaluation. Although it is true that
linearly may not hold for both marginal and condi-

Žtional linear predictors depending on the link func-
.tion , our experience is that the difference in the

structure of the regression model is frequently
small. In Table R1 we present the saturated two-

Ž . Clevel conditional regression structure � X � 	i j 0
� 	 CX � 	 CX � 	 CX X for different val-1 1, i j 2 2, i 3 1, i j 2, i
ues of 
 that induces an additive marginal logistic

Ž . M M Mmodel � X � 	 � 	 X � 	 X with bi-i j 0 1 1, i j 2 2, I
Ž .nary level-1 covariate X � 0, 1 and binary1, i j

level-2 covariate X � 0 or 1. We find that the2, i

TABLE R1
CConditional mean parameters � as a function of 


M Ž .for a fixed marginal � � �1.00, 0.50, 0.25, 0.00

C C C C� � � � �0 1 2 3

0.0 �1.00 0.50 0.25 0.00
0.5 �1.06 0.53 0.26 0.00
1.0 �1.20 0.60 0.30 0.00
2.0 �1.63 0.80 0.40 0.01
3.0 �2.12 1.02 0.50 0.04

TABLE R2
MQL and QEE parameter estimates for the teratology data

MQL QEE

Estimate s.e. Estimate s.e.

MMarginal mean �
Intercept 2.174 0.293 2.176 0.284
Treatment �1.058 0.486 �1.072 0.470
Level 2 heterogeneity 
2
Intercept 0.511 0.500 0.428 0.380
Treatment 0.827 0.600 1.464 0.722

conditional model is approximately additive unless

 is large. Although the marginal and conditional
covariate structures are similar, the magnitude of
conditional regression coefficients does depend on
the value of the heterogeneity parameter. Addi-
tional complexity results when the heterogeneity
parameters depend on covariates.

Finally, Neuhaus criticizes the concept of a single
model that attempts to do all things. We make no
claim that our model is universally applicable. Dif-
ferent tasks require different tools.

ESTIMATION

Neuhaus inquires about approximate maximum
likelihood procedures that may offer computation-
ally simple parameter estimation, such as marginal

Ž .quasilikelihood MQL . In Table R2 we have used
two approximate methods to fit marginalized
GLMMs to the teratology data analyzed in Section
5.1. The first estimation method is MQL as de-

Ž .scribed in Breslow and Clayton 1993 . The second
method is based on quadratic estimating equations
Ž . Ž .QEE and is described in Heagerty 1999 . Both
methods provide marginal regression estimates that

Žare similar to the MLE presented in Table 1 Model
.3 . However, MQL estimates of heterogeneity pa-

Žrameters appear negatively biased for the treat-
.ment group ; MQL estimates of variance compo-

nents are generally not consistent and the negative
bias observed in our teratology example is in accord
with simulation results reported in Breslow and

Ž .Clayton 1993 . The QEE method yields consistent
estimates of mean parameters and variance compo-
nents since estimates result as the solution to a
pair of unbiased estimating equations. More work
is warranted in the development and evaluation of
consistent approximate ML methods for multilevel
categorical data.

Lesaffre and Spiessens discuss an example in
which a large number of quadrature points was
required to accurately evaluate the marginal likeli-
hood function. Simple Gaussian quadrature that
evaluates the likelihood with a small number of
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nodes centered at the mean of the random effects
has been shown to be potentially inaccurate
Ž .Pinheiro and Bates, 1995 . Either a larger number
of quadrature points can be used or the quadrature
can be modified to center at the conditional mode of
the random effects. In our examples we used K � 20
and K � 50 quadrature points. Quadrature meth-
ods become computationally impractical with a
moderate or high dimensional random effects dis-
tribution. However, choice between the marginal-
ized and the conditional regression models is not
impacted by the dimension of the random effects
since the transformation from the marginal linear

Ž .predictor � X to the conditional linear predictori
Ž .� X only requires solution of an integral equationi

Žin one dimension over the marginal distribution of
. Ž .b regardless of the dimensionality of b � vec b .i j i i j

Improving algorithms for likelihood estimation of
GLMMs remains an active research area and ad-
vances in fitting conditionally specified models can
be expected to transfer to marginally specified
models.

Finally, we agree with Neuhaus that conditional
logistic regression offers a simple and attractive
method of estimation for within-cluster covariates.
Two main limitations are that no summaries of
between-cluster systematic or random variation are
obtained, and the basic model may be too simplistic
Ž .random intercepts only for certain settings such
as with longitudinal data.

SUMMARY

Regression analysis of multilevel categorical data
requires selection of a mean model, a dependence
model and a method of estimation. In this
manuscript we have decoupled the choice of mean
and dependence models, permitting greater flexibil-
ity in the choice of statistical approaches.
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